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The quantitative control of the dynamic correlations of single impurity Anderson models is essential in
several very active fields. We analyze the one-particle Green function with a constant energy resolution by
dynamic density-matrix renormalization. In contrast to other approaches, sharp dominant resonances at high
energies are found. Their origin and importance are discussed.
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Single impurity models are at the very basis of the de- In view of the above, we perform a numerical investiga-
scription of strong correlation phenomena. Landmarks aréion which aims to describe both the low-energy dynamics
the Kondo problerhand the single impurity Anderson model and the high-energy dynamics quantitatively. To this end, we
(SIAM) (Ref. 2), for a review see Ref. 3. use an energy resolution which is constant for all energies.

The interest in the quantitative analysis of SIAMs hasFeatures at low energies are not as delicately resolved as by
been intensified considerably by the advent of a systematitRG, but in return features at high energies are much better
mapping of strongly correlated lattice models to effectiveunder control. We apply the dynamic density-matrix renor-
SIAMs supplemented by a self-consistency condition. This ighalization (D-DMRG) (Refs. 16—18to compute the one-
the key point of dynamic mean-field thediMFT) (Refs. 4  Particle propagator. The DMRG is a real-space
and 5 which is based on an appropriate scaling of the non@pproactt”2 which works best for open boundary condi-

local parts of the Hamiltoniaf? for reviews see Refs. 8 and tions so that it is particularly well suited to treat impurity

. . . problems.

9. In recgnt years, the DMFT 1S f';\.pplled Very succe;sfully in? The model investigated at zero temperature is the sym-
combination with  ab initio density-functional metric Anderson model
calculations:®!! In this way, the unbiased knowledge about
the bands could be enhanced by the inclusion of interaction
effects between the excited quasiparticles. It turned out that sz ednd,0+Und’lndyT+VZ (d:r,cang H.c)
the combination of density-functional results and DMFT 7 7
makes the quantitative understanding of spectroscopic data
pOSSib|e1.2 + 2 ')/nJrl(C;,rrClJr l,(r+ HC) + E Encg,(rcl,a (1)

So far, the methods applied to the SIAM were designed to ne ne
capture the low-energy physics, in particular, the fixed pointsyith arbitrary density of stateDOS) po(w) of the U=0
and the thermodynamic&:* The numerical renormalization one-particle Green functio®o(w) of the d electron. The
group (NRG) was later extended to calculate also dynamic,parametrization in Eq.1) is chosen such that the coefficients
i.e., spectral information. It provides reliable data on the(e,,7,) are the continued fraction coefficients of the hybrid-
scale of the Kondo temperaturég, see Refs. 3 and 15, and ization function
references therein. On larger scales, the energy resolution is

less well controlled. v?

But in various applications the behavior at higher energies I'w)= 2 : )
is important to achieve quantitative accuracy. For instance, w—¢€ R ¢ S

. ; 0 2

the self-consistency cycle of the DMFT mixes modes at all 7
energies. Hence, excellent quantitative control over the dy- A SR
namics at high energies is indispensable, even if finally only
the behavior at low energies matters. This model has particle-hole symmetry if;=—U/2 and

Another application is the optical control of isolat& €,=0 for all N=0. The representation as continued
— 1/2 impurities or quantum dots coupled to narrow bands. Ifractiort [see Fig. 1a)] is optimum for the DMRG which is
the impurities differ so that the energy between the singlydesigned for chains. We look at a generic situation with finite
occupied ground state and the excited double occupancy dipandwidthW=2D. For simplicity we choose & (w) with
fers, they can be switched selectively from the ground statéemielliptic DOS, i.e.;y,=D/2. ForV=D/2, the free DOS
to the double occupandiand back by shining light at the  po(w)=2yD?— w?/(wD?) is also semielliptic.
resonant frequency onto the sample. The lifetime of the The problem illustrated in Fig. (&) is mapped by two
double occupancy, i.e., the inverse linewidth of the resostandard Jordan-Wigner transformations to ™% spin 1/2
nance, determines how well the resonance condition has tthains, theS chain and thél chain. TheS chain results from
be met, how selective the switching can be, and how stablthe T fermions, theT chain from the| fermions. They are
the excited state is. coupled at site zero where the density-density coupling is
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FIG. 1. (a) Single impurity model with the bath as half-infinite
chain.(b) Equivalent spin modelT spins come froni fermions,S
spins from| fermions.

mapped to the product afcomponents. The resulting chain
is depicted for the symmetric SIAM in Fig.(d). The cou-
plings are given byy,=ty, =V andt;=t; =y, fori=1. The
mapping from fermions to spins avoids the fermionic Fock
space which would imply numerically difficult long-range
effects. The mapping makes the Hilbert space the direct
product of the local Hilbert spaces at each site.

The DMRG can easily determine the ground stéjeand
its energyE, for a finite chain. So the chain in Fig(l) is
truncated such that there drespins in the upper and in the
lower part of the chain corresponding originally to a trun-
cated bath of. — 1 fermions plus the impurity. The dynamic
guantity we are interested in is the retarded Green function
zero temperature

FIG. 2. (a) Spectral densities foV=D/2 broadened byzn
=0.1D. Chain lengthL=280 fermionic sites; 128 DMRG states
kept. (b) Spectral densities fronfe) deconvoluted in the time do-
main. NRG data A =1.8, 1500 statgsdepicted by thin dashed
lines. The exact curves represent the analytice results.

tering, and the inverse transform. A flexible alternative with
Limilar properties is the explicit matrix inversion of the con-
volution proceduré®

- . B ) e In Fig. 2(a), generic broadened spectral densities are plot-
G (w+in)=(0[S (w+in—(H-Ep) "S0), (3  ted as they are computed by D-DMRG. Obviously, the value
o p{”(0) is not independent dfi. Increasing the chain length
where the superscript’ implies that Eq(3) represents only L does not lead to any significant change in the dat

the part of the usual Green function at non-negative frequens-howr)' Figure 2b) displays the deconvoluted data. The de-
cies. In the symmetric case, the complete function is recov:

; Ny ) - X convolution works very well except for some slight over-
ered by G(w+izn)=G ("’j' 7) -G (_“’:' 7). In the  shooting in regions where the spectral density changes rather
asymmetric  case, G (w+in)=(0[S(o+in—(H  apruptly. In particular, the valye(0) is pinned tdD/(27V?)
—Eg)) 'S, |0) must be determined separately, wherebyindependent ofJ as required by Friedel's sum rule and the
G(o+in)=G (w+in)—G~(—w—in) is obtained. We density of states ru@?®-2\e take this fact as convincing
stress thatG(w+i#) is the fermionic propagator even evidence for the reliability of the numerical algorithm.
though it is computed in terms of spins after the Jordan- The central peak ab=0 is the Abrikosov-Suhl resonance
Wigner mapping. (ASR). For largerU (smallerV) its width decreases rapidly

The key idea of the dynamic DMRG is to include the realsp that the ASR is very difficult to resofeunless more
and the imaginary part of the correction vectaj in the  elaborate deconvolution schemes are devi€&b a quanti-
target states of a standard DMRG algorithit® The natural  tative analysis of the ASR is postponed to future work.
choice is|c)=(w+in—(H—Ey)) 1S5]0). The computa- For comparison, the thin dashed lines in Figo)2depict
tion of |c) is numerically the most demanding step due to thestandard NRG dat®:* For small frequencies NRG is well
inversion of an almost singular non-Hermitean matrix. Wecontrolled. Indeed, fotw|<D/3, NRG and D-DMRG data
prefer to stabilize this inversion by optimized algoritHrhs agree excellently lending further support to the D-DMRG
instead of using the variational approach proposed bwpproach. Outside the band, the NRG spectra appear to be
Jeckelmanid! which requires a minimization in a high- too wide due to the chosen constant broadening on a loga-
dimensional Hilbert space. rithmic mesh. This broadening does not account for the ab-

The numerical calculations cannot be performed fpr sence of states outside the bare band. The NRG does not
=0. Even small values of are very time consuming. So we possess intrinsic information about the peak widths. The po-
compute firstG(w+i7) at finite . The spectral density sition of the high-energy peak in the raw NRG data, how-
p(w)=—1/7ImG(w+izn) can be seen as the actual ever, coincides with the D-DMRG result.
spectral densityp(w) convoluted by the Lorentziap, () An increase inU leads to the formation of Hubbard sat-
=(nl7)l(w*+ 7?) of width 7. Hence it is possible to re- ellites below and above the free baqEig. 2. They are
trieve p(w) by deconvolution. A standard technique for de- situated at energias pjion= = (U/2+ dghir) , Ispir=>0 and be-
convolution is Fourier transformation, realized best by fastcome more pronounced on increasidgn two ways. They
Fourier transforms, division by exp(7) plus low-pass fil- capture more weight and they become sharper. Trer0
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lines show various power-law fit§a) dependence oJ at V

FIG. 3. D-DMRG data of the upper Hubbard satellite xat —D/2: (b) dependence o,

=0.1D. Thin lines are fits with Lorentzians and an offset
ocneﬁ/(niﬁ+(w—wup)2)+ C. The fits were done for the intervals

shown.(a) dependence obl at constan¥ (L =80); (b) dependence analogous analysis for the shiftg, of the satellite posi-
onV at constant) (L=40). tions. Again, strong evidence for power-law behavior is

found, namely,Sqnirc V2/U.
How can the above findings be understood? Let us start

the weight reaches 1/2, see Ref. 28. The sharpening has B the positions. The energy levels of isolated impurities,

been disc_:ussed q“"?‘”“‘"?‘“"e'y pefore although _the _extend 6., V=0 are at+U/2.3* Switching onV mixes the impurity
noncrossing approximatidhprovides sharp satellites if they levels with the bath states which lie in the interval
lie outs'ide. thg bare bands, see, e.g., Fig. 1 in Ref. 28. RT—D,D]. If U is large compared t® second-order pertur-
cently, indications have occur€tthat other standard algo- pation inv implies that the impurity levels are repelled from
rithms overestimate the width of the Hubbard satellites. Thgne path states. The shift should be of the orderJof

exaggerated width of the NRG data at high energies results g\/2/y, see Eq(11) in Ref. 34, which agrees nicely with

from the Gaussian broadening of the order of the energyhe power laws in Fig. 5.

rangeg._?’ _ _ _ The widths of the satellites have been discussed quantita-
To investigate the line shapes of the satellites we plotively when they lie within the bare barfd.If the satellites

them for various values df) andV in Fig. 3. The ASR at |ie outside, perturbation theory id, to second order or the

w=0 is not displayed since it is too much smeared out atandom-phase approximation, implies that a finite width is to
7=0.1D for larger values of the interaction. The shiig,

increase on increasing; they decrease on growing interac- 1 : | ;
tion U. The widths behave qualitatively similar. A complete
deconvolution suffers unfortunately from severe overshoot-
ing due to the sharpness of the resonance. To make the anala
sis nonetheless quantitative we fit the broadened data b $
Lorentzians plus an offs€Fig. 3). These fits work very well

for large values otJ and not too large values &f.

To deduce the true width of the Hubbard satellite we as- | @ | | | | | ,
sume that it is well described by a Lorentzian. The wigtl ' 2 8 ump 4 s & v 8
of the convolution of two Lorentzians of widthg, and 7 is ' ‘ ' ' L
neit= 11+ 12. From the effective widthsg). we deduce the i3 =
true half widths at half maximuniHWHM) of the Hubbard

satellite by subtracting the artificial broadening i.e.,

0 [w5A0, 0,+D/2]
- UN-0.94)

—— UA-1.06)
—— A

‘shift /D

HWHM = 54— . In Fig. 4, the widths are depicted as -« 01__ 0 U=4D [0 d;:Di2) ]
function ofU and ofV. The results show that the HWHM are £ "o UZ6D foob2 ap0a| ]
proportional toV4/U?2. The deviations for smaller widths & DR Re ]
must be attributed to the numerical constraints, e.qg., fipite iz o5 o 5 T R o

and finite chain lengthL. The deviations for larger widths,
mainly for larger values of/ and smaller values dfl result FIG. 5. Position shifts of the Hubbard satellites analyzed like the
from the vicinity of the bare bands. Figure 5 displays thewidths in Fig. 4;(a) V=D/2; (b) see legend.
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be expected at least far<<3D. But the reasoning in powers In summary, we have investigated the dynamic propagator
of U is not helpful forU>3D and it does not explain the of the SIAM by D-DMRG. This powerful large-scale algo-
power laws found. So we return to perturbing in power¥of rithm provides information with a constant energy resolution.
The impurity levels mix with particle-hole excitations in the Up to moderate interactions~2D, deconvolution yields
bands, see Eq10a in Ref. 34. In thesymmetriccase the the explicit spectral densities. For larger interactions, the
doubly occupied electron and hole state are degenerate ¥4dth of sharp resonances can be extracted by fitting Lorent-
that mixing with particle-particléor hole-hol¢ states mat- Zians. In particular, we analyzed the positions and widths of
ters also, see EG12) in Ref. 34. The mixing is of the order the Hubbard satellites. The shifts are of the ordei&fU

of J=8V’2/U. So Fermi's golden rule implies a lifetime of due to level repulsion; the linewidths are of the order of

4 2
J?N,, whereN, measures the density of states with WhiChV TU”. . . .
the ?mpurity Ie\(;el mixesN, is of the oyder oD 1. Indeed, Especially the sharpness of Hubbard peaks is missed by

HWHM o<J2 explains conclusively the data of Fig. 4 other zero-temperature algorithms for the SIAM. Hence the
So far. the width of the Hubbard satellites tor 2.D Was D-DMRG is a very valuable complementary tool. Position

) . nd width of the Hubbard satellites are important for several
extracted under the assumption that the satellites are Lorent-. o . .
; . S . widely used applications, e.g., in the self-consistency cycle
zians. Further investigations of the line shape are urgentl

called for. Numerically, improvements of the resolution are¥)f the DMFT.
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