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Coherent potential approximation and projection operators for interacting electrons
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A theory of the single-particle excitation spectrum is presented on the basis of the projection operator
method combined with the many-body coherent-potential approximd@##). The theory describes the
dynamics of the excitations by means of an energy-dependent Liouville operator accompanied by a coherent
potential which is determined by the self-consistent CPA condition. It is shown that the present theory is
essentially equivalent to the dynamical CPA and the dynamical mean-field theory. The Hubbard Ill approxi-
mation and the modified perturbation theory are rederived from the theory. A renormalized perturbation scheme
for the Green function is developed on the basis of a general formula for the memory function. It interpolates
between the weak- and strong-Coulomb interaction limits, and yields the metal-insulator transition for half-
filled bands. Numerical calculations have been performed for the Gutzwiller-Hubbard model on a hypercubic
lattice in infinite dimensions. The results show that the theory describes quantitatively the quasiparticle weight
vs Coulomb interaction curve, yielding a reasonable critical Coulomb interaction for the metal-insulator tran-
sition. It produces the overall features of the excitation spectra and the momentum distributions for various
Coulomb interaction strengths.
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. INTRODUCTION method®?to describe the localized vs itinerant behavior of
magnetisnf?~?° It interpolates between the weak- and
The single-particle excitation spectrum plays a centraktrong-Coulomb interaction limits. The theory transforms an
role in the description of interacting electrons in solids. Itinteracting electron system into an independent electron sys-
does not only describe the photoemission and inversetem placed in a time-dependent random potential. The latter
photoemission spectra, but also determines the thermodys treated by means of the CPA. Hubb&rdnd Hasegavwia
namics and the phase transitions of the systdihe excita- established a theory called the single-site spin-fluctuation
tions are usually described by means of a Green functiortheory within the high-temperature approximation.
and enormous efforts have been made for the development &fakehasH® developed the dynamical CPA which fully takes
a corresponding theory. In the past decade, there has beerio account the dynamical spin and charge fluctuations. The
considerable progress as regards the single-site theory diynamical CPA describes on the same footing the many-
Green functions. In the physics of strongly correlated elechody energy bands as well as the local moment behavior of
tron systems the dynamical mean-field the@®MFT) plays  magnetisnt® The many-body CPA, the dynamical CPA, and
an important role. It is based on work by Metzner andthe DMFT are equivalent to each other. This was suggested
Vollhard? who introduced a model suitable in infinite dimen- on various level$;?° but a clear proof has been given only
sions. Miller-Hartmanr showed that the self-energy does recently>® The CPA has been recognized to be a useful
not depend on momentum in infinite dimensions, and introimethod to treat electron correlations in solids ranging from
duced a self-consistent equation to determine the self-energymetals to insulators.
In the subsequent development of DMFT a number of inves- The theories mentioned above are based on the tempera-
tigators participated-8 One can determine the self-energy ture Green function. The excitation spectrum is obtained by
by solving self-consistently an impurity problem in an effec- an analytic continuation of that function. It is more directly
tive medium. The DMFT combined with various many-body obtained from the retarded Green function by taking the
technique$ to solve the impurity problem has been exten-imaginary part of its Laplace transform. The single-site ap-
sively applied to the metal-insulator transition and to heavyproximation of the retarded Green function for a narrow-
fermion systems showing a large linear specific-heat coeffiband model was proposed by Hubb#rih the early 1960s.
cient at low temperatures. He proposed an alloy-analogy approximation for strongly
The same theory can be traced back to the many-bodgorrelated electron systems and obtained the metal-insulator
coherent potentia(CPA) by Hirooka and Shimizd® They  transition by solving the CPA equatidAThe approximation
extended the CPA for the alloys probl&mt®to the many-  did not lead to a Fermi-liquid state for weak-Coulomb inter-
body case by using the temperature Green function. The cactions. The projection operator methdé2is one of the
herent potential describing the local electron correlations wamost advanced theories along this line. It is a technique to
determined according to Shiba’s suggestioro that the calculate the Laplace transform of the retarded Green func-
Green function for an impurity with local Coulomb interac- tion, which is expressed in terms of a Liouville operator.
tions embedded in the coherent potential agrees with that dfhoosing a suitable operator space generated by the Liou-
the medium with the same coherent potential. ville operator, one can calculate the excitations of the system
In the theory of itinerant magnetism, a single-site theoryfrom molecules to solids on various levels of approxima-
was developed on the basis of the functional integrations. It enables us to perform first-principles calculations by
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making use of the wave operator metiidénd also to com-
pute the momentum dependent self-energy starting from a H=Ho+UX nin;,, (1)
local description by using the incremental met{bd. !

In spite of a wide range of applicability of the projection
operator method, the method to treat efficiently excitations in Ho=> (€o— p)Nig+ > tijaiTgaja- )
solids by means of an effective medium has not yet been io ij.o

developed. In the present paper, we propose a combination . .
the projection operator method with the many-body CF,A_ﬂere € an(_jtij_ are t_he atom|c_ level and the tranerfer integral
etween sites and j, respectively. Furthermora;,, (a;,)

This is essentially equivalent to the dynamical CPA and th(%) tes th i ihilati tor f lect
DMFT. We develop an interpolation scheme for single- enotes the crea _|o(ann| 'f 'Op operator for an electron
particle excitations between the weak- and strong-Coulomi§/ith Spina on sitei, andn;, =a;,a;, is the electron-density
interaction limits. This is a first step towards first-principles OPerator for spirr on sitei. For convenience, we have added
calculations based on the projection operator method in CPAhe chemical potentiak to the Hamiltonian.

The basic idea of the theory is to describe the retarded The single-particle excitations are described by the re-
Green function by means of an energy-dependent Liouvilldarded Green functions defined by
operator of a Hamiltonian with a coherent potential. The co- ) - ~t
herent potential is determined self-consistently by using the ~ Gisjor(t—t)=—i0(t=t")([ai,(1),a;,.(t)]:). (3
concept of the CPA. The self-consistency of the CPA allows . o - . .
us to optimally include within the single-site approximation Here 6(t) is the step functiong;, (t) (a;,(t)) is the creation
the effects of the chemical environment on the local, i_e. (@nnihilation operator_ in the Heisenberg representanqn, and
on-site electron correlations. This enables us to describe]+ denotes the anticommutator between the Fermion op-
phase transitions caused by electron correlations as well &ators. The average) is taken over the grand canonical
the correlated energy bands of the system. ensemble. _

In the following section, we briefly review the projection ~ BY making use of a Laplace transform, the Fourier trans-
operator method starting from a narrow-band model Hamilform of the retarded Green function is expressed by an inner
tonian. Equations of motion are presented according to th@roeduct in the operator space'as
Mori®? and Zwanzig® method, which is used in the follow-
i_ng sections. We present the many—body CPA to the projfac— Gigjo(2)=
tion operator method in Sec. Ill. The Liouville operator is
approximated by an energy-dependent Liouville operator fO'Here z=w+14 with § being an infinitesimal positive num-

an effective Hamiltonian with a coherent potential. The CPAb r. The Liouville operatok is a superoperator acting on an

equation determines the coherent potential and is present% eratorA asLA=[H,A]  ([,]_ is the commutator between

566 A s Show il e sl consetent coaton 1 Gy The e it beween he opada
y &d g YandB is defined by A|B)=([A*,B].).

body CPA, the dynamical CPA, and the DMFT. After having A series of equations of motion for the retarded Green

established the CPA, we rederive in Sec. lll B the Self_'function is obtained by using the projection technique of

consistent equation in the Hubbard Ill alloy-analogy approxi-y, .5 Zwanzig?>*3The first-order equation for the Green
mation. Next we present in Sec. lll C an interpolation for- . " R
function G; ;j,(2) =(G)4j.(2) is given by

mula for the memory function by using the relevant part of
the operator space in the atomic limit and in the itinerant 1 _

limit. We also derive the self-energy of the modified pertur- [2-L-M(@)]G2)=1, ®
bation theory in the DMFT?

In Sec. IV, we develop the renormalized perturbation
theory(RPT) on the basis of the interpolation formula for the
memory function. The zeroth- and the first-order approxima- M, (2)= ( QLa‘_T
tions are examined in detail for half-filled bands in Secs. IV tole 7
A and IV B, respectively. In Sec. IV C, we are adopting the
decoupling approximation to the higher-order terms. We de
rive a closed form of the memory function and present a
simplified theory b_y using a cutqff function. By means of a pzz |ai‘rg)(ai‘ra|_ (8)
numerical calculation for a half-filled band, we demonstrate ic

that the theory describes the overall features of the excitationilh e operatoQ eliminates the operator subspace used in the
spectra from the weak- to the strong-Coulomb interactiondefinition of the Green functiofd)

limit. Section V is devotc_ad to a summary. Also remaining In the case of Hamiltoniar(1), the frequency matrix
problems are discussed in that section. Lisjor and the memory functio,.,;,(z) are given by

Lo
z—L o’

+

io . (4)

a

Lia’jo":(a?‘g“—a}f’ar): (6)

: )

Lo
z—oLQ 4w

whereQ=1—P, andP is a projection operator defined by

II. PROJECTION OPERATOR METHOD
Lil]'j()":(Ho)i(TjITI+U<ni*(T>5ij 500'1 (9)

We adopt in the present paper a tight-binding méxf®l
with an intraatomic Coulomb interactidg, (Ho)igjor =[(€0— 1) 6ij + 16507 , (10
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1
Moo (2)=U| Al :AJTU u. (12)

HereL=QLQ and AiTU=aiT05ni,,,, where én;, is defined
by n;,—(n;,). The Green functiort4) is then written as

Givjo (2)=[{z=Ho=2(2)} ivjor » (12
EitTjo"(Z):U<hi*17>5ij51)'(7"—|—Ivlia'ja"(z)- (13) G(i) F
HereX,;,(2) is the self-energy of the system. FIG. 1. Schematic picture showing the coherent potential ap-

When we neglect the memory function, we obtain theproximation. The left-hand side shows an impurity with a Coulomb
Green function in Hartree-Fock approximation. The effectgnteractionU embedded in an effective medium with a coherent
of electron correlations are contained in the memory functiorpotentialX. The right-hand side shows a uniform state of the effec-
Mizfjo"(z)- Within the Mori-Zwanzig method it is obtained tive medium_. The left and the right are described py the impurity
from a second-order equation. Defining the reduced memor?reen functionG" and the coherent Green functidh respec-
function ively.

1 It should be noted that the same Green functid®) is
—_AJ.TU, , (19 obtained from an energy-dependent Liouville operatz)
z-L for an effective Hamiltoniam’(2),

ai(rja"(z):Uizl\/lia'jo"(z): AiTa'

we can express the equation for the memory function in the
form H'(D)=Hot 2 a3, (Da,. (20

- _ i,j,o,0'
[z-L-M(2)]G(2)=x, (15) : . o .
This suggests to describe the Green function in the single-

fiaja/:(AiToEATgr)X}lr , (16) sﬁe a_ppro_xmatlon by~means of an energy-dependent effec-
o tive Liouville operatorl(z) such that
M. (2)=(OLA' [(z— -10LAT ), 1 ~ ~
Migjor(2)=(QLAL|(z=QLQ) 'QLA], x> (17) L (A=[H@.AL , 21

Xia’jo”:Xioéij 500’:<ni—0>(1_<ni—o’>)5ij 50’0’ . (18)

_ _ - -
HereQ=1-P and H(Z)—HOJF% 2,(2)aj, a4 (22

— FN 1At Here we have assumed that all the sites are equivalent so that
P_% |Al) Xio (Aigl- (19) the site-diagonal self-energy becomes independent on the
sites. We call the self-energy,(z) the coherent potential.
In deriving the above equations we have assumed that there The retarded Green function to the Liouville operator
is no noncollinear spin arrangement, i@/ ,a_,)=0.The T(z), which we shall call the coherent Green function, is
projection operatoQ in Eq. (17) eliminates the operator obtained from the Dyson equati¢h?) as
space{AiTU} used in the second-order equation. In the same

way, we can derive an equation of motion ok, (2). Fiojor =[{Z=H(2)} ijo 0o » (23
The higher-order equations become more and more difficult
in treatment. [H(D)]isjor=[{€0— u+2(2)}6ij +1ij16,5 . (24)
IIl. COHERENT POTENTIAL APPROXIMATION The coherent potential has to be determined from a self-
COMBINED WITH THE PROJECTION OPERATOR consistent condition. Using Shiba’s picttifef the coherent
METHOD potential approximatiorisee Fig. 1, we consider the Liou-
o o ville operatorL()(z) of an impurity system which is ob-
A. Many-body CPA within the projection method tained by replacing the coherent poteniig)(z) on the im-

In principle one can obtain the self-energy by solving apurity site by the on-site Coulomb interactidn;n;, . Its
series of the equations of motion presented in the last seddamiltonian is given by
tion. These equations however produce higher-order memory
functions and the evaluation of variollsmatrix elements
consisting of static averages is not trivial. A way to reduce
the difficulty is to adopt a single-site approximation to the
self-energy. We shall treat here the self-energy by using th&he impurity Green function to the Liouville operator is
coherent potential approximation. given by

HO(2)=R(z2)- X S,(2)a],a,+Un;n;,. (29
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1 treats the dynamics and the static averages independently.
]('(Zko(z) ( —aﬁo), (26)  Therefore the present theory is not exactly equivalent to the
‘| z-L0(2) many-body CPA formulated in terms of the temperature
where L0(z) refers to HO(z), e, LO@A Green function, since that theory treats bqth the d.ynamics
=[HD(2),A]_. and the thermal average on the same footing. But it should

The diagonal Green function is obtained from the DysonP€ €ssentially the same as the many-body CPA after a suit-
equation(12) [and Eqs(13) and(11)] by replacing the Liou- able smglt_a-sne approximation has been made for the static
ville operatorf by LO(2): averages in the sglf-engrg33). _ .

The second point which should be mentioned at this stage
(2)=[FD (2" 1= AW, ()] ™. (27) s that the energy-dependent Liouville operaltdé?(z) is in
o o general not Hermitian in the operator space because of the
HereAl(l,)I »(2) is the self-energy to the impurity Hamiltonian energy-dependent impurity Hamiltonié25). The latter does

c)

lolo

(25. F!. (z) is a cavity Green function defined by not necessarily commute with Hamiltonidd) which ap-
o pears in the static averages contained in the memory func-
FO (2=[{z— A2} i (28)  tion. This poses some restrictions on actual calculations of

_ the memory function.
[HO(2)]ok0=[H(2D) ]joko— 2 6(2) 8 Ski (29

i.e., the self-energy at sitehas been removedi(V(z) de- o _ _ o
notes the Hamiltonian with vanishing electron interactions Electron correlations in the single-site approximation are
on the impurity site in the effective mediuntcavity effeci.  described by the memory functiovi(V)(z) = UZG(')(z) The

The cavity Green functiof(}) () is expressed in terms reduced memory functio®((z) =G\, (2)] is obtained

lolo

of the coherent Green function according to the Dyson equagom the equation of motiori15) in which L has been re-

B. The Hubbard approximation

tion placed byL')(z2).
Fio(2) T =Fioio(D T 2,(2). (30
Substituting Eq(30) into Eq.(27), we obtain ; (26— ]aku(z) Mf'g)ka(z)]G(kgm(Z):Xja5j| )
6Y(@)=[F(d - AP@+3,2]1 L (D 37
Here and in the following we omit the site indices in the L), (z)= [LQ(Z)]JUKU+[ 3, (2)+U(1=(n;_ ;)16 6i s

Green functions and the self-energy for simplicity.
The diagonal coherent Green functiorF ,(2)
[=Fisis(2)] in Eq. (31) is given by ~ _
- [Lo(@]jokr=[e0= 1t oD+ 2 tic( Al |Blio) i »

p(e)de
FU(Z)=J et a-S.2—¢ (32) (39

Here p(¢€) is the density of state@©OS) per atom for the l(gka(z) E tJItmijlokma(Z)ng 7 (40)
noninteracting system specified Ry, . The self-energy
AV(2) [=AY. (2)] is expressed according to EG.3) as

j|(rkmu'(z) (Qlerrl[Z QL(I)(Z)Q] lQBkm(r) (41)

AP@)=U(ni- )+ M (2), (33
0 , AT Here[LQ(z)]jUkU is the frequency matrix for the effective
| ~
MO(2)=U2(AlI[z-LW(2)] *A], (34 HamiltonianH(z). The new operator§B],} are defined by
with LO(2)=0QL"(2)Q. t t
L . . . = + + .
The coherent potential in these equations is determined so Bl =2, ;- o+ 2, oAl 8- o) +a],5(a- ”aJ*”)(42)
that the impurity Green function in the effective medium is
identical with the coherent Green functi¢gsee Fig. 1 The self-energy of the Hubbard | approximafidis ob-
i i ing i LO ith that in the atomic
c(2)=F ’ 35 tained by replacing in Eq37) L (z) wit
o (2)=Fo(2) 39 limit.®* This corresponds to the neglect of the transfer inte-
or equivalently grals in the frequency matrigd88) and in the memory func-
: tion (40). We obtain thaM (), (z)=0 and
AQ@)=3 (2. @ N9 joka(?)
Equations(31) and (35) have the same form as obtained Joka(z) [e0—n+2,(2)~2,(2) 6
by analytic continuation of the temperature Green function in FUL— (N o)) 818 (43)

the many-body CPA® The latter is equivalent to the dynami-
cal CPA and the DMF However, the projection method Substituting these values into E@7), we obtain
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The above expression is regarded as an averaged Green func-
(44)  tion when the effective potentialy,— u+U andey— u are

randomly distributed with concentration&;_,) and 1
This is the self-energy in the Hubbard | approximation. Note—(n; ), respectively® The energy-dependent coherent po-
that it is independent of the coherent potenttag). This tential X (z) is determined from the CPA conditiai35).
means that the CPA conditid86) merely implies having the Equations(35) and (52) are well known as Hubbard’s
Hubbard | impurity self-energy on each site; the CPA equaself-consistent alloy-analogy approximatidiiubbard 111
tion does not improve the Hubbard | approximation. scattering correctiort* One of the problems of that approxi-

The Hubbard | approximation is exact in the atomic limit. mation is that the system is not a Fermi liquid in the weak-

But in general one must also take into account the effects o€oulomb interaction region because of the static random po-
electron hopping on the memory function. In this context, wetentials e;—u+U and e;—w. However, it was the first
note thatEQ(z) in Eq. (39) is written by means of an effec- theory which led to the metal-insulator transition in the half-
tive Hamiltonian matrix with a shift\y, and a narrowing filled band case.

U2<ni—o>(1_<ni—o>)
Z— et - UA—(M )’

AD@)=U(n;_,)+

factorr;;,, as follows:

[EQ(Z)]juka:[fo_M+Eg(Z)+Aoa]5jk+ Fikoljk s

(45)
Ao(,:EI i (ALIBl DX (46)
rij:(AjTa'|BIj¢r)Xlz(}’ (47)

where the relation
(Al,IBL ) = (AL IBL,) 8+ (AlIB] ) & <|¢k>( )
48

has been used.

Equation(45) is similar to the noninteracting part of the

frequency matrix in the first order equatipsee Eq.(24)].

For the half-filed band model with the nearest-neighbor,
transfer integral on the simple cubic lattice, we find that
=—3/8 in the limitU=0 andr; =0 in the atomic limit.

(M), -(2) and assume thaj,~r,,, we can

When we neglecM |/,
solve EQq.(37) explicitly, and obtain

<ni*a'>(l_<nifo'>)
FL(2) '3 ,(2)—U(1—(ni_))

GV(z)= (49

L p(e)de
FU(Z)_JZ_€o+ﬂ_2(r(2)_AOa_|r(r|€. 0

Here we assumed a symmetric band withe) =p(—€).
Therefore the self-energy is given by

U2<ni—o>(1_<ni—a>)

Fl(2) M43 ,(2)-U(1—(ni_,)
(51)

AD(2)=U(n;_ )+

When we neglect the shift,, and the band narrowing L

factor r, (i.e., Ag,~0 and |r,|~1), we haveF/(2)

=F,(2). Substituting Eq(51) into Eqg. (31), we obtain for

the impurity Green function

<ni7(r>
F, (2 1-U+3 (2

1_<ni*(r>

Fol2) 14+3,(2)
(52)

GP(2)=

C. Interpolation formula for the memory function

The equation of motion method presented in the last sec-
tion is an approach starting from the atomic state because the
operator spacdA/ } used in the first-order equation de-
scribes exactly the atomic limit while the second-order equa-
tion introduces the effects of electron hopping. Therefore it is
not simple to reproduce the Fermi-liquid state for weak-
Coulomb interactions. We take here and in the following an
alternative route which describes both the Fermi-liquid state
and the atomic state.

For that purpose, we start from the reduced memory func-

tion G\'(z) and divide the Liouville operatar()(z) into a
coherent part o(z) and an interaction patt{’(z), i.e.,

GO(2)=(Al lz-Lo(2-LP(2)] 'AL). (53

Here Lo(2)=QL(2)Q and L{"(2)=QL{"(2)Q. L(z) is
given by Eg.(21) and Lf')(z) acts on a given operatok
according to

L(@A=| =2 S, (2)n,+Ungn Al L (54)

o

Note that|A]-T(,) is an eigenstate of the Liouville operator

LP(2), ie.,

LO(2)Al)=[~S,(2)+U(1—(n,_ N 18A%).

This implies that the operator spa{oe;rg) is sufficient to
describe the exact atomic limit of the memory functidd),
and therefore the self-energ#4).

The eigenstates ci?o(z), on the other hand, are given by
lal,8al,_aw_,)), ie.,
o(2)ak, 8@y, a0 ,)
=[eo— p+3,(2)+ et 60— eurl|al, 8(al,  aw_,).
(56)

Hereal(, (ax,) is the creationannihilation operator for an
electron with momenturk and spinc, ande, are the eigen-

values of the kinetic-energy term.
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SinceA], is expanded in terms dfaj, 5(a, _ aw_,))}
as (Kli)= <'|k>*_\/— ek, (58)

Al= 2 al, 8@ aw  KIINK DK, (57) o ,
Kk’ K" the memory function fot y(z) is obtained as

J
(ko) ikl (@l o 8@ 8- o)l ko d(ag awr ) )(KIDK DK

KKKk k] K Z— et pu—2,(2) — &~ € + €

(Al [[z—Lo(2)] Al )=

(59

The Liouville operatorfo(z) becomes Hermitian in the The > memory funcuorGg'(),(z) contains the Liouville op-
weak Coulomb interaction Iimit becaudé(z) commutes eratorLO(z) descrlbmg the weak Coulomb scattering limit
{la,8(ax _,ai-,))} are orthogonal to each other: atomic state. It |nd|cates th&{)(z) basically describes the
excitations for weak interactions. The denominator in Eq.
(64) shows that the memory functio®!’(z) is given by a
renormalization of the memory function for the weak-
coupling case via the atomic interactions described by

_(')(z) Note that Eq(64) is not an approximation.

O.E,EI,EH:J._ng. 1_nr,O. Nyr— &

Xo( €€ €)= (17 (Mr)o) (1N oo} (Moo The operator space{akaé(ak,,gak",g)} for weak-
(Mool Mk — o) o(L— (N »)0). (61)  Coulomb interactions should be large enough to describe ac-

The subscript O stands for taking a thermal average in th§Urately the excitations between the strong- and weak-
Hartree-Fock approximation. oulomb interaction limits because it includes both the space

Inserting relation(60) into Eq. (59), we notice that in the {A,} in the atomic limit and the spac@®,,} appearing in
weak-Coulomb interaction limit the memory functighg) ~ the second-order equati¢see Eqs(39) and(41)] Therefore
reduces to the self-energy of the second-order perturbation€ may limit the space tofal,d(a),_ aw_,)}. The
theory. memory functionG{)(z) is then given by the matriG{’(z)

as

t T t
(akloa( ak:’L, gak'if (r) | Ao 5( ak' — Uak”* 0) )

:X(r(fk,fk/ ,Ek//) 5k1k5kik’5kzk” y (60)

3P(2) _ f dede’de’p(e)p(e)p(e) xole €' €")

U2 7— + _EUZ - - /+ " ~(i . . 12 "
corm (2)~ et e (62) GY(2)= > (i{ko)(ikp) (ki)
K.k’ K" kg kg K]

To describe both limit$44) and (62) epr|C|tIy, we sepa- =0 TN i
rateL{"(2) into two parts by using the identity + Q=1 as <[Go (Z)]kikiki”kk’k""<k|'><k [iXilk"), (67
TOA=PL)(AP+L(NO : — iy,

Li"(2)=PL}"(2)P+L}"(2)Q. (63 @)(Z):XO[Z_LO_XO 1f|(8(z)] 1 (68)
The first term is the Liouville operator acting on the atomic
subspacc{A »} while the second term acts on the space or-Here x; is the susceptibility matrleO is a dlagonal matrix
thogonal to{A }. Substituting Eq.63) into Eq. (53), we  whose diagonal elements give the eigenvaluek ) [s_ee
expandG{(z) with respect toP L{"(z)P. Using relation  Eq. (56)], andL{J(2) is an interaction matrix of{"(z)Q.

(55), we obtain the equation Explicit expressions for the matrix elements are given in
. Appendix A.
i Gx(2)
Gf,')(z)— : (64) , .
~LW(2)G0(2) D. Modified perturbation theory
(|) i) o Expression(64) for the memory function is quite general.
J(2)=(All[z- Lo -L(2Q1 *Al), (65  For example, one can derive from it the self-energy in the
modified perturbation theory of the dynamical mean-field
[0(2)= ~2,(2)+U(1=(ni-) 66) theory. In this case we approximateG{)(z) by

(Ni—e)(1=(Nni—,)) A,3?)(2)/U? thereby using expressiaf62) for the weak-
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Coulomb interaction limit. The self-energy,(z) in the de- xfro)(ek,ek, €
nominator ofESTz)(z) is approximated by the Hartree-Fock
one. We obtain then N3 S (k) KO(KL D
0 302 ky kg K]
AD)=u(n;_ )+ ——T—, 69
U( ) < I U> 1—502572)(2) (©9 X(all‘fg(ali*Gaki_")lalﬂ'é(al’—rrak"—tf))
(2) X (KiK', (75)
gt (70 ~
€,=€g— pntU(N;_,), (76)
The phenomenological paramet®y, is determined so that
the lowest moment of the exact memory function is repro- EU(Z)=EU(Z)—U<W o) (77)

duced. This yields
Equation(73) reproduces the self-energy to the second-order
(Ni—)(1—=(ni_,)) perturbation theory in the weak-Coulomb interaction limit

T o= (Ni_y)o) 7D and yields the exact result in the atomic limit. The moments
of the Green function are exact up to third order.
U(L—2(n;_,)) The approximate self-energy expressi@a) is one of a
B,=— . (72 Fermi liquid. In the following analysis, we assume a sym-
USni—o)o(1=(Ni-)o) metric half-filled band so that,=0. We omit the spin index
Here we have again adopted B), the Hartree-Fock value for simplicity and consider the nonmagnetic ground state.
fors, . Using the relationg(—€)=p(e) and XO(—¢,—€’,—€")

Equations(69), (71), and(72) are identical with the self-  _x(©) ¢ ¢’ &) we can verify the reIationK(i)(ZE(?))
energy in the modified perturbation thedMPT).** Actually _ ~ — — _ _
~ =—AY(Zz",-3(2)). (Herez=—-w+ié, zZ*=w—i8, and

the higher-order correctiorx ,=% ,(z)—U(n;_,), which ~ . .
was neglected before in the denominatorﬁdf)(z) and in the dependence .Of the self—eqergy Biiz) is exp!|C|tIy
—(,) shown for convemenc)aSubstltutlng the above relation into
the numerator ot} /(z), is taken into account by replacing h 0 10
p(e) in 2(2)(2) Wlth the DOSp((¢) for the cavity Hamil- e CPA equatlo @ E(Z)) E(Z) we obtainA™(z*,
tonian AN (z) =3 ; r[H(I)(Z)]jtrl(ra]uaIu’ so that the correct E(z))——E(z) Comparing it with the CPA equat|0n
result of the second order self-energy is obtained whem\(')(z 2*(2)) 2*(2) we arrive at the relatloni*(z)
U dn;, 6n;, is taken as the interaction. The effective chemical _ 2(2) This indicates that I%(O+) 0. The CPA equa-
potential . in the theory was determined so that the Frledel,[Ion forz=0"
sum rule or the Luttinger theorem is satisfied. Note that the
correct atomic limit is automatically contained B), given

is therefore given by

U2M (0" —ilm3(0*))

by Egs.(70) and (72). The MPT is known to be a useful A (0" = _ =
theory describing the overall features of the metal-insulator 1+4im2(0T)M@OF—ilm3(0"))
transition. It does not, however, allow for a systematic im-
provement of the theory because of its phenomenological =i|m§(0+). (79
character.

Here

IV. RENORMALIZED PERTURBATION THEORY

m@- | dede’de’p(e)p(<)p() X ee' &)

A. Zeroth approximation to the memory function
Z—e—¢€' +¢€

The simplest approximation to the memory functi@d) (79
is the neglect of the interactidr{’Q in G{)(z). In this case, _ S N
the reduced self-energy)(z) = A9 (z)— U(n,_,) is given ~Equat|on (78 shows that the Fermi-liquid condition
by ImX(0*)=0 is equivalent to M(0*)=0. We obtain
(|) ReM(0*)=0 because of the relatioM(z)=—M(2)*.
< (i) +(2) Therefore the condition reduces in the present case to
Ay (2)= : (73
1—7.'3(2)@33,(2) L
— ZImM(0%)
ar

S0 dede’de"p(e)p(e’)p(e”)Xf,O)(e,e’,6")
G- | .

Z2—€,— 2, (2)—€e—€' +¢€" e zfdede' p(€) p(e) plete') XO(e, e et e')=0.

Here (80
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One can expand the CPA equati&{‘)(z):i(z) with To obtain the explicit form of the memory function we
~ ~ have to calculate the static expectation values in

respect to3(z) becau;e the F_ermi-lliquid solutiOﬁ(Z) is X©)(e,e’,€"). We adopt here a simplified expression which
small near|z|=0. Solving the linearized CPA equation and i5q interpolates between the weak- and strong-Coulomb in-
expanding the solution at (z) with respect taz, we obtain  teraction limits:

nearz=0,
+
UzaReM(o+) (all(,&(akhak;_U)|a§U5(al,_Uak,,_g))
~ Jw
= 2 ~
E(Z) 2(9R€|\/I(0+) w+O(w ) (81) ~AU.XO.( €y, €K ,Ekn) 5klk5kik’5k’£k” . (88)
Jw

The quasiparticle weighZ (or the inverse effective mass Here Xo(ex.ew ) is the Hartree-Fock value of

) . : O(e e € gi i isfi iti
) — o (€€, .(61),
m/m*) defined by J/1— JReS(0")/dw] is therefore given X (€:€’.€") given by Eq.(61), which satisfies condition
(80). The renormalization factof, defined by Eq.(71) is

b
Y introduced so that the correct atomic limit is reproduced. A
m IReM (07) theory based on the correlated wave function will be pub-
Z=—=1+ UZT. (82 lished in a separate paper. Approximati8s) yields for
m

G{)(2) the expression
The critical Coulomb interactiob) ;,(m* =<0) for which the
effective mass diverges is therefore determined by the con-

dition —. dede’'de"p(e)p(€’)p(€”)x (€€, €"
683(2)=A(,f ~P( Jp()p(€)Xy( )
1 Z—€,~2,(z)—e—€ +¢€"
U= : (83 (89)
JReM(0™)
dw For a half-filled band on a hypercubic lattice in infinite

dimensionsg, =0, A,=1, andp(€)=1/\Jmexp(-€) in Eq.

Therefore, Eq(83) has to be solved self-consistently in gen- (89- Here the unit of energy has been chosen so that the
eral. second momenfdep(e)e“=1/2. We find analytically that

It should be noted that E¢78) also contains the solution Yc1(9ap)=4y3(1/4+1/m)/2=3.693 and numerically that
U(m* =0)=2.085. This means that approximati¢®9)
leads to a Fermi liquid fod<U,,, a non-Fermi liquid for
U.,<U<U., and an insulator with a gap fds.;<U.
The results are similar to those obtained by Edwards and
“ oo Hertz#4%>They improved the Hubbard Ill approximation so
M(2)=2 —, (84)  that the self-energy reproduces the result of second-order
=0z perturbation theory. Within the single-site approximation
. ) ) their theory yielded a Fermi liquid fo <2, a non-Fermi
we can verify that the CPA equatidii8) has indeed a solu- liquid for 2<U<242, and an insulator for @2<U in unit
tion 3(0"7)=—c. Nearz=0, one can solve the CPA equa- of half the bandwidth of a semielliptical noninteracting DOS.
More detailed calculations based on the Monte Cérémd
the numerical renormalization-grotfgNRG) method, how-
ever, do not show any indication of a non-Fermi-liquid re-

Note thatM(z) depends generally ob via X©(e,e’,€").

Im§(0+) = —oo for an insulator leading to a vanishing DOS
at the Fermi level. By applying the moment expansion

tion Kfj)(z) =§(z) by expanding it with respect toxiwhere
x=z—3,(z). For small|z|, we obtain the solution as fol-

lows: gime for intermediate Coulomb interaction strengths.
3 (21— U2-16c, 1 32c, g
D=7 7" u2— 16C22+ o 89 B. First-order approximation to the RPT
Thus, the critical Coulomb interactiot);(gap) below We consider here the first-order correction of(2)
which the insulator solution disappears is obtained from the= x; 'L{J(z) to the memory functiorG{)(z). We expand
condition Eq. (68) as

U=4/c,, (86) _ »
GY(2)=xo[Go(2) + Go(DLR(2)Go(2)].  (90)

Cz=J dede’'de"p(€)p(€’)p(€”)
Here Go(2)=[z—Lo(2)]*. Substituting Eq.(90) into Eq.
X (e+e — €)X (e, €, €"). (87) (67), we obtain
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0
68)(2):% Xg)(ekvek'1ek”)ﬁlgl_l—fa'(z_zo(z)iza(z)’ek76k’!Ek”)]' (91)
N k,k’ K" Z— EO._EO.(Z)_GK_ fk""fk"
~ ~ <i|k><i|k,><k”|i>(LI(B(Z))kk’k”aklkik’ia<kl|i><k:ll|i><i|kgll.>
A(T(Z_E(r(z)lza'(z)vek ' €/ 16k”): N3 E ~ ~ . (92)
Ky K K] z— eU—EU(Z)—ekl—eki-l— €k
|
We call the first-order approximation mentioned above the IReM (0" ,0) IM(07,0)
RPT-1, while the zeroth-order approximation will be denoted 1+U? ~ —Re ——
by RPT-0. Jo J3,
One can make a phenomenological analysis of the low- Z= IM(0",0) - (99
energy properties starting from the ground state as follows. 1-U%R _
Assume again a half-filled symmetric band of a nonmagnetic a2,

state. The reduced self-energy is given by ) ) o -
The effective masm* diverges forZ=0 resulting in a criti-

U2M(z—§(z),i(z)) cal Coulomb interactiot .,(m* =), which is obtained by

AD(z)= : S . (93)  solving the following equation.
1-L(2M(z-3(2),3(2))
1
Here U= . (99
. \/ JReM(0*,0)  aM(0*,0)
M(z,%(2)) - +tRe——
Jw 93

dede'de"p(e)p(e')p(e")X(Z,i(Z),6,6’,e”)
_f ' The insulator solution is obtained by expanding the CPA

—e—€'+€" . : i
fremete equation with respect to X/ For small|z|, we find the form

(94)
~ U2-16(c,+dP+d{)) 1
X(z,3(2),€,€,e)=XO(e, e, e[1+A(z,3(2),¢,€ ,€")]. 2(2)= 4 z
(99
- - 32(c,+d?+3d{M/2)
Note thatM(z,2(z)) depends now o (z) via the matrix - z+---. (100

=) U2-16(c,+dP+d)
Lig(2). - _ '
Assuming the relationsp(—e€)=p(e) and X(—z,  Therefore the critical valu&.,(gap) at which the insulator

—3(2),—e,— € ,— ) =X(2,3(2), € € €"), we can now de- solution disappears is obtained from the condition

rive the Fermi-liquid condition by taking the same steps as
before, i.e., q d ? P U=4c,+dP+dP. (10D

e Herec, is given by Eq.(87), while d$?) and d$" are new
ImM(0™,0)=0. (%6) terms compared with Eq86) which are given by

By expanding the self-energik)(z) with respect to the

small function3.(z) and using the above condition we can d(22)=j dede’de’p(€)p(e)p(e)XO (e, €', €")
obtain for the CPA equation a linearized solution. By addi-

~ ’ ” 2 ro_n 2 ro_n
tionally expandings (z) for small values of, we obtain near X[(e+e —eM\Pe e e)+ AP e,€ €],
the Fermi energy (102
,IREeM(0*,0)
~ U e w d(31)=J dede’de"p(€)p(e')p(e")XO (e, e’ €")
2(2)= IReM (07,0 M (0",0 O,
1+U2 ( il )—Re ( ) ) X[(E+6’_6")2)\81)(676,,6”)"‘(6"‘E'

Jw &i
7 (97) —e”))\(ll)(e,e’,e")+)\(21)(6,6’,6")]. (103

which is of Fermi-liquid type. Thus the quasiparticle weight A{ and\(?) are the moments of the functions(z,€,€’,€")
is given by and\,(z,€,€',€"), which are defined by
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A(Zvi(z)1€16, 16”): _i(z))\l(zveael16,’)+)\2(Z1616’16”)1
(104
Z AB(e, €€ |
)\1(2,6,6,,6”):;0 nZT’ (105 N i
Z AP(e, €€
No(z,€,€",€")= 2 RilL L (106) i
= o+l

When the Hartree-Fock matrix elemegse Appendix A
are adopted, we find thatReM (0™ ,0)/dw=dReS(?)(0)/ v
do=-0.230091, JReM(07,0)/9%=-0.157239, c,
=3(1/4+ 1m)2, d¥)=0, andd{=1/4. Therefore we ob-
tain U, =43/27+5/8=4.200,U.,=3.705, and

FIG. 2. Quasiparticle weight vs Coulomb interaction strength
for the half-filled band case on a hypercubic lattice in infinite di-
mensions in various approximations. Dotted curve—zeroth approxi-
mation in the renormalized perturbation theofPT-0, solid
curve—the first-order approximatiofRPT-1) and decoupling ap-

1— i 2 proximation in the RPT, thin solid curve—numerical renormaliza-
Ueo tion group theory(NRG) (Ref. 47, thin dotted curve—modified
I=—T0 2 (1070 perturbation theoryMPT) (Ref. 48.
WY |
Uz GY(2) = x0Go+ XoGol | (E'O‘F)(o(z'ol—(')G G0+ e

(108
HereU,=2.522.

Figure 2 shows the dependencezobn U in various ap- . . .
proximations. It is remarkable that the first-order correctionwe decpuple the hlghe_r-order terms by inserting the follow-
ing projector betweel {{Gy's:

of L{3(2) significantly improves the result so that it is close
to the one obtained by the NRG thoughU ,(=3.705) in
the RPT-1 is somewhat smaller than that in the NRG (P)), i/ ou o= (Kali YK KD KK YK|i).
(=4.10. Note that these findings were obtained by using t (109
Hartree-Fock matrix elements. The good agreement is pre-

sumably due to the fact that in a Fermi-liquid electrons neaifhe approximate memory functic®y)(2) is then obtained
the Fermi surface are only weakly scattered by the Coulomias

interactions.

XETO)(EkaEk’ )

kk,,k” Z_EU_EJ(Z)_Ek_ 6k1+6ku
C. Decoupling approximation to the higher-order terms
In the last section we showed that the first-order correc-
tion describes well the quasiparticle excitations near the Ao(2-3,(2).3.,(2). & i)
Fermi level. We consider here an approximate treatment of 1- (L,QGO)II
the higher-order terms. For that purpose we expand &R).

with respect to the interacti _(')(z) (1109

(ilky)(ilky)(kq |'> (3 (2) k! k”akk’k”rr<k||><k INULS)

k' K"k k] Ky s~ 25(2)— € €+ €

(111

Here X ( ey, e, exr) andA (z— 3 ,(2),3,(2), €k, €' . €r) are given by Eqs(75) and (92), respectively.
It should be noted that the reduced self-energy has the same form é3Fgith the memory functioM (z,% .(z)) given
by Eq.(94), provided that the functioX (2,2 ,(2), €y, € ,€x) is defined by
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Xo’(z1io-(z) €k €k’ vek")

Ag(23 (2), € € )
1-R,(23,(2) |
(112

1+

= XETO)( Ek , Ek/ ,Eku)

HereR,(z,3,(2)) is defined by [} Go);; with z— 3 ,(2) in
the denominator being replaced hyThis results in

R,(z.3,(2))

= J dede’de”p(e)p(e’)p(s”)AU(Z,iU(Z),e, e €.

(113

Therefore the critical behavior of the low-energy excitations
of a half-filled band are the same as those in first-order per-

turbation theory(for details see Appendix)Bi.e., the Fermi-
liquid condition for the half-filled band is given by E(R6),

the quasiparticle weight is expressed by E@g), and the
critical Coulomb interactionU.,(m* =«) is obtained by

solving Eq.(99). Furthermore, we can prove that the insula-
tor solution of the self-energy near the Fermi level is ex-

pressed by Eq.100 because there is no effect (z,i(z))

PHYSICAL REVIEW B9, 045101 (2004

one. In fact, in the atomic limit obtain

A (2,2 ,(2), €, € €0)=0, irrespective of the values of
{Ek,Ek/ ,Ek//}, because

we

> (EfB)kk'k"aklkikga<k1|i><k1|i><i| 1=0, (114
k. kg K]
while the Hartree-Fock value does not vanish in that case,
|e, AETHF)(Z,EO.(Z),Ek,Ek/ ,Ek//)io.

A conventional way to remove the inconsistency is to in-
troduce a cutoff parametey, which vanishes in the atomic
region, when we adops""). We have then

GV(2)=[F(2) *-R02)+3(2)]% (119

UM (z-3(2),3(2),Q)
1-LP(2M@E-3(2),5(2),0)

AW (z)= . (119

dede’de’p(e)p(e’)p(e”) x(€,€',€")

Z—e—€'+¢€

M(z,i<z>.q>:f

N qA(HF)(Z,i(Z),e,e’ ,€")

X1 =
1-9R(z,%(2))

, (117

on the low-energy excitations. Therefore we have the Same y (HF)(z i(z) €€ €)= —i(z)[f:(z— €'+ +E(z—e

equation(101) and the same critical Coulomb interaction

U..(gap) as before.
For the Hartree-Fock matrix elemerisee Appendix A
we obtain the same critical Coulomb interactiddg, (gap)

=4.200 andJ ;,(m* =) =3.705 as before. The quasiparti-
cle weight vsU curve is identical with that of the first-order

approximation, i.e., the one described by EP7) (see Fig.
2).
When we use Hartree-Fock matrix elements fgrand

Efg, there is a discrepancy in the atomic region between the

Hartree-Fock formAa(z,ig(z),ek,ek, ,€) and the exact

+€e')+ IE(—Z+ ete)]
+UK(z,€',€")
~LW(2)u~23@)(2). (118

Here R(z,i(z)) is given by Eqs(113 and(118). The func-
tions F(z) andK(z,€’,€") are defined by

K(Z,e',e”)Zf

ﬁ(z)=f pie_)ie, (119
|
dwdw”p(m)p(m”)[f(?-l—w)—f(ﬁe'-l-w")]if dodo’ p(w)p(e)[1-f(e+to')—f(e+w)]
Z—w—€ + " I Z—-w—ow' +€ '
(120

As usualf(w) is the Fermi distribution function defined by should be compared withU.;(gap)=3.25 and U (m*
f(w)=1[exp(Bw)+1] and B denotes the inverse tempera- =«<)=4.10 in the NRG'’ respectively. The metal-insulator

ture.

We shall use the limiting valueg=1 in the Fermi-liquid
region andg=0 in the atomic regiofiU>U (m* ==)] at
the ground state. The CPA equati¢8b) and the impurity

Green function(115) determine the coherent potentia(z)
self-consistently in the presence of the cutoff.

The self-energy with the cutoff leads to the critical Cou-
lomb interactions U, (gap)=4+v3(1/4+ 1/7)=3.693 and

phase transition occurs &t.=U (m* =«), below which
the quasiparticle weight is given by EqQ.07) (see Fig. 2 In
the present theory, the transition is of first order, though re-
cent numerical calculatioASsuggest a second-order transi-
tion.

The single-particle excitation spectra calculated from the
self-energy(116) are shown in Fig. 3. With increasing values
of U, the width of the quasiparticle peak decreases and the

Ue(m*=0)=3.705 for the hypercubic lattice, which upper and lower Hubbard bands develop. In the present

045101-11



Y. KAKEHASHI AND P. FULDE PHYSICAL REVIEW B 69, 045101 (2004

07 T : 2 . T V. SUMMARY AND DISCUSSION

We have presented a theory for the single-particle excita-
tion spectrum in solids which combines the projection opera-
tor method with the many-body CPA. The theory starts from
the energy-dependent Liouville operator describing the dy-
namics of local excitations in a coherent potentta)(z).

The latter is determined so that the retarded Green function
of an impurity with a Coulomb interaction embedded in the
medium, ,(z) is consistent with the coherent Green func-
tion of the medium.

We have shown that the present theory is essentially
equivalent to single-site theories based on the temperature
Green function, which are known, i.e., the many-body CPA,
the dynamical CPA, and the DMFT. The present approach
has the merit that the spectrum is directly obtained from the

FIG. 3. Single-particle excitation spectra for various COUlombimaginary part of the Green function without using any nu-
interactionsU. The half-filled band model on the hypercubic lattice merical analytic continuation or artificial line broadening.
in infinite dimensions is considered. The energy unit is chosen sgoth are often required in the numerical approaches based on
that the second moment of the noninteracting density of states b?he temperature Green function. We rederived the Hubbard
comes 1/2. Il approximation within the present formalism from the

second-order equation of motion. We presented an interpola-
theory a well-defined pseudogap region does not exist beforigon formula for the memory function between the weak- and
U reachesU,(m* =«) because the Hubbard subbands dostrong-coupling limits. On the basis of this formula, we de-
not well develop. This is due to the use of the Hartree-FocKived the self-energy of the modified perturbation theory in
matrix elements of, and[,(g which neglect effects of elec- the DMFT without making phenomenological assumptions

tron correlations on the static averages. concerning the s.elf-energy.
As shown in Fig. 4, the momentum distribution has a Based on an interpolation formula for the memory func-

jump at the Fermi energy indicating a Fermi-liquid state Thetior_l we have developed a renormalized perturbation theory
’ . S ) ' which analytically interpolates between the weak- and
jump mo_notomcally decreaies with increasing veﬂueyof strong-Coulomb interaction limits. When the Coulomb inter-
and vanishes at)=Uc(m* =c). Above Ue(M* =)  aeiions are weak, an expansion of the memory function
there is no discontinuity, and the curves flatten with furtherg

) . R . 1) (7) in terms of the interaction Liouvilliah{(z)Q leads
increase ofJ. This behavior is similar to the one obtained by toog( g)ood description of the quasiparticlesl rge?a(rg the Fermi

8 . .
the M'.D-ﬁ arfrczd differs to the one of the Gutzwiller level even when we limit ourselves to the first-order term
approximatiort. and use Hartree-Fock matrix elements in the calculations.
Higher-order corrections can be treated by a decoupling ap-
proximation. When strong interactions are considered the use
of Hartree-Fock matrix elements in static averages must be
corrected by the introduction of a cutoff parameter. With its
help, we can describe the overall features of the single-
particle excitation spectra from the weak- to the strong- Cou-
lomb interaction limit. The theory yields the reasonable criti-
cal Coulomb interactiondJ.;(gap)=3.694 andU_,(m*
=) =3.705. Moreover, an analytic expression for the qua-
siparticle weight provides us with a simple and quantitative
description of the effective mass.

We are convinced that the present theory can be applied to
many problems because of its simplicity, in particular, to
more complex systems which are not easily accessible by
means of other numerical techniques such as the Monte

DOS (states/atom spin)

Energy

<nk>

0 . ‘ ' ' : Carlo and the NRG methods. Furthermore, the theory is
-2 1.5 -1 0.5 [} 0.5 1 1.5 2 . . . . .

compatible with the first-principles cumulant wave operator

gk method which has been applied for ground-state electronic-

FIG. 4. Momentum distributions as a function of the eneegy ~ Structure calculation® Thus it is possible to construct a
for various Coulomb interaction strengtbis=1.0, 2.0, 3.0, 4.0, 5.0, first-principles theory of excitations by combining the latter
6.0. The curve for the noninteracting electrons is shown by the thiwith the present theory. These advantages are promising as
line. A half-filled band model on the hypercubic lattice in infinite regards a further development of the theory of excitations
dimensions is considered. towards quantitative calculations.
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The basic assumption of the present theory is the single-(lz(i))k ol
site approximation to the self-energy, i.e., the momentum U Tk okkiie
independence of the self-energy. One of the merits of the
projection operator method is that there is a technique avail-
able, i.e., the incremental meti8do overcome that limita-
tion. It allows us to include systematically pair-site, triple-
site correlations, and higher-order cluster correlations,

+ .
- (allgé(aki_oakflr_g)|aiT05ni 8@, e )ik

T t T 4t ;
+ (aklo'(s(akifgakg—(r) | heey —(r5nia'ak"—(r)<l | kl>

. . . . . T "y
starting from the single-site approximation. The present —(allgf?(aki,gak;fa)|alaal_,,aifo5nm)<k li).
method is in competition with the dynamical cluster
approximatiorf® The latter includes short-ranged dynamical (A9)

correlations in addition to the local dynamics of the DMFT. ~ ~ _
The incremental method combined with the CPA and its apﬂ(‘ia)re €,= €0~ pt U(ni—,) and %,(2) =2 (2) —U(n;—).
plication to various problems are left for future investiga-L|,(2) is defined by Eq(66).

tions. In Hartree-Fock approximation, the matrix elements sim-
plify to
APPENDIX A: MATRIX ELEMENTS FOR THE
MEMORY EUNCTION (XO)klkikZUkk’k”o':XU( €k, €/ yfk") é\kklgk’kiékki!
(A10)
We present here the expressions of various matrix ele-
ments which appear in the memory functi@y) and (68): Xol €k r€kr €)= (1= (N ) o) (1= (N Y o)(Nir— oo
GY(2)=xolz—Lo— x5 'LR(2)1 7, (A1) +{(Nke) o Nk — o L= (Nr— 5 )0)
(A11)

(X0)ky kK ke’ ko

~1770)
N ; (Xo "Lig)k .k K okk/ k"o
:(allaé(akiwak;_oﬂalgé(ak,_Uak,,_g)), (A2) 1Kik]

N :_EU(Z)U|k><kl|i>5kik’5k’l’k”_2—a(z)<i|kl>
(Lo Kl okk' ko -
X (ki) Sk + 2 - o (2) (K1) K1) S ke

:[20+20(Z)+6k+ Gk/_Ekr/] 5k1k5kik'5kg_k” f (A3) ) ) ) Y .
+U(i[k)(ka|i)(i[KT)(k ||>(<nka>0_<nk”—a>0)5kik’
LM ' : : s
(Hlkgomcies FUC ) (k)RR (L= (e o
: . + _ _
= (EI(I))klkikZu’kk’ k"a'_El(g(z)(allgls(aki,o-akz—a') |A|Tg-) - <nk0.>o) 5kgk”—fl(lg)-(z)Xo'( €y, €y’ vek”)<kl| |>

X (Al lak,8ag - aw-o)), (Ad4) X (ki) (k)K" i) (A12)
0 The above expressions were used to calculate the critical
(L )klkikivkk’k”(r Coulomb interactions in Sec. IV and to obtain the self-energy

(116).

=-2,(2) (Xg_l))klkik’l’okk’ Ko™ 2 — U(Z)(X(Zl))klkik’l'akk’k”(r
_ APPENDIX B: ANALYTIC PROPERTY OF THE
3 @0 gios UL icore. SELF-ENERGY FOR LOW-ENERGY EXCITATIONS

(A5) We analyze in this Appendix the reduced self-energy at
the ground state presented in Sec. IV C. For the half-filled

(X(ll))klkik’l’akk’k”a band it has the following form:

UM (z-3(2),3(2))
1-LP(2M(z-3(2),3(2))

At t toaat -
= (aklg5(aki_Uak/l’—o)|aig5(akr,gak'ug)x' [k, (A6) AW (z)=

, (B1)
i t
(X(zl))klkik{(rkk' Ko™ (all(ﬁ( Ay - o8 - Slal,8a] jawm_,)

x(ilk'), (A7) Mz2(2))

0 . + ‘ + B dede'de’p(e)p(€')p(€")X(2,2(2),€,€’,€")
(X3 )klkik'l’akk'k"a:(aklag(aki_gak’ifo)|ak05(akr_gaifo)) - 7 e—e' + €

X(K"|i, (A8) (B2)
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Here fl“)(z)= —45(2) [see Eq.(66)], and X(z,i(z),s, [Im aM(z,O)/ai] is an even(odd function. This is verified

€',€") is given by Eq.(112). by wusing the symmetry properties ofp(e) and
We assume in the following a symmetric band implying X(z i(z) €€ e").
that p(—€)=p(e) and X(-z,—2(2),—€,—€',—€") Substituting Eqs(B7)—(B9) into Eq. (B6), we obtain for

=X(2,3(2),e,€',€"). By using the symmetry relations, we e Fermi-liquid self-energy near=0

verify the relationA()(z,3(2))=—A0(z*,~3(2)) for z

=—w+i 8. Therefore the CPA equatid@6) for z is written 2(2)=(1-Z"Hw+0(w?), (B10)
as
_ ~ u\2
A0z, —3(2))=-3(2). (B3) 1—(—)
Z= —ZU‘:Z (B12)
This demonstrates that3(z)*=—3(z). Therefore 1+ U '
ReX (0")=0. The CPA equation a&=0" is then expressed U,
as
Here the quasiparticle weight has the same form as in Eq.
o UZM(O+—iIm§(O+) ilmi(0+)) (98) which applied to the first-order approximation. The
AD0")= - = = critical valuesU, andU, are defined by
1+4ilmS (07 )M (O —ilm3(0*),ilm3S(0))
=ilm=(0"). (B4) UZ,= ! (B12)

- JReM(07,00  dM(0",0)
Thus the condition for a Fermi liquid, i.e., B{0")=0 is - 9o +Re——=
given by M(0*,00=0. Here R#(0",00=0 because )

M (ZO): —M(z,0)* is verified by using the symmetry prop-

erties ofp(€) andX(z,%(2),€,€’,€"). Therefore, the Fermi- 5 1
liquid condition requires Uz=- M0V .0) (B13)
R — L
ImM(0*,0)=0. (B5) a3

In the first-order approximation, this is the same as(86).

With the above condition, we can expand the self-energyNote that the right-hand sides depend alsdJotJ ., is iden-
tical with the right-hand side of E¢99) when the first-order
approximation is used.

Equation (B4) describes also an insulator solution

A0(2) with respect to the coherent potent®(z). Solving
the linearized CPA equation, we obtain

i U2M(z,0) Im§(0+)= —o. Note thatM(z,i) has the following form
(2)= MZ0)  MzO) [see Eq(112)].
1+ U?| 4M(z,0%+ -
7z g3 -
~ - M M
-~ (B6) M(2,3)=Mq(2) + >(DMy(2)+ Ma(2), (B14)
Note that>(0")=0 becaus# (0*,0)=0. For smallz|, we 1+2(2)Ry(2) —Ry(2)

can expand the functions in E(B6) as
Here My(2),M1(2),M,(2), and Ry(2),R,(z) are functions

(B7)  which do not contain the self-ener@y(z). For large values
of |z|, we can expand these functions a¥l(z)
=37 _oCon /2", Ml(z)22:=od(2}1)+l/22n+21 M2(2)
=37 o d212" 1 R(2)=20_orD1z2"t, and Ry(2)

IReM (0% ,0)
—— o+

o -

M(z,0)=

dM(z,00 9ReM(0",0) L F#ImM(0",0)
= |

w+ - ,
9z Jw dw? =37 ,r$2). 117272 thereby using the symmetry relations.
(B8)  From the moment analysis, we can show tbgt 1/4, d{V
N . =0, d®=0, andr{"’=0 exactly. Substituting these coeffi-
IM(z,0) :R,ﬁM(O 0) +im’ M(0™,0) o cients into Eq.(B14), we obtain the moment expansion of
DY % dwd2, M(z,2) as follows.
(B9)
Here we used the fact that Riéz,0) [ImM(z,0)] is an co  Cpt+dP) d§)

. . M(z3)= —+ S@)=—+.... (B15
odd (even function, and also that RedM(z,0)/6% z 72 z
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COHERENT POTENTIAL APPROXIMATION AND . . .

Using the above expansion for= z—i(z) in the CPA

equationA )(z) =3 (z), we obtain a self-consistent equation

for large values ofx| in the form

cp+di?+d§H
ZX+ UZCO_ZZ_ 22—3
Co
z(2¢,+2d$?) +3dY)
+ +--

CoX

-=0.

(B16)

Solving the quadratic equation far and expanding the so-
lution with respect ta, we obtain an insulator solution near
z=0 as

PHYSICAL REVIEW B9, 045101 (2004

U2-u?1 2u2+16d{Y

S(2)=—5— Ve z+---. (B17)
Here
U2=16(c,+d$?+d§M). (B19)

EquationgB17) and(B18) are identical with Eqs(100) and
(101) within the first-order approximation. Within the decou-
pling approximation the formation of a gap is determined by
the first-order expansion becauslq does not contain any
moments as regard®;(z) andR,(z).
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