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Many-body wave functions approximated by the superposition of spin-projected nonorthogonal
Slater determinants in the resonating Hartree-Fock method
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A resonating Hartree-FocifRes-HF method is revisited and improved by the complete spin projection for
the interacting Fermion system. This method approximates a many-body wave function by the superposition of
nonorthogonal Slater determinarits-det$. The nonorthogonality of the S-dets makes it possible to describe
the large quantum fluctuations efficiently, since each S-det naturally includes the full-electron-excitation effects
from other S-dets. The molecular orbitals in every S-det, as well as the superposition coefficients, are varia-
tionally determined. So far, however, the spin contamination, caused by the conventional half-projection, has
been a serious obstacle to obtain the accurate wave functions for large-size fermion systems, especially in the
intermediate and large correlation regimes. In this paper, we apply the complete spin projection method to the
Res-HF calculations. As an example, the improved Res-HF method is applied to the one-dimensional Hubbard
model. It will be shown that the complete spin projection improves the Res-HF wave functions significantly. In
fact, the correlation energies explained by the improved Res-HF method are better than those by the variational
Monte Carlo method in all the correlation regimes. The correlation structures at arbitrary fillings are also well
described by the improved Res-HF method.
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[. INTRODUCTION since it is applicable to higher dimensions. However, at
present, its accuracy becomes worse as the system size is
The development of the many-body theories which carincreased or the interaction is increased. So far, only the
describe the large quantum fluctuations in the interacting fervariational Monte CarldVMC) method is applicable to the
mion systems has been one of the central problems in botrge and any-dimensional systemsTherefore, we still
the condensed matter and particle physics. For example, niieed more theories, which are tractable and applicable to
clei in the transition region between the spherical and largeljbitrary interacting fermion systems.
deformed shapes, or the low-dimensional interacting electron " thiS paper, we revisit to a variational method called the
systems are not described by the simple Hartree-FBigR resonating HRRes-HB approximation, originally developed

2 . .
approximation, due to the large quantum fluctuations. Espet-’y Fukutome'? This method approximates a many-body

cially, since the discovery of the attractive materials, show-\évl"’“;er fgntcnr?:inb)r/]t;ge dS;JspelzpC:EItlon r?f tf:e nonoghoggr;al
ing the high-temperature superconductivity or colossal magWa er dete a €. € early stage, a Res

netic resistance, it has been becoming more important t ave function is constructed by optimizing only the super-

\arify the elect lation effects in th 4 d tBosition coefficientd>! Then, the tractable orbital optimi-
fe?;'fy € electron correlation eliects in the condensed mat o4on method was developed by Ikawaal® Thus, now,

i . the orbitals of every S-det, as well as the superposition co-
For small clusters, we can apply the e>éa3ct diagonalizationyicients, are variational determined in the Res-HF calcula-
methods, such as the LancZogalence bond;®and full con-  iong, S0 far, the Res-HF method has been applied to the 1D

figuration interactiongCl). However, the exact calculations pajf-filed Hubbard system, where we have the exact
are not applicable to large systems having more than 20 pafieb-wu solutionsi® In these previous calculation; it
ticles.To understand the bulk properties of the electron corwas shown that the Res-HF approximation gives a reason-
relations, the real-space density-matrix renormalizatiomable agreement with the exact result in the correlation energy
group (DMRG) method has been developbdyut this  and correlation structures, up M=20. However, when we
method is applicable only to the one-dimensiofiHD) or  applied this method to large-size fermion systems, we had a
quasi-1D systems. On the other hand, for the infiniteserious problem of the spin contamination in the Res-HF
dimensional systefor the system with the large orbital wave function, which makes the accuracy worse. This was
degeneracie$the dynamical mean-field theory is applicable. due to the incomplete spin projection by a half-projection
However, this theory neglects the nonlocal fluctuation effectsnethod, which can eliminate only oddr even spin contri-
which will be important in the real finite-dimensional sys- butions from the generating S-dets. As a result, the Res-HF
tems. A quantum Monte Cark@®MC) simulatiorf is another method has been applied only to a small moletuknd
alternative, but in the interacting fermion system, the QMCnucleil®

method often suffers the famous negative sign problem, To overcome the problem, in this work, we apply the
where the probability to update a configuration becomesomplete spin projection method proposed by Ig&\ta the
negative. The sign problem restricts the application of theRes-HF calculations. It will be shown that the resonating of
QMC method. Recently, the momentum-space DMRGthe completely spin-projected S-dets makes a much better
method has been develop&d® This method is promising, wave function than the conventional one with the half-
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projection. As a demonstration, the improved Res-HF Ipod)=|d), 2)
method is applied to the 1D Hubbard model. It will be shown _
that the improved Res-HF wave function with the completeConstitute the subgrou@,, of G. Then, for the elementsof
spin projection describes both the correlation energy and cofh'® right coseG/G,, we find that
relation structure much better than the previous one with the Is¢)# | ) 3)
half-projection at any filling. In fact, we will show that the '
improved Res-HF method can describe more correlation erexcept for s=1. These |[s¢) are degenerate broken-
ergies than the VMC method in all the correlation regimes. symmetry S-dets and the set §6¢)} is called the Gold-

This paper is organized as follows. In Sec. I, the Res-HFstone set of ¢). Peierls and Yoccdz have proved that the
method is introduced. We briefly review the complete spin-original symmetry is recovered by the resonance of the de-
projection method employed in the present work. In Sec. lll,generate Goldstone set. In the following, to recover the trans-
the Res-HF method is applied to the 1D Hubbard model. Wéation and inversion symmetries of the system, we apply the
will show that this method gives very accurate wave func-Peierls-Yoccoz projection to the constituting S-dé®$. in
tions in all the correlation regimes at any filling. Finally, a Eq. (1) represents this Peierls-Yoccoz projection.
summary is given in Sec. IV.

B. Complete spin projection

Il. METHOD Now, we briefly review the complete spin projection of

Here, let me review the basic idea on the Res-HF methodhe S-dets®** Here, for convenience, we focus on the pro-
The most straightforward variational method, which can exjection on the singlet states, since the ground state of the 1D
plain some of the electron correlations, is an unrestrictediubbard system, we study in the following section, is
Hartree-Fock(UHF) approximatiorf’ in which the ground singlet?® In the Res-HF method, we need to calculate the
state is described by a broken-symmetry S-det, here denotégatrix elements between nonorthogonal S-dets, such as
by |¢g). As different correlation structures cause different A
broken symmetries, we can directly know the correlation X(u,0)=(v[X|u), 4
structure through the UHF S-det. A spin-density wave
(SDW) in the lattice fermion system is one example, which
breaks the translation symmetry.

However, such a single S-det is not sufficient to describ n
the large quantum fluctuations. We need a multiconfigurai T
tional theory which can efficiently describe the electron cor-

whereX is an operator which is invariant for the spin rota-
tion. As we are considering the singlet states, the number of
up-spin electrons is equal to that of down-spin electrons
=n,;=Ng/2). In this case, all the constituting S-dets sat-

relation effects. Here, the important property of the nonlinear S,|uy=M|u), (5)
UHF equation is that it has various low-energy excited states,
denoted by|¢e), |deo),etc, which have the large off- M=0. (6)

diagonal resonance elements with both the UHF ground state ) )

((bes|H| bg), etc) and other excited states dhey|H| der) On the other hand, these S-dets are constituted of different
1 L . 2

etc), whereH represents a many-body Hamiltonian. As the &igenstates 08", such as

resonance of these UHF ground and excited states could sta-

Imax

bilize the many-body states, the Res-HF method starts its Puy= z IG+1)|u; weo),
many-body wave function with the superposition of the non- j=0 I
orthogonal UHF S-dets, such as (7)

\ imax=mMin(Ng/2N—Ng/2),

S
| W)= > c.> PSPC| ¢,). (1)  WhereN represents the total number of orbitals. As a result,

n=1 S the matrix element becomes
Here,Ng represents the number of constituting S-dets. Then, imax
the molecular orbitaléMO) of all the constituting S-dets are X(u,v)= 2 (vj,0|)A(|uj,0). (8
optimized to lower the Res-HF ener¢y¥ |H| V). In the fol- i=o0

lowing sections, we review the symmetry projection as well

. R The problem is how we can extract the contribution of the
as the orbital optimization.

singlet states, given by

A. Peierls-Yoccoz projection X(U'U)o=<voo|5<|uoo>- (9)

Since the S-dets constituting the Res-HF wave function

can have different correlation structures, we have to adopt " this work, we employ the different orbitals for different

the symmetry projections for the constituting S-dets to reSPins for the constituting S-dets. Then, the Sidetis char-

cover the original symmetry of the system. Here, as an ex@cterized by a matrix, such as
ample, let us assume that the system belongs to the symme- u. 0
try group G and |¢) is a broken-symmetry S-deGG’s u=( ! )

: 4 (10
elements, which satisfy

0 uy
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where bothu; andu, areNxX N matrices, and their elements
show the molecular orbital coefficientMOC) for the up-
spin and down-spin states, respectively.

Now, let us make the spin rotation for the S-gie}f with
the Eulerian angles (B,0), such as

cosgu —sinéu
2t 27

RBIW=|] B
sin Eul COSEUZ

Imax

=> > |u0DKA). (12)
1=0 k=]
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contributions. In actual calculations, Igawa has proved that if
we employ zeros of Jacobi polynomial of degie®r B’s,
such as

pi(cog B))=0, (18)

we can eliminate the high-spin components upjteZ2i
—1.1° Therefore, forN-orbital systemj=N/4+1 is enough
to extract the singlet-state component, given by @g.from
Eqg. (12). In this work, we sei =8 for N=30 systems and
i=13 for N=50 systems, which eliminate the high-spin
components up t§=15 andj =25, respectively. Therefore,
they give the exactly singlet contributions fiNr=30 andN
=50 systems, respectivelpS in Eq. (1) represents this spin
projection.

So far, the singlet Res-HF wave function was approxi-

We should note that the projected S-det has general spimately constructed by the half-projecti&i?® which only

orbitals. In the first line of Eq(11), the rotated S-det is

eliminates odd-spin components from Ed2). This half-

represented by the MOC matrix. Then, the matrix element ofojection is obtained by setting at 0 ands. Then,Di()

X becomes

Jmax

X(ﬁ):<v|5(R(ﬁ)|U>:jZO (vj ol X|uj )DA(B)

jmax
=j§o X;pj(cog B)), (12)
where

X; :<Uj,o|>A(|Uj,o>,
. (13
pj(cog B))=D}(B).

Here, the functiorp;(x) corresponds to the Jacobi polyno-
mial of degreg,?* and is given by

]

>

_ 1 (j)z — 1)) K(x+1)¥ 14
p,—(X)—Zj 2] = DX ). (14

It should be noted that we can directly obtain the matrix

elementX(B), according to the formulas introduced in the
following section. Eventually, by calculating(g) at differ-
entB’s, we can make the simultaneous equations¥pr By
defining a matrixG and vectorsX andY, such as

(G)i,j=pj(cog B)),

(X)j=X;,
()i=X(Bi), (15
Eq. (12) becomes
Y=GX. (16)
By reversing Eq(16), we obtain
X=G Y. (17

From Eq.(17), we can select all the possible spin contribu-
tion, not only the singlet contribution but also higher-spin

becomes
D4(0)=1,
Dh(m)=(~1)l. (19
As a result, Eq(12) becomes
X(0)=Xp+Xq+Xo+Xg+ -, (20
By adding Eqs(20) and(21), we obtain
1
E[X(O)+X(7T)]:XO+X2+'-'. (22
Thus, the half-projection, given by
1 S S
§(<v|XP (m)|u)+ (v |X[P(0)[u)), (23

still has the spin contamination due to the even-spin states
(j=24,...).

We will show that the complete spin projection, employed
in this study, improves the accuracy of the Res-HF method
significantly, compared to the half-projection method.

C. Res-HF equation

Here, we review the Res-HF procedure which determines
the MO sets and superposition coefficients simultaneddsly.
A many-body Hamiltonian is generally given by

1 .
H=2 hj,ia;rai+§.2 <k||lj>alafrajai, (24
{,j) i,k

where the spin direction is included in the indideg,k,l.
First, the overlap between two S-dets is written as

(ulv)=detz),

z=u'p, (25
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whereu andv represent the MOC matrices af) and|v), This is called the Res-HF C{configuration interaction
respectively, defined by Eq10). On the other hand, the equation. Once we have the set of S-dets, we can determine
matrix element of a pair-particle operator between two S-dettheir superposition coefficients’s by this Res-HF Cl equa-

is given by tion.
Now, let us derive the variational equation to determine
(ulafailv)=W(u,v);;de(z), (26)  |u¢)’s, such as
whereW(u,v) is called the interstate density matrix and is SL
explicitly given by =0 (35
ou;
W(u,v)i;=(vz tuh);. 27

First, we introduce several mathematical expressions, used

Then, the matrix element of a two-body product of pair-fOr the derivation of Eq(35). From Eq.(29), we obtain

particle operators between two S-dets is given by SH(W) = F. (W) 8W;; = tr(F SW)
—ij ji— ’

(ulafalajalv)= (W W, —W; W) de(z). (28 SH(W) (36
Thus, the matrix element of the Hamiltonian between two Fij (W)= OW;; :h”JF% (7KW

S-dets is written as )
Then, from Eq.(27), we obtain

(ulH[v)=H[W(u,0)]det2), SW=(6v)z tuT+v(sz HuT+vz 1(su")

_ 1 . =D(1-W)+(1-W)D,
H[W(U,U)]—%:> h; Wi + > i'%l [Kil 1] TWi W, . (37)
D=vz Ysu’), D=(év)z ',

[ki|lj1=(ki[ljy—=(Kj[li). (29 Where we Use
As the Res-HF wave function is formally represented by 57 1=—7"Y 6227 1= —z((suh)v +u'(sv))z L.
(38)
|‘1’>=Ef luyes, (300 On the other hand, the variation of the overlap between two

S-dets is given by
the normalization condition is given by -
5(det(z))=tr(z 16z)de(z)=tr(D+D)delz), (39

<\y|\p>:2 <uf|ug>c?cgzz detzgg)cfcg=1. (31 where we use the relationship between detédnd itsb-a
fg fg cofactor, such as

On the other hand, the energy expectation value is given by

o
det(z)=(z"1)de(z). (40)

Dba: 5Zba

— * _ *
<\P|H|\P>_% (urlHlug)ci Cg_%: H[Wigldetzig)cy Cg, Now, from Egs.(33) and(36)—(38), we obtain
32
(32 SL=t{(1-W)F+H—E}D
whereW, is the interstate density matrix ¢di¢) and|ug). 5
Now, |u¢)’s and ¢cy’s are determined by the variation of +D{F(1-W)+H—-E}]de(z). (41)

the Lagrangian Finally Eqg. (35 becomes

L=(¥IH[W) ~E(P[¥)= 2 {H[Wig)~E}detzig)ci g, S, Kigereg=0.
(33

whereE is the Lagrange multiplier to secure the normaliza- ~ Krg=1(1—Wig)F(Wig) +H(Wiq) — E}Wrgdet(zsg).

tion condition and also has the meaning of the energy of th%‘his is called the Res-HF equation. Once we have the set of
state| ¥). I : . , trial S-dets and their superposition coefficients, we can up-
From_the variation of this Lagrangian with respectto, date the MOC of the S-déti;) according to Eq(42). After
we obtain updating all the S-dets, we go back to E8¢), determine the
new superposition coefficients, and then update the orbitals
HIW..1—Eldetz:.)c.=0 34 of the S-dets again. By iterating these procedures, we can
Eg: {H[Wrg]— Ejdetzeg)cq (34 variationally determine the MO sets and superposition coef-

(42)
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TABLE I. The ground state energies of the 1D half-filled and doped Hubbard systems. ReB)Hixd
Res-HF (=8) denote the Res-HF results with the half-projection en@ spin projection, respectively. The
correlation energy explained by each method is denoted ).

N=N,=30 K N=30, N,=26 K N=30, No=22 K

RHF —23.2671 —26.1642 —26.8921
UHF —23.4792 10.0
u=2 Res-HEHP) —23.3206 97.0 —27.9920 98.2 —28.4227 98.6
Res-HF({=8) —25.3436 98.1 —27.9979 98.5 —28.4268 98.9
Exact —25.3835 —28.0253 —28.4441
RHF —8.2671 —14.8975 —18.8254
UHF —14.0732 64.8 —17.3756 35.0 —20.1328 23.4
u=4 Res-HRFHP) —16.5992 92.9 —21.3820 91.5 —24.0803 94.2
Res-HF{=8) —17.0542 97.5 —21.5720 94.1 —24.1582 95.5
Exact —17.2335 —21.9868 —24.4057
RHF 21.7329 —7.6358 —2.6921
UHF —7.8329 93.6 —11.2049 79.5 —14.9299 69.3
u=8 Res-HFHP) —9.0678 97.6 —14.7040 94.2 —19.0474 92.6
Res-HF{=8) —9.5378 99.0 —15.4059 97.2 —19.5552 95.5
Exact —9.8387 —16.0761 —20.3462
ficients simultaneoush? In this work, we have converged Ng  N-1
the Res-HF wave functions and its energy functionals up to | W)= 21 C, 20 PST™(1+R)|¢,), (44)
n= m=

10°°.

The orbital optimization procedure is quite important 0 yhere the operatof makes the translation of the S-det by
obtain the accurate many-body state. In the conventional Clsne site. whileR represents th€, rotation in theDy, sym-
based method, the single common orbital set is used for anetry gr’oup. The operation 6F and R corresponds to the

the configurations. Therefore, it is almost impossible t0 iN-pgieris-Yoccoz projectionPS represents thé=8 (for N
corporate the high-order electron-excitation effects from:30) ori=13 (for N=50) spin projection introduced in

each configuration unlgss_ the system is very sr'nall'. Suchhe previous section. Thus, for each generating S-dg},
high-order electron-excitation effects become quite impor-, (C, rotation XN (translation Xi (spin-projection sym-

tant in describing the strongly correlated fermion system. INmetry proiections are operated. As a result. the symmetry-
the Res-HF method, different S-dets have different optimize(;le(:o\>ll(;r3edJ Res-HF wa\F/)e function consists oINi%QNS 4

orbital sets and they are nonorthogonal to each other. Thergs joic |n the following calculationsis=30 generating
fore, each S-det can naturally include the fuII—eIectron—S_detS'are used ns

excitation effects from other S-det. In Table I, we show the ground-state energies of the 1D
half-filled and doped Hubbard systems, havig 30 sites.
Ill. RESULTS AND DISCUSSION Here, N represents the number of electrons. RHF denotes
he restricted HF stat€,which satisfies the full symmetries

Now, we apply the Res-HF method to the 1D single-ban f the system and is the reference state for the perturbation

Hubbard model, where we have the exact solutions for boﬂ?heory For comparison, the UHF energies are also shown in
the half-filled and doped cas&?°The Hamiltonian is given ="~ except foN,= 26 and 22 at) — 2, where no stable
e ]

by UHF solutions were obtained. In this table, we also compare
N N the ground-state energies by the complete spin-projection
__ t t method, denoted by Res-HRF=8), to those by the half-
H t% (a"”a'*1'”+a'*1’“a"”)+UZ RN projection method, denoted by Res-HfP). The exact so-
(43) lutions are obtained by the Lieb-Wu equatidfi€® and «
denotes the ratio of the correlation energy explained by the

whereN represents the system size. In the following, all theres-HF or UHF wave function, which is defined by
energies are normalized by the transfer enetrgyn this

study, the periodic boundary condition is imposed. There- E(Res-HF or UHF—E(RHF)

fore, the system has tH2y symmetry. In the following, we k=100X E(Exact —E(RHP) : (45)
show the Res-HF results mainly fof=30 and 50 systems.

In these cases, the ground state has'thg symmetry, and It is remarkable that for both the half-filled and doped sys-
therefore, the Res-HF wave function is explicitly representedems, the Res-HF wave functions can describe more than
by 91% of the correlation energies in all the correlation regimes.
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TABLE II. The ground-state energies afg?) for N=N,=50. Res.-HFHP) denotes the Res-HF result
with the half-projection while Res-HIF¢ 13) denotes the result with= 13 spin projection. The VMC results
are taken from Ref. 1.

Energy k(%) (S?)
RHF —38.7039
UHF —39.1294 12.0
VMC ~87
u=2 ResHRFHP) —41.8565 89.0 1.72
ResHF({=13) —41.9535 91.8 0
Exact —42.2443
RHF —13.8039
UHF —23.4553 64.4
VMC ~92
Uu=4 ResHRFHP) —26.9727 88.5 7.42
ResHF({=13) —27.9633 94.4 0
Exact —28.6993
RHF 36.2961
UHF —12.3048 92.3
VMC ~96
Uu=8 ResHFHP) —14.4838 96.4 12.8
ResHF({=13) —15.6422 98.6 0
Exact —16.3842

So far, the Res-HF method has been applied only to theletely eliminated, and the Res-HF wave functions are sig-
half-filled Hubbard system, and this is the first result show-nificantly improved for theN=N.=50 systems.
ing that this method works well also for the doped systems. Here, let us compare the present results to the VMC ones.
Table | also shows that the complete spin projection makefn Table I, we also show the ratios of the correlation ener-
the Res-HF wave functions significantly better than the halfgies explained by the VMC methtdfor N=N,=50. We
projection especially at/=4 and 8. can see that the Res-HF method with the complete spin pro-
Recently, the momentum-space DMRGUSDMRG) jection can explain more correlation energies than the VMC
method has been developed and applied to the 1D Hubbardethod in all the correlation regimes.
model®!? In the case ofN=N,=32, they have obtained  Then, in Fig. 1, we show thbls dependence of the cor-
—33.2008 and—26.8016 for the ground-state energies atrelation energy explained by the Res-HF wave function at
U=1 andU=2.0, respectively, while the exact energies areU =4. Black circles and triangles represent kg depen-
—33.2152 and—27.0183, respectivelf’ For comparison, dence ofx by the complete spin projection method fisr
we have calculated the Res-HF wave functions alsoNfor =30 andN=50 half-filled Hubbard systems, respectively,
=N,=232. In this case, the ground state has tBg symme-  while circles and triangles represeaby the half-projection
try. Then, the obtained Res-HF energies ar83.2128 and method for these systems. For comparison, the UHF results
—26.9556 atU=1 and U=2.0, respectively. Thus, the are also denoted by white square and diamond\fer30 and
Res-HF method can describe more correlation energy thah=50 systems, respectively. In the case Mf=1, the
the MSDMRG method, though the MSDMRG method might Res-HF wave function corresponds to the projected HF state.
be improved by increasing the number of the density-matrix-igure 1 shows that even witN =1, the Res-HF wave
eigenstates which are kept in the renormalization procedurdunctions with the complete spin projection describe more
Then, in Table I, we compare the complete=(13) spin- than 90% of the correlation energies for bl 30 andN
projection method to the half-projection method, &= N, =50 systems. This result, as well as the whole
=50 Hubbard systems. A =2 and 4, the half-projection Ng-dependence, indicate that the orbital optimization with
method can explain only less than 90% of the correlatiorthe complete symmetry projections is very important to con-
energies. From this table, we can see that the complete spstruct the accurate wave functions.
projection method improves the Res-HF wave functions sig- From Fig. 1, we can see that as the system-size is in-
nificantly in all the correlation regimes. In the half-projection creased, we need a larger number of S-dets to maintain the
method, the expectation values $f are far from zero in all  quality of the Res-HF wave function. On the other hand, Fig.
the correlation regimes. The spin contamination was a serit also shows that the quality of the Res-HF wave function is
ous problem to construct an accurate Res-HF wave functioimproved with the increase of the number of S-dets. Al-
for the large-size system. Now, however, we can see that bthough it might be difficult to extrapolate the Res-HF ener-
the i=13 spin projection, the spin contamination is com-gies atNg—< from Fig. 1, the Res-HF approximation coin-
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FIG. 1. Ns-dependence of the correlation energies explained by
the Res-HF wave functions &1=4. Black circles and triangles
represent thé\g dependence ok by the complete spin-projection
method forN=30 and 50 half-filled Hubbard systems, respectively,
while white circles and triangles represenby the half-projection
method for those systems. A white square and diamond denote the
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Spin Correlation Function |

UHF results forN=30 and 50 systems, respectively.

cides with the exact coherent-state representatioh the
fermion state vectof¥) in the limit of largeNg, such as

)= [ Uwlexeluwwydu= [ luuw)du
(46)

Since the MOC matrix of a S-det, given by E@0), belongs

to theU(2N) group, the integration, in Eq446), represents a

normalized group integration doi(2N). U(u) is a represen-

tation of theU(2N) group, defined by
U(u)=e7iiarai.

(47)

Here, the dummy index convention is used to sum up the

repeated indicesy;; is a 2NX2N antihermitian matrix,
which satisfies

Y= (%ij),

T

y'=—v. (48)

Then, we obtain
Uwauw'=alu;, UwaUu)'=au}, (49

whereu= (u;;) is the U(2N) matrix, given by

uut=ufu=1. (50)

u=e’, y=(vj),

In Eq. (46), we have used thigl (2N) canonical transforma-

tion, which transforms a giveig-particle S-det¢) to an
arbitrary No-particle S-defu), such as

U(u)|¢)=|u).

This is called the Thouless transformatfdrin general,/u)
is nonorthogonal td¢). As a result, Eq(46) indicates that

(53)

Spin Correlation Function

4
=
S
e

o
S
g

=4
2
S
F

=
=Y

Spin Correlation Function

Spin Correlation Function

12 14

FIG. 2. Spin correlation functions fd¥=N,=30 (a), N=30,
andNg= 26 (b), andN =30 andN.= 22 (c). Black circles represent
the Res-HF results with the complete spin projection, while white
circles represent those with the half-projection. The close-up of the
long-range behavior is shown in the inset of each figure, where the
crosses show the exact long-range behavior normalizég(at).

superposition of the nonorthogonal S-dets. Thus, the Res-HF
wave function corresponds to the discretized expression for
the exact coherent-state representation, defined by46).
Next, we show in Fig. 2 the spin correlation functions of

the Res-HF wave functions fod=4. Black and white
circles represent the correlation functions obtained by the
complete spin projection and half-projection methods, re-
spectively. The exact long-range exponent of the spin corre-

the arbitrary fermion state vector is exactly described by theation function is given b3f-*
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Y AL WL P L WP N NP LR NU other hand, the half-projection method gives the exponents,
4} ] denoted by thin lines;-0.23, —0.62, and—1.56, which are

st M ] largely different from the exact values. Thus, the complete
6F 1 spin projection improves the Res-HF wave functions signifi-

-Tr ] cantly.

A
s *A‘iw*# ] As the 1D Hubbard system does not have a real long-
Or ﬁ\‘\AM ] range orderN=230 is large enough to see the agreement of

-10p ] the Res-HF results with the exact ones. For much larger sys-
-1 ] tems, the absolute values of the long-range correlation func-
-12p ] tions become so small that it would be quite complicated to

In[S(1)/{cos(2kgl) In"*(1)}]

1431 . = ¥ 2 see the agreement of the numerical results with the exact
P S o® P ones quantitatively.

181920212223242526272829 Then, we show the optimized S-dets. Though the orbital

optimization modifies the starting UHF S-dets, we can often

ln(l) interpret the quantum fluctuations in terms of the UHF-based

picture, by seeing the order parameters of the optimized
FIG. 3. The exponents of the long-range spin correlation func-g.dets.

tions. Black circles, triangles, and squares denote the log-scaled gq far it has been complicated to show explicitly what
long-range structures obtained by the complete spin-projectiopnayes the quantum fluctuations in the correlated electron
method for (V,Ne) =(30,30), (30,26), and (30,22), respectively, oy qtems. The Res-HF method gives a simple but interesting
where the exponents are given by thick lines. White circles, tri- hysics on the quantum fluctuations
angles, and squares denote those by the half-projection methoB, Here, the S-det is represented by. its charge der€iB)
whose exponents are given by thin lines. - . )

and spin densitySD), defined as

Ls(1)=(S(0)- S())eccog 2ke)I 1~ “In¥A(1),  (52) CD(1)=1.0-(n ;+n; | )=NCD(1)+(—1)'ACD(l),
wherea depends ot and fillings. From Ref. 30, we obtain 3 3 | (53
«=0.50, 0.66, and 0.72 fi,/N=1.0, 0.87, and 0.73, re- SB()=(ny;=m )=NSD)+(=1)ASD),

spectively. In the inset of Fig. 2, the crosses show these exagihere the net and alternating components of the(SD) are
long-range behaviors, which are normalized gt5) of each  denoted by NCDINSD) and ACD (ASD), respectively.

Res-HF result. In the half-filled Hubbard system, the optimized S-dets
In Fig. 2(a), | showL g(l) for N=N,=30. The long-range have no CD components. Therefore, in Figa)4 we show
behaviors are enlarged in the inset, where, as mentioneshly the SD components of the typical optimized S-dets for

above, the crosses show the exact behaviors. We can see te-N,=30. In this half-filled system, the most important
spin correlation structure is well described by the Res-HFelement of the quantum fluctuations is an SDW neutral soli-
wave function with the complete spin projection. On theton, which reverses the phase of the ASD and has only the
other hand, in the half-projection method, the long-rangeNSD. The S-dets shown in Figs(a# 1-3 contain a soliton
components decay much more slowly than the exact behayair, whose distance is different from each other. The super-
ior. This is due to the spin contamination caused by the halfposition of such a soliton pair with different distance can be
projection method. interpreted as the breathing or vibrational motion of the two
In Figs. 2b) and Zc), the spin correlation functions for solitons. Similarly Figs. @) 4—6 show the breathing motion
the doped systems are shown. We can see that the Res-kFthe two soliton pairs. On the other hand, as mentioned in
wave functions with the complete spin projection describeSec. |1, these solitons are transferred site-by-site to recover
the exact long-range behaviors of the spin correlation functhe spatial translation symmetry. Thus, the quantum fluctua-
tions much better than the conventional ones with the halftions in the half-filled system can be interpreted as the
projection, also for the doped systems. breathing and translational motions of the neutral solitons.
Figure 3 shows the log-scaled long-range behaviors of th&he present analysis is consistent with the previous discus-
spin correlation functions, derived from Fig. 2. Black andsion based on the half-projection methidd™®
white symbols represent the spin correlation functions ob- On the other hand, there has been no such physical de-
tained by the complete spin projection and half-projectionscription for the doped Hubbard systems so far. This is the
methods, respectively. Circles, triangles, and squares denofgst trial to describe the quantum fluctuations in the doped
the correlation functions forN,N¢) =(30,30), (30,26), and Hubbard systems in terms of the Res-HF picture. In the
(30,22), respectively. To see the long-range exponentdoped system, the most important element is an SDW
clearly, vertical axis is shifted by—3.0 for (N,Ng) charged soliton, which also reverses the phase of the ASD
=(30,26), and—7.5 for (30,22). From Fig. 3, the Res-HF but has only the NCD. In Fig. (#), we show the typical
calculations with the complete spin projection, denoted byS-dets for the doped Hubbard system witlk=30 andN,
thick lines, result in the long-range exponents -6fl.43,  =26. Although the order parameters have complicated struc-
—1.65, and —1.69 for (N,Ng)=(30,30), (30,26), and tures in the doped system compared to the half-filled case,
(30,22), respectively, which agree reasonably with the exaave can see from Figs.(d) 1-4 that the breathing and trans-
exponents of- 1.5, —1.66, and—1.72, respectively. On the lational motions of the charged solitons make the dominant
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FIG. 4. Typical optimized
S-dets generating the Res-HF
wave functions foN=N.=30 (a)
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< _ggw SDW neutral and charged soli-
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guantum fluctuations in the doped 1D Hubbard system. IrS-dets enables us to describe the large quantum fluctuations
addition to these charged solitons, the 1D doped system hadficiently, since each S-det naturally includes the full-
a defect called a polaron, which makes a dip in the ASD anglectron-excitation effects from other S-dets. The complete
has both NCD and NSD. In fact, we can see the polaronspin projection method has been applied to the Res-HF cal-
denoted by a black square, in Figb#2. Therefore, a part of culation_s, to eliminate the spin contamination in the S-dets
the quantum fluctuations in the doped system can be delenerating the Res-HF wave functions. We have shown that
scribed as the translational motion of the polaron. the complete spin projection is very important to improve the
Thus, the Res-HF method gives the physical picture oRes-HF wave functlo.n. In fact, it has_ been shown that bpth
the quantum fluctuations, that is, the large quantum fluctu the correlation energies and corr(_alatlon structures descnbed
tions in the 1D Hubbard systems are described mainly as thgY the Res-HF wave functions with the complete spin pro-

vibrational and translational motions of the SDW neutral orJeCtlon are much better than those with the half-proy_acnon.
charged solitons. Then, we have shown, through the S-dets generating the

Finally we comment on the present status of the Res-HIBeS'HF wave function, that the dominant quantum fluctua-
s ne p . .~ tions in the 1D Hubbard systems are described as the vibra-
calculations. The system size, to which we can practicall

) C@ional and translational motions of the SDW neutral or
apply the Res-HF method by thiE'C.PU workstation, is charged solitons. Since the Res-HF method does not suffer
aboutN=70 at present. As shown in Fig. 1, we need a larger,

number of S-dets 1o obtain the accurate Res-HF wave fun any problems from the dimensionality and filling, it can be a

tions for larger systems. On the other hand, the comput powerful tool for the studies of the interacting fermion sys-

tional time depends olN3x N3.1® Therefore, by using the ems.

parallel computer having 100 nodes, we will be able to ex- ACKNOWLEDGMENTS
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