PHYSICAL REVIEW B 69, 045108 (2004

Simple physical picture of the Overhauser screened electron-electron interaction
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As shown by Overhauser and others, the pair-distribution fungf{oh of a many-electron system may be
found by solving a two-electron scattering problem with an effective screened electron-electron repulsion
V(r). We propose a simple physical picture in which this screened repulsion is the “dressed-dressed” inter-
action between two neutral objects, each an electron surrounded by its full-coupling exchange-correlation hole.
For the effective interaction between two electrons of antiparallel spin in a high-density uniform electron gas
of arbitrary spin polarization, we confirm that this picture is qualitatively correct. In contrast, the “bare-
dressed” interaction is too repulsive, and does not have the expected symmgiry=V, ,(r). The simple
original Overhauser model interaction, independent of the relative spin polariZatawes not capture thé
dependence of the correlation contributiongg =0).
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l. INTRODUCTION gast®~1"sometimes using constructions of self-consistent ef-
fective interactions following the general bare-dressed pic-
The quantum-mechanical many-electron problem is nototure of Overhauset! Sum rules for the scattering phase

riously hard if all its degrees of freedom are taken into ac-shifts have also been derivéd.

count. For both practical computational and conceptual pur- In this work, we consider a three-dimensional uniform

poses, however, it can often be replaced by a one- or twoelectron gas with relative spin polarization

electron problem with an effective external potential or

electron-electron interaction, respectively. The effective po- g:(a_a)/ﬁ 2

tential that shapes the orbitals of the one-electron problem in

Kohn-Sham density-functional thedryhas been intensively wheren=n;+n, is the total density of Eq(1). The pair-

explored, but the effective screened interaction that shapefistribution function is then

the geminals of the two-electron probl&m has received

less attention. Here we propose and provide some support for 1+¢\2 7\2 (1-?)

a physically appealing “dressed-dressed” picture based upong(r)= - gy (r)+ T) g, (nN+ Tg”(r)’

the interaction between two neutral objects, each being an &)

electron dressed by its surrounding exchange-correlation

hole. In this picture, the “bare-bare” Coulomb repulsiom 1/ where onlyg, , contributes at =0 because of the Pauli prin-

is strongly screened out over the Wigner-Seitz radius ciple. ng(r) is the average density of electronsrathen an

Overhausérshowed that the singlet geminals of an effec- ) - — . .

tive two-electron scattering problem can be used to estimat%IeCtron is at the orgm, analg(r) ~1] is Fhe density of the.

exchange-correlation hole at full coupling strength, which

the on-top pair-distribution functiong(0) in a spin- : : .
unpolarized ¢(=0) three-dimensional electron gas of uni- gﬁ:[fjngsfbarge equal and opposite to that of the electron it

form density

n=3/4mr?. (1) fmdr47rrzﬁ[g(r)—1]=—l, (4)
0

(We use Hartree atomic units wheke=m=e?=1.) Over-

hauser used an effective “bare-dressed” interaction betweeith the same equation fgﬂ[gn(r)_ 1] and E[g (N

a bare electron and a neutral object composed of another1]. We focus on the effective interaction, | (r) between
electron and a corEentric sphere of positive backgroungwo electrons of opposite spin in the high-density—0)
charge of densityn and radiusrg. Gori-Giorgi and limit, since in this case correlation can be neglected and the
Perdew'° used the same effective interaction, but solved thenteraction is purely electrostatic. Thus we can evaluate
Overhauser model exactly and found a pair-distribution functhe bare-dressed and dressed-dressed models exactly and
tion g(r) in close agreement with that of Quantum Monte compare the predictions of both to the exact pair-distribu-
Carlo calculations over the whole short-range regieer,  tion function™*2*® whose short-ranged part is dominated
for the physical density regime=<ir<10. For the high- by V; (r). We do not explicitly discuss the electron-electron
density ¢<—0) limit, they found good agreement with the scattering effects on transport properties, which are a second
exact??g(r) to orderr,. Since then, there have been manyimportant application of the effective two-electron
related studies for the three- or two-dimensional electromproblem®*51"\We note, however, that the expected symme-
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try V, =V, of the effective interaction fo#0 is only 1.5
achieved by the dressed-dressed picture, not by the bare- 1.4
dressed one. 1.3 1
s 127+
Il. SPIN-UNPOLARIZED GAS :f 1.1
In the Overhauser approdchto electronic correlation in ::" 1
the unpolarized {=0) uniform gas, the many-electron prob- 0.9 1
lem is reduced to a scattering event between two electrons in 08 r .
a suitable effective potentidl(r,rg), with a corresponding 0.7 1 |
radial Schrdinger equation 0.6 0 0'2 0'4 OI6 OI8 ]
d?  e(e+1) , ¢
— >— —V(r,ry +kju =0, _ _ _
dr r FIG. 1. ¢ dependence of the high-density,{0) correction to

the on-top valuex(£)/\(0) [see Eq.(12)]. The result from the
Ug=KrRy(r,k,rs). (5)  dressed-dressed potential of E45) [A(0)=0.83] is compared
With the exact calculatiof*® [ (0)=0.732, with the result ob-
tained from the original Overhauser potential of E§) [A(0)
=0.694], and with the scaling relation proposed in Ref(&P).

The presence of the other electrons is taken into account i
two ways: (i) via V(r,rg), (ii) via an average over the pos-
sible relative momentunk=3|k,—k,| of the scattering
event. The exchange symmetry between the two electrons is, 17
ensured via a proper summation over the partial wéyage ~ With the exact resulf 1-0.732rs+0o(rg). Nagy etal:
resulting spin-resolved pair-distribution functions are then have shown that the high-density forgq (r =0rs—0)=1
—Nrg+o(rg) is guaranteed when Eq$5)—(7) employ a
” ) screened potential with screening lengthg. For finiter,
gy (r,ro= (ZO (26+1)RY(rKrg) |, (6)  ther.—0 form of Eq.(10) is satisfied, within the Overhauser
- approach, if the potentiaf(r,rg) is such that

— 2
gTT(rirS)_2< %Jé (2€+1)R€(r1kvrs)>r (7) V(r,rSHO):riU(S). (11)

where the symbo{- - -) denotes the average over the prob- ; :
ability p(k) (obtained from the momentum distribution of The Overhauser potential of B fulfils Eq. (11) atallr.

the ideal Fermi ga% Overhauser's original choiéefor
V(r,rs) was the potential of an electron surrounded by a lll. SPIN-POLARIZED GAS

Wigner-Seitz sphere of uniformly distributed positive charge: In the original formulation of the Overhauser mod-

1/1 &2 3 formation on the spin-polarization state of the electron gas
—(—+ - — —) (r=ry) only enters through the probability distribution for the rela-
V(rrg=qrsls 2 2 (8  tive momentumk. The potential, purely based on classical
0 (r>ry), electrostatic arguments, is independent off he probability
where functions pg"'(k) are given in Eqs(42)—(44) of Ref. 9,
where, however, the calculations for the Overhauser model
s=r/rg (99 with Z#0 have not been carried out. Instead, a scaling rela-
n has been proposed.
Here, we carry out the calculations for the high-density
limit with the correctp}'(k), and we find a very weak
dependence of the first-order correctinf) to the on-top

is a scaled variable. As said, this simple potential gave surt—IO
prisingly accurate resuftgor the short-ranger(<r,) part of
the unpolarized-gag(r), at metallic and lower electron den-
sities. The result for the high-density,(~0) limit was also
quite accurate: the form of the screened Overhauser potenti4f!Ue:

ensures that the correction to the noninteracting gas for

—0 is of first order inrg, as in the exact perturbative 91 (r=0rs—=00)=1-N({rsto(ry), (12)

result!! — .
as shown in Fig. 1. This is due to the wé&dependence of

g(mr(S,rs—>0)=gf,°;,(S)+rsgf,l;,(S)JrO(rS), (100  the short-range part of thewave radial wave function
Ro(r—0k,rg) of Eq.(5). An explicit dependence ahin the
whereg(® is the pair-distribution function of the noninter- effective potential is thus needed in order to reproduce the
acting gas[Eq. (10) is valid for r<\r..] In particular, for  correct behavidt*® of the short-range part od(r) in the
the value of thel | pair-correlation function at contact (  spin-polarized electron gas. Moreno and Mariné&have
=0), the solution of the Overhauser model gR/cgﬁl(r recently applied the Overhauser model to the two-
=0r,—0)=1-0.694r,+0(rg), in reasonable agreement dimensional electron gas, finding an extremely wéatte-
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pendence of the on-top value. Figure 1 suggests that their 14|
result could be an artifact of theif-independent effective 1ol
interaction. ’
1 F
IV. EFFECTIVE INTERACTION FOR OPPOSITE-SPIN % 08 r
ELECTRONS 5 06t
In the high-density limit, a simple physically motivated 04T
effective potential for antiparallel-spin interactions, which 02t €f1'
depends ory and has the symmetry|=]T, can be ob- (o . . :
tained in the following way. Consider two electrons of oppo- 0 05 1 15 5 o5
site spin in a uniform electron gas in the high-density limit. s =1,

Each electron induces around itself an exchange hole, form-

ing a neutral object. The effective potential can be approxi- FIG. 2. { dependence of the dimensionless dressed-dressed po-
mated with the electrostatic interaction between two neutraiential U(s,{) calculated from Eq(15).

or dressed objects. Wheh=0, each electron is surrounded

by a compact exchange hole, leading to effective screening, through the scaled variable=r/r,. This ensures that

of the Coulomb repulsion. But as approaches 1, the ex- V(r,rg,)=(1Ir)U(s,{), as required by Eq(1l). The di-
change hole around the minority spin will become shallowmensionless potenti&l (s, ) is screened fos=1, and goes
and broad, so the Coulomb repulsion will be less wellto zero, whens—o, ass™*. Its { dependence is the one

screened. expected from the qualitative arguments given above, as
The two charge distributions are then shown in Fig. 2: whery—1 the potential is less and less
_ screened; forf exactly equal to 1(but only in this case
p1(x)=8(x)+n[g)(x)—1], (13  U(s—w,f=1) goes to zero as 2.
o Using the effective potentidl(s,{) in the Overhauser
pa(X)=8(x—1)+n [gi(x—r)—1], (14 scheme, we calculated the| high-density pair-correlation

functionsg!} for different values of the spin polarizatiah
They are shown in Fig. 3. The qualitative behavior is very
p1(X0)pa(X") similar to the exact one of Fig. 1 of Rassoleval! This is
V(r,rs,g)zf dxf dx'—————. (15  more evident in Fig. 1, where the function({)/\(0) is
[x=x'] compared with the exact result.
V(r,rs,¢) can be computed analytically: its Fourier trans-  While the £ dependence o§{})(s,¢) obtained from the
form V(k,r,,¢) is equal to simple poten.t|aIU(s,§) is rather good, 'the quantitative
agreement with the exact result whér0 is less accurate
than the result obtained with the original Overhauser poten-

and the corresponding electrostatic potential is given by

~ 4
V(k,rg,0)= —727+vl(k,rs,§)+v2(k,rs,§)+v3(k,rs,§), tial. [In particular, we find\ (0)=0.83 in Eq.(12) for com-
k parison with the original Overhauser and exact coefficients
with given after Eq(10).] This is shown in Fig. 4: we see that for

small's, g} obtained withU(s,¢) of Eq. (15) is too deep,
A7 while the original Overhauser potential of E@) gives a

vi=[S} (krs,0)— 11—, (16)  result which is slightly less deep than the exact one. This
k means that the original Overhauser potential of Ej.is

4
Uzz[Sil(k,rs,é)—l]k—, (17) 0.8
-0.1 |
4 -0.2
7T - .
v3=[8/ (kre. ) =18 (krs, =1k 5, (19 o _
o .05 ]
whereS;” are the exchange-only static structure factors -0.6 )l
-0.7 |
3 08V ]
3k 1(k
ZE_E(_U) (k=<2kg) -o.? 1
> " ] (19 0 05 1 15 2 25 3 35 4
1 (k>2k§), s=rirg
with  kZ=[1+sgn(o) {13k, kF:(977/4)1/3r;1, and FIG. 3. High-density (,0) 1| correlation holes computed

sgn(e)=+1 for spin{ and —1 for spin{ electrons. The from the dressed-dressed potential of &d) for different values of
exchange-only pair-distribution functiam, only depends on the spin polarizatiors.
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FIG. 4. High-density (;—0) 7] pair-correlation function for ) ) . .
the (=0 gas obtained from different screened interactions: the G- 5. Comparison of the bare Coulomb potential with differ-
dressed-dressed potential of E@5), the original Overhauser po- €Nt Simple screened potentials for the 0 gas in the high-density

tential of Eq.(8), and the bare-dressed potential of E20). The (rs—0) limit: the bare-dressed potential of E®O0), the dressed-
exact calculation of Rassolt alll is also reported dressed potential of E¢15), and the original Overhauser potential

of Eq. (8). All curves have been multiplied by .

slightly too screened in the,— 0 limit, while U(s,{=0) of
Eq. (15) is not screened enough in the same limit. The “ex-
act” effective potential for the high-density limit should thus
lie in between the two curves “Overhauser” and dressed-

dressed of Fig. 5. In the same figure we also show the bare V. CONCLUSIONS

Coulomb'potenufal, and the bare-dressed' potexdiatained We have proposed a simple dressed-dressed picture for
from the interaction of a bare electron with a dressed elec

: ) ded by it h holeh Fouri the effective screened electron-electron interaction that
ron, 1.e., surrounded by 1t exchange holehose Fourier shapes the geminals and thus the pair distribution function of

action of a hypothetical barg with a dressed , we find that
this interaction tends to the unscreened d¢{—1.

transformVy(k,rs,{) is a many-electron system. In this picture, the interaction is
4 between two neutral objects, each an electron dressed by its
v i exchange-correlation hole. For two electrons of opposite spin
Vak,rs,0)=— +va(krs.0), (20) 9 PP P

in a high-density electron gas of arbitrary spin polarization,
o . ~ where the dressed-dressed and bare-dressed interactions can
wherev, is given in Eq.(16). The bare-dressed potential is pe evaluated exactly, we have shown that the dressed-dressed
“ph|Iosoph|c7aIIy” closer to the erglﬂa_| picture  of nicture is qualitatively correct. In future work, it may be
Overhauset” and to the high-density limit of the self- possible to construct the dressed-dressgg(r) for all

consistent Hartree approximation of Davoeial:* We see  and s, using density-functional theohy to describe the ad-
that the bare-dressed potential is much less screened that thgional exchange-correlation terms that arise whér o or
dressed-dressed one and thus corresponds to a déeper r>0.

further from the exact resulg%’, as shown in Fig. 4.

The bare-dressed potential encounters severe problems for
the calculation ofA(£)/N(0) of Fig. 1. When{—1, each
majority T electron dresses itself in an exchange hole deeper M.C. and P.G.-G. acknowledge discussions with G. B.
and more short-ranged than 6+ 0, while each minority] Bachelet and S. Caprara, and financial support from MIUR
electron undresses. So the interaction between ajbarel a  through Grant No. COFIN2001. J.P.P. acknowledges support
dressed becomedessrepulsive ag increases from 0, re- from the National Science Foundation under Grant No. DMR
ducingA(£)/N(0). If we try to symmetrize using the inter- 01-35678.
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