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Many-body wave functions approximated by the superposition of spin-projected nonorthogona
Slater determinants in the resonating Hartree-Fock method

Norikazu Tomita
Institute of Materials Structure Science, 1-1 Oho, Tsukuba, Ibaraki 305, Japan

~Received 5 June 2003; revised manuscript received 14 October 2003; published 29 January 2004!

A resonating Hartree-Fock~Res-HF! method is revisited and improved by the complete spin projection for
the interacting Fermion system. This method approximates a many-body wave function by the superposition of
nonorthogonal Slater determinants~S-dets!. The nonorthogonality of the S-dets makes it possible to describe
the large quantum fluctuations efficiently, since each S-det naturally includes the full-electron-excitation effects
from other S-dets. The molecular orbitals in every S-det, as well as the superposition coefficients, are varia-
tionally determined. So far, however, the spin contamination, caused by the conventional half-projection, has
been a serious obstacle to obtain the accurate wave functions for large-size fermion systems, especially in the
intermediate and large correlation regimes. In this paper, we apply the complete spin projection method to the
Res-HF calculations. As an example, the improved Res-HF method is applied to the one-dimensional Hubbard
model. It will be shown that the complete spin projection improves the Res-HF wave functions significantly. In
fact, the correlation energies explained by the improved Res-HF method are better than those by the variational
Monte Carlo method in all the correlation regimes. The correlation structures at arbitrary fillings are also well
described by the improved Res-HF method.
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I. INTRODUCTION

The development of the many-body theories which c
describe the large quantum fluctuations in the interacting
mion systems has been one of the central problems in
the condensed matter and particle physics. For example
clei in the transition region between the spherical and larg
deformed shapes, or the low-dimensional interacting elec
systems are not described by the simple Hartree-Fock~HF!
approximation, due to the large quantum fluctuations. Es
cially, since the discovery of the attractive materials, sho
ing the high-temperature superconductivity or colossal m
netic resistance, it has been becoming more importan
clarify the electron correlation effects in the condensed m
ters.

For small clusters, we can apply the exact diagonaliza
methods, such as the Lanczos,1 valence bond,2,3 and full con-
figuration interactions~CI!. However, the exact calculation
are not applicable to large systems having more than 20
ticles.To understand the bulk properties of the electron c
relations, the real-space density-matrix renormalizat
group ~DMRG! method has been developed,4 but this
method is applicable only to the one-dimensional~1D! or
quasi-1D systems. On the other hand, for the infin
dimensional system5 or the system with the large orbita
degeneracies,6 the dynamical mean-field theory is applicab
However, this theory neglects the nonlocal fluctuation effe
which will be important in the real finite-dimensional sy
tems. A quantum Monte Carlo~QMC! simulation7 is another
alternative, but in the interacting fermion system, the QM
method often suffers the famous negative sign proble
where the probability to update a configuration becom
negative. The sign problem restricts the application of
QMC method. Recently, the momentum-space DMR
method has been developed.8–10 This method is promising
0163-1829/2004/69~4!/045110~10!/$22.50 69 0451
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since it is applicable to higher dimensions. However,
present, its accuracy becomes worse as the system si
increased or the interaction is increased. So far, only
variational Monte Carlo~VMC! method is applicable to the
large and any-dimensional systems.11 Therefore, we still
need more theories, which are tractable and applicable
arbitrary interacting fermion systems.

In this paper, we revisit to a variational method called t
resonating HF~Res-HF! approximation, originally developed
by Fukutome.12 This method approximates a many-bod
wave function by the superposition of the nonorthogo
Slater determinants~S-dets!. In the early stage, a Res-H
wave function is constructed by optimizing only the sup
position coefficients.13,14 Then, the tractable orbital optimi
zation method was developed by Ikawaet al.15 Thus, now,
the orbitals of every S-det, as well as the superposition
efficients, are variational determined in the Res-HF calcu
tions. So far, the Res-HF method has been applied to the
half-filled Hubbard system, where we have the ex
Lieb-Wu solutions.16 In these previous calculations,13–15 it
was shown that the Res-HF approximation gives a reas
able agreement with the exact result in the correlation ene
and correlation structures, up toN520. However, when we
applied this method to large-size fermion systems, we ha
serious problem of the spin contamination in the Res-
wave function, which makes the accuracy worse. This w
due to the incomplete spin projection by a half-projecti
method, which can eliminate only odd~or even! spin contri-
butions from the generating S-dets. As a result, the Res
method has been applied only to a small molecule17 and
nuclei.18

To overcome the problem, in this work, we apply th
complete spin projection method proposed by Igawa19 to the
Res-HF calculations. It will be shown that the resonating
the completely spin-projected S-dets makes a much be
wave function than the conventional one with the ha
©2004 The American Physical Society10-1
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projection. As a demonstration, the improved Res-
method is applied to the 1D Hubbard model. It will be show
that the improved Res-HF wave function with the compl
spin projection describes both the correlation energy and
relation structure much better than the previous one with
half-projection at any filling. In fact, we will show that th
improved Res-HF method can describe more correlation
ergies than the VMC method in all the correlation regime

This paper is organized as follows. In Sec. II, the Res-
method is introduced. We briefly review the complete sp
projection method employed in the present work. In Sec.
the Res-HF method is applied to the 1D Hubbard model.
will show that this method gives very accurate wave fun
tions in all the correlation regimes at any filling. Finally,
summary is given in Sec. IV.

II. METHOD

Here, let me review the basic idea on the Res-HF meth
The most straightforward variational method, which can
plain some of the electron correlations, is an unrestric
Hartree-Fock~UHF! approximation,20 in which the ground
state is described by a broken-symmetry S-det, here den
by ufg&. As different correlation structures cause differe
broken symmetries, we can directly know the correlat
structure through the UHF S-det. A spin-density wa
~SDW! in the lattice fermion system is one example, whi
breaks the translation symmetry.

However, such a single S-det is not sufficient to descr
the large quantum fluctuations. We need a multiconfigu
tional theory which can efficiently describe the electron c
relation effects. Here, the important property of the nonlin
UHF equation is that it has various low-energy excited sta
denoted byufe1&, ufe2&,etc., which have the large off-
diagonal resonance elements with both the UHF ground s
(^fe1uHufg&, etc.! and other excited states (^fe1uHufe2&,
etc.!, whereH represents a many-body Hamiltonian. As t
resonance of these UHF ground and excited states could
bilize the many-body states, the Res-HF method starts
many-body wave function with the superposition of the no
orthogonal UHF S-dets, such as

uC&5 (
n51

NS

Cn(
S

PSPGufn&. ~1!

Here,NS represents the number of constituting S-dets. Th
the molecular orbitals~MO! of all the constituting S-dets ar
optimized to lower the Res-HF energy^CuHuC&. In the fol-
lowing sections, we review the symmetry projection as w
as the orbital optimization.

A. Peierls-Yoccoz projection

Since the S-dets constituting the Res-HF wave funct
can have different correlation structures, we have to ad
the symmetry projections for the constituting S-dets to
cover the original symmetry of the system. Here, as an
ample, let us assume that the system belongs to the sym
try group G and uf& is a broken-symmetry S-det.G’s
elementsp, which satisfy
04511
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upf&5uf&, ~2!

constitute the subgroupGf of G. Then, for the elementss of
the right cosetG/Gf , we find that

usf&Þuf&, ~3!

except for s51. These usf& are degenerate broken
symmetry S-dets and the set of$usf&% is called the Gold-
stone set ofuf&. Peierls and Yoccoz21 have proved that the
original symmetry is recovered by the resonance of the
generate Goldstone set. In the following, to recover the tra
lation and inversion symmetries of the system, we apply
Peierls-Yoccoz projection to the constituting S-dets.PG in
Eq. ~1! represents this Peierls-Yoccoz projection.

B. Complete spin projection

Now, we briefly review the complete spin projection
the S-dets.19,22 Here, for convenience, we focus on the pr
jection on the singlet states, since the ground state of the
Hubbard system, we study in the following section,
singlet.23 In the Res-HF method, we need to calculate t
matrix elements between nonorthogonal S-dets, such as

X~u,v !5^vuX̂uu&, ~4!

whereX̂ is an operator which is invariant for the spin rot
tion. As we are considering the singlet states, the numbe
up-spin electrons is equal to that of down-spin electro
(n↑5n↓5Ne/2). In this case, all the constituting S-dets s
isfy

Szuu&5M uu&, ~5!

M50. ~6!

On the other hand, these S-dets are constituted of diffe
eigenstates ofS2, such as

S2uu&5 (
j 50

j max

j ~ j 11!uuj ,M50&,

~7!
j max5min~Ne/2,N2Ne/2!,

whereN represents the total number of orbitals. As a res
the matrix element becomes

X~u,v !5 (
j 50

j max

^v j ,0uX̂uuj ,0&. ~8!

The problem is how we can extract the contribution of t
singlet states, given by

X~u,v !05^v0,0uX̂uu0,0&. ~9!

In this work, we employ the different orbitals for differen
spins for the constituting S-dets. Then, the S-detuu& is char-
acterized by a matrixu, such as

u5S u1 0

0 u2
D , ~10!
0-2
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where bothu1 andu2 areN3N matrices, and their element
show the molecular orbital coefficients~MOC! for the up-
spin and down-spin states, respectively.

Now, let us make the spin rotation for the S-detuu& with
the Eulerian angles (0,b,0), such as

R~b!uu&5US cos
b

2
u1 2sin

b

2
u2

sin
b

2
u1 cos

b

2
u2

D L
5 (

j 50

j max

(
k52 j

j

uuj ,k&Dk
j ~b!. ~11!

We should note that the projected S-det has general
orbitals. In the first line of Eq.~11!, the rotated S-det is
represented by the MOC matrix. Then, the matrix elemen
X̂ becomes

X~b!5^vuX̂R~b!uu&5 (
j 50

j max

^v j ,0uX̂uuj ,0&D0
j ~b!

5 (
j 50

j max

Xj pj„cos~b!…, ~12!

where

Xj5^v j ,0uX̂uuj ,0&,
~13!

pj„cos~b!…5D0
j ~b!.

Here, the functionpj (x) corresponds to the Jacobi polyn
mial of degreej,24 and is given by

pj~x!5
1

2 j (
k50

j S j

kD
2

~x21! j 2k~x11!k. ~14!

It should be noted that we can directly obtain the mat
elementX(b), according to the formulas introduced in th
following section. Eventually, by calculatingX(b) at differ-
entb ’s, we can make the simultaneous equations forXj . By
defining a matrixG and vectorsX andY, such as

~G! i , j5pj„cos~b i !…,

~X! j5Xj ,

~Y! i5X~b i !, ~15!

Eq. ~12! becomes

Y5GX. ~16!

By reversing Eq.~16!, we obtain

X5G21Y. ~17!

From Eq.~17!, we can select all the possible spin contrib
tion, not only the singlet contribution but also higher-sp
04511
in

f

-

contributions. In actual calculations, Igawa has proved tha
we employ zeros of Jacobi polynomial of degreei for b ’s,
such as

pi„cos~b!…50, ~18!

we can eliminate the high-spin components up toj 52i
21.19 Therefore, forN-orbital system,i 5N/411 is enough
to extract the singlet-state component, given by Eq.~9!, from
Eq. ~12!. In this work, we seti 58 for N530 systems and
i 513 for N550 systems, which eliminate the high-sp
components up toj 515 andj 525, respectively. Therefore
they give the exactly singlet contributions forN530 andN
550 systems, respectively.PS in Eq. ~1! represents this spin
projection.

So far, the singlet Res-HF wave function was appro
mately constructed by the half-projection,15,25 which only
eliminates odd-spin components from Eq.~12!. This half-
projection is obtained by settingb at 0 andp. Then,D0

j (b)
becomes

D0
j ~0!51,

D0
j ~p!5~21! j . ~19!

As a result, Eq.~12! becomes

X~0!5X01X11X21X31•••, ~20!

X~p!5X02X11X22X31•••. ~21!

By adding Eqs.~20! and ~21!, we obtain

1

2
@X~0!1X~p!#5X01X21•••. ~22!

Thus, the half-projection, given by

1

2
~^vuXPS~p!uu&1^vuXuPS~0!uu&!, ~23!

still has the spin contamination due to the even-spin sta
( j 52,4, . . . ).

We will show that the complete spin projection, employ
in this study, improves the accuracy of the Res-HF meth
significantly, compared to the half-projection method.

C. Res-HF equation

Here, we review the Res-HF procedure which determi
the MO sets and superposition coefficients simultaneous12

A many-body Hamiltonian is generally given by

H5(
^ i , j &

hj ,iaj
†ai1

1

2 (
i , j ,k,l

^kiu l j &ak
†al

†ajai , ~24!

where the spin direction is included in the indicesi , j ,k,l .
First, the overlap between two S-dets is written as

^uuv&5det~z!,

z5u†v, ~25!
0-3
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whereu andv represent the MOC matrices ofuu& and uv&,
respectively, defined by Eq.~10!. On the other hand, the
matrix element of a pair-particle operator between two S-d
is given by

^uuaj
†ai uv&5W~u,v ! i j det~z!, ~26!

whereW(u,v) is called the interstate density matrix and
explicitly given by

W~u,v ! i j 5~vz21u†! i j . ~27!

Then, the matrix element of a two-body product of pa
particle operators between two S-dets is given by

^uuak
†al

†ajai uv&5~WikWjl 2Wil Wjk!det~z!. ~28!

Thus, the matrix element of the Hamiltonian between t
S-dets is written as

^uuHuv&5H@W~u,v !#det~z!,

H@W~u,v !#5(
^ i , j &

hj ,iWi j 1
1

2 (
i , j ,k,l

@kiu l j #WikWjl ,

@kiu l j #5^kiu l j &2^k j u l i &. ~29!

As the Res-HF wave function is formally represented

uC&5(
f

uuf&cf , ~30!

the normalization condition is given by

^CuC&5(
f g

^uf uug&cf* cg5(
f g

det~zf g!cf* cg51. ~31!

On the other hand, the energy expectation value is given

^CuHuC&5(
f g

^uf uHuug&cf* cg5(
f g

H@Wf g#det~zf g!cf* cg ,

~32!

whereWf g is the interstate density matrix ofuuf& and uug&.
Now, uuf& ’s and cf ’s are determined by the variation o

the Lagrangian

L5^CuHuC&2E^CuC&5(
f g

$H@Wf g#2E%det~zf g!cf* cg ,

~33!

whereE is the Lagrange multiplier to secure the normaliz
tion condition and also has the meaning of the energy of
stateuC&.

From the variation of this Lagrangian with respect tocf* ,
we obtain

(
g

$H@Wf g#2E%det~zf g!cg50. ~34!
04511
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This is called the Res-HF CI~configuration interaction!
equation. Once we have the set of S-dets, we can determ
their superposition coefficientscf ’s by this Res-HF CI equa-
tion.

Now, let us derive the variational equation to determi
uuf& ’s, such as

dL

duf*
50. ~35!

First, we introduce several mathematical expressions, u
for the derivation of Eq.~35!. From Eq.~29!, we obtain

dH~W!5Fi j ~W!dWji 5tr~FdW!,
~36!

Fi j ~W!5
dH~W!

dWji
5hi j 1(

lk
@ i j ukl#Wlk .

Then, from Eq.~27!, we obtain

dW5~dv !z21u†1v~dz21!u†1vz21~du†!

5D~12W!1~12W!D̃,
~37!

D5vz21~du†!, D̃5~dv !z21u†,

where we use

dz2152z21~dz!z2152z„~du†!v1u†~dv !…z21.
~38!

On the other hand, the variation of the overlap between
S-dets is given by

d„det~z!…5tr~z21dz!det~z!5tr~D1D̃ !det~z!, ~39!

where we use the relationship between det(z) and its b-a
cofactor, such as

Dba5
d

dzba
det~z!5~z21!abdet~z!. ~40!

Now, from Eqs.~33! and ~36!–~38!, we obtain

dL5tr@$~12W!F1H2E%D

1D̃$F~12W!1H2E%#det~z!. ~41!

Finally Eq. ~35! becomes

(
g

K f gcfcg50,

~42!
K f g5$~12Wf g!F~Wf g!1H~Wf g!2E%Wf gdet~zf g!.

This is called the Res-HF equation. Once we have the se
trial S-dets and their superposition coefficients, we can
date the MOC of the S-detuuf& according to Eq.~42!. After
updating all the S-dets, we go back to Eq.~34!, determine the
new superposition coefficients, and then update the orb
of the S-dets again. By iterating these procedures, we
variationally determine the MO sets and superposition co
0-4
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TABLE I. The ground state energies of the 1D half-filled and doped Hubbard systems. Res-HF~HP! and
Res-HF (i 58) denote the Res-HF results with the half-projection andi 58 spin projection, respectively. Th
correlation energy explained by each method is denoted byk ~%!.

N5Ne530 k N530, Ne526 k N530, Ne522 k

RHF 223.2671 226.1642 226.8921
UHF 223.4792 10.0

U52 Res-HF~HP! 223.3206 97.0 227.9920 98.2 228.4227 98.6
Res-HF(i 58) 225.3436 98.1 227.9979 98.5 228.4268 98.9

Exact 225.3835 228.0253 228.4441

RHF 28.2671 214.8975 218.8254
UHF 214.0732 64.8 217.3756 35.0 220.1328 23.4

U54 Res-HF~HP! 216.5992 92.9 221.3820 91.5 224.0803 94.2
Res-HF(i 58) 217.0542 97.5 221.5720 94.1 224.1582 95.5

Exact 217.2335 221.9868 224.4057

RHF 21.7329 27.6358 22.6921
UHF 27.8329 93.6 211.2049 79.5 214.9299 69.3

U58 Res-HF~HP! 29.0678 97.6 214.7040 94.2 219.0474 92.6
Res-HF(i 58) 29.5378 99.0 215.4059 97.2 219.5552 95.5

Exact 29.8387 216.0761 220.3462
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ficients simultaneously.12 In this work, we have converge
the Res-HF wave functions and its energy functionals up
1026.

The orbital optimization procedure is quite important
obtain the accurate many-body state. In the conventional
based method, the single common orbital set is used fo
the configurations. Therefore, it is almost impossible to
corporate the high-order electron-excitation effects fr
each configuration unless the system is very small. S
high-order electron-excitation effects become quite imp
tant in describing the strongly correlated fermion system
the Res-HF method, different S-dets have different optimi
orbital sets and they are nonorthogonal to each other. Th
fore, each S-det can naturally include the full-electro
excitation effects from other S-det.

III. RESULTS AND DISCUSSION

Now, we apply the Res-HF method to the 1D single-ba
Hubbard model, where we have the exact solutions for b
the half-filled and doped cases.16,26The Hamiltonian is given
by

H52t(
l ,s

N

~al ,s
† al 11,s1al 11,s

† al ,s!1U(
l

N

nl ,↑nl ,↓ ,

~43!

whereN represents the system size. In the following, all t
energies are normalized by the transfer energyt. In this
study, the periodic boundary condition is imposed. The
fore, the system has theDN symmetry. In the following, we
show the Res-HF results mainly forN530 and 50 systems
In these cases, the ground state has the1A1 symmetry, and
therefore, the Res-HF wave function is explicitly represen
by
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uC&5 (
n51

NS

Cn (
m50

N21

PSTm~11R!ufn&, ~44!

where the operatorT makes the translation of the S-det b
one site, whileR represents theC2 rotation in theDN sym-
metry group. The operation ofT and R corresponds to the
Peierls-Yoccoz projection.PS represents thei 58 ~for N
530) or i 513 ~for N550) spin projection introduced in
the previous section. Thus, for each generating S-detufn&,
2 (C2 rotation! 3N ~translation! 3 i ~spin-projection! sym-
metry projections are operated. As a result, the symme
recovered Res-HF wave function consists of 2Ni3NS
S-dets. In the following calculations,NS530 generating
S-dets are used.

In Table I, we show the ground-state energies of the
half-filled and doped Hubbard systems, havingN530 sites.
Here, Ne represents the number of electrons. RHF deno
the restricted HF state,27 which satisfies the full symmetrie
of the system and is the reference state for the perturba
theory. For comparison, the UHF energies are also show
this table except forNe526 and 22 atU52, where no stable
UHF solutions were obtained. In this table, we also comp
the ground-state energies by the complete spin-projec
method, denoted by Res-HF (i 58), to those by the half-
projection method, denoted by Res-HF~HP!. The exact so-
lutions are obtained by the Lieb-Wu equations,16,26 and k
denotes the ratio of the correlation energy explained by
Res-HF or UHF wave function, which is defined by

k51003
E~Res-HF or UHF!2E~RHF!

E~Exact!2E~RHF!
. ~45!

It is remarkable that for both the half-filled and doped sy
tems, the Res-HF wave functions can describe more t
91% of the correlation energies in all the correlation regim
0-5
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TABLE II. The ground-state energies and^S2& for N5Ne550. Res.-HF~HP! denotes the Res-HF resu
with the half-projection while Res-HF(i 513) denotes the result withi 513 spin projection. The VMC results
are taken from Ref. 1.

Energy k(%) ^S2&

RHF 238.7039
UHF 239.1294 12.0
VMC '87

U52 ResHF~HP! 241.8565 89.0 1.72
ResHF(i 513) 241.9535 91.8 0

Exact 242.2443

RHF 213.8039
UHF 223.4553 64.4
VMC '92

U54 ResHF~HP! 226.9727 88.5 7.42
ResHF(i 513) 227.9633 94.4 0

Exact 228.6993

RHF 36.2961
UHF 212.3048 92.3
VMC '96

U58 ResHF~HP! 214.4838 96.4 12.8
ResHF(i 513) 215.6422 98.6 0

Exact 216.3842
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So far, the Res-HF method has been applied only to
half-filled Hubbard system, and this is the first result sho
ing that this method works well also for the doped system
Table I also shows that the complete spin projection ma
the Res-HF wave functions significantly better than the h
projection especially atU54 and 8.

Recently, the momentum-space DMRG~MSDMRG!
method has been developed and applied to the 1D Hub
model.9,10 In the case ofN5Ne532, they have obtained
233.2008 and226.8016 for the ground-state energies
U51 andU52.0, respectively, while the exact energies a
233.2152 and227.0183, respectively.10 For comparison,
we have calculated the Res-HF wave functions also foN
5Ne532. In this case, the ground state has the1B1 symme-
try. Then, the obtained Res-HF energies are233.2128 and
226.9556 atU51 and U52.0, respectively. Thus, th
Res-HF method can describe more correlation energy
the MSDMRG method, though the MSDMRG method mig
be improved by increasing the number of the density-ma
eigenstates which are kept in the renormalization proced

Then, in Table II, we compare the complete (i 513) spin-
projection method to the half-projection method, forN5Ne
550 Hubbard systems. AtU52 and 4, the half-projection
method can explain only less than 90% of the correlat
energies. From this table, we can see that the complete
projection method improves the Res-HF wave functions s
nificantly in all the correlation regimes. In the half-projectio
method, the expectation values ofS2 are far from zero in all
the correlation regimes. The spin contamination was a s
ous problem to construct an accurate Res-HF wave func
for the large-size system. Now, however, we can see tha
the i 513 spin projection, the spin contamination is com
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pletely eliminated, and the Res-HF wave functions are s
nificantly improved for theN5Ne550 systems.

Here, let us compare the present results to the VMC on
In Table II, we also show the ratios of the correlation en
gies explained by the VMC method11 for N5Ne550. We
can see that the Res-HF method with the complete spin
jection can explain more correlation energies than the VM
method in all the correlation regimes.

Then, in Fig. 1, we show theNS dependence of the cor
relation energy explained by the Res-HF wave function
U54. Black circles and triangles represent theNS depen-
dence ofk by the complete spin projection method forN
530 andN550 half-filled Hubbard systems, respective
while circles and triangles representk by the half-projection
method for these systems. For comparison, the UHF res
are also denoted by white square and diamond forN530 and
N550 systems, respectively. In the case ofNs51, the
Res-HF wave function corresponds to the projected HF st
Figure 1 shows that even withNs51, the Res-HF wave
functions with the complete spin projection describe mo
than 90% of the correlation energies for bothN530 andN
550 systems. This result, as well as the who
NS-dependence, indicate that the orbital optimization w
the complete symmetry projections is very important to co
struct the accurate wave functions.

From Fig. 1, we can see that as the system-size is
creased, we need a larger number of S-dets to maintain
quality of the Res-HF wave function. On the other hand, F
1 also shows that the quality of the Res-HF wave function
improved with the increase of the number of S-dets. A
though it might be difficult to extrapolate the Res-HF en
gies atNS→` from Fig. 1, the Res-HF approximation coin
0-6
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cides with the exact coherent-state representation28 of the
fermion state vectoruC& in the limit of largeNs , such as

uC&5E U~u!uf&^fuU†~u!uC&du5E uu&^uuC&du.

~46!

Since the MOC matrix of a S-det, given by Eq.~10!, belongs
to theU(2N) group, the integration, in Eq.~46!, represents a
normalized group integration onU(2N). U(u) is a represen-
tation of theU(2N) group, defined by

U~u!5eg i j ai
†aj . ~47!

Here, the dummy index convention is used to sum up
repeated indices.g i j is a 2N32N antihermitian matrix,
which satisfies

g5~g i j !,

g†52g. ~48!

Then, we obtain

U~u!ai
†U~u!†5aj

†uji , U~u!aiU~u!†5ajuji* , ~49!

whereu5(ui j ) is theU(2N) matrix, given by

u5eg, g5~g i j !, uu†5u†u51. ~50!

In Eq. ~46!, we have used thisU(2N) canonical transforma
tion, which transforms a givenNe-particle S-detuf& to an
arbitraryNe-particle S-detuu&, such as

U~u!uf&5uu&. ~51!

This is called the Thouless transformation.29 In general,uu&
is nonorthogonal touf&. As a result, Eq.~46! indicates that
the arbitrary fermion state vector is exactly described by

FIG. 1. Ns-dependence of the correlation energies explained
the Res-HF wave functions atU54. Black circles and triangles
represent theNS dependence ofk by the complete spin-projection
method forN530 and 50 half-filled Hubbard systems, respective
while white circles and triangles representk by the half-projection
method for those systems. A white square and diamond denote
UHF results forN530 and 50 systems, respectively.
04511
e

e

superposition of the nonorthogonal S-dets. Thus, the Res
wave function corresponds to the discretized expression
the exact coherent-state representation, defined by Eq.~46!.

Next, we show in Fig. 2 the spin correlation functions
the Res-HF wave functions forU54. Black and white
circles represent the correlation functions obtained by
complete spin projection and half-projection methods,
spectively. The exact long-range exponent of the spin co
lation function is given by30,31

y

,

he

FIG. 2. Spin correlation functions forN5Ne530 ~a!, N530,
andNe526 ~b!, andN530 andNe522 ~c!. Black circles represen
the Res-HF results with the complete spin projection, while wh
circles represent those with the half-projection. The close-up of
long-range behavior is shown in the inset of each figure, where
crosses show the exact long-range behavior normalized atLS(5).
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NORIKAZU TOMITA PHYSICAL REVIEW B 69, 045110 ~2004!
LS~ l !5^S~0!•S~ l !&}cos~2kFl !l 212aln1/2~ l !, ~52!

wherea depends onU and fillings. From Ref. 30, we obtain
a50.50, 0.66, and 0.72 forNe /N51.0, 0.87, and 0.73, re
spectively. In the inset of Fig. 2, the crosses show these e
long-range behaviors, which are normalized atLS(5) of each
Res-HF result.

In Fig. 2~a!, I showLS( l ) for N5Ne530. The long-range
behaviors are enlarged in the inset, where, as mentio
above, the crosses show the exact behaviors. We can se
spin correlation structure is well described by the Res-
wave function with the complete spin projection. On t
other hand, in the half-projection method, the long-ran
components decay much more slowly than the exact be
ior. This is due to the spin contamination caused by the h
projection method.

In Figs. 2~b! and 2~c!, the spin correlation functions fo
the doped systems are shown. We can see that the Re
wave functions with the complete spin projection descr
the exact long-range behaviors of the spin correlation fu
tions much better than the conventional ones with the h
projection, also for the doped systems.

Figure 3 shows the log-scaled long-range behaviors of
spin correlation functions, derived from Fig. 2. Black a
white symbols represent the spin correlation functions
tained by the complete spin projection and half-project
methods, respectively. Circles, triangles, and squares de
the correlation functions for (N,Ne)5(30,30), (30,26), and
(30,22), respectively. To see the long-range expone
clearly, vertical axis is shifted by23.0 for (N,Ne)
5(30,26), and27.5 for (30,22). From Fig. 3, the Res-H
calculations with the complete spin projection, denoted
thick lines, result in the long-range exponents of21.43,
21.65, and 21.69 for (N,Ne)5(30,30), (30,26), and
(30,22), respectively, which agree reasonably with the ex
exponents of21.5, 21.66, and21.72, respectively. On the

FIG. 3. The exponents of the long-range spin correlation fu
tions. Black circles, triangles, and squares denote the log-sc
long-range structures obtained by the complete spin-projec
method for (N,Ne)5(30,30), (30,26), and (30,22), respective
where the exponents are given by thick lines. White circles,
angles, and squares denote those by the half-projection me
whose exponents are given by thin lines.
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other hand, the half-projection method gives the expone
denoted by thin lines,20.23, 20.62, and21.56, which are
largely different from the exact values. Thus, the compl
spin projection improves the Res-HF wave functions sign
cantly.

As the 1D Hubbard system does not have a real lo
range order,N530 is large enough to see the agreement
the Res-HF results with the exact ones. For much larger
tems, the absolute values of the long-range correlation fu
tions become so small that it would be quite complicated
see the agreement of the numerical results with the e
ones quantitatively.

Then, we show the optimized S-dets. Though the orb
optimization modifies the starting UHF S-dets, we can of
interpret the quantum fluctuations in terms of the UHF-ba
picture, by seeing the order parameters of the optimi
S-dets.

So far, it has been complicated to show explicitly wh
makes the quantum fluctuations in the correlated elec
systems. The Res-HF method gives a simple but interes
physics on the quantum fluctuations.

Here, the S-det is represented by its charge density~CD!
and spin density~SD!, defined as

CD~ l !51.02~nl ,↑1nl ,↓!5NCD~ l !1~21! lACD~ l !,
~53!

SD~ l !5~nl ,↑2nl ,↓!5NSD~ l !1~21! lASD~ l !,

where the net and alternating components of the CD~SD! are
denoted by NCD~NSD! and ACD ~ASD!, respectively.

In the half-filled Hubbard system, the optimized S-de
have no CD components. Therefore, in Fig. 4~a!, we show
only the SD components of the typical optimized S-dets
N5Ne530. In this half-filled system, the most importa
element of the quantum fluctuations is an SDW neutral s
ton, which reverses the phase of the ASD and has only
NSD. The S-dets shown in Figs. 4~a! 1–3 contain a soliton
pair, whose distance is different from each other. The sup
position of such a soliton pair with different distance can
interpreted as the breathing or vibrational motion of the t
solitons. Similarly Figs. 4~a! 4–6 show the breathing motio
of the two soliton pairs. On the other hand, as mentioned
Sec. II, these solitons are transferred site-by-site to reco
the spatial translation symmetry. Thus, the quantum fluct
tions in the half-filled system can be interpreted as
breathing and translational motions of the neutral solito
The present analysis is consistent with the previous disc
sion based on the half-projection method.13–15

On the other hand, there has been no such physical
scription for the doped Hubbard systems so far. This is
first trial to describe the quantum fluctuations in the dop
Hubbard systems in terms of the Res-HF picture. In
doped system, the most important element is an SD
charged soliton, which also reverses the phase of the A
but has only the NCD. In Fig. 4~b!, we show the typical
S-dets for the doped Hubbard system withN530 andNe
526. Although the order parameters have complicated st
tures in the doped system compared to the half-filled ca
we can see from Figs. 4~b! 1-4 that the breathing and trans
lational motions of the charged solitons make the domin

-
ed
n

i-
od,
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FIG. 4. Typical optimized
S-dets generating the Res-H
wave functions forN5Ne530 ~a!
andN530 andNe526 ~b!. Black
and white circles represent th
SDW neutral and charged soli
tons, respectively, while a black
square in~b! 2 represents a po
laron, which makes a dip in the
ASD and have both NSD and
NCD.
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quantum fluctuations in the doped 1D Hubbard system
addition to these charged solitons, the 1D doped system
a defect called a polaron, which makes a dip in the ASD a
has both NCD and NSD. In fact, we can see the polar
denoted by a black square, in Fig. 4~b! 2. Therefore, a part o
the quantum fluctuations in the doped system can be
scribed as the translational motion of the polaron.

Thus, the Res-HF method gives the physical picture
the quantum fluctuations, that is, the large quantum fluc
tions in the 1D Hubbard systems are described mainly as
vibrational and translational motions of the SDW neutral
charged solitons.

Finally, we comment on the present status of the Res
calculations. The system size, to which we can practic
apply the Res-HF method by thea-CPU workstation, is
aboutN570 at present. As shown in Fig. 1, we need a lar
number of S-dets to obtain the accurate Res-HF wave fu
tions for larger systems. On the other hand, the comp
tional time depends onNS

23N3.15 Therefore, by using the
parallel computer having 100 nodes, we will be able to
tend the system size to aboutN5200, even if we have to
double the number of S-dets to obtain the reliable Res
wave function. This application will be done in the near f
ture.

IV. SUMMARY

We have revisited to the Res-HF method and shown th
could be a promising variational approach for the interact
fermion systems. The nonorthogonality of the generat
04511
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S-dets enables us to describe the large quantum fluctua
efficiently, since each S-det naturally includes the fu
electron-excitation effects from other S-dets. The compl
spin projection method has been applied to the Res-HF
culations, to eliminate the spin contamination in the S-d
generating the Res-HF wave functions. We have shown
the complete spin projection is very important to improve t
Res-HF wave function. In fact, it has been shown that b
the correlation energies and correlation structures descr
by the Res-HF wave functions with the complete spin p
jection are much better than those with the half-projecti
Then, we have shown, through the S-dets generating
Res-HF wave function, that the dominant quantum fluct
tions in the 1D Hubbard systems are described as the vi
tional and translational motions of the SDW neutral
charged solitons. Since the Res-HF method does not su
any problems from the dimensionality and filling, it can be
powerful tool for the studies of the interacting fermion sy
tems.

ACKNOWLEDGMENTS

This work was supported by NAREGI Nanoscien
Project, Ministry of Education, Culture, Sports, Science a
Technology, Japan. Numerical calculation in this work w
partially supported by Yukawa Institute Computer Facili
The author would like to thank Dr. Michel A. Van Hove fo
his hospitality during the author’s stay at Lawrence Berke
National Laboratory. The author would also like to tha
Professor A. Igawa for the valuable discussion on the s
projection in the Res-HF calculations.
0-9



.J

v.

d

hy

Jp

.

NORIKAZU TOMITA PHYSICAL REVIEW B 69, 045110 ~2004!
1E. Dagotto and A. Moreo, Phys. Rev. D31, 865 ~1985!.
2Z.G. Soos and S. Ramasesha, Phys. Rev. B29, 5410~1984!.
3S. Mazumdar and S.N. Dixit, Phys. Rev. Lett.51, 292 ~1983!.
4S.R. White, Phys. Rev. Lett.69, 2863~1992!.
5For a review, see A. Georges, G. Kotliar, W. Krauth, and M

Rozenberg, Rev. Mod. Phys.68, 13 ~1996!.
6S. Florens, A. Georges, G. Kotliar, and O. Parcollet, Phys. Re

66, 205102~2002!.
7For a review, seeQuantum Monte Carlo Method in Condense

Matter Physics, edited by M. Suzuki~World Scientific, Sin-
gapore, 1993!.

8S.R. White, Phys. Rev. B45, 5752~1992!.
9T. Xiang, Phys. Rev. B53, 10 445~1996!.

10S. Nishimoto, E. Jeckelmann, F. Gebhard, and R.M. Noack, P
Rev. B65, 165114~2002!.

11H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn.56, 3582~1987!.
12H. Fukutome, Prog. Theor. Phys.80, 417 ~1988!.
13S. Yamamoto, A. Takahashi, and H. Fukutome, J. Phys. Soc.

60, 3433~1991!.
14S. Yamamoto and H. Fukutome, J. Phys. Soc. Jpn.61, 3209

~1992!.
15A. Ikawa, S. Yamamoto, and H. Fukutome, J. Phys. Soc. Jpn.62,
04511
.

B

s.

n.

1653 ~1993!.
16E.H. Lieb and F.Y. Wu, Phys. Rev. Lett.20, 1445~1968!.
17N. Tomita, S. Ten-no, and Y. Tanimura, Chem. Phys. Lett.263,

687 ~1996!.
18S. Nishiyama, Nucl. Phys. A576, 317 ~1994!.
19A. Igawa, Int. J. Quantum Chem.54, 235 ~1995!.
20J.A. Pople and R. K Nesbet, J. Chem. Phys.22, 571 ~1954!.
21R.E. Peierls and J. Yoccoz, Proc. Phys. Soc., London, Sect. A70,

381 ~1957!.
22P.O. Löwdin, Phys. Rev.97, 1475~1055!.
23E. Lieb and D. Mattis, Phys. Rev.125, 164 ~1962!.
24I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series and

Products, edited by A. Jeffrey~Academic Press, London, 1980!.
25Y.G. Smeyers and L. Doreste-Suarez, Int. J. Quantum Chem15,

33 ~1973!.
26K. Hashimoto, Int. J. Quantum Chem.30, 633 ~1986!.
27C.C.J. Roothaan, Rev. Mod. Phys.32, 179 ~1960!.
28A.M. Perlemov, Sov. Phys. Usp.20, 703 ~1977!.
29D.J. Thouless, Nucl. Phys.21, 225 ~1960!.
30H.J. Schulz, Phys. Rev. Lett.64, 2831~1990!.
31N. Kawakami and S.-K. Yang, Phys. Lett. A148, 359 ~1990!.
0-10


