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Variable-range hopping in quasi-one-dimensional electron crystals
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We study the effect of impurities on the ground state and the low-temperature Ohmic dc transport in a
one-dimensional chain and quasi-one-dimensional systems of many parallel chains. We assume that strong
interactions impose a short-range periodicity of the electron positions. The long-range order of such an electron
crystal (or equivalently, a #: charge-density wayds destroyed by impurities, which act as strong pinning
centers. We show that a three-dimensional array of chains behaves differently at large and at small impurity
concentration\. At largeN, impurities divide the chains into metallic rods. Additions or removal of electrons
from such rods correspond to charge excitations whose density of states exhibits a quadratic Coulomb gap. At
low temperatures the conductivity is due to the variable-range hopping of electrons between the rods. It obeys
the Efros-Shklovski(ES) law, — In o~(Tgs/T)¥2 Tgsdecreases a8 decreases, which leads to an exponential
growth of 0. WhenN is small, the metallic-rodalso known as “interrupted-strang’picture of the ground
state survives only in the form of rare clusters of atypically short rods. They are the source of low-energy
charge excitations. In the bulk of the crystal the charge excitations are gapped and the electron crystal is pinned
collectively. A strongly anisotropic screening of the Coulomb potential produces an unconventional linear in
energy Coulomb gap and an unusual law of the variable-range hopping conduetivity~(T,/T)?>. The
parametefT; remains constant over a finite range of impurity concentrations. At smidligre 2/5 law is
replaced by the Mott laws-In o~(T, /T)¥* In the Mott regime the conductivity gets suppressedNages
down. Thus, the overall dependenceoobn N is nonmonotonic. In the case of a single chain, the metallic-rod
picture applies at alN. The low-temperature conductivity obeys the ES law, with log corrections, and de-
creases exponentially witN. Our theory provides a qualitative explanation for the transport properties of
organic charge-density wave compounds of TCNQ family.
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[. INTRODUCTION apply to a number of systems, both naturally occurring and
man-made. Prototypical 1D examples are individual quan-
In recent years electron transport in quasi-onetum wires on carbon nanotubes. Stripe phdSeguantum
dimensional(quasi-1D systems moved into focus of both wire arrays in heterojunctiorfscarbon nanotube filmSand
fundamental and applied research. Quantum wires, nanotulzomic wires on silicon surfaceare two-dimensional2D)
ropes, conducting molecules, etc., are being examined axamples. In three dimensio8D), an important and well
possible elements of miniature electronics devices. In paraltudied class of quasi-1D compounds is charge-density
lel, discovery of quasi-1D structures termed “stripes” in cor- waves®—12(CDW).
related electron systentBigh-T. cuprates, quantum Hall de- To characterize the strength of Coulomb correlations in a
vices, eto), invigorates efforts to understand unconventionalquasi-1D system we define the dimensionless parameter
phases in two and three dimensions starting from models oEa/2ag, wherea is the average distance between electrons
weakly coupled 1D chains. along the chain direction anak=7%2«/mé€ is the effective
Experimentally, the low-temperature conductivigyT) Bohr radius. The latter is expressed in terms of the dielectric
of quasi-1D systems is often of the insulating type. Its tem-constant of the medium and the electron band mass In
perature dependence gives information about the nature @iractically all known realizations of 1D and quasi-1D sys-
charge excitations. For example, the activated dependencéms,rg exceeds unity, often by orders of magnitude. Below
—In o(T)«1/T indicates a gap in the spectrum. In quasi-1Dwe assume that;>1. Under this condition the dynamics of
systems such a gap commonly arises from the Mott-Peierlslectrons can be treated semiclassically. Neglecting quantum
mechanisnt;? where the commensurability with the host lat- fluctuations altogether for a moment, we arrive at the picture
tice is crucial. Yet there are many 1D and quasi-1D systemsf electrons forming a classical 1D Wigner crystal in the case
where commensurability plays a negligible role. In this situ-of a single chainFig. 1(a)] or an array of such crystals in 2D
ation the jellium modelan electron gas on a positive com- and 3D[Figs. 1b) and(c)], with the period along the chain
pensating backgrounds a good approximation. This is the equal toa. Formation of the crystal enables the electrons to
kind of systems we study in this paper. We will show thatminimize the energy of their mutual Coulomb repulsion. In
their low-temperature transport is dominated by a variableorder to correctly assess the role of quantum fluctuations
range hoppingVRH), which leads to a slower than expo- (zero-point motioh in such crystals, one has to take into
nential T dependenc¥ of the conductivity. Our theory may account two circumstances. First is the unavoidable presence
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l possible in the presence of a finite electric field, in particular,

© 7 creep and sliding. In the present context, such mechanisms
a) '_’_'1"_’_’_'"_’"_'_’_’_'_""'_’_’_’ would involve a collective motion of large numbers of elec-
trons that overcome pinning barriers either by thermal acti-

b) | l l vation or by quantum tunneling. It has been understood,

| I | however, on some qualitative lev€lthat if compact charge
| [ | | excitations are allowed by the topology of the system, then
I I I I such excitations would dominate the response at low tem-
| | | | peratures and would give rise to a nonz€&€hmic conduc-
| | | [ tivity at T>0. Below we will demonstrate that this is indeed
the case in the electron crystals. We clarify the nature of the
l, I compact low-energy charge excitations and propose a theory
- |+ of their low-temperature Ohmic transport that consistently
<) | addresses the role of long-range Coulomb interacti®ns.
+| — In this paper we are focused exclusively on the charge
| transport and ignore any effects related to the spin degree of
+| — - | + freedom. This is legitimate for;>1 because electron are
| I tightly localized at the sites of the classical Wigner crystal
l and the energy of their spin-dependent exchange interaction
is exponentially small.

FIG. 1. Pinned 1D and quasi-1D systems on a uniformly e will assume that impurities that pin the crystal are
charged positive background. Dots and tick marks label the posistrong enough to enforce preferred order of electrons nearby
tions of elgctrons and impurities, respectivels _1D crystal._The or, in the CDW terminology, the preferred phase. The rela-
+ and — signs denote the charge of the metallic rc_)ds,_ which have[ion between the phasg and the elastic displacement of the
an average length of (b) An array of decoupled chains in the case crystalu is ¢=—(2m/a)u. In Fig. 1 impurities are shown

|<I5. () An array of coupled chains for the Cab?ls' The pre- by vertical tick marks and it is assumed that they interact
ferred arrangement of the electrons on neighboring chains may de-. . . -
.With nearby electrons by a repulsive potential comparable in
pend on the exact geometry of the system. In order not to compli- itude to the Coulomb int fi & bet
cate the drawing, we adopted the convention where the ground staffagnitude to the Louiom m.erac !on ene. .yKe.l N W.e.en
earest electrons on the chain. This condition is sufficient to

corresponds to the same horizontal positions of electrons on ea . . o
chain. The interchain interactions try to diminish the deviations€Nsure that the impurity to act as a strong pinning center. An

from this ground state leading to dipolar distortions of a character€X@mple of such an impurity is an acceptor residing on the
istic lengthl around impurities. chain. In the ground state one electron is bound to the accep-

tor and the electron-acceptor compl@f total chargee) is

of random impurities that act as pinning centers. Second is huilt into the crystal, i.e., it is positioned squarely in between
finite interchain couplingin 2D and 3D systemsEither one  the two closest other electrons. One can say that the crystal
is sufficient to make the quantum fluctuations of electroncontains a plastic deformation—a vacancy bound to the
positions bounded. For example, in the case of a singl@egatively charged acceptor. Overall, the region around the
chain, the slow growth of the zero-point motion amplitudeimpurity is electrically neutral.
with distancé®!*is terminated at the nearest strong pinning  In the case of a single chaji¥ig. 1(a)], strong impurities
center. In higher dimensions, the zero-point motion ampli-divide the crystal into segments, which behave as individual
tude is finite even without impurities because of the inter-metallic rods. A charge can easily spread over the length of
chain interaction. In fact, renormalization-group each rod, while it has to tunnel through an impurity to move
approachés indicate that the Wigner crystal or, equiva- to a neighboring rod. Each rod contains an integer number of
lently, 4k CDW is the true ground state of a system of electrons but the charge of the positive background is ran-
weakly coupled chains starting already from rather modesdtom because of the assumed incommensurability. In the
rs. In all situations, the net effect of quantum fluctuations isground state the distribution of the rods’ total charges, elec-
to slightly renormalize the bare impurity strength and/or bargrons plus background, is uniform betweere/2 and +e/2
interchain coupling. The calculation of renormalized param<{¢ is between— 7 and 7). Larger charges cost more Cou-
eters is possible via the standard bosonization techrifjue.lomb energy and correspond to charge excitations above the
For the treatment of, e.g., 1D case, one can consult Refground state. Transitions between ground and excited states
13,14,17 and 18. Below such a renormalization is assumed teccur by discrete changes in the number of electrons on the
be taken into account and it is not discussed further. Hencegods.
forth we will often refer to the systems we studyedsctron Let ¢ be the minimal by absolute value change in the
crystals self-energy of a given rod due to change of its charge by one

Due to impurity pinning, at zero temperature and in theunit. By the self-energy we mean the Coulomb energy of
limit of small electric field(Ohmic regimeé the conductivity — interaction among the electrons on the given rod, charges on
of the electron crystal vanishes. This behavior is common foall other rods held fixed. We adopt the convention that the
all pinned systems. It motivated a large body of wd¥  chemical potentialFermi energy corresponds to the zero
devoted to mechanisms ofonlinear transport that become energy. In this case; is hon-negativgnonpositive for ad-
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dition (subtraction of the electron. We denote g(e) the  ~1074 in K,PtCN),Br, 5*3(H,0) (KCP) and in CDW or-
distribution function ofe averaged over impurity positions. ganics,a~ 102 in blue bronze®*

We refer togg as the bare density of states of charge excita-" At jow temperatures all solitons are bound to acceptors
tions. In Sec. lll we show that random distribution of chargesitn large binding energies comparable to the creation en-
of the rods creates a finigg(0). Small e come from rods  grgy of a free solitoWW~e?/«l,. In other words, there is a
with net charge's close tae/2. These rods make possible a |arge energy gap for creating charge excitations. Neverthe-
VRH conductivity at low temperatures. _ ~less, as shown in Sec. V, finitg; at zero energy does exist in

Consider now a 3D system of parallel chains. Impuritiesihe casd > | as well. It comes from rare clusters of several
with concentratiorN divide the chains into segments of av- closely spaced impurities. Such clusters can be viewed as
erage lengti = 1/Nal , wherea? is the area per chain in microscopic inclusions of the<|, phase(wheregs is large.

y-z plane(we assume the chains to be along xrdirection. In all cases outlined abovgg is not yet the actual density
We get two cases distinguished by the relative importance abf states of charge excitations. This is because the long-range
interchain interactions. In the first cagég. 1(b)], the chains  Coulomb interaction of charges at distant sites is not in-
are far enough from each other and/or the impurity concencjyded in the definition ofjz. We denote the true density of
tration is large enough so that the interchain coupling ovektates of charge excitations gye). Based on previous stud-
the length~1I of a typical segment can be neglected in com-jes of other insulating systems, such as doped
parison with its longitudinal compression energy. As a resultsemiconductoré®* we expect that long-range interactions
the phases of different segments are uncorrelated and ﬂgﬁénerate a Coulomb gap (). This gap is soft, in the
system again behaves as a collection of metallic rods. Polakense thag(¢) vanishes only at the Fermi level=0. Away
izability of the rods generates a strongly anisotropic dieleCfrom the Fermi levelg(e) increases in a power-law fashion
tric constant. Like for a single chain, in the ground state ofyntil it saturates at the bare valgg at large enougle (cf.

the system, a finite bare density of statgsat zero energy Ref. 4 and Fig. 10.4 thereinNote thatg is different from the
originates from random background charges of the rodsgpermodynamical density of states. The latter does not vanish
Again this leads to the VRH at low temperatures. despite Coulomb correlations, see Refs. 4 and 29.

In the other casgFig. 1(c)], the concentration of impuri- In macroscopicallyisotropic electron systems the func-
ties is small and chains are strongly interlocked. The elastigonal form of the Coulomb gap depends on the number of
distortions are concentrated in small regions around indigimensions. The density of states behavesZis 3D and as
vidual impurities (see below. Away from impurities the || jn 2D. In all dimensions, however, this leads to the ES

crystal possesses a good 3D order. The true long-range ordghy  for the VRH conductivity in isotropic doped
is however absent because of the cumulative effect of Smagemiconductoréf,"“

elastic distortions in a large volume. The elastic displacement

field u(r) of the electron crystal lattice away from impurities o=oeexd — (Tes/T)Y3, (2)
gradually varies in space. The length scale where its varia-

tion is of the order ofa (variation in ¢ is of the order of where oy is a prefactor, which has an algebraicdepen-
unity) is referred to as Larkin length. The Larkin length is dence. Parametdrgg is given by

exponentially largé??effectively infinite, because the Cou-

lomb interactions make the crystal very rigid. This will be Tes=C€%/ ké, 3
discussed in more detail in Sec. V.

The region near a typical impurity has the following Where¢ is the (isotropio decay length of localized electron
structure”® On one side of the impurity the chain is com- Statesx is the(isotropig dielectric constant of the semicon-
pressed, which creates an excess negative charge; on the @jictor, andC is a numerical coefficientWe measure tem-
posite side, it is stretched resulting in a positive charge of th@erature in energy units throughout this papén. lightly
same absolute valuee/2. The net charge of such a dipole is doped isotropic semiconductors and & are determined
zero(together with the vacancy of chargee and the accep- Solely by material parameterbinding energy of impurity
tor of chargee). The characteristic length of the distorted States, electron effective mass, band structure). efbere-
region is of the same order as the lenggtof the nonlinear ~ fore, Tes does not depend on the impurity concentration and
topological excitatioff* ~2® of the pure system, them2soli-  EQs.(2) and(3) are in this sense universal.
ton. This is because the magnitude of local distortiongpin ~ In contrast, in this paper we show that in stronglyiso-

are typically comparable in the two cases. The formal defifropic systems the Coulomb gap has, in general, a different
nition of | 5 is?” functional form. Depending ohand other parameters, it may

be either universal or ndi.e., g(¢) and Tgg may contain
factors related to impurity concentratiphese results and
's:aﬂ\/;: @D their consequences for the VRH transport are presented in
the following section.
wherea=Y, /Y,<1 is the dimensionless anisotropy param-
eter andY, andY, are the longitudinal and transverse elastic
moduli of the electron crystal. The elasticity theory of the
crystal will be discussed in more detail in Sec. V. Here we We group our results in the following three sections ac-
just mention thatr varies from material to material, e.gx,  cording to the three cases outlined in the Introduction.

Il. RESULTS
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A. Single chain can be obtained following the excellent discussion in Refs.

In this case, studied in Sec. Ill, the Coulomb interaction is33 and 32. This, however, goes beyond the scope of the

not screened. However, in 1D thexidecay of the Coulomb Present work.

potential is on the borderline between the short- and the

long-range interactions. Consequently, most physical quanti- B. 3D systems with large impurity concentrations
ties differ from their counterparts for the short-range
(screeneflinteraction only by some logarithmic factors. For
example, the density of states of charge excitations exhibits
logarithmic suppressiof?,

This case, formally defined by the inequalgy <I <l is
tudied in Sec. IV. It may be realized in strongly anisotropic
DW compounds such as KCP where the soliton lehgth

large (1@a or so and/or in samples where a relatively high
impurity concentration is created intentionadfty°so thatl is

;! 4) small. Possible non-CDW realizations include arrays of rela-
In(e?/ «l|e|) tively distant 1D conductors, e.g., quantum wires,
nanotubes® or polymers®’
In a first approximation, such a suppression can be disre- As elaborated in Sec. |, impurities divide the system into
garded in the calculation of the VRH transport, namely, onea collection of metallic rods. The finite 3D concentration of
can assume thaf(e) = gg=const. In this approximation one highly polarizable rods results in a large dielectric consfant
arrives at the conventional Mott VREE3 which in 1D coin- along the x axis. The Coulomb interaction is therefore
cides with the ES law of Eq2). Let us denote b)szog the  strongly anisotropic but the Coulomb gap remains parabolic,
value of Tgs that one obtains neglecting the Coulomb gap,d(¢)>&?, as in isotropic systems. Tunneling is anisotropic as
thenTQ~ 1/gg&, . Here&, stands for the localization length Well. The interchain tunneling is accomplished by single-
that determines the asymptotic deday exp(—2x/&) of the  electron-like excitations, which do not perturb charges on the
probability of tunneling of charge-excitations over a large intermediate chains along the tunneling path. In Appendix B
distancex. If the probability of tunneling between nearest We estimate the corresponding transverse localization length

rods is written in the form exp{2s), wheres>1, then tun- ¢ tobe
neling paths with returns can be neglected. In this dgse

9(e)=

=I/s. Using the expression fa& from Ref. 13, we obtain a,
gj_ = 2 ’ (8)
In(e“/kat,)
&~ L )
* rYand(i/a)’ wheret, is the interchain hopping matrix element in the
tight-binding band-structure model. For the IGww/RH con-
. e? - ductivity we again obtain the ES law wiffieg given by
ng:clﬁrs In%%(1/a). (6)
62 af\/r—s | 1/3
In the last equation we absorbed numerical factors into the Tes=Cory g—zln a 9
1

coefficientC,~1.

A similar expression folr X was obtained by Nattermann
et al3! for the model of a disordered Luttinger liquid with
short-range interactions and weak pinning. Our Efsand

HereC, is another numerical factor of the order of unity. We
see that in both Secs. Il A and II B, the ES law looses its

(6) differ from the corresponding results of Ref. 31 by two universality, becaus€gg depends on the impurity concentra-

. _ 2 . . .
logarithmic factors. One of them originates from logarithmic ion N throughl =1/Nai . For a single chaiitSec. Il A) this
charging energy of metallic rod; the other, from the |Oga_depe_nde_nce originates mainly from the dependence_: of the
rithm in the tunneling actios, see also Refs. 13, 18, and 32. localization length¢, onl. In 3D (case B, the full effective

Once the logarithmic Coulomb gap is taken into aCCC,unt,dielectric constant and therefore, the density of states inside
the T dependence of the conductivity can still be written in the Coulomb gap depend dwias well. In both cases, with

the form of an ES laWEq. (2)] but Tes becomes a function decreasingN the temperatur@gg dec_reasgs, whi(;h ata fixed.
of T. as follows: temperature leads to an exponentially increasing conductiv-

ity.
5 T In doped semiconductors similar violations of the univer-
Tee= TOIn e . /les 7) sality of Eq.(2) are known to occur near the metal-insulator
=S KIT(EOS) T transition. In that case, howevdrgg has anoppositedepen-

dence onN. In particular, Tgs vanishes wherN grows and
Note that in the 1D case, the standard derivatifithe VRH  reaches the critical concentratidiSimilarly, previous theo-
law (2) overlooks the role of very resistive hops in someries of the VRH transport in strongly anisotropic systems
exponentially rare places along the chain. A more carefutlealt with gapped, semiconductorlike materi@emmensu-
approach shows® that Eq. (2) and its generalization rate CDW where impurities provided carriet$° so that
through Eq.(7) are valid only if the chain is sufficiently the conductivity was found tgrow with the impurity con-
short The quantitative criterion on the length of the chaincentration. In contrast, our work is devoted to systems,
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—lno | and N dependent. Another difference from Sec. II B is that
the localization lengthé, for the tunneling in the chain di-
rection is also independent of,

Activated

see Sec. V and Appendix B. This leads to a 2/5 law for the
VRH conductivity

FIG. 2. Logarithm of the resistivity as a function of the average o=oeexd — (T,/T)?"], (13
interimpurity distancé=1/Naf at a fixed temperatur€<W. The where parameteF,, given by
ES, 2/5, Mott, and activation laws succeed each other with growing '
l. eria,
T,=C3——— —, (14
which are metallic(sliding) in the absence of impurities. wls &
Therefore, decrease offgg with decreasingN seems does not depend drend is, in this sense, universal. H&g
natural®%4° is yet another numerical coefficient of the order of unity. The
At high temperatures, the conductivity is due to the2/5 law shows up as an intermediate resistivity plateau in
nearest-neighbor hopping. I&dependence is of activated Fig. 2. This universal law for quasi-1D systems withl is
type, an analog of the universal ES law in isotropic systems.
We show in Sec. V that the Coulomb gap affects mainly a
o=oaexl(—EAlT),  I<ls, (10 finite-energy intervals| <A, whereA =gg can be called the
with the activation energy Coulomb gap width. At larger energies, the density of states
of charge excitations coincides with the bare oég)
=g . Sincegg is generated by impurity clusters whose con-
centration diminishes with growingy both gz and A de-
] . crease withl. Eventually, the Coulomb gap becomes more
and the prefactor, proportional to the probability of tun-  narrow than the range of energies around the Fermi level

e2
Ea~— (12)

kl

neling between adjacent rods. responsible for hopping at giveh. At this point the Cou-
lomb gap can be neglected and the 2/5 law is replaced by the
C. 3D systems with small impurity concentration conventional Mott law

As impurity concentration decreases drigecomes larger _ _ 1/4
thanlg, a number of dramatic changes appear in all key o=0ooexd ~ (Tw/T)™, (19
quantities, such as the density of states, the localizatiowhere Ty =C,/ggéyé>, C4~1. As | increases furtherT
length, and the effective dielectric constant. For example, abeing fixed, s decreases because of diminishigg. This
we discuss in Sec. V, the dielectric constant starts to increasgives rise to the ascending branch in Fig. 2. At slicthe
exponentially withl because the polarizability of the crystal electron crystal behaves similar to a gapped insulator where
with I>15 becomes limited not by the lengthof individual  a lower impurity concentration corresponds to a lower carrier
chain segments but by the exponentially large length of Lardensity, and thus, to a higher resistivity.
kin domains. The soaring dielectric constant causes a rapid As | continues to grow, at some point the Mott VRH
drop of the ES parametdizs. In turn, this causes a collapse crosses over to the nearest-neighbor hopping and shortly af-
of the low-temperature resistivity in a narrow intervgsl  ter it becomes smaller than the conductivity due to thermally
=<I¢In(WIT) (see the descending branch of the curve in Figactivated free solitons,

2). Until this point, the notion that our system is opposite to
the conventional semiconductors, so that purer samples have o=opexp(—WIT). (16)

higher conductivities, seems to be working. At even largell, o ceases to depend dnand so the impurity

Ongel ex;:feedslslln(_V\;{D, th_(rahLa\r/lgrlL Iengtth clzan t;]e concentration, see Fig. 2. Note that the activation energies
treated as effectively infinite. The now involves OpSW~e2/KIS [Eq. (16)] andEx~€?/«| [Eq. (11)] in Secs. Il A

between low-energy states separated by distances shortgﬁd B
thanL,. On such distances, the dispersion of the dielectric '
function becomes important. Each pair of low-energy charge
excitations localized on their respective impurity clusters in-

teracts via a strongly anisotropic electrostatic potential, The rich behavior of the conductivity as a function lof
which is not exponentially small only if the vector that con- andT is summarized in the form of a regime diagram in Fig.
nects the two charges is nearly parallel to the chain directior8. The 2/5 law applies in a broad rangeladnd T between
Such an unusual interaction leads to a Coulomb gap that ihe ES and the Mott laws.

linear in energy and independent Nf unlike the previous A convenient way to keep track of all the VRH exponents
case(Sec. IIB,1<lg), where the Coulomb gap is quadratic derived in this paper is provided by E¢L7) below. We

respectively, smoothly match lat 1.

D. Summary of the regimes
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T rods. The rod lengths are distributed randomly around the
average valué Therefore, the background charge of a given
rod, Q=—eXa, is a random number. It can be written as
Q=—e(n+v), wheren is an integer andv is a number
uniformly distributed in the intervat- 1/2<v»<<1/2.

In the ground state of the system each rod contains an
integer numben, of electrons, so that the rod has the total
charge ofg=e(n, —n—v). To find n we use the fact that the
Coulomb self-energy of the rod is equal 48/2C, , where
L C,=«x/[2In(X/a)] is the capacitance of this rod. On the
I [ other hand, the interaction of different rods does not contain
the large logarithm In¢a), and can be neglected in the first
approximation. Thus, the minimization of the total energy of
the system amounts to minimizing the self-energies of the
rods. One can show then that, in the ground state,n, so
that the charges of the rods are uniformly distributed in the

would like to present it in a somewhat more general form, PR
motivated by t?\e following physical reasoningg interval —e/2<q<e/2. Indeed, if this is not true and the

The diagram of Fig. 3 is obtained under the assumptior?_harge of thte gi\t:en roﬁ iq;elz_, ;[hen,ﬂt])y chzrggtﬁciﬂjuga-
that the tunneling in the transverse direction is not negligibl lon symmetry, thére should exist another rod wi € same

(¢, is not too small, so that the VRH has a 3D character. ength and the opposite chargeq. Transferring an electron

However, if the conducting chains are relatively distant fromfrocrjn thekﬂr?;] rodk;[o tlhf seccl)nd onfebv\/(;,\hlowher the total ltlene{ﬁy
each other either alongor z direction or both, this condition and make the absolute values of both charges smaler than

may be violated. Examples of such systems are artificial ar(?/z' .
rays of quantum wirdsand carbon nanotub&sn those sys- Below we useq=—ev and call rods with &v<1/2
tems, the 3D hopping is pushed to very lower temperatureéa,mpty and with—1/2<v<0 occup|gd: We define the energy
while at intermediatd the hopping can be either one or two ©f @ empty stateg(x,v), as the minimum work necessary
dimensional. Generalizing the standard derivation of thd® Pring to it an electron from a distant pure 1D electron
VRH transport* to thed-dimensional hopping and a power- crystal with the same average linear density of electrons

law density of stateg(e)><e*, one obtains the conductivity o2

in the form e(X,v)= _X|n

Activated

~_Mott

FIG. 3. Summary diagram for the transport regimes in a 3D
system. Domains of validity of EEEqQ. (2)], Mott [Eq. (15)], acti-
vated[Egs.(10), and(16)] and 2/5[Eg. (13)] laws are shown.

2 2 e’
a [(1—1/) -V ]=Rln 5 (1—21/)

mt1l (18

—_—. 1
ptd+1 17 This energy is positive and vanishes onlyvat 1/2. On the

é)ther hand, the energy of an occupied state is defined as

: ; ; minus the maximum work necessary to extract electron from
section(Mott, 2/5, and ES lawsby settingu successively to . . .
( y gu y gwls rod to the same distant pure 1D electron crystal. In this

1 2 i he physical situation. For the sak , o : :
0,1, and 2, according to the physical situation. For the sa Case the final result is identical to E(L8) with v— —v.

of completeness, the exponents for otligs in the same . .
P b Apparently, states witjv|=1/2 are exactly at the Fermi

situations are summarized in Table I. Inclusion of all suchI | which tak th f Gintoi
regimes would transform Fig. 3 into a more complicated dia- V€, Which We take as the energy reference pahntoin-

gram, but would not change its general structure, so it Wi”cides with the electron chemical potential of a pure 1D crys-
not b;a shown here or discussed further below ' tal). The low-energy states relevant to VRH transport have

|v|—1/2<1.
Now we can calculate the density of such states. Taking
lil. 1D SYSTEM into account the fact that this rod lengths distributed ac-
In the case of a single chain of electrons on a uniformcording to Poisson statistics, the disorder-averaged bare den-

positive backgroundFig. 1(a)] impurities divide the 1D Sity of states can be written as
electron crystal in separate pieces, which behave as metallic 1 (12 wdx «
E)=— d —exp — +|(E—e(x,v)).
TABLE I. The exponents\. of VRH conductivity[Eg. (17)] in 9s(E) I fo Vfo I F( I ) (E=e(x.v)
the cases of 3D, 2D, and 1D tunneling and a power-law dependent (19

density of stateg)(e) that arises due to 3D Coulomb interactions.
1D tunneling corresponds ® —0.

0'=0'OeX[:[—(TVRH/T))‘], A=

For d=3 one recovers all the regimes discussed prior in thi

With a logarithmic accuracy, we can replace xfaj by
In(I/a). Then we use Eqg18) and(19) to find

Tunneling g=-const g|el goce?
1 €p €0
3D 1/4 2/5 1/2 Os(e)=5—7|1-|1+—|exp ——| |, (20
2¢gl € €
2D 1/3 1/2 3/5
1D 1/2 2/3 3/4 wheree o= e?In(l/a)/kl. We warn the reader that one should

not attribute much significance to the predictions of the
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above formula in the region of high energiesz o, where  electrons, as in the case of a single chain. In this section we
excitations with charges larger thanwill also contribute to  assume that for a typical rod, the energy of its longitudinal
various physical processes. On the other hand, close to thieformation is smaller than the energy of its transverse cou-
Fermi level, fore<eq, only chargee excitations are impor- pling to rods on the neighboring chains. This can be the case
tant, in which case Eq20) is fully adequate, whilegg is  when the periodic potential created by the neighboring
nearly constant, chains is diminished because is larger thana, and/or
when the impurity concentration is large enough. Formally,
K the inequalitya, <l <l needs to be satisfied, whdrgis the
= m- 21 soliton length[Eq. (1)]. Since metallic rods now completely
fill the 3D spacesee Fig. 1b)], they modify the dielectric
For the calculation of the loW- transport, only this constant constant of the system. As in the interrupted-strand m&del,
value is needed. the dielectric constant is anisotropic. Along the chain direc-
As mentioned in Sec. Il, in 1D the (%)-Coulomb inter- tion it has the value of
action creates only marginal effects on the conductivity. If
we neglect them, in the first approximation, then standard ky=k[1+Cs(1/rp)?], (22
Mott's argumertt leads to the VRH that obeys the’? law,
Eq. (2), with Tes=Ty=C1/ggé,, Whereé, is localization
length for tunneling between distant rods. The valug,ois
obtained from the following considerations. Tunneling
through an impurity that separates two adjacent rods can be®
viewed as a process in imaginary time that consists of th&’
following sequence of eventd A unit charge assembles into
a compact soliton just before the impurity in one rod, tunnels U(r) = €
through the impurity, and finally spreads uniformly over the K\/W’
other rod. We assume that the chain is not screened by ex-
ternal metallic gates. Then the tunneling probability can bewhereri:y2+ Z°. In spite of the large dielectric constant,
written in the form exp{-2s), wheres is the dimensionless the Coulomb interaction is long range and thus creates a
action® s~r¥4n%¥1/a). Sinces>1, tunneling paths with Coulomb gap. Using the standard ES argunféfthe fol-
returns can be neglected. Therefore, for electron tunnelingpwing density of states of charge excitations is obtained
over distances>1 the actions should be multiplied by the
number of impurities passed. The average number of such 3
impurities is equal tox/l, which yields the total tunneling g(e)=—
probability Pcexp(—2x/&), with &, given by Eq.(5). With a m
logarithmic accuracy, the effect of the Coulomb gap is to
replacegg by g(e) evaluat((aéj) _at the-characteristic hopping dium only by the presence af, instead ofx. In order to
energye=\TesT, whereTeg is defined by Eq(6). The  cgicylate the VRH conductivity we still have to discuss the
latter result follows from Eqs21) and(5). The final expres-  nneling probability. It is important that E@3) holds only
sion for the parametefes is given by Eq.(7). We briefly 5 ys.| The interaction between charge fluctuations on the
note that in a long enough chain clusters of atypicallysame rod is short range due to screening by neighboring
densely spaced impurities may exist. Tunneling through sucppginst4 Tunneling along thes axis takes place similarly to
segments would cost a higher tunneling action and thereforg,e case of a single chain, but screening of the Coulomb
the overall conductivity would be suppressed. In this papejyieraction leads to smaller action of the order sf

we assume that the chain is sufficiently short so that these Jrdn(l/a). Therefore, for the localization length in the
rare clusters can be neglected, see a comment afte7Eq. direcstion wé get '

Formulas(6) and (7) indicate thatTg5 goes down as im-
purity concentrationN=1/1 decreases. This provides a |
gradual crossover to the metallic behavior in a pure 1D sys- E=—

Js

whererp~a, is the screening length, see Appendix. A, and
Cs~1 is a numerical constaft. Transverse dielectric con-
stants are unaffectea, = «,= . At largel, «, greatly ex-
edsk, which leads to an anisotropic Coulomb interaction
the fornf?

2
(23)

KKy
e

g2, (24

It differs from the conventional formula for an isotropic me-

=_———, (25
tem. S \/r—sln(lla)
IV 3D SYSTEM WITH A LARGE IMPURITY T_he tunneling in they a_nd_z directions is acp_omplished py
CONCENTRATION single-electron-like excitations. The probability of tunneling

decays exponentiallyPcexp(—=2r, /¢/), at large transverse
In this section we consider a quasi-1D system made oflistancesr, . Here ¢, is the transverse localization length
parallel chains which form a periodic array in the transversegiven by Eq.(8) and discussed in more detail in Appendix B.
directions. The chains are pinned by impurity centers, which\e assume thaj, is not vanishingly small compared g,
divide them into metallic rods of average length in which case the VRH has a 3D character and can be cal-
=1/Naf, where af is the cross-sectional area per chain.culated by the percolation approattee Ref. 4, and refer-
The finite-size electron crystals in each rod are either comences thereir™® This calculation differs from the isotropic
pressed or stretched to accommodate an integral number oése by the replacement of the isotropic dielectric constant
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and the isotropic localization length by their geometric Below we show that at sucN the ground state of the elec-

averages over the three spatial directions: tron crystal is determined by an interplay of individual and
collective pinning*®
g2 1 Without impurities the crystal would have a perfect peri-
Tes=Cs——5 NI (26)  odicity and long-range 3D order. Impurities cause elastic dis-
(k“Kx) ™ (6xET) tortions of the lattice. The strongest distortions, of dipolar

type, are localized in the vicinity of impurities, see Sec. | and
Fig. 1(c). Such dipoles have a characteristic dizésame as
free solitong, are well separated from each other, and occupy
only a small fraction of the space. Their creation is advanta-
geous because the associated energy @astic plus Cou-
lomb) is of the order oW~ e/ k|, per impurity, whereas the
V. 3D SYSTEM WITH A SMALL IMPURITY energy gain is a much larger electron-impurity interaction
CONCENTRATION energy —e?/ka. This is the essence of individuétrong
pinning phenomenon, which provides the dominant part of
the pinning energy density. The collectivereak pinning
esults from interaction between the dipoles. Let us demon-
trate that such interaction cannot be neglected at sufficiently

With the help of Eqs(22) and (25) the expression foll gg
reduces to Eq9), where the screening length of the electron
crystal has been taken ag~a, and numerical coefficients
absorbed irCs.

In this section we study the crystal pinned by impurities
with a low concentratiorN so that the condition>1g is
satisfied. As discussed in Sec. | all key quantities—density o,

states, localization length, Fhe screening of COleoml1arge length scales. By solving the elasticity theory equations
mteractlons_—ur!dergq dramatic chgnges compared o thFgeneralized to include the Coulomb interactipriscan be
case of high impurity concentration. We address suchy,, 27t o dipolar distortion centered at a poirf.{, ;)
changes in the three separate sections below. has long-range tails that decay rather slowly with distance,
u~A;arp/\a|x—x;|. This displacement is confined mainly
A. Pinning of a quasi-1D crystal by strong dilute impurities within a paraboloidr, —r ;|>< Varp|x—x|. Note that the

In this section we study the ground-state structure angegment &x<xm,=a, (I/\/arp)*? of the paraboloid,
screening properties of the crystal with low impurity concen-
tration. ré=\arp|x, (30

We start by reviewing the physical meaning ogiven by contains on average one impurity. Parametera, , which

Eq. (1), in whicha=Y, /Yy is the anisotropy parameter, and o already encountered in Sec. IV, has the meaning of the
Y,, Y, parametrize the energy of an elastic distortion of the g | h . lated he lonaitudinal elasti
crystal, screening length. It is related to the longitudinal elastic

modulusY, as follows:

1
Ee'=§J d3r[Yy(au)2+ Y, (V u)?]. (27) r2

py— a’alYy, (31)

As shown in Appendix A, at largeg the longitudinal elastic

modulusY, is dominated by Coulomb effects, see Appendix A.

If, in the first approximation, we choose to neglect the
interaction among the dipoles, then we should simply add
their far elastic fields treating the amplitudesdd <A;<1 as
random variables. We immediately discover the logarithmic
growth of u with distance,

Y,~e?/ka’a? . (28)

The transverse modul$, can be substantially smaller than
Y, even when the rati@, /a is only modestly large. For
Coulomb interactiony | «exp(—2ma, /a). « . ar. |2

The energyE® in Eq. (27) is essentially the short-range ([U(X,O)—U(O,O)]2>~N dx/fV“er drf(—D>
part of the Coulomb energy. The total energy also includes Xmin 0 \/ZX'

X
In(
Xmin

the long-range Coulomb pafsee Appendix A and the pin-

ning part(see Appendix C and belowStrictly speaking, Eq. — , (32)
where the bar oven indicates that we refer to the value of

away from the immediate vicinity of a dipole ard--)

(27) is valid only for small gradients of the elastic displace-
stands for disorder averaging.

ment field u(r); however, it can be used for order-of-
magnitude estimates down to microscopic scalesa, and
x~lg. In 'lthis manner, one can derive formul® by mini-
o R »
mizing E* under thfelcondltlon than_ chlangﬁs_from 0 ta The logarithmic growth of the elastic displacements was
gverlla senger;t oﬂeggtlg c()jnAa smg.epc\: ain. For more previously derived for the model afeakpinning centers in
etalls, see Refs. 27, 23, and Appendix A. . early work€?? on the subject. In those calculations the nu-
The inequalityl > imposes the upper limit on the impu- merical coefficientCq is large and is inversely proportional
to the impurity strength. In our casg;~ 1. Apart from that,
3 Eqg. (32) demonstrates that the casestfongpinning centers
N< \/;/ai . (29 is essentially similar. Therefore, as customary for weak pin-

a2

Ce

Is

rity density:
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ning models we define the longitudina) and transversk (commensuratepinning is to augment the combinatiaqi
Larkin lengths as the length scales whéteu?)=([u(r)  +aq? (proportional to the elastic resorting fojcby the
—u(0)]*~a® From Egs(30) and(32) we obtain term — &,n/Y, @%, which comes from the additional restor-
. ing force due to impurities. In this manner we obtain
Ly=XmineXp(Cgl/ls), L, =rMexp(Cgl/2ls), (33

. 2
wherer "= (\ar pXmin) Y2 p

Kr52

; o =k+————, 3
Alternative derivation of Eqs(32) and(33) based on en- c(q)=x o o2+ a(g?+L]?) 37
ergy estimates is given in Appendix C. It elucidates that the
slow logarithmic growth of Au?) is rooted in the important 2
; S . k(L Kk Ly |
role of long-range Coulomb interaction in the elastic re- ky=—|—] =—= —~exp Cg|. (39
sponse of a quasi-1D crystal. An isotropic electronic crystal @\Ip Ja 'o Is

adjusts to pinning centers primarily by means of ShearHowever, for our purposes a cruder approximation will be

deformation®’ that do not cost much Coulomb energy. As a__ .. - .
sufficient, namely, we can assume that at distances shorter

result, in the isotropic crystahu grows algebraically with . L
distance. In contrast, in quasi-1D crystals and CDW, wheréhan the Larkin length, the system screens as though it is free

o : of impurities, Eq.(36); at distances larger than the Larkin
the elastic displacement is a scal@lectrons move only lenath. the dielectric function i laced b tant. E
along the chains no separate shear deformations exist. Thecondth, the dielectric function 1S replaced by a constant, £q.
buildup of the Coulomb energy that accompanies Iongitudi-(38)' In the followmg section we will use Eq$36) and(3_‘8)

. . . . to derive the functional form of the Coulomb gap in the
nal compressions translates into an exceptionally large rigi egimel >
ity of the electron lattice and exponentially larggandL | . 9 s
At distances exceeding the Larkin lengths the dipoles can )

no longer be treated as independent. Indeed, the energy cost B. Bare density of states and the Coulomb gap at low
E, of a given dipole is determined by the minimal distance Impurity concentration
by which the crystal has to distort to align an electron with  |n order to describe the lov-transport at low impurity
the impurity position. Therefore, just like the energy of a rodconcentration|> |, we need to determine the origin of low-
in the previous section€s has a periodic dependence on energy charge excitations in this regime. This poses a con-
v={(x;—u)/a}, where{- - -} denotes the fractional pa; ceptual problem. Indeed, such excitations do not exist in the
vanishes av=0 and reaches a maximum value oW at  bulk (away from impurities where the creation energy of
v==*1/2. Therefore, as soon as the cumulative effect ofchargee excitations is bounded from below by the eneWy
other dipoles attempts to elevdtd above 1/2, a z-phase of a 27 soliton. At first glance, the impurities do not help
slip should occur to adjusE(u) to a lower value. The over- €ither. As mentioned in Sec. |, near isolated impurities there
all effect of such adjustments is to enhance the pinning en'S @n energy gap for charge excitations, which is not much
ergy. This additional energy gain can be viewed asable ~ Smaller thar. This is because a single impurity appreciably
lective pinning effect. Using standard argumentsee  disturbs the crystal only within the region of lendth The

Appendix O, we relate the extra pinning energy density to disturbance is electrically neutrgtipolan in the ground

the Larkin length state. Creation of a chargeexcitation near such an impurity
requires an energy of the order ef/«l.~W. Let us now
Epin™ —W/aZLy~-Y, (alL,)? (34)  show that charge excitations of arbitrary low energies never-

. ] ] ] theless exist. They come from impurity clusters. Each cluster
We will now use this result to estimate the asymptotic valugs g group of a few impurities spaced by distances of the
. order of I or smaller.(It can be viewed as a microscopic
kx=€(0x—0,, =0) (39 inclusion of thel <I¢ phase. Below we demonstrate that the
of the longitudinal component of the dielectric function.  clusters provide the bare density of states at zero energy,
Without impurities, the dielectric function has the form Wwhich decreases withno faster than a power law,

Is

2 Kr—2 K
6(Q)=K+q—:2—D2, (36) U=
q qx+aQL

see Appendix A and, e.g.,, Ref. 48. Based on previousvhere exponeng is of the order of unity and is independent
work**2210%ve assume that a reasonable description of diof |. The calculation of3 has to be done numerically, which
electric screening in a system with impurities is obtained ifwe leave for future work.
we replace the random distribution of pinning centers by a To prove that Eq.39) gives the lower bound o,
commensurate pinning with the sarfig,. In this case we consider the configuration of +2 impurities shown in
can use the concept of the dielectric function even for theéig. 4. The impurities define a cluster o2+ 1 short rods,
disordered system. To derive the modified expression for theach of approximately the same lengtl. The cluster is
dielectric function, one can add the tetffym(u/a)2 to the flanked by two semi-infinite segments at the ends. We as-
right-hand side of Eq(A2) in Appendix A and repeat the sume thatM is sufficiently large so that =Mc is much
steps outlined thence. It is easy to see that the net effect gfreater thag. Suppose that the length of the central rod in

B+2
) : (39

2.2
e“at
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} Iz M-i-l MTz I 2MT2 e 1¢?
Ep—Ea=—~6— = — +Wayu— Wy, 42
a) ., [ ) [ s |1 5; s [ . |(1 5) b a Cr 8 Lk 3/4 1/4 ( )
i +5 —(3+ i +5 ) .
G+ e (2 +8)e iTe so that the state shown in Fig(a} wins if
} f M+1 M-i-2 | 2M|+2 5
b) 7 7 C le
| | | | | I O0<—| (Wgu— Wy — = —|. (43
GHde 0 Gde 0 (F+9e 2 T B Lk
1 2 M+l M#2 2M+2 Since Way,— Wy ,~W~e?/klg and L>1g, the right-hand
c) I I 4 I I < I I side of the inequality43) is positive, and s@®>0 that sat-
t+9e 0 1 _5)e 0 (A4de isfy such an inequality do exist. The only other viable com-

peting neutral state is similar to that shown in Fi¢b)dex-

FIG. 4. An example of an impurity cluster that provides low- cept the 3/4 soliton is formed on the left semi-infinite
energy charge excitationslat | . (&) Distribution of charges inthe segment. The energy of that state is aigg and so it does
ground state. For simplicity, we chosg= 6/2. The cluster is elec- not lead to any further restrictions an
trically neutral.(b) Competing neutral statéc) Excited state ob- Now let us examine the charged states. There is only one
tained by increasing the charge of the central rod by one unit.  yjgple competitor, withq=(1/2— 8)e, as shown in Fig.

4(c). If the energy difference=E.—E, is positive, then
units ofa is close to a half integer, so that the charge of thisFig. 4(a) represents the true ground state andjives the
rod is restricted to the set of values=(—1/2—4J+n)e,  creation energy of the chargeexcitation. If ¢ is negative,
wheren is an integer and € 6<1. For the low-energy states then the ground state is as shown in Figc)4 while the
we only need to consider two possibilitieg=(—1/2—d)e  charge and the energy of the lowest-energy charge excitation
and (1/2- 6)e. The lengths of the other short rods in our are equal to—-e and — ¢, respectively. An elementary calcu-
construction are chosen to be close to integer multiples of lation yields
Then those rods can be considered charge neutral. Finally,
we assume that the position of the leftmost impurity restricts . e—6+e— (44)
the charge of the left semi-infinite cluster to +/4, +n, &= C, 2«xL’

where |5, |<1 andn_ is another integer. Under these as-

sumptions, the charge of the right semi-infinite segment ifrom which we conclude that it is possible to obtain arbitrary
fixed to the set 1/4 5— 5, +ng. small ¢ of both signs by tuningd sufficiently close to

One possible candidate for the ground state is the charder/2Lx~c/L, without violating the inequality43). This
configuration shown in Fig.(). It is overall neutral, has the Proves that clusters are able to produce a figg€0). In the

charae of the central rod equal —1/2—-8)e, and the ground state some of these clusters are neiteahpty”)
totalgenergy qual tp=( ) and some are chargétbccupied”).

Now let us try to estimatgg due to clusters. In the above
argument we required strong inequalitieg | andL>1 to
prove the existence of a nonzegg with mathematical rigor.

2 2

2 e( e) 1 (e)z e’(1/2+ 6)?

E _ _
P Le4l 2] 2Lk\4 2C, v Physically, it seems reasonable that such inequalities can be
7 &2 2 softened toc=<lg and L=Ig, in which cased=1 and M
- _ 4 (1/2+ 8)%+2Wy4. (40 ~1, i.e, only a few(of the order of unity impurities are
32Lk  2C, needed. It is also clear that the rods to the left and to the right

of the central one need not be exactly neutral for the argu-
Here we made use of the conditiobs-Is, 6<1. Wy, de-  ment to go through. Then the probability of forming the de-
notes the self-energies of the semi-infinite segmentsich  sjred cluster is comparable to the probability of finding 2
contain “1/4 solitons’), andC,~ «c is the self-capacitance 2 (a few) impurities on the same chain with nearest-
of the central rod. If the configuration shown in Figapis  neighbor separation less than Assuming that impurity po-
indeed a ground state, it has an unusual feature that thgtions are totally random and independent, we obtain the
charge of the central rod exceeds 1/2 by the absolute valu@stimate of Eq(39).
contrary to the arguments in Sec. lIl. To establish the condi- Now let us calculate the form of the Coulomb gap in the
tions for the cluster to have such a ground state, we need t@ctual density of stateg(e). At exponentially small ener-
compareE, with energies of other possible states. Of thosegieg ¢ <¢, =e?/«L,, the Coulomb gap is determined by

some are neutral and some are charged. One competing NgHe interactions on distances exceeding the size of the Larkin

tral state is shown in Fig.(8). It has energy domain. At such distances the interaction has the ft28),
leading to the usual parabolic Coulomb gap given by Eqgs.
11e* € , (24) and(38). We put these equations side by side below for
Ev=—g ™ 2C. (1/2=6)"+Wyy+Ws4, (4D the ease of reading,
2
whereWs,,, is the energy of the “3/4 soliton” on the right of g(e)= E K Kxgz, e<s, (45)
the cluster in Fig. &). For the energy difference we have m b
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B e? B e? 1 49 g(&)
TRl arg o L
|
KX"’eX4 C6|—) . (47)

To ascertain the region of validity of E¢45) one needs to

make sure thag(e) does not exceed the bare density of
statesgg . It is easy to see that this is the case here. At the
largest energy ~ ¢, [EqQ.(46)], g(&) is exponentially small, \ A

gxexp(—=Cgl/ly), and so it is indeed much smaller thgg e A e

~(Is/1)P*2, In this senseyg is large enough to ensure the *

validity of the parabolic law over the full range efspecified FIG. 5. The density of states of charge excitations in a 3D sys-
in Eq. (45). tem with I>1,. The parabolic Coulomb gap at low energies is

At ¢ larger thane, , the Coulomb gap is governed by succeeded by the linear Coulomb gap, then by the bare density of
interactions within the volume of a Larkin domain and the statesgg created by impurity clusters.
dispersion of the dielectric functios(q) becomes important. _ o
The interaction potential is defined by(q) = 47e?/ e(q)q? The Coulomb gap can be viewed as the reduced statistical

and Eq.(37) in the g space. In real space, it is given®b weight of stable ground-state charge distributions with re-
437 qasp P g 4 spect to that of the totally uncorrelated ones.

e? 1 ff The solution of Eq(51) has the asymptotic form
0= 2 ex"(‘4¢aru|x|>’ 9 -
g(s)zw—\/ZrDe4|s|, £, <|e|<A. (53
a, <r, <min{alx|,L,}, \r/—%<x<|-x- (49 we see that the unusual interaction potential of E4f)

leads to a nonstandard Coulomb gap, which is linear in a 3D
The potentialJ (r) is appreciable only within the paraboloid system. The weakéfinear instead of the standard quadratic
defined by Eq(30), where it behaves ag(r)ze2/2,<|x|_ A suppression ofy is due to a metallic screening of the Cou-
more precise statement is that the surface of a conktast lomb potential in the major fraction of solid angle. The en-

a paraboloidlike region ergy scaleA in Eqg. (53) is defined by the relatiomg(A)
) ~gg. Using Eq.(39), we can estimatd as follows:
e
2
rlz4JZrD|x|In<—). (50 Ja B+2
2U K|X| _ arD 4 |S
A= 2 e*gg~W T (54

For U>e¢, , this surface belongs to the domau®) where

Eq. (48) holds. _ At > A, the solution of Eq(51) approaches the bare den-

To calculate the functional form of the Coulomb gap wegijty of statesg=gg, and soA has the meaning of the Cou-
use the self-consistent mean-field approximation due tgymp gap width. On the lower-energy side, &t-¢, , the
Efros;* according to whichg is the solution of the integral jinear Coulomb dependence of E@3) smoothly matches
equation the quadratic dependence of E45). All such dependencies
are summarized in Fig. 5.

1w
g(s)=gBex;{—§f de'g(e")V(et+e')|, (51

0 C. VRH transport in a system with small impurity
whereV(U) is the volume enclosed by the constahtsur- concentration
face (50), The VRH transport at>| involves quantum tunneling of
charge excitations between rare impurity clusters. In Appen-
ma e*rp dix B we advance arguments that the charge tunnels along
V(U)= a2 2U2 (52 the chains in the form of 2 solitons and derive the follow-

| -1
1+|—sln 1>l (55)

ing estimate for the corresponding longitudinal localization
Equation(51) follows from the requirement that the ground length:

state must be stable againts a transfer of a unit charge from

an occupied state with energye’ to an empty state with ls ls

energye. Such a stability criteriof¥* can be expressed by &~ e 5)

means of the inequalitg +&’—U(r)>0, wherer is the S

vector that connects the two sites. Thus, the integral on thét I>I this formula goes over to E¢12), while atl~I it
right-hand side of Eq(51) counts the pairs of states that smoothly matches with Eq25). As for the interchain tun-
would violate the stability criterion if positioned randomly. neling, it is still accomplished by single-electron-like excita-
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tions and the corresponding localization length is still Inc Inc
given by Eq.(8), see Appendix B. We will assume that @ b)
&, /a, is not vanishingly small, in which case the VRH has
the 3D charactel®

The density of states and localization lengths is all the
information we need to calculate the VRH conductivity. A
more complicated dependence of the density of stg(e$
on energy in the case at hand; |, brings about a larger
variety of possible transport regimes.

N B~ W
9}
W

At the lowest temperatures we still have the ES law with ‘ 1 . 4
parameterTgg give_n b_y Eq._(26). _Due to the e_xponential 1w T uw UT
growth of the longitudinal dielectric constary, with | [Eq.

(38)], Tes decreases exponentiallJesx exp(—Cgl/3ly). This FIG. 6. Logarithm of the conductivity vs the inverse tempera-

dependence entails a precipitous drop-df o as a function  ture for se\{eral samples labeled in the order of increa}siri@.,
of |, as soon abexceeds;, see Fig. 2. Such an enhancementSample purity.@ Curve 1 corresponds tb=1,<l; and displays
of the conductivity is due to progressively more efficient only the ES regime. The highd&r-activation regime is beyond the

screening of the long-range Coulomb interactigateeply ~ 'Mits of ths %raPh- C”Q’ehz iésfolkzlﬁls' _a_rg)clal S%the bgth tl?e
increasingx,), which enhances the density of states inside®ctivation benhavior and the ES law are visible. Curve 3 islior
=l;=I,. It shows the complete sequence of the transport regimes:

the Coulomb gap, see Eq4.5)' , . the activation, Mott, 2/5, and ES laws. Curve 4 depicts the behavior
The ES law(2) holds until the range of’s that contribute ¢ e with ; : ! h h

to the VRH transport 6| <(TT 92 fits inside the para- of a sample with an impurity concentration another notch lower
. e E " ’ ) than that of sample 3. In pan@l) it goes through the activation and

b‘?"c part of the nglomb gaﬁ€|~8* - For a fixedT<W the Mott regimes. In panelb) that covers considerably lowér,

this gives the Cond't'0m5|5_|n(W/T)' curve 4 also exhibits the 2/5 law, followed by the ES law. The 2/5
At larger|, the unusual linear Coulomb giﬁs) leads 0 |aw is shown by the solid line along the lower edge of the shaded

the 2/5 law for the VRH transpof€q. (13)], which we re-  region. The curves can skim along this line but cannot cross it. The

produce below for convenience, higher the sample purity the lower the temperature at which the
o5 sample starts to exhibit the 2/5 law but also the wider the range of
o=0oeexXfd —(T/T)="]. (56) T over which this law persists. Curve 5 depicts the dask, where

As emphasized in Sec. II. paramelaris impurity indepen- any kind of VRH transport corresponds to Ohmic resistances higher
dent pd s in thi - 1l, para hl P yTh' pb than the experimental measurement limit, so that only the activated
ent and is, in this sense, universal, see @4). This be- fransport can be observed.

havior leads to the intermediate plateau at the graph in Fig. 2.

The range of energies that contributes to the VRH in the i o .
2/5-law regime is given by |s|s(T1/T)2’5T. At | on the nature of the low-energy charge excitations and their

Z1(WIT)”, where y=3/[5(8+2)]=0.3, this range be- Ohmic dc transport. To that end we formulated a generic

' model of an anisotropic electron system with strong Cou-
comes broader than the Coulomb gap widthEg. (54)]. At lomb interactions and disorder and presented its theoretical

such and largel, the Coulomb gap can be neglected, and the, ; ; - )
VRH begins to follow the usual Mott lajEq, (15)] analysis. We elucidated the origin of the low-energy charge

excitations in this model and demonstrated that their density

_ _ 1/4 of states possesses a soft Coulomb gap. In 3D case, we found
o= oo ~(Tu/T)™], (57) that the Coulomb gap exhibits a power-law dependence on
with parameterT,, increasing with| according to T, the energy distance from the Fermi level. We discussed how
x1/gg(l/1)#+2. The growingTy, leads to exponentially the prefactor and the exponents of this power law vary as a
increasing resistivity, represented by the ascending branch &fnction of the impurity concentration and other parameters
the curve in Fig. 2. Physically, the suppression of the dcof the model. We also discussed how the Coulomb gap is
conductivity stems from decreasing density of low-energymanifested in the variable-range hopping conductivity at low
states available for transport, just like in conventional dopedemperatures.

semiconductors® or commensurate CDW systeﬁ?s_ One of the central re§ults Of our theory IS a nonmonotonic
dependence of on the impurity concentratioN, as shown

in Fig. 2, where we sketched as a function of =1/Na?
i.e., asN decreases, at fixetl As clear from that figure and
the discussion in Sec. Il, at lardethe conductivity increases

It is widely recognized that interactions must play a sig-asN decreases, similar to behavior found in metals. In con-
nificant role in determining the properties of 1D andtrast, at smallN the conductivity drops a®\ goes down,
quasi-1D conductors, because in such materials the dimenvhich resembles the behavior of doped semiconductors. For
sionless strength of the Coulomb interaction is very largeintermediateN, our theory predicts the existence of an
r>1. In the presence of impurities, these systems behave a&independent plateau.
insulators and do not possess metallic screening. Thus, the Another way to represent these theoretical predictions,
interactions are both strong and long range. Our main goal isommon in semiconductor physics, is shown in Fig. 6. In
this paper was to understand the effect of such interactionthat figure the dependence of the logarithm of conductivity

VI. CONCLUSIONS AND COMPARISON WITH
EXPERIMENT
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on the inverse temperature is depicted for a series of
samples, each with fixeN. An unusual circumstance illus-
trated by Fig. 6 is the crossing of the curves that correspond
to different samples. In Fig.(6 we show that up to two
crossing points may exist between one curve that corre-
sponds td <l (curve 2 and another curve fdr>I (curve

4). The higherT crossing occurs when the curve 4 goes
through the activation regime, the low€rene—when it ex-
hibits the Mott VRH. The dirtier (<Is) sample obeys the ES
behavior in both instances. Another property we tried to em- , ,
phasize in Fig. 6 is the role of the 2/5 law as the upper bound 0 0.1 0.2
of the conductivity regardless of the sample purity. For 1T (K"

samples with low impurity concentration the 2/5 law is also o
FIG. 7. Low-temperature conductivity of TMTSF-DMTCNQ

the envelope curve, see Figbs. no
samples damaged by x-ray radiation. The dotscenl.9% andc

Let us now turn to the experimental situation. The trans L .
port behavior of a number of organic compounds, including<0'35% curves were generated by digitizing the experimental data

TMTSF-DMTCNQ TTF-TCNQ and NMe-4-Mepy N Fig. 1 of Ref. 51 and Fig. 2 of Ref. 35, respectively. The per-
(TCNQ),, is indeéd in a qualita{tive agreement with oyurcentages stand for the defect concentrations quoted in those papers.
21

i i 0, 0, 1
theory. It should be clarified that such materials form CDWThe solid line through the 6% and 3.5% data are the best fits to the

h hat in additi h Al iodicity. h activation; through 2.3% and 1.9%—to the ES law. In both cases
phases that in addition to the usuale2periodicity, have an the prefactors ¢, and oy) were taken to b& independent. The

appreciable or, in some cases, even predomin&pt #ar- iy jine through the 0% datanirradiated samples the best fit to
monics. The latter is considered the evidence for the strongye pmott law based on th&<20 K points.

Coulomb interactiort* and so is precisely the case we stud-

ied in this paper. Both E, and T scale roughly linearlyg, in agreement with

In the experiments of Zuppirokt al > the transport in s.(11) and (9). From Eq.(10) we deduce thaklc=«xa
the aforementioned compounds was studied as a function CI)Erq ' . ) d- : )
~1 nm, which has the correct order of magnitiydesuming

defect concentration, which was varigdsitu by irradiation ~1). One should keep in mind here that the absolute num-

of samples by high-energy particles. Admittedly, the naturegers forc were obtained by the authors of Ref. 51 using

of the such defects is not known with certainty. Some sug- . . o .
certain arguable assumptions. In our opinion, the scaling

gestions in the literature include atomic displacements, bro-: .
ken bonds, polymer cross linking, and charged radicals, ArEnth ¢ may be more reliable than the absolute values quoted

the same time, the effect of the irradiation on transport see ecausdif no gnnealmg occub_sthe _rel_at|ve_ magnitude of
not to depend much on the type of particles usedays sho_uld sca_le Ilnegrly with the_lr_rad|at|0n time, known to ex-
neutrons, or electronsind instead to correlate primarily with perimentalists without any fiting parameters. Combining

the total absorbed enerdy.This fact is interpreted as evi- Egs. (9) and (1) we further deduce thaa, /£, and /¢

. i . . ratios are some modest numbers less than ten, as may be
dence that microscopically different defects influence the xpected from Eqs(25) and (8).

transport in electron crystals in a similar way, so long as the As a final remark on high-disorder samples, we would

t trong localiz innin nters. Under this assump- . ? L . .
act as strong localized p g centers. Under this ass fie to mention that the scaling of the longitudinal dielectric

tion, it is legitimate to compare the data from the irradiation nstantx, with the defect concentratiofirradiation ime
experiments with our theory even though so far we assumefPstantcy, W € defect conce oqrradiatio
consistent with Eq(22) was reported in a separate set of

that defects are created by charged accefisas Sec.)| We experiments on QITCNQ) by Janossyet al %2 Together with

do so in some detail below. . .
In Fig. 7 we show an extensive set of data on transport i .h(.a transport data,. this ”.‘a"es a compelling case for the va-
irradiated TMTSF-DMTCNQ that we assembled by digitiz- idity of the metallic-rod (interrupted-strandmodel for or-
ganic electron crystals with<l,. For such systems we can

ing Fig. 2 of a review paper by Zuppirol, and original . . > ; .
references therein. Apparently, some data series in this figuféla'm a semiquantitative agreemer)t_wnh the experiment.
Let us now turn to the conductivity of weakly damaged

represent the same sample with successively increasing ra- 35 . .
diation dose, and some correspond to physically differen amplg - As one can see fr_or_n Fig. 7 they show me_talllc
specimens. For simplicity, we refer to all of them as different ehavior at highl, a cenductivity maximum at.the Peierls
samples. The percentage labels on the plot are the estimafignperature of about 42 K, and a decreaserjni.e., the
of the molar concentrations of defeatsgquoted by the ex-
perimentalists. The points on the=0 trace are from an
unirradiated sample.

. 035%

+ 0.20%
* 0.10%

* 0.05%
+ 0.025%
* 0%

log,wo ('cm™)

TABLE Il. Fitting parameters for data displayed in Fig. 7.

As shown in Fig. 7, the data for the two most disordered2uoted defect concentratian(%) Tes (K) Ea (K)
samples can be successfully fitted to the activation law ane-6 900
the next two samples—to the ES formula. This transition3.5 380
from the activation to the ES law with increasing disorder is2.3 2800
in agreement with our theorfcf. curves 1 and 2 in Fig.)6 1.9 3700

The obtained fit parameteEs, andTggare given in Table II.
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semiconducting behavior, at low@&r As T drops by a factor mensurability point and suppresses the gap but it is often
of 2 or so below the Peierls temperature, the decrease of inhomogeneous and is an additional source of disorder. At
with 1/T becomes considerably more gentle than an activalow and moderate doping the dependence of the conduc-
tion law. One cannot help noticing a similarity between thetivity often resembles ES and/or Mott VRH laws, see a short
behavior ofc=1.9%,0.35%), and 0% samples in Fig. 7 andreview in Ref. 37. A systematic study of the VRH conduc-
curves 1, 3, and 4, respectively, in Fig. 6. There is also afivity dependence on doping has been attempted by Aleshin
unambiguous evidence for the existence of the crossing poit al®* In those experiments doping of p@By4-
between, e.g.c=0% andc~1.2% traces al =21K (see ethilenedioxythiophene/palgterenesulfonaje (PEDT/PS$
below). However, an attempt to fit the=0% data to the samples was varied by controlling the pH of the solution at
Mott law is not particularly successful, see Fig. 7. Thereforethe sample preparation stage. It was observed thatHat
we only wish to emphasize a qualitative agreement with our<4 the VRH exponenh [Eq. (17)] was close to 0.5 and
prediction that for a fixed', the conductivity of “clean” and  Tyrn decreased with pH, while at largpH, A was close to
“dirty” samples should show opposite trends, see Figs. 2 and.4=2/5 andT gy did not depend opH. This resembles the

6. Indeed, the conductivity of the low-disorder samples ( behavior that follows from our theory, provided the concen-
<0.35%) increases with the radiation dose in contrast to th&ation of the pinning centers decreases wti. We leave
behavior shown by the high-disorder samples=(.9%) the tasks of extending our theory to the case of conducting
where it decreases. In fact, another experiment showed thR@olymers and explaining these intriguing experimental re-
contrasting behavior in a great detail. In that experiniént, sults for future investigations.

Ino was measured at the fixed temperatureTof2l K,

while defect concentration was varied essentially continu- ACKNOWLEDGMENTS

ously over the range of 0%c<2.5%. It was found thatr _ i _
initially increases by two orders of magnitude, reaches a 1S work was financially supported by UCSBI.M.F.),

maximum, and then drops by five orders of magnitude as ASF Grant No. DMR-998578%B.1.S,), and INTAS Grant
function ofc. Overall, this is in a qualitative agreement with NO- 2212(S.T). We thank S. Brazovskii, A. Larkin, and S.

Fig. 2 except instead of the well-defined 2/5 plateaur In Matveenko for valuable comments, K. Biljakovic, O. Chau-

shows only a broad maximum. Similar features are demonvet, S. Rgvy, D. Staresinic, and R. Thorne fo'r discussions of
strated also by TTF-TCNQ and NMe-4-MePFCNQ),, see the experiments, and Aspen Center f(_)r I_Dhysws, where a part
Fig. 1 in Ref. 50, and Figs. 11 and 12 in Ref. 35. We con-Cf this work was conducted, for hospitality.
clude that for low-disorder CDW organics our theory agrees
with experiment in some gross qualitative features. The APPENDIX A: DIELECTRIC FUNCTION AND
guantitative agreement cannot be verified because the dy- ELASTICITY IN A CLEAN QUASI-1D ELECTRON
namical range of measured conductivities is too narrow. Fur- CRYSTAL
ther low-temperature experiments are desired to clarify the
situation and to prove or disprove the existence of the 2/"?"n
law.

Let us now switch to inorganic CDW. Several comments
are in order. The electron-electron interactions in these m
terials are also very strort§;>>r ;~100. However, inorganic

CDW are predominantly &, and there is an ample evi- by n;=d.¢;/27. The elasticity theory of the system can be

dence for the important role of the electron-phonon couplin : L L !

. . : . ormulated by identifying the elastic displacemantwith
in the CDW dynamics. This coupling can lead to an enhance; . . L )
ment of the el):ectron effective m%%é%that would result in a (27/a)¢ and taking the continuum limit. Neglecting weak

short localization length. If the mass enhancement is indee@qterchaln tunneling and dynamical effects we choose our

large, the VRH transport should be observable only in mate-tartlng effective Hamiltoniaki in the form
rials with short hopping distances, i.e., large impurity con-
centrations. Examples include highly doped brofzemd Hzf dx[Ho+Hc], (A1)
perhaps, the Pt-chain compound K&P°From this perspec-
tive, the reports of a VRH-like transport in a relatively pure 1
samples of Ta§[F_2efs. 56 and 5]7and blue bronz_éRgfs. 58 HOZECQZ n?+ 2 Jijcos @i~ ¢;), (A2)
and 59 are puzzling and require further investigations. i i

Finally, let us comment on another broad class of
quasi-1D systems, conducting polymers. In comparison to 1 , , ,
CDW, polymers have a much higher degree of structural dis- He=5 ; f dxdx ni(x)Ujj(x=x")nj(x").  (A3)
order and a complex morphology that depends on the prepa-
ration method. Typical samples contain a mixture of crystal-Let us briefly describe the notations here. The Hamiltonian is
line and amorphous regions, with the correlation leffyti  split into the short-rangeH,) and the long-range Coulomb
the order of 10 nm. In the undoped state polymers are comH¢) parts.J;; represents the Coulomb coupling between the
mensurate CDW semiconductors with a Peierls-Mott energfDW modulations of electron density on chairendj. C? is
gapg ~1 eV. Doping shifts these systems away from com-the charge compressibility of a single isolated chain. In a

In this section we derive expressions for the elastic
oduli and the dielectric function of a pure crystal.
Following the literature on interacting 1D electron
system&® and CDW!° we describe dynamics of electrons on
4th chain by a bosonic phase field(x,t). The long-
wavelength components of electron densitys related top;
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largers 1D system Cg is dominated by the exchange-
correlation effects, leading %

o 2€°
Cy~——In
K

a

R’ (A4)

PHYSICAL REVIEW B 69, 035413 (2004

ko’s resultd’ for the soliton energyV and the soliton length
|s remain qualitatively correét for high r, provided we use
rD"“aJ_ .

(iii) The interaction energyJ(r) of two pointlike test
charges separated by a large distancan be calculated by
the Fourier inversion of

where R is the characteristic radius of the electron charge

form factor in the transverse direction, i.e., the “radius” of

the chain. In most physical realizations, we exgeeata and
negative (2 The positivity of the elastic modulus of the

system, required for thermodynamic stability, is recoveredror ax?+r?s>r3 one finds(cf. Ref. 27

once we take into account the long-range pdg of the
interaction energy, parametrized by the kernd|s. U;; is
defined as the bare Coulomb kerrgj(r)=e?/ xr convo-
luted with the single-chain form factork, e.g., F(q,)
=exp(—R?).

- 4re?
q)= —_. (A10)
e(a)g?
) e? 1 r?
N=-——exp — 5— .
2k (x| 2rp \Jax?+r? + alx|
(A11)

We are interested in a linear response where the cosines the potential (r) is not exponentially small only within the

Eq. (A2) can be expanded ip thereupon the effective

paraboloidr? < \/arp|x| [cf. Eq. (30)]. At the surface of

Hamiltonian becomes quadratic. If an external electrostatiguch a paraboloid we ha\rq<\/5|x| andU(r) acquires a

potential Ve,(q) acts on the system, the total equilibrium

potential V(q) will in general contain Fourier harmonics
with wave vectorg+ G, whereG are the reciprocal vectors

of the 2D lattice formed by the transverse coordinates of the

centers of the chains. We define the dielectric func&¢q)
of the system as the ratid,,(q)/V(q) for q in the Brillouin

simpler form quoted in Sec. V,
1 r?

exp — .
20 &M~ 2 ol

(iv) Finally, the effective longitudinal and transverse elas-

U(r)=

(A12)

zone of this lattice. Via standard algebraic manipulations irfic moduli of the system are given by

the reciprocal space we arrive at

(@mrs TED 1 (AS5)
e(q)=k - y
a? % B,(9)q2+B,q’
B.(q)=CO4 4e? F2(G) (A6)
AT kaZ 670 i+(q, +G)*
B, =4m?a’>, Jj;. (A7)
]

In the limit g,<a ™, qL<aI1 we obtain Eq.(36) repro-
duced below for convenience,

2
X

9% Q2+ aq?

KFBZ

e(Q)=«k+ (A8)

Hererp=(C,x/4me?)¥?a, is the Thomas-Fermi screening
radius,C,>0 is the effective charge compressibility of the
system,

2e?

~ =
a

(A9)

2

_ & © (A13)
*a?a?  ka?a?’
Y, =aYy. (A14)

APPENDIX B: TUNNELING IN A 3D CRYSTALWITH A
LOW IMPURITY CONCENTRATION

The localization lengthg, and &, needed for calculation
of the VRH transport are determined by long-distance tun-
neling of charge excitations. The problem of tunneling is
nontrivial because a broad spectrum of charge excitations
exists. Leaving more detailed investigations for future work,
we concentrate on two possible tunneling mechanisms: by
electronlike quasiparticles and by many-body excitations, the
21 solitons.

In the quasiparticle mechanism the charge is carried by a
single electron while all other electrons remain unperturbed
in their quantum ground states. The rational for examining
this mechanism is its minimal possible tunneling mass. The
problem of calculatingé, and &£, reduces to the quantum
mechanics of a single particle in a fixed external potential.
Clearly, the optimal tunneling path should go through the
interstitial positions where the energy barrier is the lowest. It
is convenient then to formulate the problem as a problem on

and =B, /C, is the dimensionless anisotropy parameter.a lattice of such interstitial positions. The relevant variables

Let us now discuss some consequences of(&8§).

are the on-site energies and the hopping matrix elements.

(i) The dielectric function has the same form as inThe on-site energies are all equaldp,~e?/ ka. The hop-

guasi-1D systems with smalil, (see, e.g., Ref. 48
(ii) The screening radiusy is of the order of the inter-
chain separatiom, . Therefore, Brazovskii and Matveeen-

ping terms for the interchain tunneling, , are determined
by the band structure in the case of tunneling inside a chemi-
cally synthesized materials. In the case of tunneling between
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distant 1D conductors xexp(—a, /ag). The hopping matrix ~over a distance> | can be estimated as the product of the
element for tunneling along the chairy, can be estimated €nergy barrie'W and the tunneling timer~x/u. Here u,
straightforwardly, with the result,= e, exp(~Cs\/ro), C;  gdiven by

~1. In the absence of impurities, the problem is reduced to

the propagation through a periodic lattice. The eigenstates in

that model are labeled by wave vectdrsaccording to the u=
tight-binding dispersion relation

1/2 e2 1
-~ (B3)

Kﬁ\/r—s'

is the sound velocit§# The tunneling amplitude is of the
ewp(K) = eini— 2t,cogk,a, ) — 2t, [cogk,a, ) +cogk,a, )]. order of expEWx#u). Using W~e?/kl4, we arrive at the
estimate of the localization length as follows:
Below the band edge=¢;,,— 2t,—4t, , the eigenstates are
exponentially decaying with distance. The corresponding lo-
calization (decay lengths can be related to the imaginary E~—= (I=»), (B4)
parts of the complek solution of the equation,(k)=¢. In \/r_s
the case of interest<ejy; t, ,ty<ei, We obtain

Cx
ma

where the superscrips stands for “soliton.” Clearly, &
> ¢l so that the soliton mechanism dominates the longitu-
= a _a (B1) dinal tunneling. To account for the dilute impurities, we
X In(eine/2ty) \/r_s should add to the above expression for the action an extra
term (x/1)[7% rIn(ls/a)]. Here the factorx/I) is the average
number of impurities on the tunneling path of lengtfand
&= , (B2) the expression inside the square brackets is the action cost
t o In(ein/2t) for compactification of the charge from the lengthl to
lengtha and spreading it back during the tunneling through
where the superscrigf stands for “quasiparticle.” Although  each impurity. In this manner, we obtain a corrected expres-
Eq. (B2) was derived for a clean system, it is clear thatsjon for £,, which coincides with Eq(55).
impurity do not affect this result unless present in gigantic
conqentratlons I(~a)._ Indeed, an individual |mpur|ty Can  \bpENDIX C: DIMENSIONAL ENERGY ESTIMATES FOR
modify the local on-site energy by at most a numerical fac-
. . THE COLLECTIVE PINNING
tor, while §, ) depend on the on-site energy only weakly,
logarithmically. In principle, impurity clusters with atypi- In this appendix we use the ideas of collective pinning to
cally low on-site energies, resonant with do exist but as  derive the growth of elastic distortions in a quasi-1D crystal
well known from the analysis of the resonant tunneling prob-pinned by strong dilute impurities. We also derive the esti-
lem in random systems, such events are exponentially ran@ates of the corresponding gain in the pinning energy den-
and do not contribute to the bulk localization length in anysity.
appreciable manner. We start by reformulating the argument leading to Eq.
Let us now turn to the soliton mechanism, we attempt to(33) in the language conventional in the literature devoted to
profit from the fact that in the bulk, the soliton is the chargecollective pinning'® To do so we note that since the energy
excitation of the lowest possible energy, so that the energgf a given soliton dipolé& depends on the background elas-
tt_JarrieHr could pgrht?]ps be Iovx;gr tandhth_e 'E[unnelli.ng Tﬁ.re_eﬁe‘iﬂc displacement fieldu, each impurity exerts a forcé
ive. However, in the case of interchain tunneling, this is not_ — .
the case. Indeed, the direct tunneling of a soliton to a differ- | __aES/aUN,W/a on the crystal. The long-range variations
ent chain is impossible because the soliton is a composit8f U @Ppear in response to such random forces.Aw{D)
many-body excitation. The closest to the interchain solitorbe a characteristic variation af over a distance in the
tunneling that one can imagine is a two-stage process, wheriansverse direction and let be a typical distance over
one electron first tunnels to the adjacent chain, and then, owhich a variation of the same order in thelirection builds
the second stage, it pushes away other electrons in the regiti. Our next step is to estimate the total eneffggf a vol-
of lengthlg to form a soliton. Since the initial energy barrier ume
is still &, and the charge spreading only increases the tunV=XXD XD (relative to the energy of a pristine crystal
neling action, it is clear that such a contrived process offers The energy consists of elastic, Coulomb, and pinning
no advantage compared to the simple one-stage quasipartidh@rts,
mechanism. Therefore, is determined by the latter and

a

coincides with£9 , leading to Eq(8). Note that for the case E=E°+EC+EPM (C1

of distantchains wherd , ~exp(—a, /ag), the correct limit- ) ) L

ing resulté, =ag is recoLveredp( . /2g) In its turn, E® is the sum of the longitudinal and transverse
: terms,

In contrast, for the tunneling along the chain the soliton
mechanism is the winner. Consider first the longitudinal tun-
neling of a soliton in the absence of impurities. Employing
the usual imaginary-time picture, the action for tunneling

2
V+Y,

o Au Au\?
BV, = Vv (C2)
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The Coulomb energy is of the orderd{a,,q, )p?V, where D?

U(q)=4me?/kq? is the Coulomb kernelg,=1/X, q, X~ a v
=1/D are the characteristic wave vectors involved, o ) + ) )
londitudinal compression, ant= 1/aaf is the average elec- SPONSe of the quasi-1D crystal to external forces. What is,

: - surprising, however is thatu?~ (I¢/I)a? is small and does
tron concentration. Below we show that<X, so thatq, not depend orD, at odds with Eq(32). The resolution of

(C6)

>0y, U(a)~e’D? «, and finally, this contradiction comes from a realization that whai(D)
5 4 2 really represents is the elastic distortion due to the adjust-
EC— e’ D" ﬂ (C3) ment of the crystal on a single scdle In fact, there is a
k X |aa hierarchy of smaller scale®,D/2,D/4, ... r™, on which

o ) . adjustments are approximately independent. The correct es-
The pinning energy can be estimated B~ —AuZif;,  timate of Au, Eq. (32), is obtained once we sum over all
where f;~W/a is the force exerted on the lattice hyh such scalesAu®~Ma?l/l, where M~In(D/rTi“) is the
impurity. The average number of impurities in the volume number of scales. Thereby, we recover E8p) and as an

is N;=NV and f; have random signs; henc&""~  additional benefit, we find the expression for the energy of
—(W/a)AuyN; or the collective pinning,
oin Au\[ D[ X\ Ew Au\?/ D\? )
en--wi | )17 (C4) =) o
Combining Eqs(A13) and (C2)—(C4), we arrive at Let us define the pinning energy density By,=E/XD?.
Using Egs.(28), (33), (C6), and(C7) we obtain the estimate
W/ Au\? D4 Au\[ D\[Xx\¥2 of &yin at the Larkin scale as given by E@4). As clear from
Y g aX+ E Wi a T this derivation, both Eqs(32) and (34) are essentially the

(c5) lowest-order perturbation theory results. It is generally ex-
pected that the growth dfu? with r slows down beyond the

X andAu can now be found by optimizing for a fixedD. Larkin lengtif® and that adjustments on larger scales do not

Not surprisingly, we find thaiX and D are related by the lead to any substantial increase in the pinning energy density.

defining equation30) of the paraboloid introduced in Sec. In this case, Eq(34) is the final estimate of,,, in the ther-

V A (forrp~a, case, modynamics limit.
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