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Coherent potential approximation and projection operators for interacting electrons
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A theory of the single-particle excitation spectrum is presented on the basis of the projection operator
method combined with the many-body coherent-potential approximation~CPA!. The theory describes the
dynamics of the excitations by means of an energy-dependent Liouville operator accompanied by a coherent
potential which is determined by the self-consistent CPA condition. It is shown that the present theory is
essentially equivalent to the dynamical CPA and the dynamical mean-field theory. The Hubbard III approxi-
mation and the modified perturbation theory are rederived from the theory. A renormalized perturbation scheme
for the Green function is developed on the basis of a general formula for the memory function. It interpolates
between the weak- and strong-Coulomb interaction limits, and yields the metal-insulator transition for half-
filled bands. Numerical calculations have been performed for the Gutzwiller-Hubbard model on a hypercubic
lattice in infinite dimensions. The results show that the theory describes quantitatively the quasiparticle weight
vs Coulomb interaction curve, yielding a reasonable critical Coulomb interaction for the metal-insulator tran-
sition. It produces the overall features of the excitation spectra and the momentum distributions for various
Coulomb interaction strengths.
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I. INTRODUCTION

The single-particle excitation spectrum plays a cen
role in the description of interacting electrons in solids.
does not only describe the photoemission and inve
photoemission spectra, but also determines the therm
namics and the phase transitions of the system.1 The excita-
tions are usually described by means of a Green funct
and enormous efforts have been made for the developme
a corresponding theory. In the past decade, there has
considerable progress as regards the single-site theor
Green functions. In the physics of strongly correlated el
tron systems the dynamical mean-field theory~DMFT! plays
an important role. It is based on work by Metzner a
Vollhardt2 who introduced a model suitable in infinite dime
sions. Müller-Hartmann3 showed that the self-energy doe
not depend on momentum in infinite dimensions, and int
duced a self-consistent equation to determine the self-ene
In the subsequent development of DMFT a number of inv
tigators participated.4–8 One can determine the self-energ
by solving self-consistently an impurity problem in an effe
tive medium. The DMFT combined with various many-bo
techniques9 to solve the impurity problem has been exte
sively applied to the metal-insulator transition and to hea
fermion systems showing a large linear specific-heat coe
cient at low temperatures.

The same theory can be traced back to the many-b
coherent potential~CPA! by Hirooka and Shimizu.10 They
extended the CPA for the alloys problem11–16 to the many-
body case by using the temperature Green function. The
herent potential describing the local electron correlations
determined according to Shiba’s suggestion17 so that the
Green function for an impurity with local Coulomb intera
tions embedded in the coherent potential agrees with tha
the medium with the same coherent potential.

In the theory of itinerant magnetism, a single-site theo
was developed on the basis of the functional integ
0163-1829/2004/69~4!/045101~15!/$22.50 69 0451
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method18–21to describe the localized vs itinerant behavior
magnetism.22–29 It interpolates between the weak- an
strong-Coulomb interaction limits. The theory transforms
interacting electron system into an independent electron
tem placed in a time-dependent random potential. The la
is treated by means of the CPA. Hubbard23 and Hasegawa24

established a theory called the single-site spin-fluctua
theory within the high-temperature approximatio
Kakehashi28 developed the dynamical CPA which fully take
into account the dynamical spin and charge fluctuations.
dynamical CPA describes on the same footing the ma
body energy bands as well as the local moment behavio
magnetism.29 The many-body CPA, the dynamical CPA, an
the DMFT are equivalent to each other. This was sugges
on various levels,5,6,9 but a clear proof has been given on
recently.30 The CPA has been recognized to be a use
method to treat electron correlations in solids ranging fr
metals to insulators.

The theories mentioned above are based on the temp
ture Green function. The excitation spectrum is obtained
an analytic continuation of that function. It is more direct
obtained from the retarded Green function by taking
imaginary part of its Laplace transform. The single-site a
proximation of the retarded Green function for a narro
band model was proposed by Hubbard31 in the early 1960s.
He proposed an alloy-analogy approximation for stron
correlated electron systems and obtained the metal-insu
transition by solving the CPA equation.13 The approximation
did not lead to a Fermi-liquid state for weak-Coulomb inte
actions. The projection operator method1,32–38 is one of the
most advanced theories along this line. It is a technique
calculate the Laplace transform of the retarded Green fu
tion, which is expressed in terms of a Liouville operat
Choosing a suitable operator space generated by the L
ville operator, one can calculate the excitations of the sys
from molecules to solids on various levels of approxim
tions. It enables us to perform first-principles calculations
©2004 The American Physical Society01-1
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making use of the wave operator method,39 and also to com-
pute the momentum dependent self-energy starting fro
local description by using the incremental method.40

In spite of a wide range of applicability of the projectio
operator method, the method to treat efficiently excitation
solids by means of an effective medium has not yet b
developed. In the present paper, we propose a combinatio
the projection operator method with the many-body CP
This is essentially equivalent to the dynamical CPA and
DMFT. We develop an interpolation scheme for sing
particle excitations between the weak- and strong-Coulo
interaction limits. This is a first step towards first-principl
calculations based on the projection operator method in C

The basic idea of the theory is to describe the retar
Green function by means of an energy-dependent Liouv
operator of a Hamiltonian with a coherent potential. The
herent potential is determined self-consistently by using
concept of the CPA. The self-consistency of the CPA allo
us to optimally include within the single-site approximatio
the effects of the chemical environment on the local, i
on-site electron correlations. This enables us to desc
phase transitions caused by electron correlations as we
the correlated energy bands of the system.

In the following section, we briefly review the projectio
operator method starting from a narrow-band model Ham
tonian. Equations of motion are presented according to
Mori32 and Zwanzig33 method, which is used in the follow
ing sections. We present the many-body CPA to the pro
tion operator method in Sec. III. The Liouville operator
approximated by an energy-dependent Liouville operator
an effective Hamiltonian with a coherent potential. The C
equation determines the coherent potential and is prese
in Sec. III A. It is shown that the self-consistent equation
essentially equivalent to those obtained in the original ma
body CPA, the dynamical CPA, and the DMFT. After havin
established the CPA, we rederive in Sec. III B the se
consistent equation in the Hubbard III alloy-analogy appro
mation. Next we present in Sec. III C an interpolation fo
mula for the memory function by using the relevant part
the operator space in the atomic limit and in the itiner
limit. We also derive the self-energy of the modified pert
bation theory in the DMFT.41

In Sec. IV, we develop the renormalized perturbati
theory~RPT! on the basis of the interpolation formula for th
memory function. The zeroth- and the first-order approxim
tions are examined in detail for half-filled bands in Secs.
A and IV B, respectively. In Sec. IV C, we are adopting t
decoupling approximation to the higher-order terms. We
rive a closed form of the memory function and presen
simplified theory by using a cutoff function. By means of
numerical calculation for a half-filled band, we demonstr
that the theory describes the overall features of the excita
spectra from the weak- to the strong-Coulomb interact
limit. Section V is devoted to a summary. Also remaini
problems are discussed in that section.

II. PROJECTION OPERATOR METHOD

We adopt in the present paper a tight-binding model42,43

with an intraatomic Coulomb interactionU,
04510
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H5H01U(
i

ni↑ni↓ , ~1!

H05(
i ,s

~e02m!nis1 (
i , j ,s

t i j ais
† aj s . ~2!

Heree0 and t i j are the atomic level and the transfer integ
between sitesi and j, respectively. Furthermore,ais

† (ais)
denotes the creation~annihilation! operator for an electron
with spins on sitei, andnis5ais

† ais is the electron-density
operator for spins on sitei. For convenience, we have adde
the chemical potentialm to the Hamiltonian.

The single-particle excitations are described by the
tarded Green functions defined by

Gis j s8~ t2t8!52 iu~ t2t8!^@ âis~ t !,â j s8
†

~ t8!#1&. ~3!

Hereu(t) is the step function,âis
† (t) „âis(t)… is the creation

~annihilation! operator in the Heisenberg representation, a
@ ,#1 denotes the anticommutator between the Fermion
erators. The averagê& is taken over the grand canonic
ensemble.

By making use of a Laplace transform, the Fourier tra
form of the retarded Green function is expressed by an in
product in the operator space as1

Gis j s8~z!5S ais
† U 1

z2L
aj s8

† D . ~4!

Herez5v1 id with d being an infinitesimal positive num
ber. The Liouville operatorL is a superoperator acting on a
operatorA asLA5@H,A#2 (@ ,#2 is the commutator betwee
the operators.! The inner product between the operatorsA
andB is defined by (AuB)5^@A1,B#1&.

A series of equations of motion for the retarded Gre
function is obtained by using the projection technique
Mori and Zwanzig.32,33The first-order equation for the Gree
function Gis j s8(z)5(G) is j s8(z) is given by

@z2L2M~z!#G~z!51, ~5!

Lis j s85~ais
† uLaj s8

†
!, ~6!

Mis j s8~z!5S QLais
† U 1

z2QLQ
QLaj s8

† D , ~7!

whereQ512P, andP is a projection operator defined by

P5(
is

uais
† )~ais

† u. ~8!

The operatorQ eliminates the operator subspace used in
definition of the Green function~4!.

In the case of Hamiltonian~1!, the frequency matrix
Lis j s8 and the memory functionMis j s8(z) are given by

Lis j s85~H0! is j s81U^ni 2s&d i j dss8 , ~9!

~H0! is j s85@~e02m!d i j 1t i j #dss8 , ~10!
1-2
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COHERENT POTENTIAL APPROXIMATION AND . . . PHYSICAL REVIEW B69, 045101 ~2004!
Mis j s8~z!5US Ais
† U 1

z2L̄
Aj s8

† D U. ~11!

Here L̄5QLQ and Ais
† 5ais

† dni 2s , wherednis is defined
by nis2^nis&. The Green function~4! is then written as

Gis j s8~z!5@$z2H02S~z!%21# is j s8 , ~12!

S is j s8~z!5U^ni 2s&d i j dss81Mis j s8~z!. ~13!

HereS is j s8(z) is the self-energy of the system.
When we neglect the memory function, we obtain t

Green function in Hartree-Fock approximation. The effe
of electron correlations are contained in the memory funct
Mis j s8(z). Within the Mori-Zwanzig method it is obtaine
from a second-order equation. Defining the reduced mem
function

Ḡis j s8~z!5U22Mis j s8~z!5S Ais
† U 1

z2L̄
Aj s8

† D , ~14!

we can express the equation for the memory function in
form

@z2L̄2M̄~z!#Ḡ~z!5x, ~15!

L̄ is j s85~Ais
† uL̄Aj s8

†
!x j s8

21 , ~16!

M̄ is j s8~z!5~Q̄L̄Ais
† u~z2Q̄L̄Q̄!21Q̄L̄Aj s8

†
!x j s8

21 . ~17!

x is j s85x isd i j dss85^ni 2s&~12^ni 2s&!d i j dss8 . ~18!

HereQ̄512 P̄ and

P̄5(
is

uAis
† )x is

21~Ais
† u. ~19!

In deriving the above equations we have assumed that t
is no noncollinear spin arrangement, i.e.,^ais

† ai 2s&50. The

projection operatorQ̄ in Eq. ~17! eliminates the operato
space$Ais

† % used in the second-order equation. In the sa

way, we can derive an equation of motion forM̄ is j s8(z).
The higher-order equations become more and more diffi
in treatment.

III. COHERENT POTENTIAL APPROXIMATION
COMBINED WITH THE PROJECTION OPERATOR

METHOD

A. Many-body CPA within the projection method

In principle one can obtain the self-energy by solving
series of the equations of motion presented in the last
tion. These equations however produce higher-order mem
functions and the evaluation of variousL-matrix elements
consisting of static averages is not trivial. A way to redu
the difficulty is to adopt a single-site approximation to t
self-energy. We shall treat here the self-energy by using
coherent potential approximation.
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It should be noted that the same Green function~12! is
obtained from an energy-dependent Liouville operatorL8(z)
for an effective HamiltonianH8(z),

H8~z!5H01 (
i , j ,s,s8

ais
† S is j s8~z!aj s8 . ~20!

This suggests to describe the Green function in the sin
site approximation by means of an energy-dependent ef
tive Liouville operatorL̃(z) such that

L̃~z!A5@H̃~z!,A#2 , ~21!

H̃~z!5H01(
is

Ss~z!ais
† ais . ~22!

Here we have assumed that all the sites are equivalent so
the site-diagonal self-energy becomes independent on
sites. We call the self-energySs(z) the coherent potential.

The retarded Green function to the Liouville operat
L̃(z), which we shall call the coherent Green function,
obtained from the Dyson equation~12! as

Fis j s85@$z2H̃~z!%21# is j sdss8 , ~23!

@H̃~z!# is j s85@$e02m1Ss~z!%d i j 1t i j #dss8 . ~24!

The coherent potential has to be determined from a s
consistent condition. Using Shiba’s picture17 of the coherent
potential approximation~see Fig. 1!, we consider the Liou-
ville operator L ( i )(z) of an impurity system which is ob
tained by replacing the coherent potentialSs(z) on the im-
purity site by the on-site Coulomb interactionUni↑ni↓ . Its
Hamiltonian is given by

H ( i )~z!5H̃~z!2(
s

Ss~z!ais
† ais1Uni↑ni↓ . ~25!

The impurity Green function to the Liouville operator
given by

FIG. 1. Schematic picture showing the coherent potential
proximation. The left-hand side shows an impurity with a Coulom
interactionU embedded in an effective medium with a cohere
potentialS. The right-hand side shows a uniform state of the effe
tive medium. The left and the right are described by the impu
Green functionG( i ) and the coherent Green functionF, respec-
tively.
1-3
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Gj sks
( i ) ~z!5S aj s

† U 1

z2L ( i )~z!
aks

† D , ~26!

where L ( i )(z) refers to H ( i )(z), i.e., L ( i )(z)A
5@H ( i )(z),A#2 .

The diagonal Green function is obtained from the Dys
equation~12! @and Eqs.~13! and~11!# by replacing the Liou-
ville operatorL̄ by L ( i )(z):

Gis is
( i ) ~z!5@Fis is

( i ) ~z!212L is is
( i ) ~z!#21. ~27!

HereL is is
( i ) (z) is the self-energy to the impurity Hamiltonia

~25!. Fis is
( i ) (z) is a cavity Green function defined by

Fis is
( i ) ~z!5@$z2H̃( i )~z!%21# is is , ~28!

@H̃( i )~z!# j sks5@H̃~z!# j sks2Ss~z!d j i dki , ~29!

i.e., the self-energy at sitei has been removed.H̃( i )(z) de-
notes the Hamiltonian with vanishing electron interactio
on the impurity sitei in the effective medium~cavity effect!.

The cavity Green functionFis is
( i ) (z) is expressed in term

of the coherent Green function according to the Dyson eq
tion

Fis is
( i ) ~z!215Fis is~z!211Ss~z!. ~30!

Substituting Eq.~30! into Eq. ~27!, we obtain

Gs
( i )~z!5@Fs~z!212Ls

( i )~z!1Ss~z!#21. ~31!

Here and in the following we omit the site indices in th
Green functions and the self-energy for simplicity.

The diagonal coherent Green functionFs(z)
@5Fis is(z)# in Eq. ~31! is given by

Fs~z!5E r~e!de

z2e01m2Ss~z!2e
. ~32!

Here r(e) is the density of states~DOS! per atom for the
noninteracting system specified byt i j . The self-energy
Ls

( i )(z) @5L is is
( i ) (z)# is expressed according to Eq.~13! as

Ls
( i )~z!5U^ni 2s&1Ms

( i )~z!, ~33!

Ms
( i )~z!5U2~Ais

† u@z2L̄ ( i )~z!#21Ais
† !, ~34!

with L̄ ( i )(z)5QL( i )(z)Q.
The coherent potential in these equations is determine

that the impurity Green function in the effective medium
identical with the coherent Green function~see Fig. 1!:

Gs
( i )~z!5Fs~z!, ~35!

or equivalently

Ls
( i )~z!5Ss~z!. ~36!

Equations~31! and ~35! have the same form as obtaine
by analytic continuation of the temperature Green function
the many-body CPA.10 The latter is equivalent to the dynam
cal CPA and the DMFT.30 However, the projection metho
04510
n
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a-
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treats the dynamics and the static averages independe
Therefore the present theory is not exactly equivalent to
many-body CPA formulated in terms of the temperatu
Green function, since that theory treats both the dynam
and the thermal average on the same footing. But it sho
be essentially the same as the many-body CPA after a
able single-site approximation has been made for the s
averages in the self-energy~33!.

The second point which should be mentioned at this st
is that the energy-dependent Liouville operatorL ( i )(z) is in
general not Hermitian in the operator space because of
energy-dependent impurity Hamiltonian~25!. The latter does
not necessarily commute with Hamiltonian~1! which ap-
pears in the static averages contained in the memory fu
tion. This poses some restrictions on actual calculations
the memory function.

B. The Hubbard approximation

Electron correlations in the single-site approximation a
described by the memory functionM ( i )(z)5U2Ḡs

( i )(z). The

reduced memory functionḠs
( i )(z) @5Ḡis is

( i ) (z)# is obtained

from the equation of motion~15! in which L̄ has been re-
placed byL̄ ( i )(z).

(
k

@zd jk2L̄ j sks
( i ) ~z!2M̄ j sks

( i ) ~z!#Ḡks ls
( i ) ~z!5x j sd j l ,

~37!

L̄ j sks
( i ) ~z!5@ L̃Q~z!# j sks1@2Ss~z!1U~12^ni 2s&!#d j i dki ,

~38!

@ L̃Q~z!# j sks5@e02m1Ss~z!#d jk1(
l

t lk~Aj s
† uBkls

† !xks
21 ,

~39!

M̄ j sks
( i ) ~z!5(

lm
t j l tmkḠ̄j l skms~z!xks

21 , ~40!

Ḡ̄ j l skms~z!5„Q̄Bjl s
† u@z2Q̄L̄ ( i )~z!Q̄#21Q̄Bkms

†
…. ~41!

Here @ L̃Q(z)# j sks is the frequency matrix for the effectiv
HamiltonianH̃(z). The new operators$Bjl s

† % are defined by

Bjl s
† 5als

† dnj 2s1aj s
† d~al 2s

† aj 2s!1aj s
† d~al 2saj 2s

† !.
~42!

The self-energy of the Hubbard I approximation43 is ob-
tained by replacing in Eq.~37! L̄ ( i )(z) with that in the atomic
limit.34 This corresponds to the neglect of the transfer in
grals in the frequency matrix~38! and in the memory func-
tion ~40!. We obtain thatM̄ j sks

( i ) (z)50 and

L̄ j sks
( i ) ~z!5@e02m1Ss~z!2Ss~z!d i j

1U~12^ni 2s&!d i j #d jk . ~43!

Substituting these values into Eq.~37!, we obtain
1-4
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Ls
( i )~z!5U^ni 2s&1

U2^ni 2s&~12^ni 2s&!

z2e01m2U~12^ni 2s&!
. ~44!

This is the self-energy in the Hubbard I approximation. No
that it is independent of the coherent potentialSs . This
means that the CPA condition~36! merely implies having the
Hubbard I impurity self-energy on each site; the CPA eq
tion does not improve the Hubbard I approximation.

The Hubbard I approximation is exact in the atomic lim
But in general one must also take into account the effect
electron hopping on the memory function. In this context,
note thatL̃Q(z) in Eq. ~39! is written by means of an effec
tive Hamiltonian matrix with a shiftD0s and a narrowing
factor r i j s as follows:

@ L̃Q~z!# j sks5@e02m1Ss~z!1D0s#d jk1r jkst jk ,
~45!

D0s5(
l

t l j ~Aj s
† uBjl s

† !x j s
21 , ~46!

r jks5~Aj s
† uBk js

† !xks
21 , ~47!

where the relation

~Aj s
† uBkls

† !5~Aj s
† uBk js

† !d j l 1~Aj s
† uBjl s

† !d jk ~ lÞk!
~48!

has been used.
Equation~45! is similar to the noninteracting part of th

frequency matrix in the first order equation@see Eq.~24!#.
For the half-filled band model with the nearest-neighb
transfer integral on the simple cubic lattice, we find thatr jk
523/8 in the limit U50 and r jk50 in the atomic limit.
When we neglectM̄ j sks

( i ) (z) and assume thatr jk'r s , we can
solve Eq.~37! explicitly, and obtain

Ḡs
( i )~z!5

^ni 2s&~12^ni 2s&!

Fs8 ~z!211Ss~z!2U~12^ni 2s&!
, ~49!

Fs8 ~z!5E r~e!de

z2e01m2Ss~z!2D0s2ur sue
. ~50!

Here we assumed a symmetric band withr(e)5r(2e).
Therefore the self-energy is given by

Ls
( i )~z!5U^ni 2s&1

U2^ni 2s&~12^ni 2s&!

Fs8 ~z!211Ss~z!2U~12^ni 2s&!
.

~51!

When we neglect the shiftD0s and the band narrowing
factor r s ~i.e., D0s'0 and ur su'1), we have Fs8 (z)
5Fs(z). Substituting Eq.~51! into Eq. ~31!, we obtain for
the impurity Green function

Gs
( i )~z!5

^ni 2s&

Fs~z!212U1Ss~z!
1

12^ni 2s&

Fs~z!211Ss~z!
.

~52!
04510
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The above expression is regarded as an averaged Green
tion when the effective potentialse02m1U ande02m are
randomly distributed with concentrationŝni 2s& and 1
2^ni 2s&, respectively.13 The energy-dependent coherent p
tential Ss(z) is determined from the CPA condition~35!.

Equations~35! and ~52! are well known as Hubbard’s
self-consistent alloy-analogy approximation~Hubbard III
scattering correction!.31 One of the problems of that approx
mation is that the system is not a Fermi liquid in the wea
Coulomb interaction region because of the static random
tentials e02m1U and e02m. However, it was the first
theory which led to the metal-insulator transition in the ha
filled band case.

C. Interpolation formula for the memory function

The equation of motion method presented in the last s
tion is an approach starting from the atomic state because
operator space$Ais

† % used in the first-order equation de
scribes exactly the atomic limit while the second-order eq
tion introduces the effects of electron hopping. Therefore i
not simple to reproduce the Fermi-liquid state for wea
Coulomb interactions. We take here and in the following
alternative route which describes both the Fermi-liquid st
and the atomic state.

For that purpose, we start from the reduced memory fu
tion Ḡs

( i )(z) and divide the Liouville operatorL̄ ( i )(z) into a

coherent partL̄0(z) and an interaction partL̄ I
( i )(z), i.e.,

Ḡs
( i )~z!5~Ais

† u@z2L̄0~z!2L̄ I
( i )~z!#21Ais

† !. ~53!

Here L̄0(z)5QL̃(z)Q and L̄ I
( i )(z)5QLI

( i )(z)Q. L̃(z) is
given by Eq.~21! and LI

( i )(z) acts on a given operatorA
according to

LI
( i )~z!A5F2(

s
Ss~z!nis1Uni↑ni↓ ,AG

2

. ~54!

Note that uAj s
† ) is an eigenstate of the Liouville operato

L̄ I
( i )(z), i.e.,

L̄ I
( i )~z!uAj s

† )5@2Ss~z!1U~12^ni 2s&!#d i j uAj s
† ).

~55!

This implies that the operator spaceuAis
† ) is sufficient to

describe the exact atomic limit of the memory function~11!,
and therefore the self-energy~44!.

The eigenstates ofL̄0(z), on the other hand, are given b
uaks

† d(ak82s
† ak92s)), i.e.,

L̄0~z!uaks
† d~ak82s

† ak92s!)

5@e02m1Ss~z!1ek1ek82ek9#uaks
† d~ak82s

† ak92s!).

~56!

Hereaks
† (aks) is the creation~annihilation! operator for an

electron with momentumk and spins, andek are the eigen-
values of the kinetic-energy term.
1-5
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SinceAis
† is expanded in terms of$uaks

† d(ak82s
† ak92s))%

as

Ais
† 5 (

k,k8,k9
aks

† d~ak82s
† ak92s!^ku i &^k8u i &^ i uk9&, ~57!
it

th

ti

ic
or

04510
^ku i &5^ i uk&* 5
1

AN
eik•Ri, ~58!

the memory function forL̄0(z) is obtained as
~Ais
† u@z2L̄0~z!#21Ais

† !5 (
k,k8,k9,k1 ,k18 ,k19

^ i uk1&^ i uk18&^k19u i &~ak1s
† d~ak

182s
†

ak
192s!uaks

† d~ak82s
† ak92s!!^ku i &^k8u i &^ i uk9&

z2e01m2Ss~z!2ek2ek81ek9

.

~59!
it
e

q.

k-
by

ac-
ak-
ace

in

l.
the
ld
The Liouville operatorL̄0(z) becomes Hermitian in the
weak-Coulomb interaction limit becauseH̃(z) commutes
with H in that case. This means that in this lim
$uaks

† d(ak82s
† ak92s))% are orthogonal to each other:

~ak1s
† d~ak

182s
†

ak
192s!uaks

† d~ak82s
† ak92s!!

5xs~ek ,ek8 ,ek9!dk1kdk
18k8dk

19k9 , ~60!

xs~ek ,ek8 ,ek9!5~12^nks&0!~12^nk82s&0!^nk92s&0

1^nks&0^nk82s&0~12^nk92s&0!. ~61!

The subscript 0 stands for taking a thermal average in
Hartree-Fock approximation.

Inserting relation~60! into Eq. ~59!, we notice that in the
weak-Coulomb interaction limit the memory function~59!
reduces to the self-energy of the second-order perturba
theory.

Ss
(2)~z!

U2
5E dede8de9r~e!r~e8!r~e9!xs~e,e8,e9!

z2e01m2Ss~z!2ek2ek81ek9

.

~62!

To describe both limits~44! and ~62! explicitly, we sepa-
rate L̄ I

( i )(z) into two parts by using the identityP̄1Q̄51 as

L̄ I
( i )~z!5 P̄ L̄ I

( i )~z!P̄1L̄ I
( i )~z!Q̄. ~63!

The first term is the Liouville operator acting on the atom
subspace$Ais

† % while the second term acts on the space
thogonal to$Ais

† %. Substituting Eq.~63! into Eq. ~53!, we

expandḠs
( i )(z) with respect toP̄ L̄ I

( i )(z) P̄. Using relation
~55!, we obtain the equation

Ḡs
( i )~z!5

Ḡ0s
( i ) ~z!

12L̄ Is
( i )~z!Ḡ0s

( i ) ~z!
, ~64!

Ḡ0s
( i ) ~z!5~Ais

† u@z2L̄0~z!2L̄ I
( i )~z!Q̄#21Ais

† !, ~65!

L̄ Is
( i )~z!5

2Ss~z!1U~12^ni 2s&!

^ni 2s&~12^ni 2s&!
. ~66!
e

on

-

The memory functionḠ0s
( i ) (z) contains the Liouville op-

erator L̄0(z) describing the weak-Coulomb scattering lim
and the operatorL̄ I

( i )(z)Q̄ which does not operate on th

atomic state. It indicates thatḠ0s
( i ) (z) basically describes the

excitations for weak interactions. The denominator in E
~64! shows that the memory functionḠs

( i )(z) is given by a
renormalization of the memory function for the wea
coupling case via the atomic interactions described
L̄ Is

( i )(z). Note that Eq.~64! is not an approximation.
The operator space$aks

† d(ak82s
† ak92s)% for weak-

Coulomb interactions should be large enough to describe
curately the excitations between the strong- and we
Coulomb interaction limits because it includes both the sp
$Ais

† % in the atomic limit and the space$Bjl s
† % appearing in

the second-order equation@see Eqs.~39! and~41!#. Therefore
we may limit the space to$aks

† d(ak82s
† ak92s)%. The

memory functionḠ0s
( i ) (z) is then given by the matrixḠ0

( i )(z)
as

Ḡ0
( i )~z!5 (

k,k8,k9,k1 ,k18 ,k19
^ i uk1&^ i uk18&^k19u i &

3@Ḡ0
( i )~z!#k1k

18k
19skk8k9s^ku i &^k8u i &^ i uk9&, ~67!

Ḡ0
( i )~z!5x0@z2L̄02x0

21L̄IQ
( i )~z!#21. ~68!

Herex0 is the susceptibility matrix,L̄0 is a diagonal matrix
whose diagonal elements give the eigenvalues ofL̄0(z) @see
Eq. ~56!#, and L̄IQ

( i )(z) is an interaction matrix ofL̄ I
( i )(z)Q̄.

Explicit expressions for the matrix elements are given
Appendix A.

D. Modified perturbation theory

Expression~64! for the memory function is quite genera
For example, one can derive from it the self-energy in
modified perturbation theory of the dynamical mean-fie
theory. In this case we approximateḠ0s

( i ) (z) by
AsSs

(2)(z)/U2 thereby using expression~62! for the weak-
1-6
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Coulomb interaction limit. The self-energySs(z) in the de-
nominator ofSs

(2)(z) is approximated by the Hartree-Foc
one. We obtain then

Ls
( i )~z!5U^ni 2s&1

AsSs
(2)~z!

12BsSs
(2)~z!

, ~69!

Bs5
AsL̄ Is

( i )~z!

U2
. ~70!

The phenomenological parameterAs is determined so tha
the lowest moment of the exact memory function is rep
duced. This yields

As5
^ni 2s&~12^ni 2s&!

^ni 2s&0~12^ni 2s&0!
, ~71!

Bs5
U~122^ni 2s&!

U2^ni 2s&0~12^ni 2s&0!
. ~72!

Here we have again adopted inBs the Hartree-Fock value
for Ss .

Equations~69!, ~71!, and~72! are identical with the self-
energy in the modified perturbation theory~MPT!.41 Actually

the higher-order correctionS̃s5Ss(z)2U^ni 2s&, which
was neglected before in the denominator ofSs

(2)(z) and in

the numerator ofL̄ Is
( i )(z), is taken into account by replacin

r(e) in Ss
(2)(z) with the DOSr̃ ( i )(e) for the cavity Hamil-

tonian H̃ ( i )(z)5( j l s@H̃( i )(z)# j s lsaj s
† als so that the correc

result of the second-order self-energy is obtained w
Udni↑dni↓ is taken as the interaction. The effective chemi
potentialm in the theory was determined so that the Frie
sum rule or the Luttinger theorem is satisfied. Note that
correct atomic limit is automatically contained inBs given
by Eqs. ~70! and ~72!. The MPT is known to be a usefu
theory describing the overall features of the metal-insula
transition. It does not, however, allow for a systematic i
provement of the theory because of its phenomenolog
character.

IV. RENORMALIZED PERTURBATION THEORY

A. Zeroth approximation to the memory function

The simplest approximation to the memory function~64!

is the neglect of the interactionL̄ I
( i )Q̄ in Ḡ0s

( i ) (z). In this case,

the reduced self-energyL̃s
( i )(z)5Ls

( i )(z)2U^ni 2s& is given
by

L̃s
( i )~z!5

U2Ḡ0s
( i ) ~z!

12L̄ Is
( i )~z!Ḡ0s

( i ) ~z!
, ~73!

Ḡ0s
( i ) ~z!5E dede8de9r~e!r~e8!r~e9!Xs

(0)~e,e8,e9!

z2 ẽs2S̃s~z!2e2e81e9
.

~74!

Here
04510
-

n
l
l
e

r
-
al

Xs
(0)~ek ,ek8 ,ek9!

5N3 (
k1 ,k18 ,k19

^ i uk1&^ i uk18&^k19u i &

3~ak1s
† d~ak

182s
†

ak
192s!uaks

† d~ak82s
† ak92s!!

3^ku i &^k8u i &^ i uk9&, ~75!

ẽs5e02m1U^ni 2s&, ~76!

S̃s~z!5Ss~z!2U^ni 2s&. ~77!

Equation~73! reproduces the self-energy to the second-or
perturbation theory in the weak-Coulomb interaction lim
and yields the exact result in the atomic limit. The mome
of the Green function are exact up to third order.

The approximate self-energy expression~73! is one of a
Fermi liquid. In the following analysis, we assume a sy
metric half-filled band so thatẽs50. We omit the spin index
for simplicity and consider the nonmagnetic ground sta
Using the relationsr(2e)5r(e) and X(0)(2e,2e8,2e9)

5X(0)(e,e8,e9), we can verify the relationL̃ ( i )
„z̄,S̃( z̄)…

52L̃ ( i )
„z* ,2S̃( z̄)…. ~Here z̄52v1 id, z* 5v2 id, and

the dependence of the self-energy onS̃(z) is explicitly
shown for convenience.! Substituting the above relation int

the CPA equationL̃ ( i )
„z̄,S̃( z̄)…5S̃( z̄), we obtainL̃ ( i )

„z* ,

2S̃( z̄)…52S̃( z̄). Comparing it with the CPA equation

L̃ ( i )(z* ,S̃* (z))5S̃* (z), we arrive at the relationS̃* (z)

52S̃( z̄). This indicates that ReS̃(01)50. The CPA equa-
tion for z501 is therefore given by

L̃ ( i )~01!5
U2M „012 i ImS̃~01!…

114i ImS̃~01!M „012 i ImS̃~01!…

5 i ImS̃~01!. ~78!

Here

M ~z!5E dede8de9r~e!r~e8!r~e9!X(0)~e,e8,e9!

z2e2e81e9
.

~79!

Equation ~78! shows that the Fermi-liquid condition

ImS̃(01)50 is equivalent to M (01)50. We obtain
ReM (01)50 because of the relationM ( z̄)52M (z)* .
Therefore the condition reduces in the present case to

2
1

p
Im M ~01!

5E dede8 r~e! r~e8! r~e1e8! X(0)~e,e8,e1e8!50.

~80!
1-7
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One can expand the CPA equationL̃ ( i )(z)5S̃(z) with

respect toS̃(z) because the Fermi-liquid solutionS̃(z) is
small nearuzu50. Solving the linearized CPA equation an

expanding the solution ofS̃(z) with respect toz, we obtain
nearz50,

S̃~z!5

U2
]ReM ~01!

]v

11U2
]ReM ~01!

]v

v1O~v2!. ~81!

The quasiparticle weightZ ~or the inverse effective mas
m/m* ) defined by 1/@12]ReS(01)/]v# is therefore given
by

Z5
m

m*
511U2

]ReM ~01!

]v
. ~82!

The critical Coulomb interactionUc2(m* 5`) for which the
effective mass diverges is therefore determined by the c
dition

U5
1

A2
]ReM ~01!

]v

. ~83!

Note thatM (z) depends generally onU via X(0)(e,e8,e9).
Therefore, Eq.~83! has to be solved self-consistently in ge
eral.

It should be noted that Eq.~78! also contains the solution

ImS̃(01)52` for an insulator leading to a vanishing DO
at the Fermi level. By applying the moment expansion

M ~z!5 (
n50

`
c2n

z2n11
, ~84!

we can verify that the CPA equation~78! has indeed a solu

tion S̃(01)52`. Nearz50, one can solve the CPA equa

tion L̃s
( i )(z)5S̃(z) by expanding it with respect to 1/x where

x5z2S(z). For small uzu, we obtain the solution as fol
lows:

S̃~z!5
U2216c2

4

1

z
2

32c2

U2216c2

z1•••. ~85!

Thus, the critical Coulomb interactionUc1(gap) below
which the insulator solution disappears is obtained from
condition

U54Ac2, ~86!

c25E dede8de9r~e!r~e8!r~e9!

3~e1e82e9!2X(0)~e,e8,e9!. ~87!
04510
n-

e

To obtain the explicit form of the memory function w
have to calculate the static expectation values
Xs

(0)(e,e8,e9). We adopt here a simplified expression whi
also interpolates between the weak- and strong-Coulomb
teraction limits:

~ak1s
† d~ak

182s
†

ak
192s!uaks

† d~ak82s
† ak92s!!

'Asxs~ek ,ek8 ,ek9!dk1kdk
18k8dk

19k9 . ~88!

Here xs(ek ,ek8 ,ek9) is the Hartree-Fock value o
Xs

(0)(e,e8,e9) given by Eq.~61!, which satisfies condition
~80!. The renormalization factorAs defined by Eq.~71! is
introduced so that the correct atomic limit is reproduced
theory based on the correlated wave function will be pu
lished in a separate paper. Approximation~88! yields for
Ḡ0s

( i ) (z) the expression

Ḡ0s
( i ) ~z!5AsE dede8de9r~e!r~e8!r~e9!xs~e,e8,e9!

z2 ẽs2S̃s~z!2e2e81e9
.

~89!

For a half-filled band on a hypercubic lattice in infini
dimensions,ẽs50, As51, andr(e)51/Apexp(2e2) in Eq.
~89!. Here the unit of energy has been chosen so that
second moment*der(e)e251/2. We find analytically that
Uc1(gap)54A3(1/411/p)/253.693 and numerically tha
Uc2(m* 5`)52.085. This means that approximation~89!
leads to a Fermi liquid forU,Uc2 , a non-Fermi liquid for
Uc2,U,Uc1 , and an insulator with a gap forUc1,U.

The results are similar to those obtained by Edwards
Hertz.44,45 They improved the Hubbard III approximation s
that the self-energy reproduces the result of second-o
perturbation theory. Within the single-site approximati
their theory yielded a Fermi liquid forU,2, a non-Fermi
liquid for 2,U,2A2, and an insulator for 2A2,U in unit
of half the bandwidth of a semielliptical noninteracting DO
More detailed calculations based on the Monte Carlo46 and
the numerical renormalization-group47 ~NRG! method, how-
ever, do not show any indication of a non-Fermi-liquid r
gime for intermediate Coulomb interaction strengths.

B. First-order approximation to the RPT

We consider here the first-order correction ofL̃IQ
( i )(z)

5x0
21L̄IQ

( i )(z) to the memory functionḠ0s
( i ) (z). We expand

Eq. ~68! as

Ḡ0
( i )~z!5x0@G0~z!1G0~z!L̃IQ

( i )~z!G0~z!#. ~90!

Here G0(z)5@z2L0(z)#21. Substituting Eq.~90! into Eq.
~67!, we obtain
1-8
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Ḡ0
( i )~z!5

1

N3 (
k,k8,k9

Xs
(0)~ek ,ek8 ,ek9!@11Ds„z2S̃s~z!,S̃s~z!,ek ,ek8 ,ek9…#

z2 ẽs2S̃s~z!2ek2ek81ek9

, ~91!

Ds„z2S̃s~z!,S̃s~z!,ek ,ek8 ,ek9…5N3 (
k1 ,k18 ,k19

^ i uk&^ i uk8&^k9u i &~ L̃IQ
( i )~z!!kk8k9sk1k

18k
19s^k1u i &^k18u i &^ i uk19&

z2 ẽs2S̃s~z!2ek1
2ek

18
1ek

19

. ~92!
th
e

ow
w
et

a

n
di

h

PA

r

We call the first-order approximation mentioned above
RPT-1, while the zeroth-order approximation will be denot
by RPT-0.

One can make a phenomenological analysis of the l
energy properties starting from the ground state as follo
Assume again a half-filled symmetric band of a nonmagn
state. The reduced self-energy is given by

L̃ ( i )~z!5
U2M „z2S̃~z!,S̃~z!…

12L̄ I
( i )~z!M ~z2S̃~z!,S̃~z!!

. ~93!

Here

M ~z,S̃~z!!

5E dede8de9r~e!r~e8!r~e9!X~z,S̃~z!,e,e8,e9!

z2e2e81e9
,

~94!

X„z,S̃~z!,e,e8,e9…5X(0)~e,e8,e9!@11D„z,S̃~z!,e,e8,e9…#.
~95!

Note thatM „z,S̃(z)… depends now onS̃(z) via the matrix
L̃IQ

( i )(z).
Assuming the relationsr(2e)5r(e) and X(2z,

2S̃(z),2e,2e8,2e9)5X„z,S̃(z),e,e,e9…, we can now de-
rive the Fermi-liquid condition by taking the same steps
before, i.e.,

ImM ~01,0!50. ~96!

By expanding the self-energyL̃ ( i )(z) with respect to the

small functionS̃(z) and using the above condition we ca
obtain for the CPA equation a linearized solution. By ad

tionally expandingS̃(z) for small values ofz, we obtain near
the Fermi energy

S̃~z!5

U2
]ReM ~01,0!

]v
v

11U2S ]ReM ~01,0!

]v
2Re

]M ~01,0!

]S̃s
D 1O~v2!,

~97!

which is of Fermi-liquid type. Thus the quasiparticle weig
is given by
04510
e
d

-
s.
ic

s

-

t

Z5

11U2S ]ReM ~01,0!

]v
2Re

]M ~01,0!

]S̃
D

12U2Re
]M ~01,0!

]S̃

. ~98!

The effective massm* diverges forZ50 resulting in a criti-
cal Coulomb interactionUc2(m* 5`), which is obtained by
solving the following equation.

U5
1

A2
]ReM ~01,0!

]v
1Re

]M ~01,0!

]S̃

. ~99!

The insulator solution is obtained by expanding the C
equation with respect to 1/x. For smalluzu, we find the form

S̃~z!5
U2216~c21d2

(2)1d3
(1)!

4

1

z

2
32~c21d2

(2)13d3
(1)/2!

U2216~c21d2
(2)1d3

(1)!
z1•••. ~100!

Therefore the critical valueUc1(gap) at which the insulato
solution disappears is obtained from the condition

U54Ac21d2
(2)1d3

(1). ~101!

Here c2 is given by Eq.~87!, while d2
(2) and d3

(1) are new
terms compared with Eq.~86! which are given by

d2
(2)5E dede8de9r~e!r~e8!r~e9!X(0)~e,e8,e9!

3@~e1e82e9!l0
(2)~e,e8,e9!1l1

(2)~e,e8,e9!#,

~102!

d3
(1)5E dede8de9r~e!r~e8!r~e9!X(0)~e,e8,e9!

3@~e1e82e9!2l0
(1)~e,e8,e9!1~e1e8

2e9!l1
(1)~e,e8,e9!1l2

(1)~e,e8,e9!#. ~103!

ln
(1) andln

(2) are the moments of the functionsl1(z,e,e8,e9)
andl2(z,e,e8,e9), which are defined by
1-9
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D„z,S̃~z!,e,e8,e9…52S̃~z!l1~z,e,e8,e9!1l2~z,e,e8,e9!,
~104!

l1~z,e,e8,e9!5 (
n50

`
ln

(1)~e,e8,e9!

zn11
, ~105!

l2~z,e,e8,e9!5 (
n50

`
ln

(2)~e,e8,e9!

zn11
. ~106!

When the Hartree-Fock matrix elements~see Appendix A!
are adopted, we find that]ReM (01,0)/]v5]ReS (2)(01)/

]v520.230 091, ]ReM (01,0)/]S̃520.157 239, c2

53(1/411/p)/2, d2
(2)50, andd3

(1)51/4. Therefore we ob-
tain Uc154A3/2p15/854.200,Uc253.705, and

Z5

12S U

Uc2
D 2

11S U

U2
D 2 . ~107!

HereU252.522.
Figure 2 shows the dependence ofZ on U in various ap-

proximations. It is remarkable that the first-order correct
of L̃IQ

( i )(z) significantly improves the result so that it is clo
to the one obtained by the NRG,47 thoughUc2(53.705) in
the RPT-1 is somewhat smaller than that in the NR
~54.10!. Note that these findings were obtained by us
Hartree-Fock matrix elements. The good agreement is
sumably due to the fact that in a Fermi-liquid electrons n
the Fermi surface are only weakly scattered by the Coulo
interactions.

C. Decoupling approximation to the higher-order terms

In the last section we showed that the first-order corr
tion describes well the quasiparticle excitations near
Fermi level. We consider here an approximate treatmen
the higher-order terms. For that purpose we expand Eq.~68!

with respect to the interactionL̄IQ
( i )(z).
04510
n

g
e-
r
b

-
e
of

Ḡ0
( i )~z!5x0G01x0G0L̃IQ

( i )G01x0G0L̃IQ
( i )G0L̃IQ

( i )G01•••.
~108!

We decouple the higher-order terms by inserting the follo
ing projector betweenL̃IQ

( i )G0’s:

~Pi !k1k
18k

19skk8k9s5^k1u i &^k18u i &^ i uk19&^ i uk&^ i uk8&^k9u i &.
~109!

The approximate memory functionḠ0s
( i ) (z) is then obtained

as

Ḡ0s
( i ) ~z!5

1

N3 (
k,k8,k9

Xs
(0)~ek ,ek8 ,ek9!

z2 ẽs2S̃s~z!2ek2ek81ek9

3F11
Ds~z2S̃s~z!,S̃s~z!,ek ,ek8 ,ek9!

12~ L̃IQ
( i )G0! i i

G ,

~110!

FIG. 2. Quasiparticle weight vs Coulomb interaction streng
for the half-filled band case on a hypercubic lattice in infinite
mensions in various approximations. Dotted curve—zeroth appr
mation in the renormalized perturbation theory~RPT-0!, solid
curve—the first-order approximation~RPT-1! and decoupling ap-
proximation in the RPT, thin solid curve—numerical renormaliz
tion group theory~NRG! ~Ref. 47!, thin dotted curve—modified
perturbation theory~MPT! ~Ref. 48!.
~ L̃IQ
( i )G0! i i 5 (

k,k8,k9,k1 ,k18 ,k19

^ i uk1&^ i uk18&^k19u i &@ L̃IQ
( i )~z!#k1k

18k
19skk8k9s^ku i &^k8u i &^ i uk9&

z2 ẽs2S̃s~z!2ek2ek81ek9

. ~111!

HereXs
(0)(ek ,ek8 ,ek9) andDs„z2S̃s(z),S̃s(z),ek ,ek8 ,ek9… are given by Eqs.~75! and ~92!, respectively.

It should be noted that the reduced self-energy has the same form as Eq.~93! with the memory functionM „z,S̃s(z)… given

by Eq. ~94!, provided that the functionXs„z,S̃s(z),ek ,ek8 ,ek9… is defined by
1-10
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Xs„z,S̃s~z!,ek ,ek8 ,ek9…

5Xs
(0)~ek ,ek8 ,ek9!F11

Ds~z,S̃s~z!,ek ,ek8 ,ek9!

12Rs~z,S̃s~z!!
G .

~112!

HereRs(z,S̃s(z)) is defined by (L̃IQ
( i )G0) i i with z2S̃s(z) in

the denominator being replaced byz. This results in

Rs„z,S̃s~z!…

5E dede8de9r~e!r~e8!r~e9!Ds„z,S̃s~z!,e,e8,e9….

~113!

Therefore the critical behavior of the low-energy excitatio
of a half-filled band are the same as those in first-order p
turbation theory~for details see Appendix B!, i.e., the Fermi-
liquid condition for the half-filled band is given by Eq.~96!,
the quasiparticle weight is expressed by Eq.~98!, and the
critical Coulomb interactionUc2(m* 5`) is obtained by
solving Eq.~99!. Furthermore, we can prove that the insu
tor solution of the self-energy near the Fermi level is e

pressed by Eq.~100! because there is no effect ofR(z,S̃(z))
on the low-energy excitations. Therefore we have the sa
equation ~101! and the same critical Coulomb interactio
Uc1(gap) as before.

For the Hartree-Fock matrix elements~see Appendix A!,
we obtain the same critical Coulomb interactionsUc1(gap)
54.200 andUc2(m* 5`)53.705 as before. The quasipar
cle weight vsU curve is identical with that of the first-orde
approximation, i.e., the one described by Eq.~107! ~see Fig.
2!.

When we use Hartree-Fock matrix elements forx0 and
L̃IQ

( i ) , there is a discrepancy in the atomic region between

Hartree-Fock formDs„z,S̃s(z),ek ,ek8 ,ek9… and the exact
y
a-

h

04510
s
r-

-
-

e

e

one. In fact, in the atomic limit we obtain

Ds„z,S̃s(z),ek ,ek8 ,ek9…50, irrespective of the values o
$ek ,ek8 ,ek9%, because

(
k1 ,k18 ,k19

~ L̃IQ
( i ) !kk8k9sk1k

18k
19s^k1u i &^k18u i &^ i uk19&50, ~114!

while the Hartree-Fock value does not vanish in that ca

i.e., Ds
(HF)(z,S̃s(z),ek ,ek8 ,ek9)Þ0.

A conventional way to remove the inconsistency is to
troduce a cutoff parameterq, which vanishes in the atomic
region, when we adoptDs

(HF) . We have then

G( i )~z!5@F~z!212L̃ ( i )~z!1S̃~z!#21, ~115!

L̃ ( i )~z!5
U2M „z2S̃~z!,S̃~z!,q…

12L̄ I
( i )~z!M „z2S̃~z!,S̃~z!,q…

, ~116!

M ~z,S̃~z!,q!5E dede8de9r~e!r~e8!r~e9!x~e,e8,e9!

z2e2e81e9

3F 11
qD (HF)~z,S̃~z!,e,e8,e9!

12qR~z,S̃~z!!
G , ~117!

D (HF)
„z,S̃~z!,e,e8,e9…52S̃~z!@ F̂~z2e81e9!1F̂~z2e

1e9!1F̂~2z1e1e8!#

1UK~z,e8,e9!

2L̄ I
( i )~z!U22S (2)~z!. ~118!

HereR„z,S̃(z)… is given by Eqs.~113! and~118!. The func-
tions F̂(z) andK(z,e8,e9) are defined by

F̂~z!5E r~e!de

z2e
, ~119!
K~z,e8,e9!5E dvdv9r~v!r~v9!@ f ~ ẽ1v!2 f ~ ẽ1v9!#

z2v2e81v9
1E dvdv8r~v!r~v8!@12 f ~ ẽ1v8!2 f ~ ẽ1v!#

z2v2v81e9
.

~120!
r

re-
i-

the
s
the
ent
As usualf (v) is the Fermi distribution function defined b
f (v)51/@exp(bv)11# and b denotes the inverse temper
ture.

We shall use the limiting valuesq51 in the Fermi-liquid
region andq50 in the atomic region@U.Uc2(m* 5`)# at
the ground state. The CPA equation~35! and the impurity

Green function~115! determine the coherent potentialS̃(z)
self-consistently in the presence of the cutoff.

The self-energy with the cutoffq leads to the critical Cou-
lomb interactions Uc1(gap)54A3(1/411/p)53.693 and
Uc2(m* 5`)53.705 for the hypercubic lattice, whic
should be compared withUc1(gap)53.25 and Uc2(m*
5`)54.10 in the NRG,47 respectively. The metal-insulato
phase transition occurs atUc5Uc2(m* 5`), below which
the quasiparticle weight is given by Eq.~107! ~see Fig. 2!. In
the present theory, the transition is of first order, though
cent numerical calculations47 suggest a second-order trans
tion.

The single-particle excitation spectra calculated from
self-energy~116! are shown in Fig. 3. With increasing value
of U, the width of the quasiparticle peak decreases and
upper and lower Hubbard bands develop. In the pres
1-11
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theory a well-defined pseudogap region does not exist be
U reachesUc2(m* 5`) because the Hubbard subbands
not well develop. This is due to the use of the Hartree-Fo

matrix elements ofx0 andL̃IQ
( i ) which neglect effects of elec

tron correlations on the static averages.
As shown in Fig. 4, the momentum distribution has

jump at the Fermi energy indicating a Fermi-liquid state. T
jump monotonically decreases with increasing values ofU,
and vanishes atU5Uc2(m* 5`). Above Uc2(m* 5`)
there is no discontinuity, and the curves flatten with furth
increase ofU. This behavior is similar to the one obtained b
the MPT48 and differs to the one of the Gutzwille
approximation.42

FIG. 3. Single-particle excitation spectra for various Coulom
interactionsU. The half-filled band model on the hypercubic lattic
in infinite dimensions is considered. The energy unit is chosen
that the second moment of the noninteracting density of states
comes 1/2.

FIG. 4. Momentum distributions as a function of the energyek

for various Coulomb interaction strengthsU51.0, 2.0, 3.0, 4.0, 5.0
6.0. The curve for the noninteracting electrons is shown by the
line. A half-filled band model on the hypercubic lattice in infini
dimensions is considered.
04510
re

k

e

r

V. SUMMARY AND DISCUSSION

We have presented a theory for the single-particle exc
tion spectrum in solids which combines the projection ope
tor method with the many-body CPA. The theory starts fro
the energy-dependent Liouville operator describing the
namics of local excitations in a coherent potentialSs(z).
The latter is determined so that the retarded Green func
of an impurity with a Coulomb interaction embedded in t
mediumSs(z) is consistent with the coherent Green fun
tion of the medium.

We have shown that the present theory is essenti
equivalent to single-site theories based on the tempera
Green function, which are known, i.e., the many-body CP
the dynamical CPA, and the DMFT. The present appro
has the merit that the spectrum is directly obtained from
imaginary part of the Green function without using any n
merical analytic continuation or artificial line broadenin
Both are often required in the numerical approaches base
the temperature Green function. We rederived the Hubb
III approximation within the present formalism from th
second-order equation of motion. We presented an interp
tion formula for the memory function between the weak- a
strong-coupling limits. On the basis of this formula, we d
rived the self-energy of the modified perturbation theory
the DMFT without making phenomenological assumptio
concerning the self-energy.

Based on an interpolation formula for the memory fun
tion we have developed a renormalized perturbation the
which analytically interpolates between the weak- a
strong-Coulomb interaction limits. When the Coulomb inte
actions are weak, an expansion of the memory funct
Ḡ0s

( i ) (z) in terms of the interaction LiouvillianL̄ I
( i )(z)Q̄ leads

to a good description of the quasiparticles near the Fe
level even when we limit ourselves to the first-order te
and use Hartree-Fock matrix elements in the calculatio
Higher-order corrections can be treated by a decoupling
proximation. When strong interactions are considered the
of Hartree-Fock matrix elements in static averages mus
corrected by the introduction of a cutoff parameter. With
help, we can describe the overall features of the sing
particle excitation spectra from the weak- to the strong- C
lomb interaction limit. The theory yields the reasonable cr
cal Coulomb interactionsUc1(gap)53.694 and Uc2(m*
5`)53.705. Moreover, an analytic expression for the qu
siparticle weight provides us with a simple and quantitat
description of the effective mass.

We are convinced that the present theory can be applie
many problems because of its simplicity, in particular,
more complex systems which are not easily accessible
means of other numerical techniques such as the Mo
Carlo and the NRG methods. Furthermore, the theory
compatible with the first-principles cumulant wave opera
method which has been applied for ground-state electro
structure calculations.39 Thus it is possible to construct
first-principles theory of excitations by combining the latt
with the present theory. These advantages are promisin
regards a further development of the theory of excitatio
towards quantitative calculations.

o
e-

in
1-12
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COHERENT POTENTIAL APPROXIMATION AND . . . PHYSICAL REVIEW B69, 045101 ~2004!
The basic assumption of the present theory is the sin
site approximation to the self-energy, i.e., the moment
independence of the self-energy. One of the merits of
projection operator method is that there is a technique av
able, i.e., the incremental method40 to overcome that limita-
tion. It allows us to include systematically pair-site, tripl
site correlations, and higher-order cluster correlatio
starting from the single-site approximation. The pres
method is in competition with the dynamical clust
approximation.49 The latter includes short-ranged dynamic
correlations in addition to the local dynamics of the DMF
The incremental method combined with the CPA and its
plication to various problems are left for future investig
tions.

APPENDIX A: MATRIX ELEMENTS FOR THE
MEMORY FUNCTION

We present here the expressions of various matrix
ments which appear in the memory function~67! and ~68!:

Ḡ0
( i )~z!5x0@z2L̄02x0

21L̄IQ
( i )~z!#21, ~A1!

~x0!k1k
18k

19skk8k9s

5~ak1s
† d~ak

182s
†

ak
192s!uaks

† d~ak82s
† ak92s!!, ~A2!

~ L̄0!k1k
18k

19skk8k9s

5@ ẽs1S̃s~z!1ek1ek82ek9#dk1kdk
18k8dk

19k9 , ~A3!

~ L̄IQ
( i ) !k1k

18k
19skk8k9s

5~ L̄I
( i )!k1k

18k
19skk8k9s2L̄ Is

( i )~z!~ak1s
† d~ak

182s
†

ak
192s!uAis

† !

3~Ais
† uaks

† d~ak82s
† ak92s!!, ~A4!

~ L̄I
( i )!k1k

18k
19skk8k9s

52S̃s~z!~x1
( i )!k1k

18k
19skk8k9s2S̃2s~z!~x2

( i )!k1k
18k

19skk8k9s

1S̃2s~z!~x3
( i )!k1k

18k
19skk8k9s1U~ L̂U

( i )!k1k
18k

19skk8k9s ,

~A5!

~x1
( i )!k1k

18k
19skk8k9s

5~ak1s
† d~ak

182s
†

ak
192s!uais

† d~ak82s
† ak92s!!^ i uk&, ~A6!

~x2
( i )!k1k

18k
19skk8k9s5~ak1s

† d~ak
182s

†
ak

192s!uaks
† d~ai 2s

† ak92s!!

3^ i uk8&, ~A7!

~x3
( i )!k1k

18k
19skk8k9s5~ak1s

† d~ak
182s

†
ak

192s!uaks
† d~ak82s

† ai 2s!!

3^k9u i &, ~A8!
04510
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e
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~ L̂U
( i )!k1k

18k
19skk8k9s

5~ak1s
† d~ak

182s
†

ak
192s!uais

† dni 2sd~ak82s
† ak92s!!^ i uk&

1~ak1s
† d~ak

182s
†

ak
192s!uaks

† ai 2s
† dnisak92s!^ i uk8&

2~ak1s
† d~ak

182s
†

ak
192s!uaks

† ak82s
† ai 2sdnis!^k9u i &.

~A9!

Here ẽs5e02m1U^ni 2s& and S̃s(z)5Ss(z)2U^ni 2s&.
L̄ Is

( i )(z) is defined by Eq.~66!.
In Hartree-Fock approximation, the matrix elements si

plify to

~x0!k1k
18k

19skk8k9s5xs~ek ,ek8 ,ek9!dkk1
dk8k

18
dkk

18
,

~A10!

xs~ek ,ek8 ,ek9!5~12^nks&0!~12^nk82s&0!^nk92s&0

1^nks&0^nk82s&0~12^nk92s&0!,

~A11!

~x0
21L̄IQ

( i ) !k1k
18k

19skk8k9s

52S̃s~z!^ i uk&^k1u i &dk
18k8dk

19k92S̃2s~z!^ i uk8&

3^k18u i &dk1kdk
19k91S̃2s~z!^k9u i &^ i uk19&dk1kdk

18k8

1U^ i uk&^k1u i &^ i uk19&^k9u i &~^nks&02^nk92s&0!dk
18k8

1U^ i uk&^k1u i &^k18u i &^ i uk8&~12^nk82s&0

2^nks&0!dk
19k92L̄ Is

( i )~z!xs~ek ,ek8 ,ek9!^k1u i &

3^k18u i &^ i uk19&^ i uk&^ i uk8&^k9u i &. ~A12!

The above expressions were used to calculate the cri
Coulomb interactions in Sec. IV and to obtain the self-ene
~116!.

APPENDIX B: ANALYTIC PROPERTY OF THE
SELF-ENERGY FOR LOW-ENERGY EXCITATIONS

We analyze in this Appendix the reduced self-energy
the ground state presented in Sec. IV C. For the half-fil
band it has the following form:

L̃ ( i )~z!5
U2M „z2S̃~z!,S̃~z!…

12L̄ I
( i )~z!M „z2S̃~z!,S̃~z!…

, ~B1!

M „z,S̃~z!…

5E dede8de9r~e!r~e8!r~e9!X„z,S̃~z!,e,e8,e9…

z2e2e81e9
.

~B2!
1-13
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Y. KAKEHASHI AND P. FULDE PHYSICAL REVIEW B 69, 045101 ~2004!
Here L̄ I
( i )(z)524S̃(z) @see Eq. ~66!#, and X„z,S̃(z),e,

e8,e9… is given by Eq.~112!.
We assume in the following a symmetric band implyi

that r(2e)5r(e) and X„2z,2S̃(z),2e,2e8,2e9…

5X„z,S̃(z),e,e8,e9…. By using the symmetry relations, w

verify the relation L̃ ( i )
„z̄,S̃( z̄)…52L̃ ( i )

„z* ,2S̃( z̄)… for z̄

52v1 id. Therefore the CPA equation~36! for z̄ is written
as

L̃ ( i )
„z* ,2S̃~ z̄!…52S̃~ z̄!. ~B3!

This demonstrates that S̃(z)* 52S̃( z̄). Therefore

ReS̃(01)50. The CPA equation atz501 is then expressed
as

L̃s
( i )~01!5

U2M „012 i ImS̃~01!,i ImS̃~01!…

114i ImS̃~01!M „012 i ImS̃~01!,i ImS̃~01!…

5 i ImS̃~01!. ~B4!

Thus the condition for a Fermi liquid, i.e., ImS̃(01)50 is
given by M (01,0)50. Here ReM (01,0)50 because
M ( z̄,0)52M (z,0)* is verified by using the symmetry prop

erties ofr(e) andX„z,S̃(z),e,e8,e9…. Therefore, the Fermi-
liquid condition requires

ImM ~01,0!50. ~B5!

In the first-order approximation, this is the same as Eq.~96!.
With the above condition, we can expand the self-ene

L̃ ( i )(z) with respect to the coherent potentialS̃(z). Solving
the linearized CPA equation, we obtain

S̃~z!5
U2M ~z,0!

11U2S 4M ~z,0!21
]M ~z,0!

]z
2

]M ~z,0!

]S̃
D .

~B6!

Note thatS̃(01)50 becauseM (01,0)50. For smalluzu, we
can expand the functions in Eq.~B6! as

M ~z,0!5
]ReM ~01,0!

]v
v1•••, ~B7!

]M ~z,0!

]z
5

]ReM ~01,0!

]v
1 i

]2ImM ~01,0!

]v2
v1•••,

~B8!

]M ~z,0!

]S̃
5Re

]M ~01,0!

]S̃
1 i Im

]2M ~01,0!

]v]S̃
v1•••.

~B9!

Here we used the fact that ReM (z,0) @ ImM (z,0)# is an

odd ~even! function, and also that Re]M (z,0)/]S̃
04510
y

@Im ]M (z,0)/]S̃] is an even~odd! function. This is verified
by using the symmetry properties ofr(e) and

X„z,S̃(z),e,e8,e9….
Substituting Eqs.~B7!–~B9! into Eq. ~B6!, we obtain for

the Fermi-liquid self-energy nearz50

S̃~z!5~12Z21!v1O~v2!, ~B10!

Z5

12S U

Uc2
D 2

11S U

U2
D 2 . ~B11!

Here the quasiparticle weight has the same form as in
~98! which applied to the first-order approximation. Th
critical valuesUc2 andU2 are defined by

Uc2
2 5

1

2
]ReM ~01,0!

]v
1Re

]M ~01,0!

]S̃

, ~B12!

U2
252

1

Re
]M ~01,0!

]S̃

. ~B13!

Note that the right-hand sides depend also onU. Uc2 is iden-
tical with the right-hand side of Eq.~99! when the first-order
approximation is used.

Equation ~B4! describes also an insulator solutio

ImS̃(01)52`. Note thatM (z,S̃) has the following form
@see Eq.~112!#.

M ~z,S̃ !5M0~z!1
2S̃~z!M1~z!1M2~z!

11S̃~z!R1~z!2R2~z!
. ~B14!

Here M0(z),M1(z),M2(z), and R1(z),R2(z) are functions

which do not contain the self-energyS̃(z). For large values
of uzu, we can expand these functions asM0(z)
5(n50

` c2n /z2n11, M1(z)5(n50
` d2n11

(1) /z2n12, M2(z)
5(n50

` d2n
(2)/z2n11, R1(z)5(n50

` r 2n
(1)/z2n11, and R2(z)

5(n50
` r 2n11

(2) /z2n12, thereby using the symmetry relation
From the moment analysis, we can show thatc051/4, d1

(1)

50, d0
(2)50, andr 0

(1)50 exactly. Substituting these coeffi
cients into Eq.~B14!, we obtain the moment expansion o

M (z,S̃) as follows.

M ~z,S̃ !5
c0

z
1

c21d2
(2)

z2
2S̃~z!

d3
(1)

z4
1•••. ~B15!
1-14
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Using the above expansion forx5z2S̃(z) in the CPA

equationL̃ ( i )(z)5S̃(z), we obtain a self-consistent equatio
for large values ofuxu in the form

zx1U2c02z22
c21d2

(2)1d3
(1)

c0

1
z~2c212d2

(2)13d3
(1)!

c0x
1•••50. ~B16!

Solving the quadratic equation forx, and expanding the so
lution with respect toz, we obtain an insulator solution nea
z50 as
.

.J

e

o,

04510
S̃~z!5
U22U1

2

4

1

z
2

2U1
2116d3

(1)

U22U1
2

z1•••. ~B17!

Here

U1
2516~c21d2

(2)1d3
(1)!. ~B18!

Equations~B17! and~B18! are identical with Eqs.~100! and
~101! within the first-order approximation. Within the decou
pling approximation the formation of a gap is determined
the first-order expansion becauseU1 does not contain any
moments as regardsR1(z) andR2(z).
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