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High-energy dynamics of the single-impurity Anderson model
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The quantitative control of the dynamic correlations of single impurity Anderson models is essential in
several very active fields. We analyze the one-particle Green function with a constant energy resolution by
dynamic density-matrix renormalization. In contrast to other approaches, sharp dominant resonances at high
energies are found. Their origin and importance are discussed.
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Single impurity models are at the very basis of the d
scription of strong correlation phenomena. Landmarks
the Kondo problem1 and the single impurity Anderson mod
~SIAM! ~Ref. 2!, for a review see Ref. 3.

The interest in the quantitative analysis of SIAMs h
been intensified considerably by the advent of a system
mapping of strongly correlated lattice models to effect
SIAMs supplemented by a self-consistency condition. Thi
the key point of dynamic mean-field theory~DMFT! ~Refs. 4
and 5! which is based on an appropriate scaling of the n
local parts of the Hamiltonian,6,7 for reviews see Refs. 8 an
9. In recent years, the DMFT is applied very successfully
combination with ab initio density-functional
calculations.10,11 In this way, the unbiased knowledge abo
the bands could be enhanced by the inclusion of interac
effects between the excited quasiparticles. It turned out
the combination of density-functional results and DMF
makes the quantitative understanding of spectroscopic
possible.12

So far, the methods applied to the SIAM were designed
capture the low-energy physics, in particular, the fixed po
and the thermodynamics.13,14 The numerical renormalization
group ~NRG! was later extended to calculate also dynam
i.e., spectral information. It provides reliable data on t
scale of the Kondo temperaturesTK , see Refs. 3 and 15, an
references therein. On larger scales, the energy resolutio
less well controlled.

But in various applications the behavior at higher energ
is important to achieve quantitative accuracy. For instan
the self-consistency cycle of the DMFT mixes modes at
energies. Hence, excellent quantitative control over the
namics at high energies is indispensable, even if finally o
the behavior at low energies matters.

Another application is the optical control of isolatedS
51/2 impurities or quantum dots coupled to narrow bands
the impurities differ so that the energy between the sin
occupied ground state and the excited double occupancy
fers, they can be switched selectively from the ground s
to the double occupancy~and back! by shining light at the
resonant frequency onto the sample. The lifetime of
double occupancy, i.e., the inverse linewidth of the re
nance, determines how well the resonance condition ha
be met, how selective the switching can be, and how sta
the excited state is.
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In view of the above, we perform a numerical investig
tion which aims to describe both the low-energy dynam
and the high-energy dynamics quantitatively. To this end,
use an energy resolution which is constant for all energ
Features at low energies are not as delicately resolved a
NRG, but in return features at high energies are much be
under control. We apply the dynamic density-matrix ren
malization ~D-DMRG! ~Refs. 16–18! to compute the one-
particle propagator. The DMRG is a real-spa
approach,19–21 which works best for open boundary cond
tions so that it is particularly well suited to treat impuri
problems.

The model investigated at zero temperature is the s
metric Anderson model

H5(
s

ednd,s1Und,↓nd,↑1V(
s

~ds
†c0,s

† 1H.c.!

1(
n,s

gn11~cn,s
† cn11,s

† 1H.c.!1(
n,s

encn,s
† cn,s

† ~1!

with arbitrary density of states~DOS! r0(v) of the U50
one-particle Green functionG0(v) of the d electron. The
parametrization in Eq.~1! is chosen such that the coefficien
(en ,gn) are the continued fraction coefficients of the hybri
ization function

G~v!5
V2

v2e02
g1

2

v2e12
g2

2

v2•••

. ~2!

This model has particle-hole symmetry iffed52U/2 and
en50 for all N>0. The representation as continue
fraction22 @see Fig. 1~a!# is optimum for the DMRG which is
designed for chains. We look at a generic situation with fin
bandwidthW52D. For simplicity we choose aG(v) with
semielliptic DOS, i.e.,gn5D/2. ForV5D/2, the free DOS
r0(v)52AD22v2/(pD2) is also semielliptic.

The problem illustrated in Fig. 1~a! is mapped by two
standard Jordan-Wigner transformations to twoXY spin 1/2
chains, theSchain and theT chain. TheSchain results from
the ↑ fermions, theT chain from the↓ fermions. They are
coupled at site zero where the density-density coupling
©2004 The American Physical Society02-1
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mapped to the product ofz components. The resulting cha
is depicted for the symmetric SIAM in Fig. 1~b!. The cou-
plings are given byt05t085V andt i5t i 85g i for i>1. The
mapping from fermions to spins avoids the fermionic Fo
space which would imply numerically difficult long-rang
effects. The mapping makes the Hilbert space the di
product of the local Hilbert spaces at each site.

The DMRG can easily determine the ground stateu0& and
its energyE0 for a finite chain. So the chain in Fig. 1~b! is
truncated such that there areL spins in the upper and in th
lower part of the chain corresponding originally to a tru
cated bath ofL21 fermions plus the impurity. The dynami
quantity we are interested in is the retarded Green functio
zero temperature

G.~v1 ih!5^0uS0
2
„v1 ih2~H2E0!…21S0

1u0&, ~3!

where the superscript. implies that Eq.~3! represents only
the part of the usual Green function at non-negative frequ
cies. In the symmetric case, the complete function is rec
ered by G(v1 ih)5G.(v1 ih)2G.(2v2 ih). In the
asymmetric case, G,(v1 ih)5^0uS0

1
„v1 ih2(H

2E0)…21S0
2u0& must be determined separately, where

G(v1 ih)5G.(v1 ih)2G,(2v2 ih) is obtained. We
stress thatG(v1 ih) is the fermionic propagator eve
though it is computed in terms of spins after the Jord
Wigner mapping.

The key idea of the dynamic DMRG is to include the re
and the imaginary part of the correction vectoruc& in the
target states of a standard DMRG algorithm.17,18The natural
choice is uc&5„v1 ih2(H2E0)…21S0

1u0&. The computa-
tion of uc& is numerically the most demanding step due to
inversion of an almost singular non-Hermitean matrix. W
prefer to stabilize this inversion by optimized algorithms23

instead of using the variational approach proposed
Jeckelmann,24 which requires a minimization in a high
dimensional Hilbert space.

The numerical calculations cannot be performed forh
50. Even small values ofh are very time consuming. So w
compute firstG(v1 ih) at finite h. The spectral density
r (h)(v)521/p Im G(v1 ih) can be seen as the actu
spectral densityr(v) convoluted by the LorentzianrL(v)
5(h/p)/(v21h2) of width h. Hence it is possible to re
trieve r(v) by deconvolution. A standard technique for d
convolution is Fourier transformation, realized best by f
Fourier transforms, division by exp(2ht) plus low-pass fil-

FIG. 1. ~a! Single impurity model with the bath as half-infinit
chain.~b! Equivalent spin model:T spins come from↑ fermions,S
spins from↓ fermions.
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tering, and the inverse transform. A flexible alternative w
similar properties is the explicit matrix inversion of the co
volution procedure.25

In Fig. 2~a!, generic broadened spectral densities are p
ted as they are computed by D-DMRG. Obviously, the va
r (h)(0) is not independent ofU. Increasing the chain length
L does not lead to any significant change in the data~not
shown!. Figure 2~b! displays the deconvoluted data. The d
convolution works very well except for some slight ove
shooting in regions where the spectral density changes ra
abruptly. In particular, the valuer(0) is pinned toD/(2pV2)
independent ofU as required by Friedel’s sum rule and th
density of states rule.3,26–28We take this fact as convincing
evidence for the reliability of the numerical algorithm.

The central peak atv50 is the Abrikosov-Suhl resonanc
~ASR!. For largerU ~smallerV) its width decreases rapidly
so that the ASR is very difficult to resolve29 unless more
elaborate deconvolution schemes are devised.30 So a quanti-
tative analysis of the ASR is postponed to future work.

For comparison, the thin dashed lines in Fig. 2~b! depict
standard NRG data.15,31 For small frequencies NRG is we
controlled. Indeed, foruvu&D/3, NRG and D-DMRG data
agree excellently lending further support to the D-DMR
approach. Outside the band, the NRG spectra appear t
too wide due to the chosen constant broadening on a lo
rithmic mesh. This broadening does not account for the
sence of states outside the bare band. The NRG does
possess intrinsic information about the peak widths. The
sition of the high-energy peak in the raw NRG data, ho
ever, coincides with the D-DMRG result.

An increase inU leads to the formation of Hubbard sa
ellites below and above the free band~Fig. 2!. They are
situated at energiesvup/low56(U/21dshift),dshift.0 and be-
come more pronounced on increasingU in two ways. They
capture more weight and they become sharper. ForTK→0

FIG. 2. ~a! Spectral densities forV5D/2 broadened byh
50.1D. Chain lengthL580 fermionic sites; 128 DMRG state
kept. ~b! Spectral densities from~a! deconvoluted in the time do
main. NRG data (L51.8, 1500 states! depicted by thin dashed
lines. The exact curves represent the analyticL5` results.
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the weight reaches 1/2, see Ref. 28. The sharpening ha
been discussed quantitatively before although the exten
noncrossing approximation32 provides sharp satellites if the
lie outside the bare bands, see, e.g., Fig. 1 in Ref. 28.
cently, indications have occurred25 that other standard algo
rithms overestimate the width of the Hubbard satellites. T
exaggerated width of the NRG data at high energies res
from the Gaussian broadening of the order of the ene
range.33

To investigate the line shapes of the satellites we p
them for various values ofU and V in Fig. 3. The ASR at
v50 is not displayed since it is too much smeared out
h50.1D for larger values of the interaction. The shiftsdshift
increase on increasingV; they decrease on growing intera
tion U. The widths behave qualitatively similar. A comple
deconvolution suffers unfortunately from severe oversho
ing due to the sharpness of the resonance. To make the a
sis nonetheless quantitative we fit the broadened data
Lorentzians plus an offset~Fig. 3!. These fits work very well
for large values ofU and not too large values ofV.

To deduce the true width of the Hubbard satellite we
sume that it is well described by a Lorentzian. The widthheff
of the convolution of two Lorentzians of widthsh1 andh2 is
heff5h11h2. From the effective widthsheff we deduce the
true half widths at half maximum~HWHM! of the Hubbard
satellite by subtracting the artificial broadeningh, i.e.,
HWHM 5heff2h. In Fig. 4, the widths are depicted a
function ofU and ofV. The results show that the HWHM ar
proportional toV4/U2. The deviations for smaller width
must be attributed to the numerical constraints, e.g., finith
and finite chain lengthL. The deviations for larger widths
mainly for larger values ofV and smaller values ofU result
from the vicinity of the bare bands. Figure 5 displays t

FIG. 3. D-DMRG data of the upper Hubbard satellite ath
50.1D. Thin lines are fits with Lorentzians and an offs
}heff /„heff

2 1(v2vup)
2
…1C. The fits were done for the interval

shown.~a! dependence onU at constantV (L580); ~b! dependence
on V at constantU (L540).
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analogous analysis for the shiftsdshift of the satellite posi-
tions. Again, strong evidence for power-law behavior
found, namely,dshift}V2/U.

How can the above findings be understood? Let us s
by the positions. The energy levels of isolated impuriti
i.e.,V50 are at6U/2.34 Switching onV mixes the impurity
levels with the bath states which lie in the interv
@2D,D#. If U is large compared toD second-order pertur
bation inV implies that the impurity levels are repelled fro
the bath states. The shift should be of the order ofJ
58V2/U, see Eq.~11! in Ref. 34, which agrees nicely with
the power laws in Fig. 5.

The widths of the satellites have been discussed quan
tively when they lie within the bare band.35 If the satellites
lie outside, perturbation theory inU, to second order or the
random-phase approximation, implies that a finite width is

FIG. 4. Widths ~symbols! of the Hubbard satellites as foun
from the fits in Fig. 3. The fit intervals are given in the legend. T
lines show various power-law fits.~a! dependence onU at V
5D/2; ~b! dependence onV.

FIG. 5. Position shifts of the Hubbard satellites analyzed like
widths in Fig. 4;~a! V5D/2; ~b! see legend.
2-3
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be expected at least forU,3D. But the reasoning in power
of U is not helpful forU.3D and it does not explain the
power laws found. So we return to perturbing in powers ofV.
The impurity levels mix with particle-hole excitations in th
bands, see Eq.~10a! in Ref. 34. In thesymmetriccase the
doubly occupied electron and hole state are degenerat
that mixing with particle-particle~or hole-hole! states mat-
ters also, see Eq.~12! in Ref. 34. The mixing is of the orde
of J58V2/U. So Fermi’s golden rule implies a lifetime o
J2N0, whereN0 measures the density of states with whi
the impurity level mixes;N0 is of the order ofD21. Indeed,
HWHM }J2 explains conclusively the data of Fig. 4.

So far, the width of the Hubbard satellites forU.2D was
extracted under the assumption that the satellites are Lo
zians. Further investigations of the line shape are urge
called for. Numerically, improvements of the resolution a
necessary to determine the line shape of the satellites ex
itly. Analytically, the quantitative argument for the width
must be supplemented by an explicit calculation of the l
shapes forV2/U→0.
ev

v.
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In summary, we have investigated the dynamic propaga
of the SIAM by D-DMRG. This powerful large-scale algo
rithm provides information with a constant energy resolutio
Up to moderate interactionsU'2D, deconvolution yields
the explicit spectral densities. For larger interactions,
width of sharp resonances can be extracted by fitting Lore
zians. In particular, we analyzed the positions and widths
the Hubbard satellites. The shifts are of the order ofV2/U
due to level repulsion; the linewidths are of the order
V4/U2.

Especially the sharpness of Hubbard peaks is missed
other zero-temperature algorithms for the SIAM. Hence
D-DMRG is a very valuable complementary tool. Positio
and width of the Hubbard satellites are important for seve
widely used applications, e.g., in the self-consistency cy
of the DMFT.
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