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Variable-range hopping in quasi-one-dimensional electron crystals
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We study the effect of impurities on the ground state and the low-temperature Ohmic dc transport in a
one-dimensional chain and quasi-one-dimensional systems of many parallel chains. We assume that strong
interactions impose a short-range periodicity of the electron positions. The long-range order of such an electron
crystal ~or equivalently, a 4kF charge-density wave! is destroyed by impurities, which act as strong pinning
centers. We show that a three-dimensional array of chains behaves differently at large and at small impurity
concentrationsN. At largeN, impurities divide the chains into metallic rods. Additions or removal of electrons
from such rods correspond to charge excitations whose density of states exhibits a quadratic Coulomb gap. At
low temperatures the conductivity is due to the variable-range hopping of electrons between the rods. It obeys
the Efros-Shklovskii~ES! law, 2 ln s;(TES/T)1/2. TES decreases asN decreases, which leads to an exponential
growth of s. WhenN is small, the metallic-rod~also known as ‘‘interrupted-strand’’! picture of the ground
state survives only in the form of rare clusters of atypically short rods. They are the source of low-energy
charge excitations. In the bulk of the crystal the charge excitations are gapped and the electron crystal is pinned
collectively. A strongly anisotropic screening of the Coulomb potential produces an unconventional linear in
energy Coulomb gap and an unusual law of the variable-range hopping conductivity2 ln s;(T1 /T)2/5. The
parameterT1 remains constant over a finite range of impurity concentrations. At smallerN the 2/5 law is
replaced by the Mott law,2 ln s;(TM /T)1/4. In the Mott regime the conductivity gets suppressed asN goes
down. Thus, the overall dependence ofs on N is nonmonotonic. In the case of a single chain, the metallic-rod
picture applies at allN. The low-temperature conductivity obeys the ES law, with log corrections, and de-
creases exponentially withN. Our theory provides a qualitative explanation for the transport properties of
organic charge-density wave compounds of TCNQ family.

DOI: 10.1103/PhysRevB.69.035413 PACS number~s!: 73.50.Bk, 72.20.Ee, 71.45.Lr, 72.80.Le
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I. INTRODUCTION

In recent years electron transport in quasi-on
dimensional~quasi-1D! systems moved into focus of bot
fundamental and applied research. Quantum wires, nano
ropes, conducting molecules, etc., are being examined
possible elements of miniature electronics devices. In pa
lel, discovery of quasi-1D structures termed ‘‘stripes’’ in co
related electron systems~high-Tc cuprates, quantum Hall de
vices, etc.!, invigorates efforts to understand unconvention
phases in two and three dimensions starting from model
weakly coupled 1D chains.

Experimentally, the low-temperature conductivitys(T)
of quasi-1D systems is often of the insulating type. Its te
perature dependence gives information about the natur
charge excitations. For example, the activated depende
2 ln s(T)}1/T indicates a gap in the spectrum. In quasi-1
systems such a gap commonly arises from the Mott-Pe
mechanism,1,2 where the commensurability with the host la
tice is crucial. Yet there are many 1D and quasi-1D syste
where commensurability plays a negligible role. In this si
ation the jellium model~an electron gas on a positive com
pensating background! is a good approximation. This is th
kind of systems we study in this paper. We will show th
their low-temperature transport is dominated by a variab
range hopping~VRH!, which leads to a slower than expo
nentialT dependence3,4 of the conductivity. Our theory may
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apply to a number of systems, both naturally occurring a
man-made. Prototypical 1D examples are individual qu
tum wires on carbon nanotubes. Stripe phases,5,6 quantum
wire arrays in heterojunctions,7 carbon nanotube films,8 and
atomic wires on silicon surface,9 are two-dimensional~2D!
examples. In three dimensions~3D!, an important and well
studied class of quasi-1D compounds is charge-den
waves10–12 ~CDW!.

To characterize the strength of Coulomb correlations i
quasi-1D system we define the dimensionless parameter s
[a/2aB , wherea is the average distance between electro
along the chain direction andaB5\2k/me2 is the effective
Bohr radius. The latter is expressed in terms of the dielec
constant of the mediumk and the electron band massm. In
practically all known realizations of 1D and quasi-1D sy
tems,r s exceeds unity, often by orders of magnitude. Belo
we assume thatr s@1. Under this condition the dynamics o
electrons can be treated semiclassically. Neglecting quan
fluctuations altogether for a moment, we arrive at the pict
of electrons forming a classical 1D Wigner crystal in the ca
of a single chain@Fig. 1~a!# or an array of such crystals in 2D
and 3D@Figs. 1~b! and ~c!#, with the period along the chain
equal toa. Formation of the crystal enables the electrons
minimize the energy of their mutual Coulomb repulsion.
order to correctly assess the role of quantum fluctuati
~zero-point motion! in such crystals, one has to take in
account two circumstances. First is the unavoidable prese
©2004 The American Physical Society13-1
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of random impurities that act as pinning centers. Second
finite interchain coupling~in 2D and 3D systems!. Either one
is sufficient to make the quantum fluctuations of electr
positions bounded. For example, in the case of a sin
chain, the slow growth of the zero-point motion amplitu
with distance13,14 is terminated at the nearest strong pinni
center. In higher dimensions, the zero-point motion am
tude is finite even without impurities because of the int
chain interaction. In fact, renormalization-grou
approaches15 indicate that the Wigner crystal or, equiva
lently, 4kF CDW is the true ground state of a system
weakly coupled chains starting already from rather mod
r s . In all situations, the net effect of quantum fluctuations
to slightly renormalize the bare impurity strength and/or b
interchain coupling. The calculation of renormalized para
eters is possible via the standard bosonization techniqu16

For the treatment of, e.g., 1D case, one can consult R
13,14,17 and 18. Below such a renormalization is assume
be taken into account and it is not discussed further. Hen
forth we will often refer to the systems we study aselectron
crystals.

Due to impurity pinning, at zero temperature and in t
limit of small electric field~Ohmic regime! the conductivity
of the electron crystal vanishes. This behavior is common
all pinned systems. It motivated a large body of work19,12

devoted to mechanisms ofnonlinear transport that become

FIG. 1. Pinned 1D and quasi-1D systems on a uniform
charged positive background. Dots and tick marks label the p
tions of electrons and impurities, respectively.~a! 1D crystal. The
1 and2 signs denote the charge of the metallic rods, which h
an average length ofl. ~b! An array of decoupled chains in the ca
l , l s . ~c! An array of coupled chains for the casel . l s . The pre-
ferred arrangement of the electrons on neighboring chains may
pend on the exact geometry of the system. In order not to com
cate the drawing, we adopted the convention where the ground
corresponds to the same horizontal positions of electrons on
chain. The interchain interactions try to diminish the deviatio
from this ground state leading to dipolar distortions of a charac
istic lengthl s around impurities.
03541
a

n
le

i-
-

st

e
-
.
fs.
to
e-

r

possible in the presence of a finite electric field, in particu
creep and sliding. In the present context, such mechani
would involve a collective motion of large numbers of ele
trons that overcome pinning barriers either by thermal a
vation or by quantum tunneling. It has been understo
however, on some qualitative level,19 that if compact charge
excitations are allowed by the topology of the system, th
such excitations would dominate the response at low te
peratures and would give rise to a nonzeroOhmic conduc-
tivity at T.0. Below we will demonstrate that this is indee
the case in the electron crystals. We clarify the nature of
compact low-energy charge excitations and propose a th
of their low-temperature Ohmic transport that consisten
addresses the role of long-range Coulomb interactions.20

In this paper we are focused exclusively on the cha
transport and ignore any effects related to the spin degre
freedom. This is legitimate forr s@1 because electron ar
tightly localized at the sites of the classical Wigner crys
and the energy of their spin-dependent exchange interac
is exponentially small.

We will assume that impurities that pin the crystal a
strong enough to enforce preferred order of electrons nea
or, in the CDW terminology, the preferred phase. The re
tion between the phasef and the elastic displacement of th
crystal u is f52(2p/a)u. In Fig. 1 impurities are shown
by vertical tick marks and it is assumed that they inter
with nearby electrons by a repulsive potential comparable
magnitude to the Coulomb interaction energye2/ka between
nearest electrons on the chain. This condition is sufficien
ensure that the impurity to act as a strong pinning center.
example of such an impurity is an acceptor residing on
chain. In the ground state one electron is bound to the ac
tor and the electron-acceptor complex~of total chargee) is
built into the crystal, i.e., it is positioned squarely in betwe
the two closest other electrons. One can say that the cry
contains a plastic deformation—a vacancy bound to
negatively charged acceptor. Overall, the region around
impurity is electrically neutral.

In the case of a single chain@Fig. 1~a!#, strong impurities
divide the crystal into segments, which behave as individ
metallic rods. A charge can easily spread over the length
each rod, while it has to tunnel through an impurity to mo
to a neighboring rod. Each rod contains an integer numbe
electrons but the charge of the positive background is r
dom because of the assumed incommensurability. In
ground state the distribution of the rods’ total charges, el
trons plus background, is uniform between2e/2 and1e/2
(f is between2p andp). Larger charges cost more Cou
lomb energy and correspond to charge excitations above
ground state. Transitions between ground and excited st
occur by discrete changes in the number of electrons on
rods.

Let « be the minimal by absolute value change in t
self-energy of a given rod due to change of its charge by
unit. By the self-energy we mean the Coulomb energy
interaction among the electrons on the given rod, charge
all other rods held fixed. We adopt the convention that
chemical potential~Fermi energy! corresponds to the zer
energy. In this case,« is non-negative~nonpositive! for ad-
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dition ~subtraction! of the electron. We denote bygB(«) the
distribution function of« averaged over impurity positions
We refer togB as the bare density of states of charge exc
tions. In Sec. III we show that random distribution of charg
of the rods creates a finitegB(0). Small « come from rods
with net charges close to6e/2. These rods make possible
VRH conductivity at low temperatures.

Consider now a 3D system of parallel chains. Impurit
with concentrationN divide the chains into segments of a
erage lengthl 51/Na'

2 , wherea'
2 is the area per chain in

y-z plane~we assume the chains to be along thex direction!.
We get two cases distinguished by the relative importanc
interchain interactions. In the first case@Fig. 1~b!#, the chains
are far enough from each other and/or the impurity conc
tration is large enough so that the interchain coupling o
the length; l of a typical segment can be neglected in co
parison with its longitudinal compression energy. As a res
the phases of different segments are uncorrelated and
system again behaves as a collection of metallic rods. Po
izability of the rods generates a strongly anisotropic diel
tric constant. Like for a single chain, in the ground state
the system, a finite bare density of statesgB at zero energy
originates from random background charges of the ro
Again this leads to the VRH at low temperatures.

In the other case@Fig. 1~c!#, the concentration of impuri-
ties is small and chains are strongly interlocked. The ela
distortions are concentrated in small regions around in
vidual impurities ~see below!. Away from impurities the
crystal possesses a good 3D order. The true long-range o
is however absent because of the cumulative effect of sm
elastic distortions in a large volume. The elastic displacem
field ū(r ) of the electron crystal lattice away from impuritie
gradually varies in space. The length scale where its va
tion is of the order ofa ~variation in f is of the order of
unity! is referred to as Larkin length. The Larkin length
exponentially large,21,22effectively infinite, because the Cou
lomb interactions make the crystal very rigid. This will b
discussed in more detail in Sec. V.

The region near a typical impurity has the followin
structure.23 On one side of the impurity the chain is com
pressed, which creates an excess negative charge; on th
posite side, it is stretched resulting in a positive charge of
same absolute value<e/2. The net charge of such a dipole
zero~together with the vacancy of charge2e and the accep-
tor of chargee). The characteristic length of the distorte
region is of the same order as the lengthl s of the nonlinear
topological excitation24–26 of the pure system, the 2p soli-
ton. This is because the magnitude of local distortions inf
are typically comparable in the two cases. The formal d
nition of l s is27

l s5a' /Aa, ~1!

wherea5Y' /Yx!1 is the dimensionless anisotropy para
eter andYx andY' are the longitudinal and transverse elas
moduli of the electron crystal. The elasticity theory of t
crystal will be discussed in more detail in Sec. V. Here
just mention thata varies from material to material, e.g.,a
03541
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;1024 in K2Pt~CN!4Br0.3*3~H2O! ~KCP! and in CDW or-
ganics,a;1022 in blue bronze.10,11

At low temperatures all solitons are bound to accept
with large binding energies comparable to the creation
ergy of a free solitonW;e2/k l s . In other words, there is a
large energy gap for creating charge excitations. Never
less, as shown in Sec. V, finitegB at zero energy does exist i
the casel @ l s as well. It comes from rare clusters of sever
closely spaced impurities. Such clusters can be viewed
microscopic inclusions of thel ! l s phase~wheregB is large!.

In all cases outlined above,gB is not yet the actual density
of states of charge excitations. This is because the long-ra
Coulomb interaction of charges at distant sites is not
cluded in the definition ofgB . We denote the true density o
states of charge excitations byg(«). Based on previous stud
ies of other insulating systems, such as dop
semiconductors,28,4 we expect that long-range interaction
generate a Coulomb gap ing(«). This gap is soft, in the
sense thatg(«) vanishes only at the Fermi level«50. Away
from the Fermi level,g(«) increases in a power-law fashio
until it saturates at the bare valuegB at large enough« ~cf.
Ref. 4 and Fig. 10.4 therein!. Note thatg is different from the
thermodynamical density of states. The latter does not va
despite Coulomb correlations, see Refs. 4 and 29.

In macroscopicallyisotropic electron systems the func
tional form of the Coulomb gap depends on the number
dimensions. The density of states behaves as«2 in 3D and as
u«u in 2D. In all dimensions, however, this leads to the E
law for the VRH conductivity in isotropic doped
semiconductors,28,4

s5s0exp@2~TES/T!1/2#, ~2!

where s0 is a prefactor, which has an algebraicT depen-
dence. ParameterTES is given by

TES5Ce2/kj, ~3!

wherej is the ~isotropic! decay length of localized electro
states,k is the~isotropic! dielectric constant of the semicon
ductor, andC is a numerical coefficient.~We measure tem-
perature in energy units throughout this paper.! In lightly
doped isotropic semiconductorsk and j are determined
solely by material parameters~binding energy of impurity
states, electron effective mass, band structure, etc.!. There-
fore, TES does not depend on the impurity concentration a
Eqs.~2! and ~3! are in this sense universal.

In contrast, in this paper we show that in stronglyaniso-
tropic systems the Coulomb gap has, in general, a differ
functional form. Depending onl and other parameters, it ma
be either universal or not@i.e., g(«) and TES may contain
factors related to impurity concentration#. These results and
their consequences for the VRH transport are presente
the following section.

II. RESULTS

We group our results in the following three sections a
cording to the three cases outlined in the Introduction.
3-3
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A. Single chain

In this case, studied in Sec. III, the Coulomb interaction
not screened. However, in 1D the 1/x decay of the Coulomb
potential is on the borderline between the short- and
long-range interactions. Consequently, most physical qua
ties differ from their counterparts for the short-ran
~screened! interaction only by some logarithmic factors. F
example, the density of states of charge excitations exhib
logarithmic suppression,30

g~«!5
gB

ln~e2/k l u«u!
. ~4!

In a first approximation, such a suppression can be di
garded in the calculation of the VRH transport, namely, o
can assume thatg(«)5gB5const. In this approximation on
arrives at the conventional Mott VRH,3,28 which in 1D coin-
cides with the ES law of Eq.~2!. Let us denote byTES

(0) the
value of TES that one obtains neglecting the Coulomb ga
thenTES

(0);1/gBjx . Herejx stands for the localization lengt
that determines the asymptotic decayP}exp(22x/jx) of the
probability of tunneling of charge-e excitations over a large
distancex. If the probability of tunneling between neare
rods is written in the form exp(22s), wheres@1, then tun-
neling paths with returns can be neglected. In this casejx
5 l /s. Using the expression fors from Ref. 13, we obtain

jx;
l

r s
1/2ln3/2~ l /a!

, ~5!

TES
(0)5C1

e2

k l
r s

1/2ln5/2~ l /a!. ~6!

In the last equation we absorbed numerical factors into
coefficientC1;1.

A similar expression forTES
(0) was obtained by Natterman

et al.31 for the model of a disordered Luttinger liquid wit
short-range interactions and weak pinning. Our Eqs.~5! and
~6! differ from the corresponding results of Ref. 31 by tw
logarithmic factors. One of them originates from logarithm
charging energy of metallic rod; the other, from the log
rithm in the tunneling actions, see also Refs. 13, 18, and 3

Once the logarithmic Coulomb gap is taken into accou
the T dependence of the conductivity can still be written
the form of an ES law@Eq. ~2!# but TES becomes a function
of T, as follows:

TES5TES
(0)lnS e2

k lTES
(0)
ATES

(0)

T D . ~7!

Note that in the 1D case, the standard derivation3 of the VRH
law ~2! overlooks the role of very resistive hops in som
exponentially rare places along the chain. A more care
approach shows33,32 that Eq. ~2! and its generalization
through Eq.~7! are valid only if the chain is sufficiently
short. The quantitative criterion on the length of the cha
03541
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can be obtained following the excellent discussion in Re
33 and 32. This, however, goes beyond the scope of
present work.

B. 3D systems with large impurity concentrations

This case, formally defined by the inequalitya'! l ! l s is
studied in Sec. IV. It may be realized in strongly anisotrop
CDW compounds such as KCP where the soliton lengthl s is
large (102a or so! and/or in samples where a relatively hig
impurity concentration is created intentionally34,35so thatl is
small. Possible non-CDW realizations include arrays of re
tively distant 1D conductors, e.g., quantum wire
nanotubes,36 or polymers.37

As elaborated in Sec. I, impurities divide the system in
a collection of metallic rods. The finite 3D concentration
highly polarizable rods results in a large dielectric constan38

along the x axis. The Coulomb interaction is therefor
strongly anisotropic but the Coulomb gap remains parabo
g(«)}«2, as in isotropic systems. Tunneling is anisotropic
well. The interchain tunneling is accomplished by sing
electron-like excitations, which do not perturb charges on
intermediate chains along the tunneling path. In Appendix
we estimate the corresponding transverse localization len
j' to be

j'5
a'

ln~e2/kat'!
, ~8!

where t' is the interchain hopping matrix element in th
tight-binding band-structure model. For the low-T VRH con-
ductivity we again obtain the ES law withTES given by

TES5C2

e2

k l Fa'
2 Ar s

j'
2

lnS l

a'
D G 1/3

. ~9!

HereC2 is another numerical factor of the order of unity. W
see that in both Secs. II A and II B, the ES law looses
universality, becauseTES depends on the impurity concentra
tion N throughl 51/Na'

2 . For a single chain~Sec. II A! this
dependence originates mainly from the dependence of
localization lengthjx on l. In 3D ~case B!, the full effective
dielectric constant and therefore, the density of states in
the Coulomb gap depend onN as well. In both cases, with
decreasingN the temperatureTES decreases, which at a fixe
temperature leads to an exponentially increasing conduc
ity.

In doped semiconductors similar violations of the unive
sality of Eq.~2! are known to occur near the metal-insulat
transition. In that case, however,TES has anoppositedepen-
dence onN. In particular,TES vanishes whenN grows and
reaches the critical concentration.4 Similarly, previous theo-
ries of the VRH transport in strongly anisotropic system
dealt with gapped, semiconductorlike materials~commensu-
rate CDW! where impurities provided carriers,39,40 so that
the conductivity was found togrow with the impurity con-
centration. In contrast, our work is devoted to system
3-4
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which are metallic~sliding! in the absence of impurities
Therefore, decrease ofTES with decreasing N seems
natural.39,40

At high temperatures, the conductivity is due to t
nearest-neighbor hopping. ItsT-dependence is of activate
type,

s5sAexp~2EA /T!, l , l s , ~10!

with the activation energy

EA;
e2

k l
~11!

and the prefactorsA proportional to the probability of tun
neling between adjacent rods.

C. 3D systems with small impurity concentration

As impurity concentration decreases andl becomes larger
than l s , a number of dramatic changes appear in all k
quantities, such as the density of states, the localiza
length, and the effective dielectric constant. For example
we discuss in Sec. V, the dielectric constant starts to incre
exponentially withl because the polarizability of the cryst
with l . l s becomes limited not by the lengthl of individual
chain segments but by the exponentially large length of L
kin domains. The soaring dielectric constant causes a r
drop of the ES parameterTES. In turn, this causes a collaps
of the low-temperature resistivity in a narrow intervall s& l
& l sln(W/T) ~see the descending branch of the curve in F
2!. Until this point, the notion that our system is opposite
the conventional semiconductors, so that purer samples
higher conductivities, seems to be working.

Once l exceedsl sln(W/T), the Larkin lengthLx can be
treated as effectively infinite. The VRH now involves ho
between low-energy states separated by distances sh
than Lx . On such distances, the dispersion of the dielec
function becomes important. Each pair of low-energy cha
excitations localized on their respective impurity clusters
teracts via a strongly anisotropic electrostatic potent
which is not exponentially small only if the vector that co
nects the two charges is nearly parallel to the chain direct
Such an unusual interaction leads to a Coulomb gap tha
linear in energy and independent ofN, unlike the previous
case~Sec. II B, l ! l s), where the Coulomb gap is quadrat

FIG. 2. Logarithm of the resistivity as a function of the avera
interimpurity distancel 51/Na'

2 at a fixed temperatureT!W. The
ES, 2/5, Mott, and activation laws succeed each other with grow
l.
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and N dependent. Another difference from Sec. II B is th
the localization lengthjx for the tunneling in the chain di-
rection is also independent ofN,

jx;
l s

Ar s

, ~12!

see Sec. V and Appendix B. This leads to a 2/5 law for
VRH conductivity

s5s0exp@2~T1 /T!2/5#, ~13!

where parameterT1, given by

T15C3

e2r s
1/4

k l s

a'

j'

, ~14!

does not depend onl and is, in this sense, universal. HereC3
is yet another numerical coefficient of the order of unity. T
2/5 law shows up as an intermediate resistivity plateau
Fig. 2. This universal law for quasi-1D systems withl @ l s is
an analog of the universal ES law in isotropic systems.

We show in Sec. V that the Coulomb gap affects mainl
finite-energy intervalu«u&D, whereD}gB can be called the
Coulomb gap width. At larger energies, the density of sta
of charge excitations coincides with the bare one,g(«)
.gB . SincegB is generated by impurity clusters whose co
centration diminishes with growingl, both gB and D de-
crease withl. Eventually, the Coulomb gap becomes mo
narrow than the range of energies around the Fermi le
responsible for hopping at givenT. At this point the Cou-
lomb gap can be neglected and the 2/5 law is replaced by
conventional Mott law

s5s0exp@2~TM /T!1/4#, ~15!

where TM5C4 /gBjxj'
2 , C4;1. As l increases further,T

being fixed,s decreases because of diminishinggB . This
gives rise to the ascending branch in Fig. 2. At suchl, the
electron crystal behaves similar to a gapped insulator wh
a lower impurity concentration corresponds to a lower car
density, and thus, to a higher resistivity.

As l continues to grow, at some point the Mott VR
crosses over to the nearest-neighbor hopping and shortly
ter it becomes smaller than the conductivity due to therma
activated free solitons,

s5sAexp~2W/T!. ~16!

At even largerl, s ceases to depend onl, and so the impurity
concentration, see Fig. 2. Note that the activation energ
W;e2/k l s @Eq. ~16!# andEA;e2/k l @Eq. ~11!# in Secs. II A
and II B, respectively, smoothly match atl; l s .

D. Summary of the regimes

The rich behavior of the conductivity as a function ofl
andT is summarized in the form of a regime diagram in F
3. The 2/5 law applies in a broad range ofl andT between
the ES and the Mott laws.

A convenient way to keep track of all the VRH exponen
derived in this paper is provided by Eq.~17! below. We

g

3-5



m

io
bl
r.
m

a

re
o
th
r-

th

ak

c
ia
i

rm

ta

e
en
s

an
tal

e
ain
st
of
the

the
e
-
me

rgy
than

y
y
on

as
om
his

i

ys-
ve

ing

den-

ld
he

3D

de
s.

M. M. FOGLER, S. TEBER, AND B. I. SHKLOVSKII PHYSICAL REVIEW B69, 035413 ~2004!
would like to present it in a somewhat more general for
motivated by the following physical reasoning.

The diagram of Fig. 3 is obtained under the assumpt
that the tunneling in the transverse direction is not negligi
(j' is not too small!, so that the VRH has a 3D characte
However, if the conducting chains are relatively distant fro
each other either alongy or z direction or both, this condition
may be violated. Examples of such systems are artificial
rays of quantum wires7 and carbon nanotubes.8 In those sys-
tems, the 3D hopping is pushed to very lower temperatu
while at intermediateT the hopping can be either one or tw
dimensional. Generalizing the standard derivation of
VRH transport3,4 to thed-dimensional hopping and a powe
law density of statesg(«)}«m, one obtains the conductivity
in the form

s5s0exp@2~TVRH /T!l#, l5
m11

m1d11
. ~17!

For d53 one recovers all the regimes discussed prior in
section~Mott, 2/5, and ES laws! by settingm successively to
0, 1, and 2, according to the physical situation. For the s
of completeness, the exponents for otherd’s in the same
situations are summarized in Table I. Inclusion of all su
regimes would transform Fig. 3 into a more complicated d
gram, but would not change its general structure, so it w
not be shown here or discussed further below.

III. 1D SYSTEM

In the case of a single chain of electrons on a unifo
positive background@Fig. 1~a!# impurities divide the 1D
electron crystal in separate pieces, which behave as me

FIG. 3. Summary diagram for the transport regimes in a
system. Domains of validity of ES@Eq. ~2!#, Mott @Eq. ~15!#, acti-
vated@Eqs.~10!, and~16!# and 2/5@Eq. ~13!# laws are shown.

TABLE I. The exponentsl of VRH conductivity @Eq. ~17!# in
the cases of 3D, 2D, and 1D tunneling and a power-law depen
density of statesg(«) that arises due to 3D Coulomb interaction
1D tunneling corresponds toj'→0.

Tunneling g5const g}u«u g}«2

3D 1/4 2/5 1/2
2D 1/3 1/2 3/5
1D 1/2 2/3 3/4
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rods. The rod lengthsx are distributed randomly around th
average valuel. Therefore, the background charge of a giv
rod, Q52ex/a, is a random number. It can be written a
Q52e(n1n), where n is an integer andn is a number
uniformly distributed in the interval21/2,n,1/2.

In the ground state of the system each rod contains
integer numbernr of electrons, so that the rod has the to
charge ofq5e(nr2n2n). To findn we use the fact that the
Coulomb self-energy of the rod is equal toq2/2Cr , where
Cr5kx/@2 ln(x/a)# is the capacitance of this rod. On th
other hand, the interaction of different rods does not cont
the large logarithm ln(x/a), and can be neglected in the fir
approximation. Thus, the minimization of the total energy
the system amounts to minimizing the self-energies of
rods. One can show then that, in the ground state,nr5n, so
that the charges of the rods are uniformly distributed in
interval 2e/2,q,e/2. Indeed, if this is not true and th
charge of the given rod isq.e/2, then, by charge conjuga
tion symmetry, there should exist another rod with the sa
length and the opposite charge2q. Transferring an electron
from the first rod to the second one we lower the total ene
and make the absolute values of both charges smaller
e/2.

Below we useq52en and call rods with 0,n,1/2
empty and with21/2,n,0 occupied. We define the energ
of an empty state,«(x,n), as the minimum work necessar
to bring to it an electron from a distant pure 1D electr
crystal with the same average linear density of electrons

«~x,n!5
e2

kx
lnS x

aD @~12n!22n2#5
e2

kx
lnS x

aD ~122n!.

~18!

This energy is positive and vanishes only atn51/2. On the
other hand, the energy of an occupied state is defined
minus the maximum work necessary to extract electron fr
this rod to the same distant pure 1D electron crystal. In t
case the final result is identical to Eq.~18! with n→2n.
Apparently, states withunu51/2 are exactly at the Ferm
level, which we take as the energy reference point~it coin-
cides with the electron chemical potential of a pure 1D cr
tal!. The low-energy states relevant to VRH transport ha
unu21/2!1.

Now we can calculate the density of such states. Tak
into account the fact that this rod lengthx is distributed ac-
cording to Poisson statistics, the disorder-averaged bare
sity of states can be written as

gB~E!5
1

l E0

1/2

dnE
0

`dx

l
expS 2

x

l D d„E2«~x,n!….

~19!

With a logarithmic accuracy, we can replace ln(x/a) by
ln(l/a). Then we use Eqs.~18! and ~19! to find

gB~«!5
1

2«0l F12S 11
«0

« DexpS 2
«0

« D G , ~20!

where«05e2ln(l/a)/kl. We warn the reader that one shou
not attribute much significance to the predictions of t

nt
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above formula in the region of high energies,«*«0, where
excitations with charges larger thane will also contribute to
various physical processes. On the other hand, close to
Fermi level, for«!«0, only charge-e excitations are impor-
tant, in which case Eq.~20! is fully adequate, whilegB is
nearly constant,

gB.
k

2e2ln~ l /a!
. ~21!

For the calculation of the low-T transport, only this constan
value is needed.

As mentioned in Sec. II, in 1D the (1/x)-Coulomb inter-
action creates only marginal effects on the conductivity
we neglect them, in the first approximation, then stand
Mott’s argument3 leads to the VRH that obeys theT1/2 law,
Eq. ~2!, with TES5TM5C1 /gBjx , wherejx is localization
length for tunneling between distant rods. The value ofjx is
obtained from the following considerations. Tunnelin
through an impurity that separates two adjacent rods ca
viewed as a process in imaginary time that consists of
following sequence of events.32 A unit charge assembles int
a compact soliton just before the impurity in one rod, tunn
through the impurity, and finally spreads uniformly over t
other rod. We assume that the chain is not screened by
ternal metallic gates. Then the tunneling probability can
written in the form exp(22s), wheres is the dimensionless
action13 s;r s

1/2ln3/2( l /a). Sinces@1, tunneling paths with
returns can be neglected. Therefore, for electron tunne
over distancesx@ l the actions should be multiplied by the
number of impurities passed. The average number of s
impurities is equal tox/ l , which yields the total tunneling
probabilityP}exp(22x/jx), with jx given by Eq.~5!. With a
logarithmic accuracy, the effect of the Coulomb gap is
replacegB by g(«) evaluated at the characteristic hoppi
energy«5ATES

(0)T, where TES
(0) is defined by Eq.~6!. The

latter result follows from Eqs.~21! and~5!. The final expres-
sion for the parameterTES is given by Eq.~7!. We briefly
note that in a long enough chain clusters of atypica
densely spaced impurities may exist. Tunneling through s
segments would cost a higher tunneling action and there
the overall conductivity would be suppressed. In this pa
we assume that the chain is sufficiently short so that th
rare clusters can be neglected, see a comment after Eq.~7!.

Formulas~6! and ~7! indicate thatTES goes down as im-
purity concentrationN51/l decreases. This provides
gradual crossover to the metallic behavior in a pure 1D s
tem.

IV. 3D SYSTEM WITH A LARGE IMPURITY
CONCENTRATION

In this section we consider a quasi-1D system made
parallel chains which form a periodic array in the transve
directions. The chains are pinned by impurity centers, wh
divide them into metallic rods of average lengthl
51/Na'

2 , where a'
2 is the cross-sectional area per cha

The finite-size electron crystals in each rod are either co
pressed or stretched to accommodate an integral numb
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electrons, as in the case of a single chain. In this section
assume that for a typical rod, the energy of its longitudin
deformation is smaller than the energy of its transverse c
pling to rods on the neighboring chains. This can be the c
when the periodic potential created by the neighbor
chains is diminished becausea' is larger thana, and/or
when the impurity concentration is large enough. Forma
the inequalitya'! l ! l s needs to be satisfied, wherel s is the
soliton length@Eq. ~1!#. Since metallic rods now completel
fill the 3D space@see Fig. 1~b!#, they modify the dielectric
constant of the system. As in the interrupted-strand mode38

the dielectric constant is anisotropic. Along the chain dire
tion it has the value of

kx5k@11C5~ l /r D!2#, ~22!

wherer D;a' is the screening length, see Appendix. A, a
C5;1 is a numerical constant.41 Transverse dielectric con
stants are unaffected,ky5kz5k. At large l, kx greatly ex-
ceedsk, which leads to an anisotropic Coulomb interacti
in the form42

U~r !5
e2

kAx21~kx /k!r'
2

, ~23!

where r'
2 5y21z2. In spite of the large dielectric constan

the Coulomb interaction is long range and thus create
Coulomb gap. Using the standard ES argument,4,43 the fol-
lowing density of states of charge excitations is obtained

g~«!5
3

p

k2kx

e6
«2. ~24!

It differs from the conventional formula for an isotropic m
dium only by the presence ofkx instead ofk. In order to
calculate the VRH conductivity we still have to discuss t
tunneling probability. It is important that Eq.~23! holds only
at x@ l . The interaction between charge fluctuations on
same rod is short range due to screening by neighbo
chains.44 Tunneling along thex axis takes place similarly to
the case of a single chain, but screening of the Coulo
interaction leads to smaller action of the order ofs
;Ar sln(l/a). Therefore, for the localization length in thex
direction we get

jx5
l

s
;

l

Ar sln~ l /a!
. ~25!

The tunneling in they and z directions is accomplished b
single-electron-like excitations. The probability of tunnelin
decays exponentially,P}exp(22r' /j'), at large transverse
distancesr' . Here j' is the transverse localization lengt
given by Eq.~8! and discussed in more detail in Appendix B
We assume thatj' is not vanishingly small compared tojx ,
in which case the VRH has a 3D character and can be
culated by the percolation approach~see Ref. 4, and refer
ences therein!.45 This calculation differs from the isotropic
case by the replacement of the isotropic dielectric constank
3-7
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and the isotropic localization lengthj by their geometric
averages over the three spatial directions:

TES5C3

e2

~k2kx!
1/3

1

~jxj'
2 !1/3

. ~26!

With the help of Eqs.~22! and ~25! the expression forTES
reduces to Eq.~9!, where the screening length of the electr
crystal has been taken asr D;a' and numerical coefficients
absorbed inC3.

V. 3D SYSTEM WITH A SMALL IMPURITY
CONCENTRATION

In this section we study the crystal pinned by impuriti
with a low concentrationN so that the conditionl @ l s is
satisfied. As discussed in Sec. I all key quantities—densit
states, localization length, the screening of Coulo
interactions—undergo dramatic changes compared to
case of high impurity concentration. We address su
changes in the three separate sections below.

A. Pinning of a quasi-1D crystal by strong dilute impurities

In this section we study the ground-state structure
screening properties of the crystal with low impurity conce
tration.

We start by reviewing the physical meaning ofl s given by
Eq. ~1!, in whicha5Y' /Yx is the anisotropy parameter, an
Yx , Y' parametrize the energy of an elastic distortion of
crystal,

Eel5
1

2E d3r @Yx~]xu!21Y'~“'u!2#. ~27!

As shown in Appendix A, at larger s the longitudinal elastic
modulusYx is dominated by Coulomb effects,

Yx;e2/ka2a'
2 . ~28!

The transverse modulusY' can be substantially smaller tha
Yx even when the ratioa' /a is only modestly large. For
Coulomb interaction,Y'}exp(22pa' /a).

The energyEel in Eq. ~27! is essentially the short-rang
part of the Coulomb energy. The total energy also inclu
the long-range Coulomb part~see Appendix A! and the pin-
ning part~see Appendix C and below!. Strictly speaking, Eq.
~27! is valid only for small gradients of the elastic displac
ment field u(r ); however, it can be used for order-o
magnitude estimates down to microscopic scalesr';a' and
x; l s . In this manner, one can derive formula~1! by mini-
mizing Eel under the condition thatu changes from 0 toa
over a segment of lengthl s on a single chain. For more
details, see Refs. 27, 23, and Appendix A.

The inequalityl @ l s imposes the upper limit on the impu
rity density:

N!Aa/a'
3 . ~29!
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Below we show that at suchN the ground state of the elec
tron crystal is determined by an interplay of individual a
collective pinning.46

Without impurities the crystal would have a perfect pe
odicity and long-range 3D order. Impurities cause elastic d
tortions of the lattice. The strongest distortions, of dipo
type, are localized in the vicinity of impurities, see Sec. I a
Fig. 1~c!. Such dipoles have a characteristic sizel s ~same as
free solitons!, are well separated from each other, and occu
only a small fraction of the space. Their creation is advan
geous because the associated energy cost~elastic plus Cou-
lomb! is of the order ofW;e2/k l s per impurity, whereas the
energy gain is a much larger electron-impurity interacti
energy2e2/ka. This is the essence of individual~strong!
pinning phenomenon, which provides the dominant part
the pinning energy density. The collective~weak! pinning
results from interaction between the dipoles. Let us dem
strate that such interaction cannot be neglected at sufficie
large length scales. By solving the elasticity theory equati
~generalized to include the Coulomb interactions!, it can be
shown27 that a dipolar distortion centered at a point (xi ,r' i)
has long-range tails that decay rather slowly with distan
u;AiarD /Aaux2xi u. This displacement is confined mainl
within a paraboloidur'2r' i u2&Aar Dux2xi u. Note that the
segment 0,x,xmin[a'( l /Aar D)1/2 of the paraboloid,

r'
2 5Aar Duxu, ~30!

contains on average one impurity. Parameterr D;a' , which
we already encountered in Sec. IV, has the meaning of
screening length. It is related to the longitudinal elas
modulusYx as follows:

r D
2 5

k

4pe2
a2a'

4 Yx , ~31!

see Appendix A.
If, in the first approximation, we choose to neglect t

interaction among the dipoles, then we should simply a
their far elastic fields treating the amplitudes21&Ai&1 as
random variables. We immediately discover the logarithm
growth of u with distance,

^@ ū~x,0!2ū~0,0!#2&;NE
xmin

x

dx8E
0

Aar Dx8
dr'

2 S arD

Aax8
D 2

5S a2

C6
D S l s

l D lnS x

xmin
D , ~32!

where the bar overu indicates that we refer to the value ofu
away from the immediate vicinity of a dipole and̂•••&
stands for disorder averaging.

The logarithmic growth of the elastic displacements w
previously derived for the model ofweakpinning centers in
early works21,22 on the subject. In those calculations the n
merical coefficientC6 is large and is inversely proportiona
to the impurity strength. In our caseC6;1. Apart from that,
Eq. ~32! demonstrates that the case ofstrongpinning centers
is essentially similar. Therefore, as customary for weak p
3-8
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ning models we define the longitudinalLx and transverseL'

Larkin lengths as the length scales where^Du2&[^@u(r )
2u(0)#2&;a2. From Eqs.~30! and ~32! we obtain

Lx5xminexp~C6l / l s!, L'5r'
minexp~C6l /2l s!, ~33!

wherer'
min5(Aar Dxmin)

1/2.
Alternative derivation of Eqs.~32! and ~33! based on en-

ergy estimates is given in Appendix C. It elucidates that
slow logarithmic growth of̂ Du2& is rooted in the importan
role of long-range Coulomb interaction in the elastic
sponse of a quasi-1D crystal. An isotropic electronic crys
adjusts to pinning centers primarily by means of sh
deformations47 that do not cost much Coulomb energy. As
result, in the isotropic crystalDu grows algebraically with
distance. In contrast, in quasi-1D crystals and CDW, wh
the elastic displacement is a scalar~electrons move only
along the chains!, no separate shear deformations exist. T
buildup of the Coulomb energy that accompanies longitu
nal compressions translates into an exceptionally large ri
ity of the electron lattice and exponentially largeLx andL' .

At distances exceeding the Larkin lengths the dipoles
no longer be treated as independent. Indeed, the energy
Es of a given dipole is determined by the minimal distan
by which the crystal has to distort to align an electron w
the impurity position. Therefore, just like the energy of a r
in the previous sections,Es has a periodic dependence o
n5$(xi2ū)/a%, where$•••% denotes the fractional part.Es
vanishes atn50 and reaches a maximum value of;W at
n561/2. Therefore, as soon as the cumulative effect
other dipoles attempts to elevateunu above 1/2, a 2p-phase
slip should occur to adjustEs(ū) to a lower value. The over
all effect of such adjustments is to enhance the pinning
ergy. This additional energy gain can be viewed as thecol-
lective pinning effect. Using standard arguments~see
Appendix C!, we relate the extra pinning energy density
the Larkin length

Epin;2W/a'
2 Lx;2Y'~a/L'!2. ~34!

We will now use this result to estimate the asymptotic va

kx[e~qx→0,q'50! ~35!

of the longitudinal component of the dielectric function.
Without impurities, the dielectric function has the form

e~q!5k1
qx

2

q2

kr D
22

qx
21aq'

2
, ~36!

see Appendix A and, e.g., Ref. 48. Based on previ
work49,22,10 we assume that a reasonable description of
electric screening in a system with impurities is obtained
we replace the random distribution of pinning centers b
commensurate pinning with the sameEpin . In this case we
can use the concept of the dielectric function even for
disordered system. To derive the modified expression for
dielectric function, one can add the termEpin(u/a)2 to the
right-hand side of Eq.~A2! in Appendix A and repeat the
steps outlined thence. It is easy to see that the net effec
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~commensurate! pinning is to augment the combinationqx
2

1aq'
2 ~proportional to the elastic resorting force! by the

term 2Epin /Y'a2, which comes from the additional resto
ing force due to impurities. In this manner we obtain

e~q!5k1
qx

2

q2

kr D
22

qx
21a~q'

2 1L'
22!

, ~37!

kx5
k

a S L'

r D
D 2

5
k

Aa

Lx

r D
;expS C6

l

l s
D . ~38!

However, for our purposes a cruder approximation will
sufficient, namely, we can assume that at distances sh
than the Larkin length, the system screens as though it is
of impurities, Eq.~36!; at distances larger than the Lark
length, the dielectric function is replaced by a constant,
~38!. In the following section we will use Eqs.~36! and~38!
to derive the functional form of the Coulomb gap in th
regimel @ l s .

B. Bare density of states and the Coulomb gap at low
impurity concentration

In order to describe the low-T transport at low impurity
concentration,l @ l s , we need to determine the origin of low
energy charge excitations in this regime. This poses a c
ceptual problem. Indeed, such excitations do not exist in
bulk ~away from impurities! where the creation energy o
charge-e excitations is bounded from below by the energyW
of a 2p soliton. At first glance, the impurities do not he
either. As mentioned in Sec. I, near isolated impurities th
is an energy gap for charge excitations, which is not mu
smaller thanW. This is because a single impurity appreciab
disturbs the crystal only within the region of lengthl s . The
disturbance is electrically neutral~dipolar! in the ground
state. Creation of a charge-e excitation near such an impurit
requires an energy of the order ofe2/k l s;W. Let us now
show that charge excitations of arbitrary low energies nev
theless exist. They come from impurity clusters. Each clus
is a group of a few impurities spaced by distances of
order of l s or smaller.~It can be viewed as a microscop
inclusion of thel & l s phase.! Below we demonstrate that th
clusters provide the bare density of states at zero ene
which decreases withl no faster than a power law,

gB5
k

e2a'
2 S l s

l D b12

, ~39!

where exponentb is of the order of unity and is independe
of l. The calculation ofb has to be done numerically, whic
we leave for future work.

To prove that Eq.~39! gives the lower bound ongB ,
consider the configuration of 2M12 impurities shown in
Fig. 4. The impurities define a cluster of 2M11 short rods,
each of approximately the same lengthc! l s . The cluster is
flanked by two semi-infinite segments at the ends. We
sume thatM is sufficiently large so thatL5Mc is much
greater thanl s . Suppose that the length of the central rod
3-9
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units ofa is close to a half integer, so that the charge of t
rod is restricted to the set of valuesq5(21/22d1n)e,
wheren is an integer and 0,d!1. For the low-energy state
we only need to consider two possibilities,q5(21/22d)e
and (1/22d)e. The lengths of the other short rods in o
construction are chosen to be close to integer multiples oa.
Then those rods can be considered charge neutral. Fin
we assume that the position of the leftmost impurity restr
the charge of the left semi-infinite cluster to 1/41dL1nL ,
where udLu!1 and nL is another integer. Under these a
sumptions, the charge of the right semi-infinite segmen
fixed to the set 1/41d2dL1nR .

One possible candidate for the ground state is the ch
configuration shown in Fig. 4~a!. It is overall neutral, has the
charge of the central rod equal toq5(21/22d)e, and the
total energy

Ea5
2

Lk

e

4 S 2
e

2D1
1

2Lk S e

4D 2

1
e2~1/21d!2

2Cr
12W1/4

52
7

32

e2

Lk
1

e2

2Cr
~1/21d!212W1/4. ~40!

Here we made use of the conditionsL@ l s , d!1. W1/4 de-
notes the self-energies of the semi-infinite segments~which
contain ‘‘1/4 solitons’’!, andCr;kc is the self-capacitance
of the central rod. If the configuration shown in Fig. 4~a! is
indeed a ground state, it has an unusual feature that
charge of the central rod exceeds 1/2 by the absolute va
contrary to the arguments in Sec. III. To establish the con
tions for the cluster to have such a ground state, we nee
compareEa with energies of other possible states. Of tho
some are neutral and some are charged. One competing
tral state is shown in Fig. 4~b!. It has energy

Eb52
11

32

e2

Lk
1

e2

2Cr
~1/22d!21W1/41W3/4, ~41!

whereW3/4 is the energy of the ‘‘3/4 soliton’’ on the right o
the cluster in Fig. 4~b!. For the energy difference we have

FIG. 4. An example of an impurity cluster that provides low
energy charge excitations atl @ l s . ~a! Distribution of charges in the
ground state. For simplicity, we chosedL5d/2. The cluster is elec-
trically neutral.~b! Competing neutral state.~c! Excited state ob-
tained by increasing the charge of the central rod by one unit.
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Eb2Ea5
e2

Cr
d2

1

8

e2

Lk
1W3/42W1/4, ~42!

so that the state shown in Fig. 4~a! wins if

d,
Cr

e2 F ~W3/42W1/4!2
1

8

e2

LkG . ~43!

Since W3/42W1/4;W;e2/k l s and L@ l s , the right-hand
side of the inequality~43! is positive, and sod.0 that sat-
isfy such an inequality do exist. The only other viable co
peting neutral state is similar to that shown in Fig. 4~b! ex-
cept the 3/4 soliton is formed on the left semi-infini
segment. The energy of that state is alsoEb , and so it does
not lead to any further restrictions ond.

Now let us examine the charged states. There is only
viable competitor, withq5(1/22d)e, as shown in Fig.
4~c!. If the energy difference«5Ec2Ea is positive, then
Fig. 4~a! represents the true ground state and« gives the
creation energy of the charge-e excitation. If « is negative,
then the ground state is as shown in Fig. 4~c!, while the
charge and the energy of the lowest-energy charge excita
are equal to2e and2«, respectively. An elementary calcu
lation yields

«52
e2

Cr
d1

e2

2kL
, ~44!

from which we conclude that it is possible to obtain arbitra
small « of both signs by tuningd sufficiently close to
Cr /2Lk;c/L, without violating the inequality~43!. This
proves that clusters are able to produce a finitegB(0). In the
ground state some of these clusters are neutral~‘‘empty’’ !
and some are charged~‘‘occupied’’!.

Now let us try to estimategB due to clusters. In the abov
argument we required strong inequalitiesc! l s andL@ l s to
prove the existence of a nonzerogB with mathematical rigor.
Physically, it seems reasonable that such inequalities ca
softened toc& l s and L* l s , in which cased&1 and M
;1, i.e., only a few~of the order of unity! impurities are
needed. It is also clear that the rods to the left and to the r
of the central one need not be exactly neutral for the ar
ment to go through. Then the probability of forming the d
sired cluster is comparable to the probability of finding 2M
12 ~a few! impurities on the same chain with neares
neighbor separation less thanl s . Assuming that impurity po-
sitions are totally random and independent, we obtain
estimate of Eq.~39!.

Now let us calculate the form of the Coulomb gap in t
actual density of statesg(«). At exponentially small ener-
gies, «!«* 5e2/kLx , the Coulomb gap is determined b
the interactions on distances exceeding the size of the La
domain. At such distances the interaction has the form~23!,
leading to the usual parabolic Coulomb gap given by E
~24! and~38!. We put these equations side by side below
the ease of reading,

g~«!5
3

p

k2kx

e6
«2, «!«* , ~45!
3-10
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«* 5
e2

kLx
5

e2

Aar D

1

kx
, ~46!

kx;expS C6

l

l s
D . ~47!

To ascertain the region of validity of Eq.~45! one needs to
make sure thatg(«) does not exceed the bare density
statesgB . It is easy to see that this is the case here. At
largest energy«;«* @Eq. ~46!#, g(«) is exponentially small,
g}exp(2C6l/ls), and so it is indeed much smaller thangB
;( l s / l )b12. In this sensegB is large enough to ensure th
validity of the parabolic law over the full range of« specified
in Eq. ~45!.

At « larger than«* , the Coulomb gap is governed b
interactions within the volume of a Larkin domain and t
dispersion of the dielectric functione(q) becomes important
The interaction potential is defined byŨ(q)54pe2/e(q)q2

and Eq.~37! in the q space. In real space, it is given by27

U~r !.
e2

2kuxu
expS 2

1

4Aa

r'
2

r Duxu D , ~48!

a'!r'!min$Aauxu,L'%,
r D

Aa
!x!Lx . ~49!

The potentialU(r ) is appreciable only within the paraboloi
defined by Eq.~30!, where it behaves asU(r ).e2/2kuxu. A
more precise statement is that the surface of a constantU is
a paraboloidlike region

r'
2 .4Aar Duxu lnS e2

2Ukuxu D . ~50!

For U@«* , this surface belongs to the domain~49! where
Eq. ~48! holds.

To calculate the functional form of the Coulomb gap w
use the self-consistent mean-field approximation due
Efros,43 according to whichg is the solution of the integra
equation

g~«!5gBexpF2
1

2E0

W

d«8g~«8!V~«1«8!G , ~51!

whereV(U) is the volume enclosed by the constant-U sur-
face ~50!,

V~U !.
pAa

4

e4r D

k2U2
. ~52!

Equation~51! follows from the requirement that the groun
state must be stable againts a transfer of a unit charge
an occupied state with energy2«8 to an empty state with
energy«. Such a stability criterion28,4 can be expressed b
means of the inequality«1«82U(r ).0, where r is the
vector that connects the two sites. Thus, the integral on
right-hand side of Eq.~51! counts the pairs of states th
would violate the stability criterion if positioned randoml
03541
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The Coulomb gap can be viewed as the reduced statis
weight of stable ground-state charge distributions with
spect to that of the totally uncorrelated ones.

The solution of Eq.~51! has the asymptotic form

g~«!.
8

pAa

k2

r De4
u«u, «* !u«u!D. ~53!

We see that the unusual interaction potential of Eq.~48!
leads to a nonstandard Coulomb gap, which is linear in a
system. The weaker~linear instead of the standard quadrat!
suppression ofg is due to a metallic screening of the Co
lomb potential in the major fraction of solid angle. The e
ergy scaleD in Eq. ~53! is defined by the relationg(D)
;gB . Using Eq.~39!, we can estimateD as follows:

D5
Aar D

k2
e4gB;WS l s

l D b12

. ~54!

At «@D, the solution of Eq.~51! approaches the bare den
sity of states,g.gB , and soD has the meaning of the Cou
lomb gap width. On the lower-energy side, at«;«* , the
linear Coulomb dependence of Eq.~53! smoothly matches
the quadratic dependence of Eq.~45!. All such dependencies
are summarized in Fig. 5.

C. VRH transport in a system with small impurity
concentration

The VRH transport atl @ l s involves quantum tunneling o
charge excitations between rare impurity clusters. In App
dix B we advance arguments that the charge tunnels a
the chains in the form of 2p solitons and derive the follow-
ing estimate for the corresponding longitudinal localizati
length:

jx;
l s

Ar s
F11

l s

l
lnS l s

a D G21

, l . l s . ~55!

At l @ l s this formula goes over to Eq.~12!, while at l; l s it
smoothly matches with Eq.~25!. As for the interchain tun-
neling, it is still accomplished by single-electron-like excit

FIG. 5. The density of states of charge excitations in a 3D s
tem with l @ l s . The parabolic Coulomb gap at low energies
succeeded by the linear Coulomb gap, then by the bare densi
statesgB created by impurity clusters.
3-11
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M. M. FOGLER, S. TEBER, AND B. I. SHKLOVSKII PHYSICAL REVIEW B69, 035413 ~2004!
tions and the corresponding localization lengthj' is still
given by Eq. ~8!, see Appendix B. We will assume tha
j' /a' is not vanishingly small, in which case the VRH h
the 3D character.45

The density of states and localization lengths is all
information we need to calculate the VRH conductivity.
more complicated dependence of the density of statesg(«)
on energy in the case at hand,l . l s , brings about a large
variety of possible transport regimes.

At the lowest temperatures we still have the ES law w
parameterTES given by Eq. ~26!. Due to the exponentia
growth of the longitudinal dielectric constantkx with l @Eq.
~38!#, TES decreases exponentially,TES}exp(2C6l/3ls). This
dependence entails a precipitous drop of2 ln s as a function
of l, as soon asl exceedsl s , see Fig. 2. Such an enhanceme
of the conductivity is due to progressively more efficie
screening of the long-range Coulomb interactions~steeply
increasingkx), which enhances the density of states ins
the Coulomb gap, see Eq.~45!.

The ES law~2! holds until the range of« ’s that contribute
to the VRH transport,4 u«u&(TTES)

1/2, fits inside the para-
bolic part of the Coulomb gap,u«u&«* . For a fixedT!W
this gives the conditionl & l sln(W/T).

At larger l, the unusual linear Coulomb gap~53! leads to
the 2/5 law for the VRH transport@Eq. ~13!#, which we re-
produce below for convenience,

s5s0exp@2~T1 /T!2/5#. ~56!

As emphasized in Sec. II, parameterT1 is impurity indepen-
dent and is, in this sense, universal, see Eq.~14!. This be-
havior leads to the intermediate plateau at the graph in Fig

The range of energies that contributes to the VRH in
2/5-law regime is given by u«u&(T1 /T)2/5T. At l
; l s(W/T)g, where g53/@5(b12)#&0.3, this range be-
comes broader than the Coulomb gap widthD @Eq. ~54!#. At
such and largerl, the Coulomb gap can be neglected, and
VRH begins to follow the usual Mott law@Eq. ~15!#

s5s0exp@2~TM /T!1/4#, ~57!

with parameterTM increasing with l according to TM
}1/gB}( l / l s)

b12. The growingTM leads to exponentially
increasing resistivity, represented by the ascending branc
the curve in Fig. 2. Physically, the suppression of the
conductivity stems from decreasing density of low-ene
states available for transport, just like in conventional dop
semiconductors3,4 or commensurate CDW systems.39

VI. CONCLUSIONS AND COMPARISON WITH
EXPERIMENT

It is widely recognized that interactions must play a s
nificant role in determining the properties of 1D an
quasi-1D conductors, because in such materials the dim
sionless strength of the Coulomb interaction is very lar
r s@1. In the presence of impurities, these systems behav
insulators and do not possess metallic screening. Thus
interactions are both strong and long range. Our main goa
this paper was to understand the effect of such interact
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on the nature of the low-energy charge excitations and t
Ohmic dc transport. To that end we formulated a gene
model of an anisotropic electron system with strong Co
lomb interactions and disorder and presented its theore
analysis. We elucidated the origin of the low-energy cha
excitations in this model and demonstrated that their den
of states possesses a soft Coulomb gap. In 3D case, we f
that the Coulomb gap exhibits a power-law dependence
the energy distance from the Fermi level. We discussed h
the prefactor and the exponents of this power law vary a
function of the impurity concentration and other paramet
of the model. We also discussed how the Coulomb gap
manifested in the variable-range hopping conductivity at l
temperatures.

One of the central results of our theory is a nonmonoto
dependence ofs on the impurity concentrationN, as shown
in Fig. 2, where we sketcheds as a function ofl 51/Na'

2 ,
i.e., asN decreases, at fixedT. As clear from that figure and
the discussion in Sec. II, at largeN the conductivity increases
asN decreases, similar to behavior found in metals. In c
trast, at smallN the conductivity drops asN goes down,
which resembles the behavior of doped semiconductors.
intermediateN, our theory predicts the existence of a
N-independent plateau.

Another way to represent these theoretical predictio
common in semiconductor physics, is shown in Fig. 6.
that figure the dependence of the logarithm of conductiv

FIG. 6. Logarithm of the conductivity vs the inverse tempe
ture for several samples labeled in the order of increasingl, i.e.,
sample purity.~a! Curve 1 corresponds tol 5 l 1, l s and displays
only the ES regime. The higher-T activation regime is beyond the
limits of the graph. Curve 2 is forl 5 l 2* l s , and so the both the
activation behavior and the ES law are visible. Curve 3 is fol
5 l 3* l 2. It shows the complete sequence of the transport regim
the activation, Mott, 2/5, and ES laws. Curve 4 depicts the beha
of a sample with an impurity concentration another notch low
than that of sample 3. In panel~a! it goes through the activation an
the Mott regimes. In panel~b! that covers considerably lowerT,
curve 4 also exhibits the 2/5 law, followed by the ES law. The 2
law is shown by the solid line along the lower edge of the sha
region. The curves can skim along this line but cannot cross it.
higher the sample purity the lower the temperature at which
sample starts to exhibit the 2/5 law but also the wider the rang
T over which this law persists. Curve 5 depicts the casel @ l s where
any kind of VRH transport corresponds to Ohmic resistances hig
than the experimental measurement limit, so that only the activa
transport can be observed.
3-12
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on the inverse temperature is depicted for a series
samples, each with fixedN. An unusual circumstance illus
trated by Fig. 6 is the crossing of the curves that corresp
to different samples. In Fig. 6~a! we show that up to two
crossing points may exist between one curve that co
sponds tol , l s ~curve 2! and another curve forl . l s ~curve
4!. The higher-T crossing occurs when the curve 4 go
through the activation regime, the lower-T one—when it ex-
hibits the Mott VRH. The dirtier (l , l s) sample obeys the ES
behavior in both instances. Another property we tried to e
phasize in Fig. 6 is the role of the 2/5 law as the upper bo
of the conductivity regardless of the sample purity. F
samples with low impurity concentration the 2/5 law is al
the envelope curve, see Fig. 6~b!.

Let us now turn to the experimental situation. The tra
port behavior of a number of organic compounds, includ
TMTSF-DMTCNQ, TTF-TCNQ, and NMe-4-MePy
(TCNQ)2, is indeed in a qualitative agreement with o
theory. It should be clarified that such materials form CD
phases that in addition to the usual 2kF periodicity, have an
appreciable or, in some cases, even predominant 4kF har-
monics. The latter is considered the evidence for the str
Coulomb interaction,11 and so is precisely the case we stu
ied in this paper.

In the experiments of Zuppiroliet al.50,35 the transport in
the aforementioned compounds was studied as a functio
defect concentration, which was variedin situ by irradiation
of samples by high-energy particles. Admittedly, the nat
of the such defects is not known with certainty. Some s
gestions in the literature include atomic displacements, b
ken bonds, polymer cross linking, and charged radicals
the same time, the effect of the irradiation on transport se
not to depend much on the type of particles used~x rays,
neutrons, or electrons! and instead to correlate primarily wit
the total absorbed energy.35 This fact is interpreted as evi
dence that microscopically different defects influence
transport in electron crystals in a similar way, so long as th
act as strong localized pinning centers. Under this assu
tion, it is legitimate to compare the data from the irradiati
experiments with our theory even though so far we assum
that defects are created by charged acceptors~see Sec. I!. We
do so in some detail below.

In Fig. 7 we show an extensive set of data on transpor
irradiated TMTSF-DMTCNQ that we assembled by digiti
ing Fig. 2 of a review paper by Zuppiroli,35 and original
references therein. Apparently, some data series in this fi
represent the same sample with successively increasin
diation dose, and some correspond to physically differ
specimens. For simplicity, we refer to all of them as differe
samples. The percentage labels on the plot are the estim
of the molar concentrations of defectsc quoted by the ex-
perimentalists. The points on thec50 trace are from an
unirradiated sample.

As shown in Fig. 7, the data for the two most disorder
samples can be successfully fitted to the activation law
the next two samples—to the ES formula. This transit
from the activation to the ES law with increasing disorder
in agreement with our theory~cf. curves 1 and 2 in Fig. 6!.
The obtained fit parametersEA andTES are given in Table II.
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Both EA andTES scale roughly linearlyc, in agreement with
Eqs. ~11! and ~9!. From Eq.~10! we deduce thatk lc5ka
;1 nm, which has the correct order of magnitude~assuming
k;1). One should keep in mind here that the absolute nu
bers for c were obtained by the authors of Ref. 51 usi
certain arguable assumptions. In our opinion, the sca
with c may be more reliable than the absolute values quo
because~if no annealing occurs! the relative magnitude ofc
should scale linearly with the irradiation time, known to e
perimentalists without any fitting parameters. Combini
Eqs. ~9! and ~11! we further deduce thata' /j' and l /jx
ratios are some modest numbers less than ten, as ma
expected from Eqs.~25! and ~8!.

As a final remark on high-disorder samples, we wou
like to mention that the scaling of the longitudinal dielectr
constantkx with the defect concentration~irradiation time!
consistent with Eq.~22! was reported in a separate set
experiments on Qn~TCNQ! by Janossyet al.52 Together with
the transport data, this makes a compelling case for the
lidity of the metallic-rod~interrupted-strand! model for or-
ganic electron crystals withl ! l s . For such systems we ca
claim a semiquantitative agreement with the experiment.

Let us now turn to the conductivity of weakly damage
samples.35 As one can see from Fig. 7 they show metal
behavior at highT, a conductivity maximum at the Peierl
temperature of about 42 K, and a decrease ins, i.e., the

FIG. 7. Low-temperature conductivity of TMTSF-DMTCNQ
samples damaged by x-ray radiation. The dots onc>1.9% andc
<0.35% curves were generated by digitizing the experimental d
in Fig. 1 of Ref. 51 and Fig. 2 of Ref. 35, respectively. The p
centages stand for the defect concentrations quoted in those pa
The solid line through the 6% and 3.5% data are the best fits to
activation; through 2.3% and 1.9%—to the ES law. In both ca
the prefactors (sA and s0) were taken to beT independent. The
thin line through the 0% data~unirradiated sample! is the best fit to
the Mott law based on theT,20 K points.

TABLE II. Fitting parameters for data displayed in Fig. 7.

Quoted defect concentrationc ~%! TES ~K! EA ~K!

;6 900
3.5 380
2.3 2800
1.9 3700
3-13
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semiconducting behavior, at lowerT. As T drops by a factor
of 2 or so below the Peierls temperature, the decreases
with 1/T becomes considerably more gentle than an act
tion law. One cannot help noticing a similarity between t
behavior ofc51.9%,0.35%, and 0% samples in Fig. 7 a
curves 1, 3, and 4, respectively, in Fig. 6. There is also
unambiguous evidence for the existence of the crossing p
between, e.g.,c50% andc'1.2% traces atT521 K ~see
below!. However, an attempt to fit thec50% data to the
Mott law is not particularly successful, see Fig. 7. Therefo
we only wish to emphasize a qualitative agreement with
prediction that for a fixedT, the conductivity of ‘‘clean’’ and
‘‘dirty’’ samples should show opposite trends, see Figs. 2 a
6. Indeed, the conductivity of the low-disorder samplesc
<0.35%) increases with the radiation dose in contrast to
behavior shown by the high-disorder samples (c>1.9%)
where it decreases. In fact, another experiment showed
contrasting behavior in a great detail. In that experimen51

ln s was measured at the fixed temperature ofT521 K,
while defect concentration was varied essentially conti
ously over the range of 0%,c,2.5%. It was found thats
initially increases by two orders of magnitude, reache
maximum, and then drops by five orders of magnitude a
function ofc. Overall, this is in a qualitative agreement wi
Fig. 2 except instead of the well-defined 2/5 plateau, ls
shows only a broad maximum. Similar features are dem
strated also by TTF-TCNQ and NMe-4-MePy~TCNQ! 2, see
Fig. 1 in Ref. 50, and Figs. 11 and 12 in Ref. 35. We co
clude that for low-disorder CDW organics our theory agre
with experiment in some gross qualitative features. T
quantitative agreement cannot be verified because the
namical range of measured conductivities is too narrow. F
ther low-temperature experiments are desired to clarify
situation and to prove or disprove the existence of the
law.

Let us now switch to inorganic CDW. Several commen
are in order. The electron-electron interactions in these
terials are also very strong,10,53 r s;100. However, inorganic
CDW are predominantly 2kF , and there is an ample ev
dence for the important role of the electron-phonon coupl
in the CDW dynamics. This coupling can lead to an enhan
ment of the electron effective mass49,10 that would result in a
short localization length. If the mass enhancement is ind
large, the VRH transport should be observable only in ma
rials with short hopping distances, i.e., large impurity co
centrations. Examples include highly doped bronzes34 and
perhaps, the Pt-chain compound KCP.54,55From this perspec-
tive, the reports of a VRH-like transport in a relatively pu
samples of TaS3 @Refs. 56 and 57# and blue bronze@Refs. 58
and 59# are puzzling and require further investigations.

Finally, let us comment on another broad class
quasi-1D systems, conducting polymers. In comparison
CDW, polymers have a much higher degree of structural
order and a complex morphology that depends on the pr
ration method. Typical samples contain a mixture of crys
line and amorphous regions, with the correlation length60 of
the order of 10 nm. In the undoped state polymers are c
mensurate CDW semiconductors with a Peierls-Mott ene
gap2 ;1 eV. Doping shifts these systems away from co
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mensurability point and suppresses the gap but it is o
inhomogeneous and is an additional source of disorder
low and moderate doping theT dependence of the conduc
tivity often resembles ES and/or Mott VRH laws, see a sh
review in Ref. 37. A systematic study of the VRH condu
tivity dependence on doping has been attempted by Ales
et al.61 In those experiments doping of poly~3,4-
ethilenedioxythiophene/poly~sterenesulfonate! ~PEDT/PSS!
samples was varied by controlling the pH of the solution
the sample preparation stage. It was observed that atpH
,4 the VRH exponentl @Eq. ~17!# was close to 0.5 and
TVRH decreased with pH, while at largerpH, l was close to
0.452/5 andTVRH did not depend onpH. This resembles the
behavior that follows from our theory, provided the conce
tration of the pinning centers decreases withpH. We leave
the tasks of extending our theory to the case of conduc
polymers and explaining these intriguing experimental
sults for future investigations.
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APPENDIX A: DIELECTRIC FUNCTION AND
ELASTICITY IN A CLEAN QUASI-1D ELECTRON

CRYSTAL

In this section we derive expressions for the elas
moduli and the dielectric function of a pure crystal.

Following the literature on interacting 1D electro
systems16 and CDW,49 we describe dynamics of electrons o
i th chain by a bosonic phase fieldw i(x,t). The long-
wavelength components of electron densityni is related tow i
by ni5]xw i /2p. The elasticity theory of the system can b
formulated by identifying the elastic displacementu with
(2p/a)w and taking the continuum limit. Neglecting wea
interchain tunneling and dynamical effects we choose
starting effective HamiltonianH in the form

H5E dx@H01HC#, ~A1!

H05
1

2
Cx

0(
i

ni
21(

i j
Ji j cos~w i2w j !, ~A2!

HC5
1

2 (
i j

E dxdx8ni~x!Ui j ~x2x8!nj~x8!. ~A3!

Let us briefly describe the notations here. The Hamiltonia
split into the short-range (H0) and the long-range Coulom
(HC) parts.Ji j represents the Coulomb coupling between
CDW modulations of electron density on chainsi andj. Cx

0 is
the charge compressibility of a single isolated chain. In
3-14
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large-r s 1D system Cx
0 is dominated by the exchange

correlation effects, leading to62

Cx
0;2

2e2

k
ln

a

R
, ~A4!

where R is the characteristic radius of the electron cha
form factor in the transverse direction, i.e., the ‘‘radius’’
the chain. In most physical realizations, we expectR!a and
negative Cx

0 . The positivity of the elastic modulus of th
system, required for thermodynamic stability, is recove
once we take into account the long-range partHC of the
interaction energy, parametrized by the kernelsUi j . Ui j is
defined as the bare Coulomb kernelU0(r )5e2/kr convo-
luted with the single-chain form factorsF, e.g., F(q')
5exp(2q'

2R2).
We are interested in a linear response where the cosin

Eq. ~A2! can be expanded inw thereupon the effective
Hamiltonian becomes quadratic. If an external electrost
potential Ṽext(q) acts on the system, the total equilibriu
potential Ṽ(q) will in general contain Fourier harmonic
with wave vectorsq1G, whereG are the reciprocal vector
of the 2D lattice formed by the transverse coordinates of
centers of the chains. We define the dielectric functione(q)
of the system as the ratioṼext(q)/Ṽ(q) for q in the Brillouin
zone of this lattice. Via standard algebraic manipulations
the reciprocal space we arrive at

e~q!5k1
4pe2

a'
2

qx
2

q2

1

Bx~q!qx
21B'q'

2
, ~A5!

Bx~q!5Cx
01

4pe2

ka'
2 (

GÞ0

F2~G!

qx
21~q'1G!2

, ~A6!

B'54p2a'
2 (

j
Ji j . ~A7!

In the limit qx!a21, q'!a'
21 we obtain Eq.~36! repro-

duced below for convenience,

e~q!5k1
qx

2

q2

kr D
22

qx
21aq'

2
. ~A8!

Here r D5(Cxk/4pe2)1/2a' is the Thomas-Fermi screenin
radius,Cx.0 is the effective charge compressibility of th
system,

Cx5Cx
01

4pe2

ka'
2 (

GÞ0

F2~G!

G2
;

2e2

k
ln

a'

a
, ~A9!

and a5B' /Cx is the dimensionless anisotropy paramet
Let us now discuss some consequences of Eq.~A8!.

~i! The dielectric function has the same form as
quasi-1D systems with smallr s ~see, e.g., Ref. 48!.

~ii ! The screening radiusr D is of the order of the inter-
chain separationa' . Therefore, Brazovskii and Matveeen
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ko’s results27 for the soliton energyW and the soliton length
l s remain qualitatively correct63 for high r s provided we use
r D;a' .

~iii ! The interaction energyU(r ) of two pointlike test
charges separated by a large distancer can be calculated by
the Fourier inversion of

Ũ~q!5
4pe2

e~q!q2
. ~A10!

For ax21r'
2 @r D

2 one finds~cf. Ref. 27!

U~r !.
e2

2kuxu
expS 2

1

2r D

r'
2

Aax21r'
2 1Aauxu D .

~A11!

The potentialU(r ) is not exponentially small only within the
paraboloid r'

2 &Aar Duxu @cf. Eq. ~30!#. At the surface of
such a paraboloid we haver'!Aauxu and U(r ) acquires a
simpler form quoted in Sec. V,

U~r !.
e2

2kuxu
expS 2

1

4Aa

r'
2

r Duxu D . ~A12!

~iv! Finally, the effective longitudinal and transverse ela
tic moduli of the system are given by

Yx5
Cx

a2a'
2

;
e2

ka2a'
2

, ~A13!

Y'5aYx . ~A14!

APPENDIX B: TUNNELING IN A 3D CRYSTAL WITH A
LOW IMPURITY CONCENTRATION

The localization lengthsj' andjx needed for calculation
of the VRH transport are determined by long-distance t
neling of charge excitations. The problem of tunneling
nontrivial because a broad spectrum of charge excitati
exists. Leaving more detailed investigations for future wo
we concentrate on two possible tunneling mechanisms:
electronlike quasiparticles and by many-body excitations,
2p solitons.

In the quasiparticle mechanism the charge is carried b
single electron while all other electrons remain unperturb
in their quantum ground states. The rational for examin
this mechanism is its minimal possible tunneling mass. T
problem of calculatingjx and j' reduces to the quantum
mechanics of a single particle in a fixed external potent
Clearly, the optimal tunneling path should go through t
interstitial positions where the energy barrier is the lowest
is convenient then to formulate the problem as a problem
a lattice of such interstitial positions. The relevant variab
are the on-site energies and the hopping matrix eleme
The on-site energies are all equal to« int;e2/ka. The hop-
ping terms for the interchain tunneling,t' , are determined
by the band structure in the case of tunneling inside a che
cally synthesized materials. In the case of tunneling betw
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distant 1D conductorst'}exp(2a' /aB). The hopping matrix
element for tunneling along the chain,tx , can be estimated
straightforwardly, with the resulttx5« intexp(2C7Ar s), C7
;1. In the absence of impurities, the problem is reduced
the propagation through a periodic lattice. The eigenstate
that model are labeled by wave vectorsk, according to the
tight-binding dispersion relation

« tb~k!5« int22txcos~kxa'!22t'@cos~kya'!1cos~kza'!#.

Below the band edge«5« int22tx24t' , the eigenstates ar
exponentially decaying with distance. The corresponding
calization ~decay! lengths can be related to the imagina
parts of the complexk solution of the equation« tb(k)5«. In
the case of interest,«!« int ; t' ,tx!« int , we obtain

jx
q5

a

ln~« int /2tx!
;

a

Ar s

, ~B1!

j'
q 5

a'

ln~« int /2t'!
, ~B2!

where the superscriptq stands for ‘‘quasiparticle.’’ Although
Eq. ~B2! was derived for a clean system, it is clear th
impurity do not affect this result unless present in gigan
concentrations (l;a). Indeed, an individual impurity can
modify the local on-site energy by at most a numerical f
tor, while j'(x) depend on the on-site energy only weak
logarithmically. In principle, impurity clusters with atypi
cally low on-site energies, resonant with«, do exist but as
well known from the analysis of the resonant tunneling pro
lem in random systems, such events are exponentially
and do not contribute to the bulk localization length in a
appreciable manner.

Let us now turn to the soliton mechanism, we attempt
profit from the fact that in the bulk, the soliton is the char
excitation of the lowest possible energy, so that the ene
barrier could perhaps be lower and the tunneling more ef
tive. However, in the case of interchain tunneling, this is n
the case. Indeed, the direct tunneling of a soliton to a dif
ent chain is impossible because the soliton is a compo
many-body excitation. The closest to the interchain soli
tunneling that one can imagine is a two-stage process, wh
one electron first tunnels to the adjacent chain, and then
the second stage, it pushes away other electrons in the re
of length l s to form a soliton. Since the initial energy barrie
is still « int and the charge spreading only increases the
neling action, it is clear that such a contrived process off
no advantage compared to the simple one-stage quasipa
mechanism. Therefore,j' is determined by the latter an
coincides withj'

q , leading to Eq.~8!. Note that for the case
of distantchains wheret';exp(2a' /aB), the correct limit-
ing resultj'5aB is recovered.

In contrast, for the tunneling along the chain the solit
mechanism is the winner. Consider first the longitudinal tu
neling of a soliton in the absence of impurities. Employi
the usual imaginary-time picture, the action for tunneli
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over a distancex@ l s can be estimated as the product of t
energy barrierW and the tunneling timet;x/u. Here u,
given by

u5S Cx

maD
1/2

;
e2

k\

1

Ar s

, ~B3!

is the sound velocity.64 The tunneling amplitude is of the
order of exp(2Wx/\u). Using W;e2/k l s , we arrive at the
estimate of the localization length as follows:

jx
s;

l s

Ar s

~ l 5`!, ~B4!

where the superscripts stands for ‘‘soliton.’’ Clearly, jx
s

@jx
q , so that the soliton mechanism dominates the long

dinal tunneling. To account for the dilute impurities, w
should add to the above expression for the action an e
term (x/ l )@\Ar sln(ls/a)#. Here the factor (x/ l ) is the average
number of impurities on the tunneling path of lengthx and
the expression inside the square brackets is the action
for compactification of the chargee from the lengthl s to
lengtha and spreading it back during the tunneling throu
each impurity. In this manner, we obtain a corrected expr
sion for jx , which coincides with Eq.~55!.

APPENDIX C: DIMENSIONAL ENERGY ESTIMATES FOR
THE COLLECTIVE PINNING

In this appendix we use the ideas of collective pinning
derive the growth of elastic distortions in a quasi-1D crys
pinned by strong dilute impurities. We also derive the es
mates of the corresponding gain in the pinning energy d
sity.

We start by reformulating the argument leading to E
~33! in the language conventional in the literature devoted
collective pinning.19 To do so we note that since the ener
of a given soliton dipoleEs depends on the background ela
tic displacement fieldū, each impurity exerts a forcef
52]Es /]ū;W/a on the crystal. The long-range variation
of ū appear in response to such random forces. LetDu(D)
be a characteristic variation ofū over a distanceD in the
transverse direction and letX be a typical distance ove
which a variation of the same order in thex direction builds
up. Our next step is to estimate the total energyE of a vol-
ume
V5X3D3D ~relative to the energy of a pristine crystal!.

The energy consists of elastic, Coulomb, and pinn
parts,

E5Eel1EC1Epin. ~C1!

In its turn, Eel is the sum of the longitudinal and transver
terms,

Eel;YxS Du

X D 2

V1Y'S Du

D D 2

V. ~C2!
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The Coulomb energy is of the order ofŨ(qx ,q')r2V, where
Ũ(q)54pe2/kq2 is the Coulomb kernel,qx51/X, q'

51/D are the characteristic wave vectors involved,r
5en]xu;enDu/X is the charge density associated with t
londitudinal compression, andn51/aa'

2 is the average elec
tron concentration. Below we show thatD!X, so thatq'

@qx , Ũ(q);e2D2/k, and finally,

EC;
e2

k

D4

X S Du

aa'
2 D 2

. ~C3!

The pinning energy can be estimated asEpin;2Du( j f j ,
where f j;W/a is the force exerted on the lattice byj th
impurity. The average number of impurities in the volumeV
is Ni5NV and f j have random signs; hence,Epin;
2(W/a)DuANi or

Epin;2WS Du

a D S D

a'
D S X

l D 1/2

. ~C4!

Combining Eqs.~A13! and ~C2!–~C4!, we arrive at

E5
W

a S Du

a'
D 2S aX1

D4

Xa'
2 D 2WS Du

a D S D

a'
D S X

l D 1/2

.

~C5!

X andDu can now be found by optimizingE for a fixedD.
Not surprisingly, we find thatX and D are related by the
defining equation~30! of the paraboloid introduced in Sec
V A ~for r D;a' case!,
od

-

e

ey

.

a-
a
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D2

a'Aa
. ~C6!

Such a paraboloid is an invariable feature of the elastic
sponse of the quasi-1D crystal to external forces. What
surprising, however is thatDu2;( l s / l )a2 is small and does
not depend onD, at odds with Eq.~32!. The resolution of
this contradiction comes from a realization that whatDu(D)
really represents is the elastic distortion due to the adj
ment of the crystal on a single scaleD. In fact, there is a
hierarchy of smaller scalesD,D/2,D/4, . . . ,r'

min , on which
adjustments are approximately independent. The correc
timate of Du, Eq. ~32!, is obtained once we sum over a
such scales,Du2;Ma2l s / l , where M; ln(D/r'

min) is the
number of scales. Thereby, we recover Eq.~32! and as an
additional benefit, we find the expression for the energy
the collective pinning,

E;2WS Du

a D 2S D

a'
D 2

. ~C7!

Let us define the pinning energy density byEpin5E/XD2.
Using Eqs.~28!, ~33!, ~C6!, and~C7! we obtain the estimate
of Epin at the Larkin scale as given by Eq.~34!. As clear from
this derivation, both Eqs.~32! and ~34! are essentially the
lowest-order perturbation theory results. It is generally e
pected that the growth ofDu2 with r slows down beyond the
Larkin length65 and that adjustments on larger scales do
lead to any substantial increase in the pinning energy den
In this case, Eq.~34! is the final estimate ofEpin in the ther-
modynamics limit.
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