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Monte Carlo simulations of temperature-programmed desorption spectra

A. P. J. Jansen
Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 5 August 2003; published 29 January 2004!

We show how to obtain good quantitative data on the energetics of surface reactions by fitting results of
dynamic Monte Carlo simulations to results of kinetic experiments. In particular, we can obtain numerical
values for various lateral interactions by simulating temperature-programmed desorption spectra and fitting the
simulated spectra to the experimental ones using evolution strategies. We illustrate the procedure by determin-
ing nearest-, next-nearest-, and next-next-nearest-neighbor interactions for CO on Rh~100!.

DOI: 10.1103/PhysRevB.69.035414 PACS number~s!: 68.43.Fg, 68.43.Vx, 82.20.Wt
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I. INTRODUCTION

Temperature-programmed desorption~TPD! is one of the
most widely used techniques in heterogeneous catalysis
surface science.1 It has been used to show the importance
lateral interactions for the kinetics of surface reactions,
so far it has not been completely successful in obtain
quantitative data for these interactions. One can often g
reasonable fit of an experimental TPD spectrum with a sin
parameter for the lateral interactions with the rate equati

du

dt
52ne2(Eact

(0)
2Bu)/kBTun. ~1!

Hereu is the coverage,t is time,T is temperature,kB is the
Boltzmann constant,Eact

(0) is the activation energy for desorp
tion in the absence of lateral interactions,n is the prefactor
for desorption,n is the order of the reaction, and the later
interactions are modeled with the parameterB. The problem
with this form is the interpretation of this parameter. Equ
tion ~1! is a purely phenomenological expression. A simp
physical model would be that the adsorbates are rando
distributed over the sites and there is no correlation betw
the occupation of neighboring sites. This mean-field appro
mation leads to

du

dt
52ne2Eact

(0)/kBTu@11u~efNN /kBT21!#Z ~2!

for simple desorption of an atom or molecule that has
interactionfNN with each of itsZ nearest neighbors. If the
interaction is small, then Eq.~1! is a good approximation o
Eq. ~2! with B5ZfNN . An advantage of this model is that
can easily be extended to more complicated reactions an
models with more lateral interaction parameters. It has b
used successfully to explain oscillations in N
hydrogenations.2,3 A weak point of the model is that the ab
sence of correlation in the occupation of sites is contrad
tory to the presence of lateral interactions. Even at high te
peratures when there is no long-range order, there is
short-range order~i.e., correlation!, and Eq. ~2! does not
hold.

Correlation can be included by using pair approximatio
such as the quasichemical approximation or even more
phisticated approximations.4–6 Although these approxima
0163-1829/2004/69~3!/035414~6!/$22.50 69 0354
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tions clearly improve on mean field, they are still appro
mations. Density-functional theory~DFT! calculations for a
number of systems have shown that there are generally m
than one interaction of appreciable magnitude betw
adsorbates.7–10Analyses of the heat of adsorption as a fun
tion of coverage,11 phase diagrams of adlayers,12,13and other
experiments point to the same fact. These lateral interact
can differ substantially and, as will be shown, can determ
different properties of a system. It is not clear then that
approximations mentioned above are always reliable.

An accurate description of the kinetics of surface re
tions with lateral interactions can be given by dynamic,
kinetic, Monte Carlo~DMC! simulations.14–19We will show
in this paper that it is possible to determine numerical val
for various substantially different lateral interaction para
eters with DMC simulations of TPD. This is obvious of gre
benefit. If lateral interactions can be obtained from suc
widely used technique as TPD, it may be possible to obta
large amount of quantitative data on these interactions
many systems. Apart from the lateral interactions our meth
also yields the activation energy and prefactor for desorpt
It also gives error estimates that indicate how relevant a s
cific lateral interaction is for the kinetics. We will illustrat
the method on CO desorption from Rh~100!.20 We will de-
termine lateral interactions between nearest, next-nea
and next-next nearest neighbors. There is a strong repul
between neighboring sites. This repulsion leads to an orde
c(232) structure of the adlayer even at the temperatu
where desorption takes place, but it hardly affects the sp
tra, which are determined by the next- and next-next-near
neighbor interactions.

II. COMPUTATIONAL DETAILS

A. The model for COÕRh„100…

CO adsorbs onto top sites of Rh~100! for the coverages
below u50.5 that we will look at.20 This means that we us
a square grid for the adsorption sites. For the fit of the T
spectra a grid size of 2563256 was used. There are tw
processes; CO can desorb or it can diffuse by hopping
neighboring site if that site is vacant. For both processes
write the rate constantk as17,18

k5ne2Eact/kBT. ~3!
©2004 The American Physical Society14-1
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The activation energy is written asEact5Eact
(0)1DEact, where

Eact
(0) is the activation energy without lateral interactions a

DEact is the change due to lateral interactions. We assum
Bro”nsted-Polanyi relationDEact5a@DEf2DEi #, with DEf
(DEi) the effect of the lateral interactions on the adsorpt
energy of CO after~before! the reaction has taken place.21

For desorption we have assumed a late barrier;a51 ~see
Fig. 1!. Because there are no lateral interactions in the
phase we haveDEf50. We have assumed that the late
interactions are pairwise additive so thatDEi5(kldkd lfkl ,
with the summationk over all sites involved in the reactio
~just one for desorption!, the summationl over all surround-
ing sites~12 sites for desorption!, fkl the lateral interaction
between adsorbates at sitesk and l, anddk andd l equal to 1
if the site is occupied and 0 otherwise. We have includ
nearest-neighborfNN , next-nearest-neighborfNNN , and
next-next-nearest-neighbor interactionsfNNNN ~see Fig. 2!.
Positive values indicate repulsion and negative ones att
tion.

FIG. 1. Energy profiles for desorption and diffusion. Th
sketches indicate how the activation energies are affected by
lateral interactions. The thick curves show the situations with
lateral interactions. The thin curves show the situations with lat
interactions.~For simplicity a situation is shown for diffusion in
which only one side of the profile is changed.! For desorption we
have a late barrier and a Bro”nsted-Polanyi parametera51. For
diffusion we have an intermediate barrier witha51/2.
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We expect three-particle interactions with at most one p
of CO molecules at nearest-neighbor sites to be neglig
~see Fig. 2!. Three-particle interactions with two pairs of C
molecules being nearest neighbors may be of a similar m
nitude as weak pair interactions.7 However, the nearest
neighbor pair interactionsfNN will be shown to be so large
that such configurations are very unlikely. Therefore we ha
neglected all three- and more-particle interactions. We h
also assumed that the prefactors are not affected by the
eral interactions. This agrees with what has been found
similar systems: CO on Ni~100!, Cu~100!, and Pd~100! at
low coverages.22 CO also adsorbs at bridge position whe
the coverage is above 0.5 ML~monolayer!.20 This is a much
more complicated situation, because the number of kin
parameters is more than double the number of kinetic par
eters for low coverages. Therefore we have only looked
coverageu<0.5.

Diffusion of CO is very fast. If realistic diffusion rate
will be used, almost all computer time would be spent on
diffusion. Fortunately, the rate constant for diffusion can
reduced drastically without affecting the results of a simu
tion. The reason for this is that the main role of diffusion
to equilibrate the adlayer. This can be accomplished wit
reduced diffusion as follows~see also Fig. 3!. The effect of
lateral interactions on the activation energy for diffusion
given by the same expressions as for the activation ene
for desorption. Differences are that we have an intermed
barrier,a51/2, DEfÞ0 but is given byDEf5(kldkd lfkl ,
and there are more sites involved.~The summation overk is
over two sites and the one overl is over 16 sites.! The acti-
vation energyEact

(0) for diffusion was chosen as the minima
value that givesEact5Eact

(0)1DEact>0 for all possible con-
figurations of the CO molecules. The value was determin
for each simulation separately. By taking a minimal value
Eact

(0) the variation of the diffusion rate as a function of tem
perature was minimized. Note that changingEact

(0) does not
change the equilibrium of the adlayer in any way~see Fig.
3!. This depends only onDEact, and the way thatDEact is
affected by the lateral interactions~see above! ensures that
the different adlayer configurations occur with a proper pro
ability given by a Boltzmann factor. The prefactor for diffu
sion was also given a minimal value, but large enough so

he
t

al

FIG. 2. Definition of the pairwise interactionsfNN , fNNN , and
fNNNN on the left. The three-particle interactions in the middle a
neglected; these configuration do not occur becausefNN is large
and positive. The three-particle interaction, and similar ones, on
right are neglected because they are small.
4-2
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the adlayer was equilibrated at all times. This value of
prefactor was determined experimentally by varying it a
determining the range for which the results did not chan
Together with the way that the activation energy is chos
this ensures that a minimal fraction of the simulation time
spent on the diffusion.

B. Dynamic Monte Carlo

We have used DMC to simulate the evolution of the a
layer using theCARLOS code.23 Our method can be derive
from first principles, and gives exact results for the mo
that we use for CO on Rh~100!.17,18 There are numerou
DMC algorithms that can be used, which all give statistica
exactly the same results.16,24,18All DMC algorithms generate
an ordered list of times at which a reaction takes place,
for each time in that list the reaction that occurs at that tim
A DMC simulation starts with some chosen initial config
ration. The list is traversed and changes are made to
configuration corresponding to the occurring reactions. T
various algorithms differ in how the reaction times are co
puted, how a reaction of a particular type is chosen, and h
it is determined where on the surface a reaction takes pl
We have used the first-reaction method in all our simulatio
because this method gives exact results also when the
constants vary in time as in a TPD experiment.15,16,18,24,25

C. Evolution strategies

The simulated spectra can be very noisy because we
using stochastic simulations. The noise can be reduced
only at the cost of an increase in computer time. The no
scales asO(L21), with L the linear dimension of the grid
and the computer time for simulating a TPD spectrum sca
as O(L2ln L) with the first-reaction method.16 The method
that we have chosen to fit the simulated spectra to the
perimental ones is evolution strategy~ES!.26,27 This method

FIG. 3. Energy profile for diffusion and how it changes when
reduce activation energy in the absence of lateral interactions.
equilibrium of the adlayer depends on the energy differencesDE
5DEf2DEi , but not on the height of the activation barrier. Th
activation energyEact

(0) affects only this height.
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is able to deal with noisy data. In addition, it is a method th
does not get trapped in the first local optimum that is enco
tered. It is a method from the field of evolutionar
computation.27 It shares many characteristics with the bet
known method genetic algorithms,28 but ES seems bette
suited to optimize sets of real numbers.27 ~We also tried Pow-
ell’s method and simulated annealing to fit the experimen
spectra.29 Powell’s method managed to converge in spite
the noise, but generally gave bad fits, because it got trap
in the nearest local minimum. Simulated annealing gave
of the same quality as ES, but seemed to be somewhat
efficient.!

For each set of kinetic parameters~prefactor, activation
energy, and lateral interactions! we computed x2

5( i 51
Nexpxi

2/si
2 , wherei stands for TPD spectra with differ

ent initial coverage,Nexp is the number of such spectra,si is
an error estimate, andx i

2 is the difference between the ex
perimental and the simulated spectrum defined as

x i
25

1

Nsample
(
j 51

Nsample

@r i j
(exp)2r i j

(sim)#2, ~4!

where r (exp) and r (sim) stand for desorption rates in the e
periment and the simulation, respectively. The sum is o
different temperaturesT01 j DT. The error estimatessi were
determined by assuming that the errors are mainly due to
numerical noise in the simulations. We did 101 simulatio
with the same initial conditions and kinetic parameters. F
each subsequent pair of simulations we calculatedx i

2 , and
for si

2 we took the average ofx i
2/2 over the 100 pairs.~There

is a factor 1/2, because we are calculatingx i
2 from two simu-

lations, whereas in the fit there is only one simulation.! We
looked atNexp58 different initial coverages, and we use
T05250 K, Nsample5401, withDT51 K, and a heating rate
of 5 K/sec.

The ES that we have used works with a set of pa
(xi ,si), with i 51,2, . . . ,m, wherexi andsi are vectors of
real numbers andm is the number of pairs. The set is calle
a population and the pairs can be considered genetic m
rial. The components of the vectorx are the kinetic param-
eters that we want to determine. To minimizex2 we generate
a new population, which we hope contains better kinetic
rameters than the original one. We generate a new popula
by first generatingl offspring by randomly choosing two
pairs (xk ,sk) and (xl ,sl) and making a so-called interme
diate crossover@(xk1xl)/2,(sk1sl)/2#. Then we mutate
each of thel offspring as follows:xa→xa1N(sa) and
sa→sa•exp@N(Ds)#, wherea indicates a component of th
vector andN is a random number drawn from a Gaussi
distribution centered at the origin and a width given by t
argument. The quantityDs is a parameter of the method
Finally for each of thel offspring we computex2 by doing
a set of DMC simulations. The new population will the
consist of them pairs from thel offspring with the lowest
x2 ~comma selection!. We have typically generated 50 popu
lations during a single run withm532, l564, and Ds
50.5. A single run consisted of about 25 000 DMC simu
tions. This took at most only a little over 2 days on a 6
Mhz Pentium III PC.

he
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III. RESULTS AND DISCUSSION

There are two kinds of errors when we fit the experime
tal spectra. We have errors because our DMC is a stoch
method and we may have errors because our model of
lateral interactions may be deficient. The total error is
unknown combination of the errors of both types. We a
mainly interested in possible shortcomings of our model
the lateral interactions. To get an idea of the errors cause
the DMC simulations we have done some preliminary fits
obtain lateral interactions. The best preliminary fit was o
tained with fNN'25 kJ/mol, fNNN'1.3 kJ/mol, and
fNNNN'1.0 kJ/mol with the prefactor and the activation e
ergy fixed at experimental values ofndes56.3131013sec21

and Eact
(0)5137 kJ/mol.20 We then generated TPD spect

with these parameters using DMC and a grid of size 10
31024 to minimize the noise of the simulations. We th
tried to fit these simulated spectra in exactly the same wa
we fitted the experimental spectra. Because the simul
spectra could, in principle, be fitted exactly, the errors w
due only to the stochastic nature of the DMC simulatio
The best fit to the simulated spectra was found to bendes

59.2831013sec21, Eact
(0)5139 kJ/mol, fNN517 kJ/mol,

fNNN51.4 kJ/mol, andfNNNN51.0 kJ/mol with x253.9.
We see that the fit is reasonable for the prefactor and
activation energy, bad forfNN , and excellent forfNNN and
fNNNN . We will show below why this is the case. Mor
important here is the value ofx2. If the fit of the experimen-
tal spectra gives a much higher value, then this would po
to shortcomings of our model for the lateral interactions.

Figure 4 shows a typical result for the convergence of
determination of the lateral interactions and other kinetic
rameters for CO desorption from a Rh~100! surface using
ES. Note that the overall trend is that the best set of par
eters in and the average of each population improves,
quite often a new population may also be worse than
previous one. This indicates the ability of ES to search fo
global minimum.

Figure 5 shows the experimental and simulated TPD sp
tra with the kinetic parameters that give the best fit.20 We see

FIG. 4. Convergence of the evolutionary computation. The lin
show the error estimatex2 for the best set of kinetic parameters f
CO desorption from Rh~100! in the subsequent populations and t
average of all sets in each population.
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that the agreement is very good. Our best set of kinetic
rameters is ndes51.43531012sec21, Eact

(0)5121 kJ/mol,
fNN524 kJ/mol, fNNN51.1 kJ/mol, and fNNNN
50.9 kJ/mol with x259.3, which should be compared t
3.9, which is the value that is obtained by trying to fit sim
lated spectra~see above!. We note that, asx2 is a quadratic
form, the error is only about 50% larger, because of sh
comings of our model and experimental errors. This me
that the model for the lateral interactions is acceptable.

The procedure does not always converge to exactly
same minimum. In fact, we can get an even better fit th
the one mentioned above for small values offNN . For
example, ndes56.3131013sec21, Eact

(0)5137 kJ/mol, fNN

52.4 kJ/mol, fNNN51.3 kJ/mol, andfNNNN51.5 kJ/mol
gives x258.7. The drawback of this set is that it allow
adlayer structures at low temperature that are not found
perimentally. Up to coverages of 0.5 ML ac(232) structure
is found.20 This points to strong repulsion between CO mo
ecules at nearest-neighbor sites. The set above with s
fNN yields a (A232A2)-2O structure at low temperature
The set of kinetic parameters with highfNN value was ob-
tained with constraints that made thec(232) structure more
stable than a number of other possible structures. Such
straints can easily be included in ES.

If the next-next-nearest-neighbor interaction is neglect
then the fit becomes a bit less good withx2511.2 andndes

52.0431012sec21, Eact
(0)5123 kJ/mol, fNN513 kJ/mol,

andfNNN52.0 kJ/mol. Note that the prefactor and the ac
vation energy for an isolated molecule is almost the same
for the best fit. The nearest-neighbor interaction is quite d
ferent for reasons that we will discuss below. The ne
nearest-neighbor interaction is about equal to the sum
fNNN andfNNNN of the best fit. This is an indication that thi

s

FIG. 5. Experimental~left! and simulated~right! temperature-
programmed desorption spectra for CO/Rh~100!. Each simulated
spectrum was obtained from a single simulation with a grid
102431024 points. The values on the right of each set of cur
indicate initial coverages. The curves are offset vertically to ma
them easier to distinguish. The thin curves on the right are sim
lated spectra with the lateral interactions switched off. The hea
rate is 5 K/sec.
4-4
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is an important quantity determining the spectra.
We have repeated the fit a number of times, looked at

statistics of the results, and derived estimates for the a
racy of the kinetic parameters. The results of this proced
are ln(ndes/sec21)512.220.2

10.7, Eact
(0)512121

17 kJ/mol, fNN

52423
18 kJ/mol, fNNN51.120.2

10.4 kJ/mol, and fNNNN

50.920.3
10.3 kJ/mol. These are best values with one-sided st

dard deviations. We see that the errors for the prefactorndes

and the activation energyEact
(0) are quite substantial. The mai

cause for this is a compensation effect; a TPD spect
changes very little when the activation energy and the p
actor are decreased or increased simultaneously.30 Experi-
mental values are found in the range ln(ndes/sec21)
512.9–16.3 andEact

(0)5134–149 kJ/mol.20 The most recent
values arendes51013.860.2sec21 andEact

(0)513762 kJ/mol in
the low coverage limit. The agreement with our result
reasonable. In fact, the desorption rate constant for an
lated molecule is the same for the experimental values
the best-fit values atT5500 K, which is the peak maximum
temperature at low coverage~see Fig. 5!. Measurements o
the heat of adsorption gave a value of 11864 kJ/mol, which
is also in good agreement with our best-fit values if we
sume that CO adsorption is not or only weakly activated11

The large error infNN is due to the weak dependence
the TPD spectra on this lateral interaction. The value offNN
is large and the CO molecules will avoid occupying neig
boring sites. This lateral interaction only affects how eas
is for the adlayer to rearrange itself when CO molecules s
desorbing, but when a CO molecule desorbs it rarely ha
nearest neighbor, so there is no direct effect on the T
spectra. This means that one cannot really determine
value of fNN from TPD. Although the interaction betwee
nearest neighbors need not be known precisely, one sh
not prevent CO molecules occupying nearest-neighbor p
tion altogether. ForfNN→` we find a best fit withx2

511.3. This is clearly higher than our best fit, although n
much. Apparently the adlayer wants to move the CO m
ecules apart. This is easier when there is a small probab
that the CO can become nearest neighbors.

The errors in the other lateral interactions are mu
smaller, because they do affect the TPD spectra substant
This differs from calculating the lateral interactions wi
DFT. There strong lateral interactions can be determi
quite accurately, but the weak lateral interactions have m
larger relative errors.9 Coverage-dependent measurements
the heat of adsorption gavefNN5961 kJ/mol, fNNN51.0
60.5 kJ/mol, and fNNNN521.060.5 kJ/mol.11 The
nearest-neighbor interaction differs substantially for reas
nd

nd
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mentioned above. The next-nearest-neighbor interaction
excellent agreement, but the next-next-nearest-neighbo
teraction has a different sign. Attractive interactions betwe
adsorbates at next-next-nearest-neighbor positions have
used to explain island formation.31 However, if fNNNN is
negative, thenfNNN should probably be larger, as their su
was found to be very sensitive to the shift of the peaks in
TPD spectra. As there are no details in Ref. 11 on how
lateral interactions are obtained, we cannot properly co
ment on the origin of the difference between our results a
those of that study.

IV. SUMMARY

We have shown that temperature-programmed desorp
spectra contain information on the lateral interactions in
system. This information can be extracted and numerical
ues for lateral interactions can be obtained from these spe
by accurately modeling the surface processes using dyna
or kinetic, Monte Carlo simulations. Because these simu
tions are stochastic and the simulated spectra are there
noisy, we have used evolution strategies to fit the simula
spectra to the experimental ones. We have illustrated the
cedure with CO desorption from Rh~100!. We have obtained
the prefactor and the activation energy for the desorption
the nearest-, next-nearest-, and next-next-nearest-neig
interactions. The TPD spectra show that the nearest-neig
interaction is strongly repulsive. It leads to thec(232)
structure for coverages below 0.5 ML even at the tempe
ture where desorption takes place, but it has only a sm
effect of the TPD spectra. This also means that the numer
value for the nearest-neighbor interaction can only be de
mined with a large error. The TPD spectra depend mu
more on the next- and next-next-nearest-neighbor inte
tions. These are much smaller, but can also be determ
much more accurately. Numerical values for the lateral in
actions are fNN524 kJ/mol, fNNN51.1 kJ/mol, and
fNNNN50.9 kJ/mol with ndes51.43531012sec21, Eact

(0)

5121 kJ/mol, for the prefactor and the activation energy
desorption of an isolated CO molecule. Because of
prevalence of TPD, the procedure introduced in this pa
will enable us to obtain accurate numerical values for late
interaction for many adsorbates on many substrates.
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