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We have studied the magnetic and transport properties of an ultralow-resistivity two-dimensional electron
system in a Si/SiGe quantum well. The spin polarization increases linearly with the in-plane magnetic field and
the enhancement of the spin susceptibility is consistent with that in Si-MOS structures. Temperature depen-
dence of resistivity remains metallic even in strong magnetic fields where the spin degree of freedom is frozen
out. We also found a magnetoresistance anisotropy with respect to an angle between the current and the
in-plane magnetic field.
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Strongly correlated two-dimensioné2D) systems have netoresistance saturates, depends on the peak mobility of Si-
attracted a great deal of attention in the last decade. MetalliMOS samples’
temperature dependence of resistivigyT) has been ob- In this paper, we report magnetotransport measurements
served in a number of 2D systems where(the ratio of  on a silicon 2D electron system with a mobility two orders
Coulomb interaction energy to Fermi enexgy large> Al higher than that of high-mobility Si-MOS samples. The in-
though various theories have been proposed to explain th&lane magnetoresistance shows a kink corresponding to the
metallic behavior, its origin is still a subject of great debate.gnset of the spin polarization and an anisotropy with respect
Suppression of the metallic behavior by a strong magneti¢y an angle between the current and the magnetic field. We
field applied parallel to the_ 2D plane has_ been re_ported fOfptain a linear relationship betweéhand B, for B =B,
ZD. electron system33 in_silicon metal-omde—semlconducto%md r,-dependence ofr consistent with the results on Si-
(S-MOS) structure$® and 2D hole systems in GaAs/ \qq samples. Metallic temperature dependence of resistiv-

_6 . . _ .
AlGaAs heterostructureés:® Since the in-plane magnetic ity remains even in strong in-plane magnetic fields abBye

field By does not couple to the 2D motion of cariers, thein contrast to other systems where it is suppressed before the
B|-induced metal-insulator transitidMIT) is related to the Y PP

. full spin polarization.
spin of electrongor holes. e .
pThe spin polirizationsin 2D Fermi liquid is given by We use a Si/SiGe double heterostructure sample with a
=MBQUQFLmFLBH/27Tﬁ2Ns- Here, ug is the Bohr magneton, 20-nm-thick strained Si channel sandwiched between relaxed

g, is the valley degeneracy, amd, is the carrier concentra- >0.65%.2 layers:®1° The electrons are provided by a Sb-
tion. The effectiveg-factor gg, and the effective massig, S-doped Ia}yer 20 nm above the channgl. The 2D electron
are expected to be enhanced because of the interaction effé&@ncentratiorNs can be controlled by varying bias voltage of
and larger than the band valuesggfandm, . The enhance- @ p-type Si(001) substrate 2.Jum below the channel at 20
ment factor a=gg Mg /gpMm, determined from K and determined from the Hall coefficient at low tempera-
Shubnikov-de Haa&SdH) oscillations was found to increase tures. The 2D electron system has a high mobility wof
with r¢ in 2D electron systems in Si-MOS structufedand =66 nf/V's at Ng=2.2x10"° m™? (at zero substrate bias

a GaAs/AlGaAs heterostructuté The enhancement of the voltage and T=0.36 K. Standard four-probe resistivity
spin susceptibility leads to the reduction of the critical mag-measurements were performed for a 8@D m? Hall bar
netic field B, for the full spin polarization P—1). Satura- sample mounted on a rotatory stage in a pumpidd refrig-

tion of positive in-plane magnetoresistantar sharp de- erator together with a GaAs Hall generator and resistance
crease indp/dBy)) was associated with the onset of the full thermometers.

spin polarization at the reduced critical magnetic frefd?3 In Fig. 1, we show the temperature dependence of resis-
Recently, Zhuet al** observed a nonlineaB-dependence tivity in the Si/SiGe sample and a Si-MOS sample. The latter
of P in a GaAs 2D electron system and explained the dishas a peak mobility Ofupeq=2.4 N¥/V's and exhibits an
crepancy betweer determined fronB, and from SdH os- apparent MIT. The Fermi temperature is given bye
cillations at low magnetic fields. It is not clear yet, however, = 27%?Ns/gs9,KksMg. , Where we have the spin degeneracy
whether this nonlinearity arises from intrinsic properties ofgs=2 atB=0 andg,=2 for the (001 silicon 2D electron

2D systems or material-dependent properties, such as tlystems. The effective massg enhanced from the band
spin—orbit interactior? In silicon 2D electron systems, the mass ofm,=0.19m, (Ref. 20 is obtained from Ref. 9. In the
Bychkov-Rashba spin—orbit paraméfel® is three orders of Si/SiGe sample, the contribution of phonon scattering to
magnitude smaller than in 2D systems based on IlI-V semi{Ref. 21 is not negligible at high temperatures, but it is not
conductors and the bangiactor g, is 2.00%° In Si-MOS  important in the low temperature region 6f0.5T where
structures, however, it is possible that disorder cruciallythe strong metallic temperature dependence is observed. Al-
changes the spin state of 2D electrons. Pudaioal. dem-  though the resistivity drop at low temperatures in the Si/SiGe
onstrated that the in-plane magnetic field, at which the magsample is rather weaker than that in the Si-MOS sample ob-
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FIG. 1. Temperature dependence of resistivityBat0. The %5 ' 1 '
closed symbols are for the Si/SiGe sample and the open symbols for Biot/ B,
a Si-MOS sample used in Ref. 7. The dotted lines mM&rk0.5T ¢ . o
or T=Tg. The contribution of phonon-scattering toin the Si/ FIG. 3. (@ Shubnikov-de Haas oscillations @t=0.36 K and
SiGe sample is calculated based on Ref. 21 and subtracted from thé=1.00< 10" m~2 for different By,. (b) The spin polarization
experimental datédashed lines obtained fromB, at thep,, minima.

served in the vicinity of the MIT, the overall behavior of the the p vs B curve indicated by arrows. As will be discussed
T-dependence curvéer T/ Te-dependencesire similar. The  later, it corresponds to the onset of the full spin polarization
common feature of- dependence qﬁ Suggests that the ori- of the 2D electrons. This kink is smeared out at hlgh tem-
gin of the metallic behavior is the same in these two types oPeratures. The magnetoresistance depends on the current ori-
silicon 2D electron systems having quite different structuregntation with respect to the in-plane magnetic field and it is
and mobilities. larger for j||B than forjL B. A similar anisotropy was also
Figure 2 shows the in-plane magnetoresistance in the sfpund in a Si-MOS sampté although it was smaller than

SiGe sample. We observe an abrupt change in the slope ##at in the Si/SiGe sample. Besides the contribution of the
spin polarization that makes the kink, we should take ac-

103 — count of the contribution of the orbital effect to the in-plane
- ] magnetoresistance owing to the finite thickness of the 2D
S 1 systems. The orbital effect is expected to be stronger in the
oo - - ‘#R%‘mﬂ“zijai I wide quantum well €20 nm) in the Si/SiGe sample than in
I 1 the narrow channel<{10 nm) in Si-MOS structures. We
r o 1 consider that the anisotropy arises from the orbital effect. In
Ve * o ©° . . .
™ Yoo o® ] the classical view, on the other hand, a magnetic field does
=} s m,,p°°°° not affect the current flowing parallel to it and we simply
Q 0 ° wﬂﬁ*ﬁjﬁﬂvﬂ expect smaller magnetoresistance jfB. The opposite an-
I W ° ° Treteeess s ] isotropy observed in silicon 2D systems is an open question.
0 ° .Vo The spin polarizatiorP is determined from SdH oscilla-
" .e‘ jLB ,|| B tions as a function of the total strengiy,, of the magnetic
Jg2teseees T 4103 4100 field >"1223 By rotating the sample in a constant magnetic
Fv v e1o2 o field, we introduce the perpendicular componBntand ob-
T= 036 K -- 100 (36K) serve an oscillation of the diagonal resistivjiy, as shown
' 10 in Fig. 3(@). Thep,, minima indicated by arrows shift toward

B”( ) higherB, side asB, increases. This feature is associated
with the concentratioiN, of spin-up electrons. The observed
FIG. 2. Resistivity at 0.36 Kexcept the dashed line at 3.6 Ks  Pxx Minima correspond t8, =N;h/ig,e with i=2 or 3. In
a function of the in-plane magnetic field for different electron con- Fig. 3(b), we show the spin p0|61”261'“dﬁ 2N;/Ns—lasa
centrationsNy(10'®> m~2). The closed symbols are for the current function of By,,. No systematic differences are found be-
orientation ofj LB and the open symbols fgfiB. The arrows in- tween the data for=2 andi=3. We believe thaB, used
dicate the critical magnetic field for the full spin polarization. here is small enough anB is determined in the limit of
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s =9 T for Ny=1.00 and 1.0810" m 2, and B =11 T for N
=1.34 and 1.6% 10'® m~2. The spin polarizatio® is indicated for
eachNg. The contribution of phonon-scattering is calculated based
on Ref. 21 and subtracted from the experimental dat@shed
lines).

FIG. 4. rg dependence ofv=gg mg /g,m,. The closed and
open circles are determined frofd, in the magnetoresistance
shown in Fig. 2 usingd.=27%°Ns/gg,9r M . The solid line
shows the experimental data on Si-MOS structures with7.7.
(Refs. 7 and ® Ny is also indicated for the silicon quantum well
(k=11.5) and for Si-MOS structures & 7.7). The dashed line is
after the correction ok (see texk

structure$® and p-type GaAs/AlGaAs heterostructufe§
where the metallic behavior disappears before the full spin
polarization even for resistivity much lower than the critical
resistivity (~h/e?) at the MIT in the absence of a magnetic
B, =0 (Bw=By). Itis confirmed that the increasefhsatu-  field. In Fig. 6, we propose a schematic phase diagram for
rates atB, determined from the magnetoresistance curveT-dependence qf in low-resistivity (p<h/e?) and strongly-
shown in Fig. 2. The observed linear relationshipPowith  correlated (>1) 2D systems. We consider that the internal
B|| for B|<B. demonstrates that=gg Mg /gpmy, does not  degree of freedom is essential for the metallic behavior. In
depend orP in contrast to the case of a GaAs 2D electronthe case of Si-MOS structures, the metallic behavior is ob-
systemt! served atB=0 in samples having a high peak mobility

In Fig. 4, a determined fronB is shown as a function of  (u,.,=2 M*/V's).! The strong in-plane magnetic field
rs=m"4e/h)?(my/xe)Ns V2 The relative dielectric con- changes the degeneracy factug, from 4 to 2 and sup-
stantk=11.5 is used for the silicon quantum wéllin Refs.  presses the metallic behavior. This indicates that the critical
7 and 9, in Si-MOS structures was obtained from SdH level of disorder is lower forg,g,=2 than that forg.g,
oscillations andrs was calculated fronNg using k=7.7,  =4. The metallic behavior witlg,g, =2 can be observed in
average relative dielectric constant of silicon and S¥®  the heterostructure systems with much higher mobility than
a(rg) in this work is almost consistent with Refs. 7 and 9 butthat of Si-MOS samples. We hage=2 andg,=1 in GaAs
slightly (~10%) higher. This difference may arise from an 2D hole systems &=0, andg,=1 andg, =2 in silicon 2D
overestimation of s in Si-MOS structures. The average dis- electron systems zBH>BC.25 Since theB -induced MIT is
tance of electrons from the Si/Sj@nterface is calculated to

be zo~3 nm in the range oNg=2-4x10"m 2.2 |t is disorder : D smos |
smaller than, but comparable to the average distance between : U olow) !
electrons @Ng) “Y2~10 nm. Thus the relative dielectric : <
constant should be effectively larger than 7.7. We estimate | '

' Si-MOS
the effective value ok from the calculation of the Coulomb . ! (high-p)
force between electrons located at the distacaway from
the interface and separated each other b{Nf) Y2 This !
correction leads to smalleg and better agreement af(r ) i
with the present data for the Si/SiGe sample. ;

Figure 5 shows the dependencewbn T/Tg in strong b
in-plane magnetic fields abov®.. T¢ is given for the full b ? .
spin polarization §s=1) andP is calculated from the Fermi 1 > 4
distribution function. The apparent metallic behavior is ob-
served at low temperatures, where the spin of electrons is FIG. 6. Schematic phase diagram fedependence gf in low-
almost polarized. It is in contrast to the results on Si-MOSresistivity and strongly-correlated 2D systems.

p-GaAs Si/SiGe
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observed even in high-mobility GaAs 2D hole systerise ~ T-dependence of for Bj>B. in contrast to other systems
critical level of disorder, if exists, is expected to be very low where it disappears before the full spin polarization. We con-
for gsg,=1. sider that this is owing to high mobilitfiow disordej and

In summary, we have studied the spin polarization andhe valley degree of freedom in the Si/SiGe sample. A resis-
T-dependence of resistivity in an ultrahigh-mobility Si/SiGe tance anisotropy with respect to an angle between the current
heterostructure sample. The spin polarization increases lif2d the in-plane magnetic field is also found.

early with the in-plane magnetic field in contrast to the case e thank Professor Y. Shiraki for providing us with the
of a GaAs 2D electrons system and thedependence of the  Si/SiGe sample. This work is supported in part by Grants-in-
spin susceptibility is consistent with the previous measureAid for Scientific Research from the Ministry of Education,
ments on Si-MOS samples. We observed apparent metallicience, Sports, and Culture, Japan.
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