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Atomistic simulations using interatomic potentials are widely used for analyzing phenomena as diverse as
crystal growth and plastic deformation in all classes of materials. The potentials for some material classes,
particularly those for metal oxides, are less satisfactory for certain simulations. Many of the potentials currently
utilized for metal oxides incorporate a fixed charge ionic component to the interatomic binding. However, these
fixed charge potentials incorrectly predict the cohesive energy of ionic materials, and they cannot be used to
simulate oxidation at metal surfaces or analyze metal/oxide interfaces where the local ion charge can be
significantly different from that in the bulk oxide. A recent charge transfer model proposed by Streitz and
Mintmire has in part successfully addressed these issues. However, we find that this charge transfer model
becomes unstable at small atomic spacings. As a result, it cannot be used for the studies of energetic processes
such as ion bombardmerfé.g., plasma-assisted vapor depositisrhere some ions closely approach the
others. Additionally, the Streitz-Mintmire charge transfer model cannot be applied to systems involving more
than one metal element, precluding study of the oxidation of metal alloys and dissimilar metal oxide/metal
oxide interfaces. We have analyzed the origin of these limitations and propose a modified charge transfer model
to overcome them. We then unify metal alloy embedded atom method potentials and the modified form of the
charge transfer potential to create a general potential that can be used to explore the oxidation of the metallic
alloy and the energetic vapor deposition of oxides, and to probe the structure of dissimilar metal oxide/metal
oxide or metal alloy/oxide multilayers. Numerical procedures have been developed to efficiently incorporate
the potential in molecular dynamics simulations. Several case studies are presented to enable the potential
fidelity to be assessed, and an example simulation of the vapor deposition of aluminum oxide is shown to
illustrate the potential utility.
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[. INTRODUCTION The atomic scale structure and defects in bulk metal ox-
ides and at the interfaces between different oxides or oxides
There are many technologically important uses of metahnd metals can significantly impact the performance of the
oxides and metal/metal oxide multilayers. For instance, thenaterials and devices described above. Atomistic simulations
formation of aluminum oxide on aluminum or aluminum- in principle provide a way to study these structures and de-
rich alloys passivates the surface and kinetically inhibits itsfects as well as the processes by which the oxides and oxide
further oxidation, enabling aluminum’s widespread use as amultilayers are synthesized either by vapor deposition or oxi-
engineering materidi Metal oxides such as alumina (0;) dation at a metal surface. These studies can reveal important
and zirconia (Zr@) are widely used as structural insights into a variety of phenomena ranging from defect
ceramics’® Yitria-stabilized zirconia deposited on alumina- incorporation during synthesis to deformation during service.
forming alloys is widely used as a thermal protection systenSuch insights may help enhance many of the more recent and
to significantly improve the life of hot-gas turbine engine future applications of oxide-based materials and devices re-
componenté. These thermal protection systems are one oferred to above, provided some of the limitations of current
the most critical technologies responsible for the ongoingnteratomic potentials are overcome.
performance improvements of aircraft engines. Metal oxides The structure of a metal oxide and its evolution during
are also very widely used as dielectric insulators ingrowth on a metal surface can be studied by several “atom-
electronics. More recently, it has been found that a thin istic” approachesAb initio or density-function calculations
(<10 nm aluminum oxide layer sandwiched between a paircan be used to determine the energetics, crystal structures,
of ferromagnetic metal layers can be used to construct &ttice constants, elastic constants, and diffusion energy bar-
magnetic tunnel junction that can be used either as a magiers. However, these quantum-mechanical calculations are
netic sensoffor example, to read magnetically recorded datacurrently too computationally expensive to explore the struc-
on a hard disk driv§ or as a magnetic random accesstures and morphologies that arise in the larger scale systems
memory’ ! The recent discovery of the TiDCo ferromag-  that contain more than 200 atoms. When accurate inter-
netic oxide semiconductor with Curie temperature abovetomic potentials are available, it is possible to simulate the
ambient? may extend the use of metal oxides to electronstructure of thousands or even millions of atoms using mo-
spin injection and spin filtering in future “spintronic” lecular dynamic§MD) and therefore to attack problems mo-
devices® tivated by the technologies described above. Such potentials
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also provide a convenient means to identify fundamentadlition of cations and anionscan cause such unbalanced
phenomena such as diffusion mechanisms and to calculatdharges, which then affects the energetics of the entire com-
the energy barriers for mass transport either in the bulk or gbutational system. As a result, simulations using such a
the surface of a materidf. This information can in turn be model produce unrealistic results.
used i_n v?sry large scale Monte Carlo simulations of structure Second, the lattice energy calculated using a fixed charge
evolution. _ potential corresponds to the energy required to separate a
Numerous potentials have been proposed. The embedd@gysta) into its individualcharged ions so widely separated
atom methodEAM) potential originally proposed by Daw hat they are no longer interacting. Such a charge “cloud”
and Baske¥ is a high-fidelity interatomic potential widely a5 5 significant Coulomb energy. As a result, the lattice
used for modeling metalespecially the fcc m?t@BTh'S_ IS energy predicted by a fixed charge model is significantly
be_cause EAM captures the concept of metallic cohesion thfﬁigher than the experimentally measured cohesive energy,
arises from embedding ions in a gas of free electrons. Ayhich is defined as the energy required to separate a crystal
unified EAM potentlal_database has recently been devellopelgto individual neutral atoms. For cubic ZgQthe average
for 16 metals and their alloys.Because the EAM potential |aice energy predicted by a fixed charge potential is around
captures many-body effects, the database has been succesg-ev/aton?* whereas the cohesive energy deduced from
fully utilized to simulate atomic assembly mechanisms a”dexperimental datdsee Appendix A is only 7—8 eV/atom.
to investigate the atomic structures of vapor deposited metalshjs misrepresentation of cohesive energy results in wrong
and met;lli% multilayers  that exhibit giant magneto- |atent heat release during adatom condensation. Since a
resistance. ™" _ o _ _ metal oxide is created from initially neutral atoms, an ideal
A very rich interatomic potential literature is also avail- 5nic potential must allow the charge to decrease to zero as

able for the atomistic simulation of ionic systems. In theseihe jonically bonded crystal is pulled apart to create its con-
systems, a significant part of the interaction between the consient atoms.

stituent atoms arises from the Coulomb force between cat- A third problem with a fixed charge potential is that it
ions and anions. Most ionic potentials have used a pairwisgannot he used to study the structure of the interface between
potential superimposed upon an electron shell m&,ﬁﬁ a metal and its oxide. The requirement here is that the po-
These potentials assume fixed charges on the cations afghia| switches between one dominated by ionic interactions
anions. In this limit, the pairwise potentiah; (r;;), between i, the oxide region to one dominated by metallic interactions
|or_1|zed2a2t‘<1)m5| and j separated by a distangg can be i, the metal region. The precise response will depend on the
written??” local (chemical environment. A metal atom must have a
zero charge when its neighbors are all metal atoms. It ac-
(1) quires a positive charge only when it gets close to negative
charged oxygen atoms. A high positive charge is obtained
when the metal surroundings have a high density of oxygen
whereq; andq; are the charges on iomsindj, respectively, ions. Similarly, an oxygen atom should be neutral when it is
ke=14.4 eV Ae 2 is the Coulomb constarie represents the embedded in an oxygen environment. It acquires negative
electron charge andA;;, v;;, and{;; are three free param- charge only when it closely approaches positive charged
eters that are determined by fitting to properties of the matemetal atoms. A high negative charge results when its sur-
rial system of interest. Typically, these consist of lattice contoundings have a high density of metal ions. If an oxide
stants, elastic constants, and cohesive enefgiesEq. (1), crystal is cleaved, then the ions at unrelaxed surfaces have
the first term represents a long-range Coulomb interactiorfewer neighbors of opposite charge but the bond length is the
the second term stands for a short-range repulsion, and tlgame as that in a bulk. As a result, charges on the ions should
third term describes van der Waals attractions betweebe able to decrease near unrelaxed surfaces.
charge clouds. For a fixed ion charge model, the charge on A variable charge potential proposed by Streitz and Mint-
the ion is taken to be that of the valency of the atom, i.e., formire addressed these deficiend®shis potential can be
aluminum,qg = 3e; for zirconium,qz=4e; and for oxygen, combined with an EAM potential so that ionic and metallic
gJo= —2e. Equation(1) can be easily implemented in effi- components of the interatomic interaction can both be
cient MD algorithms and has been widely used to study bulkncorporated® However, as analyzed below, the Streitz-
oxides?*?° However, it has a number of shortcomings. Mintmire potential becomes unstable for small ion spacings,
First, the fixed charge model does not allow the introduc-and it lacks the generality to incorporate more than one metal
tion of different oxidation states. Aluminum, for instance, element. The first problem has been found to impose serious
can form different oxide compounds such as@J and AIO  constraints on the acceptable ranges for the EAM parameters
(or more generally, AIQ) where the charge on the ions is a needed to ensure stable simulations. The ensuing charge in-
function of oxygen/aluminum ratio. If the charge utilized in a stability prevents the variable charge model from being com-
potential is fixed, it can only be used to study one oxidatiorbined with many existing EAM potentials, including the
state and cannot be used for a process such as oxidation BFAM potential database that successfully parameterized
which the charge state varies. Furthermore, the fixed chargmany metals and their alloy$.The second problem prevents
model cannot ensure charge neutrality for a simulated crystahe charge model from being used to simulate interfaces be-
if the cation and anion composition varies. The simulation oftween different metal alloy oxides, or between metal alloy
oxide vapor film depositioiwhich involves the random ad- and metal alloy oxide.

did; gij
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Here, we explore these limitations and develop a modified
charge transfer potential that overcomes the difficulties de-g
scribed above. We believe that the proposed potential is suf:
ficiently general that it can be used to simulate the atomic=>
scale structure of metal alloys, metal alloy oxides, and any,
mixtures of metal alloys and their oxides. As an implemen- 3
tation case study, we developed a specific potential for theg
O-Al-Zr system, and perform several simulations to assess®
the potential fidelity. We also show an example for applying %
the potential to simulate the vapor deposition of an alumina@ .
thin film. 38
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II. CHARGE TRANSFER POTENTIALS 0.3

The newest variable charge potential was proposed by
Streitz and Mintmir€® In their potential, the total energy of ~ FIG. 1. Cohesive energy of corundum,@; as a function of
an ionic crystalE;, was divided into an electrostatic energy isotropic strain predicted by the old charge transfer model.
(Ee9 that is ion charge dependent and a nonelectrostatic en-
ergy (E,) that is ion charge independent:

1 Ladbexp—2&aran)  Epéa eXpl—26pMap)
ab (Eatép)(Ea— &) (dpT &) (&= Ea)°
_ (3&26,— £0)exp( —2éa ap)
rab(fa"'gb)s(éa_fb)g
_ (3&pEa— ED)exp— 26 ap)
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E\=Eoct Ey . @  [falfel=;
If we normalizeEqg so that it becomes zero when the ion
charge is zerok,, can be viewed as the energy of a nonionic
crystal (e.g., a metaland E. then accounts for the electro-
static energy change as this crystal is ionizedy., by oxi-
dation). Atomistic simulations require two separate models
for calculating, respectivelyE.s and E,,. In the Streitz-
Mintmire formalism,E,, could not be represented by a pair
potential because its integration with tkggled to instabili- i(in) .

ties at metal oxide surfacé$.The modified E. potential Zk:j(il)kC[fi”k] [see Eq(B13)]. Aggordmg to Eqs(4) and
described below resolved this instability problem, and there(5), V;; includes a summation OIi((:\j‘)(il)kc/rik- The direct

fore any nonelectrostatic potential model can be use&for  symmation of the slowly decayingr}/ function imposes a
Since the ionic interactions and the charge transfer arggrigus divergence problem. The Ewald summation tech-

only related toE, the Ees model is referred to as a charge pigue as described in Appendix C is therefore used to calcu-
transfer ionic potentialCTIP). For the convenience of dis- |3t Vi .

cussion to follow, we summarize the Streitz-Mintmire CTIP  The Streitz-Mintmire CTIP model has been combined
model in Appendix B. To apply EqB14) to calculateEcs,  wjith an embedded atom method potential for nonelectrostatic

®

It should be pointed out that;; involves a summation of

one needs to first calculate functiosandV;; described in
Appendix B by Eqs(B12) and (B13) in terms of Coulomb
integrals[a|f,] and[f,|f,], wherea=i,j, b=i,j, a#b.
The expressions fdra|f,] and[f,|f,] are not trivial to de-
duce. As a result, we list our derived equations [faff,]
and[f,|f,] here:

1 1
[a|fy]= rab— Ep €XP(— 28T ap) — a) expl—2&pr ap),
©)

for §,=&,=¢,

1
[falfol= r_b[l_(1+%Erab+%§2r§b+%§3r§b)
Xexp(—2£rap) |, (4)

and for&, # &,

interactions and used to simulate the binary aluminum-
oxygen system® Using this Al-O potential, our simulations
of Al/AIO, multilayers correctly predicted zero charge in the
bulk aluminum, a maximum cation and anion charge in the
bulk oxide, and a partial cation and anion charge near the
Al/AIO , interface. It also correctly predicted the charge de-
crease near an oxide surfa@eThis Al-O potential has al-
lowed a successful simulation of the dynamics of oxide scale
formation on aluminum surfacé$2®

However, we found that the potential has two problems.
To illustrate the first, we calculated the cohesive energy of
the a (corundum phase of AJO; over a wide range of lat-
tice constants using the original potenfidlThe results are
plotted in Fig. 1 as a function of isotropic strain defined as
e=(a—ap)/ay, wherea, represents the equilibrium lattice
constant andh is the lattice constant after a hydrostatic vol-
ume change. Figure 1 indicates that the charge transfer
model reasonably predicts a local energy minimum at the
equilibrium (nonstrainegcrystal lattice length. However, the
cohesive energy versus strain relation has a local maximum
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FIG. 2. Average anion charge of corundum,®} as a function
of isotropic strain predicted by the old charge transfer model.

as the crystal is compressed beyond a strain of ab@uL6
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increased attraction drives the two ions closer. This promotes
a further increase in the magnitude of the charges. Repetition
of this process results either in calculation overflGwost
likely) or unrealistic results. It should be noted that for a
system containing many atoms, the problem can be triggered
when any pair of ions becomes close.

In spite of the instability shown in Fig. 1, the original
model and the proposed potential paraméfermve been
satisfactorily used in a number of different simulatihs?®
This is because the nonelectrostatic parameters defining the
short-range repulsion between atoms have been constructed
to prevent atoms from getting too closéus, the unstable
charge crystal configurations such as the highly compressed
one shown in Figs. 1 and 2 do not ockim the simulations.
However, the instability is still a very serious problem for the
original CTIP model. This is because while Fig. 1 shows the
occurrence of the problem when a bulk ionic system is
highly compresseto below —0.2), the same problem could
occur in much less compressed systems that contain nonbulk

and becomes unstable when the crystal is further compress&gnfigurations such as free surfaces and interfaces. It may

beyond a strain of about0.23.

also occur when a surface is impacted by energetic atoms or

To investigate the origin of this effect, we calculated theions. In these cases, the local interaction difference or the
charge on each ion as a function of crystal size. The averaggpact can cause an atom or ion to closely approach another
oxygen ion charge is plotted in Fig. 2 as a function of theatom or ion. We have also found that the original CTIP
isotropic strain. It can be seen that the magnitude of thenodef® is always unstable and always causes calculation
charge asymptotically decreases towards near-zero as tlwerflow if it is combined with other EAM potentials such as
crystal is expanded. It becomes increasingly negative athat reported in Ref. 17 to even simulate an uncompressed
crystal is slightly compressed. However, when the crystal iZrO, or AlO, surface. In addition, we have discovered that
compressed below a strain ef0.2, the charge becomes un- the overflow encountered during efforts to use the pair po-
stable and oscillates between large physically unrealistic vakential to approximaté,, (Ref. 26 also resulted from this

ues.

To understand the origin of the charge instability, we nee
to consider only a simplified system containing a cation an

instability. The constraint that the original CTIP model im-

33oses on the choice of the nonelectrostatic potefitialud-

ng both format and parameters clearly nonphysical and

an anion pair, with each assumed to be a point charge. AGyrevents a merging of the CTIP with the existing metal alloy

cording to Eqgs.(B1)—(B3) and (B14), the electrostatic en-
ergy for such a pair can be written as

d1d2
ro

Ees= X101+ 33105+ X202+ 33,05+ K, (6)

If the overall system is charge neutrgh=—q,. Equation
(6) then becomes

Ees:(Xl_XZ)q1+( 2 r.. q%- (7)
Equation(7) only has a well-defined minimum whenl,(
+J,)/2—k./r1,>0 (i.e., a concave parabolic cupveHow-
ever, for a set of model parameter3, (and J,) that are
prescribed to satisfy this condition at the initigh, there is
always a critical value for a reduced, below which g

EAM potential database for a variety of metals.

The second problem with the original charge transfer
model is that it can only be used to study oxygen-single-
metal(binary) systems. Our underlying objective is to super-
impose a CTIP potential with an EAM potential so that the
integrated CTIR- EAM potential can be simultaneously ap-
plicable to pure metals, pure oxygen, and to the mixtures of
different oxides and different metals. The total energy of the
EAM model, represented here by the nonelectrostatic energy
E, has been established to fully describe metal alloy
systems.’ In order for the integrated CTHPEAM potential
to be invariant against the EAM potential of metals, the total
energy of the CTIR EAM potential, E,= E.c+ E,,, must be
reduced tcE;=E, in pure metal alloy systems. This requires
thatE.s=0 for all metal alloy systems. EquatidB14) indi-

+J,)/2—k./r1,<0. This corresponds to the condition where cates that the normalized electrostatic poteriglvanishes
the Coulomb interaction between the neighboring cation anevhen all the chargeg; become zero. This means that the
anion overpowers the other energy terms. When this hapSTIP model must predict zero charges in pure metal alloy

pens, Eq(7) ceases to have a minimu(it becomes a con-

systems. Note here that metal alloys can have minor charges

vex parabolic curvg andE always reduces as the magni- from first principles. This charge contribution, however, has
tude of charge increases. The problem is serious for variableeen implicitly included in the EAM and the zero charge
charge models because as the magnitude of the charges agsumption is in fact mandatory to comply with the notion

neighboring cation and anion increases to redlgg the

that the EAM fully describes metal systems.
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The Streitz-Mintmire original CTIP model correctly pre- were distinguished only by their charge parameters. As Eq.
dicts zero charge for aluminum atoms in either bulk alumi-(8) has indicated, the only driving force to induce charges in
num or a local aluminum region of the Al/AlOnultilayers.  this model is the relative difference of the charge parameters
However, this is achieved only when a single metal is in-between the neighboring atoms. When the charge parameters
volved and nonzero charge will be obtained in any metakre prescribed, the charges are defined regardless of the spe-
alloy systems. To illustrate, consider again a simple pair otjes (oxygen or metal of the neighboring atoms. The diffi-
point charges. Sgtting the first derivative of the _electrostatiqzu“y is that different metal species always have different
energy[Eq. (7)] with respect tay, equal to zero yields charge parameters. The problem is compounded because the

-~ difference of the charge parameters between some metals
Q1=ﬁ- (8) may even be more significant than that between oxygen and
172 ¢ 12 some of the metals. To ensure zero charges in unoxidized

It is seen thaty, is zero only wheny, and y, are identical metals and significant charges in oxidized metals is then a
(i.e., 1 and 2 are of the same spegielm a single-metal challenging task. Obviously, the potential must also distin-
region, all atoms have the same charge properties. As a rguish between metal and oxygen atoms by something other
sult, no atoms can have a preference to become a posititean their charge parameters.

charge by inducing negative charges to its neighbors, and As discussed above, charge bounds can be used to solve
zero charge is naturally achieved. In metal alloys, howeverhe instability problem of the original CTIP model. The same
neighboring atoms can be different metal species. Thewpproach can also be used to ensure zero charges for unoxi-
therefore will have different charge parameters. As a resultgized metal alloys. Because metal atoms are assumed to be
the original CTIP model will predict nonzero charges for acations and oxygen atoms are assumed to be anions, it is then
pure (unoxidized metal alloy region. If this happens, the reasonable to bound the charge of each metal atoqyto
integrated QTIPr EAM potential will be d|ffere_nt from the ¢ ch that G5y =Umaxy» and to bound the charge of each
EAM potential for pure metal systems. A physical method tooxygen atom 1o, such thaignoc<qu<0. The potential

ensure zero charge in any metal alloy needs to be developetﬁlen naturally distinguishes metal and oxygen atoms by the

in order for the model to be used in systems that include_. . . .
sign of their charge bound. This guarantees zero charge in
more than one metal elements.

unoxidized metal alloy regions.

To illustrate, consider an aluminum and zirconium atom
pair. Let us assume that the zirconium atom wants to become

The discussions above clearly indicate that simulationgositively charged by inducing a negative charge on the alu-
based upon the old CTIP model are unstable when configuninum atom. The aluminum atom, however, cannot become
rations with small lattice spacings are encountered. In thisiegatively charged because it is set to be in the positive
regime, the electrostatic energy is dominated by Coulomlgharge range. This would force the aluminum charge to be-
interactions. When this occurs, the system energy continucome zero. Zirconium, on the other hand, cannot stay posi-
ously decreases as the magnitude of the charge on the neighvely charged because it does not have anions to interact
boring cation and anion increases. Energy minimization thegyith. Note in this simple case of a dimer, the system neutral-
leads to unrealistically large charges. In reality, the charge ofty requirement also forces the charges to be zero. Since zero
anionis aIvyays boun(_jeq. For instance, the maximum Chargé’narges are guaranteed, the full CFIEAM model is in-
of a cation is usually limited by the number of valence elec-4jant against the EAM potential, providing a basis for the
trons as much higher energies are required to extract inNefanera combination of an alloy EAM database with a CTIP
shell electrons. Obviously, a physical CTIP-type model mus odel.
ensure reasonable charge bounds for each ion. It should be 1, simple approach captures the essential physics dur-
pointed out that unlimited charge is directly responsible forin charge transfer. i.e.. metal atoms only lose electrons until
the observed divergence. For instance, when negative char arg o Il
and positive charge start to interact, they tend to increas th_elrvalence eIect_rons are gone, while oxygen atoms only
their magnitudes of chargédue to energy minimization acquire electrons u_ntll the|r_outer e_Iectron shells are filled. It
This will increase the attraction between them and caus& the implementation of this physics that solves both prob-
them to become closer. This in turn promotes further in/e€Ms of the original CTIP model. o _
creases in charge. If the charges are not bounded, the con- While the physical underpinnings of this idea are simple,
tinuous increase of the attraction due to increases in chargemodestly elaborate methodology is required to apply it. To
during this process can cause atoms to become infinite|9verC0me the difficulties in enfOfCing the Charge bOUndS, we
close and a divergence occurs. As a result, while imposingdded two additional terms to the electrostatic energy, Eg.
charge bounds does not directly change the Coulomb equ&B14). To maintain the integrity of the Streitz-Mintmire
tion at small atomic distances, it effectively eliminated themodel, it is required that the additional terms become exactly
instability problem. equal to zero when the ion charges are within their chosen

To extend a CTIP model to metal alloy oxidation, the keybounds. To prevent charges from far exceeding the bounds,
is to predict zero charges for the unoxidized metal alloy andhe additional energy terms increase rapidly as the charges
significant charges for metal oxides. It should be pointed ouexceed the bound values. Such terms can be simply written
that in the original CTIP model, the oxygen and the metalas

Ill. CTIP MODIFICATIONS
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N NN N ai = Armini an integrated conjugate gradient technique combined with a
Eem 2 QixiT32 2 aiqVij+ 2, w( 1- &) Newton-Raphson method can be used to minimize this func-
=1 =1j=1 =1 | = Cin | tion containing nonconstant coefficients. Since the function
to be minimized is essentially quadratic, the conjugate gra-
)(qi_Qmaxi)zv dient method guarantees the convergence to the charge solu-
' tions that can provide accurate calculations for energy,
(9) forces, and stresses. This was also found to be much more
computationally efficient than the matrix operations using
whereqmin; andgmay; are the bounds for the charge of atom Eqgs.(B16) and (B17).
I, Ominj <0 <Omaxj,» and the coefficienn can control how
strongly the charge is confined by the boufplsysically this
also corresponds to the energy penalty for metal atoms to IV. MODIFIED EMBEDDED ATOM METHOD
obtain electrons or to lose inner-shell electrons or for oxygen  pajr potentials can, of course, be used for the nonelectro-
atoms to lose electrons or to receive more than two elecstatic interactions,,. Since the intent here is to extend the
trons. _ _ _ o approach to study the oxidation of a variety of metals, we
Using the simple case of a cation and anion pair, it can bgeek to apply an existing good metallic potential database to
proven that Eq.(9) significantly stabilizes the calculation. approximateE,. The EAM potentials initially developed by
Assuming that the anion chargg and the cation chargg,  paw and Baske$ improve over the pair potentials by incor-
both seek to exceed the intended charge bounds(/Eqan  porating environment dependence of the atomic interactions.

Omaxi — Qi

N
(O — O )2+ (1——
(9i — Amini) ;1 w |qi_Qmax,i|

be rewritten with the modified model as The existing EAM metallic potential databa$enas been
successfully utilized to simulate a variety of metal problems,
Ees=[ X1~ X2+ 4®(Umax 2~ Amin.0) 101 especially the atomic assembly mechanisms and atomic
JI+3, ke structures of vapor-deposited metals and metallic
— — 440 |7+ 20(Qin 17 Aorax 2 - multilayers!”*8The EAM databasg is hence chosen for our
2 M2 ' ' work. The EAM database model is described in Appendix E.
(10 Since our improved CTIP model has zero effect on the

] ) o calculation of the metal systems, the existing metal EAM
Using the Streitz and Mintmire dataJ{=14.04eV));  potential parameteté and Egs.(E1)—(E8) can in principle
=10.33eV), the separation distance below which diverye ysed directly. However, it is useful to notice that the nor-
gence occurs for a dimer is approximately,=2kc/(J1  malized embedding energy functions, E¢E5)—(E7), are
+J,)=1.2 A in the Streitz-Mintmire old modelEq. (7)].  expressed in terms of relative electron density. As a result,
US|ng the new mOdel, EC(.'].O), and a value O&)ZZOO, this Only the ratios(not the absolute Valuh@f fe, Pe, and Ps
divergence separation is significantly reduced t@  affect the predicted properties of elemental metals. This fea-
=2k/(J1+J,+8w)=0.156 A. Most importantly, the tyre can be utilized to fine-tune the properties of alloys and
modified model a”OWS]l andJ2 to be freely fitted to phySl' oxides. As a result, we adjust the paramef%r;spe a_ndpS in
cal values without any constraints because even whemd  the EAM databasé by a scaling factory (i.e., f.g— fe,

J, are both zero, Eq10) still predicts a very small diver- ped— pe, and psg—ps, With g being the only adjustable
gence radiusr;,=2k/8w=0.18 A, whereas the earlier parameter to fit to the corresponding oxide’s properties.
model predicty ;,= . Once theg factor is given, the metal potentials are com-

Equation(9) must be numerically solvable for this model pletely defined by the existing EAM databd<eThen, we
to be successful. In order for Eq9) to possess a well- need only determine the pair potential between oxygen at-
defined minimum, it must be continuous and have continupms, the various pair potentials between oxygen and the
ous first derivatives. The prefactors before tg—<(dminj)®  various metal atoms, the electron density of oxygen, the em-
and (@; — Omax;)* terms abruptly change from 0 taw2at their  pedding energy of oxygen, and thdactors for the different
respective junctiongyi,; anddpay; - However, because both metal species. These can be defined by fitting model predic-
(G~ Aminj)* @nd (@ — Amax)® and their first derivatives di- tions to the known properties of oxides. To avoid the addi-
minish at the junctions, the added terms are still continuousional complexity due to different interactions betweep O
and have continuous first derivatives. molecules and between the two oxygen atoms within an O

The modified equatiot9) remains quadratic in nature. molecule, we assumed that oxygen takes the atomic form
Unlike the quadratic function, EqB14), some prefactors in  rather than a diatomic molecule. While this is an approxima-
Eq. (9) are not constant(step functions As a result, tion, the interaction between a solid surface andg@s can
9Eeq/ 90; =0 will not be the “normal” system of linear equa- still be conducted in MD by introducing oxygen dimers
tions. EquationgB16) and (B17) can no longer be used to rather than atomic oxygen on the surface. This is a sensible
solve for the charges. On the other hand, solving charges bapproach for the simple potential being sought. Note that the
a matrix operation is not efficient, especially when the num-experimental cohesive energy of metal oxides implicitly in-
ber of atoms is large. An alternative computationally efficientcludes the cohesive energy of the diatomic oxygen molecule
algorithm was therefore sought. (see Appendix A

Using =N ,q;=0, Eq.(9) is a function ofN—1 indepen- Equation(E3) is a universal format for pair potentials. We
dent variablesy,q,,...,0n-1. Appendix D illustrates that find that the pair potential between oxygen atoms can be well
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fitted by Eq.(E3). Efforts have been made to use the alloyarrange theM oxides so thape1,pe2,...,pem, refers to an
formula, Eg.(E8), to approximate the cross pair potentials increasing sequence of the electron densities.

between oxygen and metal atoms so that no additional fitting The most straightforward way to fit an oxygen embedding
is required once the elemental potentials are known. Howenergy function that smoothly goes through these electron
ever, the results have not been satisfactory. It was realizedensities is to use the spline functions. To fit the cohesive
that the oxygen crystal has a lower melting temperature andnergy, the lattice constant, and bulk modulus of an okide
therefore a lower cohesive energy than the metals. On thexactly, the oxygen embedding energy and its first and sec-
other hand, metal oxides usually have larger cohesive eneond derivatives need to be exact, at least within a small elec-
gies than metals. The extra cohesive energies of the oxidason density range neape i ,Pmini<P<Pmaxi, Where pmin;
must therefore come from a stronger interaction betweer<p,;, and pmai>pe;- A quadratic function can be used to
oxygen and metal atoms. The Coulomb interaction predictedchieve this. FoM oxides, we then obtain aM number of

by the CTIP model cannot alone provide this stronger interoxygen embedding energy functions:

action. The covalent nature of this interaction must therefore

) ; . . - 2 n
be included in the pair potentials. It cannot be approximated p
by Eqg.(E8), which is essentially the weighted average of the FOJ(P):ZfO Fn,i(p_ei_ 1) v Pmini <SP Pmaxi »
oxygen-oxygen and metal-metal pair potentials. We therefore ’
ind;:-pendently fit each oxygen-metal pair potential using Eq. i=12,..M. (12)
(EJ).

The electron density of oxygen was fitted using Eif). For an oxygen embedding energy function to be continuous,
Unlike Eq.(E4) where and\ are the same as those in the Pminj @nNd pmay; Can be simply set apmn;=0.5(p¢ -1
attractive part in the pair potential, we introduce here newt pe;i), andpnay=0.5(0¢+ pe,i+1), Where onlypy, 1 and
fitting parameterd” and ¥ to provide more freedom for a pPmaxm are not defined. We then takg,, , as 0.8p.;, and
better fit to the oxide properties: Pmaxm as. The only undefined embedding energy function

is in the O—pyn 1 range. We can again use a polynomial
function as shown in Eq13) to fit this range, where a higher
(12) power (h=3) term is introduced so the function can be fitted
under the physical condition ¢f;,=0 at p=0. With these
function formats given, the fitting was designed to result in

The present model is intended to be applicable for syssmooth values and first derivatives for the oxygen embed-
tems with oxygen and an arbitrary numk@&f) of metal el-  ding energy function at the spline junctions:
ements. At leasM different binary oxides involving th 3 |
metal elements need to be simultaneously fitted to get theF )= 2 = L—l -y _
cross pair potentials between oxygen and these metals. If we odp o ™\ peo » P=Pmints Pe0™ Pmin,1-
want to fit M binary oxides, there will bél nonequivalent (13
oxygen lattice sites in thedd oxides. TheséV sites corre-
spond toM equilibrium electron densitiesp.;, wherei
=1,2,...M. An oxygen embedding energy function must se-
quentially go through these electron densities as the electron To accurately account for the Coulomb interactions, a
density increases. For the convenience of discussion, we caglatively long cutoff distance of 12 A was used. Although it

feexgd —T'(r/re—1)]

f(r)= 1+(r/rg—¥)%°

V. PARAMETRIZATION

TABLE |. EAM parameters for metals.

re (A)

Metal feo Pe Ps a
Al 2.863924 1.343867 19.556 03 22.216 28 6.613 165
zr 3.199978 1.591 439 22.028 52 22.02852 8.559 190
B A (eV) B (eV) K N
Al 3.527021 0.314 873 0.365551 0.379 846 0.759 692
zr 4.564 902 0.424 667 0.640 054 0.5 1.0
Fno (€V) Fni (eV) Fn2 (eV) Fns (€V) Fo (eV)
Al —2.807 602 —0.301435 1.258 562 —1.247 604 -2.83
zr —4.485793 —0.293128 0.990 145 —3.202519 —451
Fi (eV) F, (eV) Fs (eV) 7 Fe (eV)
Al 0.0 0.622 245 —2.488 244 0.785910 —2.824528
zr 0.0 0.928 602 —0.981 870 0.597 001 —4.509017
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TABLE Il. Model predicted and target properties of fcc aluminum and hcp zirconium.

Al Zr
Physical property Predicted Target Predicted Target
Lattice constant$A) a 4.050 4.050 3.202 3.202
c 5.229 5.229
E. (eV) 3.580 3.580 6.360 6.360
Bulk modulus(eV/A3) B 0.474 0.474 0.606 0.604
Shear modulugeV/A3) G 0.164 0.164 0.228 0.230
anisotropy ratio A 0.819 0.820 1.384

is possible to use a second shorter cutoff distance for thetersFq 4, F11, F21, Fo2, F12, F22, Foo, F10, F2,0, and
nonelectrostatic EAM interactions to improve calculation ef-F; o that define the spline to the oxygen embedding energy.
ficiency, for simplicity no such efforts were made here. Note thatpe; (i =Al,03,Zr0,) is known for the given crys-

The CTIP+EAM model retains the invariance of the tals once the electron density of oxygen is defined. One ad-
EAM for pure metal systems. Based on this, the same metalitional requirement is that the splined oxygen embedding
EAM parameters as those publishedould be used. Never- energy be continuous and have smooth first derivatives at
theless, since the publication of the EAM databHseie  junctions.
have slightly modified some of the parameters in light of Of the four charge parameters abo¢esharacterizes the
additional studies. The modified set of the parameters iglectron shell and defines the rate at which the electron den-
shown in Table I. Because the EAM format allows the po-sity decays as the distance from the nucleus increases. A
tential to be naturally cut off at around the fifth nearestrealistic value of¢ was determined by fitting the electron
neighbor(Appendix B, the extension of the cutoff distance density distribution in the oxide crystal to that obtained from
does not affect the results of the EAM calculations. Thesehe ab initio calculation. The values of other charge param-
EAM potentials for elemental cubic metals have alreadyeters determine the equilibrium cation and anion charges in
been well fitted to the lattice constant, cohesive energy, bulkhe bulk oxides, the electrostatic components of the cohesive
modulus, shear modulus, anisotropic ratio, and the pressugmnergies, and the function forms of the charge versus lattice
derivative of the bulk moduluS.A comparison between pre- constant relation. These charge-related quantities, unfortu-
dicted properties and target properties is shown in Table Il.nately, have traditionally not been well defined or deter-

In Table Il, the target values of lattice constant, cohesivamined. On the other hand, the precise determination of these
energy, and elastic constants are all experimental’dathe  quantities that are only used for the input of the CTIP model
anisotropy ratio of hcp Zr have not been specifically fitted. may not be necessary because all the measurable properties
It can be seen that by using the EAM parameters of Table lof oxides will be fitted to the integrated CTHEAM model.
the experimental properties of the pure metals can be welh the Streitz-Mintmire original CTIP modéf the Al charge
predicted. in an equilibrium corundum AD; was taken to be 2.9@0

Potential parameters that give rise to good predictions ofhis equilibrium charge is about 97% of the maximum alu-
the properties of both aluminum oxides and zirconium ox-minum charge of 8. It is also equivalent to an oxygen
ides are needed. The corundum phase glQAlis a stable charge of—1.933%. While fitting of the charge parameters
structure at both low and high temperatures, and hence it wasan be improved in the future wheb initio calculations or
the natural choice for the parametrization. Zrkas several experiments provide better definition and data for charges,
different crystal structure forms. It exhibits a monoclinic our tests indicated that the Streitz-Mintmire choice of the
structure at low temperatures, a tetragonal structure at intecharges is reasonable and can produce realistic results within
mediate temperatures, and a cubic structure at high temperthe context of the model. Hence, we assumed an equilibrium
tures. Since many zirconia materials are either manufactureokygen charge of-1.933 in both AlL,O; and ZrQ bulk
or applied at high temperatures, the cubic Z8fructure was  crystals. The electrostatic components of the cohesive ener-
used for deriving the potentials described below. A similargies of oxides were constrained in a range so that they must
approach can also be used to fit other structures of interesticcount for the extra cohesive energies of oxides with re-

The input properties of the oxides are the charge in th&pect to those of pure metal and pure oxygen crystals. These
equilibrium bulk crystal, the electrostatic energy, the cohe<lectrostatic components were adjusted iteratively with EAM
sive energy, the lattice constant, and the single-crystal elastic
constants. With the metal EAM potential paramet@rable
[) given, the remaining adjustable parameters are the fo'“Element
parameterg, J, & andZ for the charge properties of each of

TABLE Ill. CTIP parameters for O, Al, and Zr.

Amin Omax X (ev) J(eV) ¢ (A_l) Z

the three elements O, Al, and Zr, seven parametgrsy, B, @) -2 0 2.000 13.992 2.144  0.000
A, B, k, andA for the pair potential between each of the three  a| 0 3  —3.402 10.216 0.968 0.561
pairs O-O, O-Al, and O-Zr, three additional parametkss Zr 0 4 -3.360 7.954 0.816 0.641

I', and W for the electron density of oxygen, and 10 param
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TABLE IV. EAM parameters for O-O, O-Al, and O-Zr pair potentials.

Pair re (A) a B A (eV) B (eV) K A

0O-0 3.315171 5.716 137 3.758 299 0.263 795 0.273 569 0.498 438 0.560 282
O-Al 2.511 075 8.574 224 4.669 743 0.208 662 0.678 293 0.355 898 1.014 487
O-Zr 2.311373 7.932 056 4.487 195 1.316 054 1.646 021 0.069 542 1.391 275

parameters so that the overall fitting was optimized. Withwith
these, the charge parameters of the three elements were de-

termined and are listed in Table I, where the charge bounds, _ 9B,
Omini and Omaj, are also listed for each element ( as=e\ E ' (16)
=0,Al,Zr).

For perfect oxides, analytical relationships between thevheree is the isotropic strainB is the bulk modulusk, is
charge parameters that give exactly the target equilibriunthe equilibrium cohesive energy, afity, is the equilibrium
charges can be derived. By fitting to the bulk charge, a nonatomic volume. A convenient feature of the Rose equation is
zero y is obtained, Whery is not zero, isolated atoms will that ate=0, it has an energy minimur&., and a second
have a nonzero charge due to self-ionization. This can béerivative that exactly predicts the bulk modulBisBecause
seen from Eq(B1) where aq of opposite sign withy reduces  Of this, an exact fit of the cohesive energy, lattice constant,
the energy. The consequence of this is that the charge wiftnd bulk modulus for a cubic oxide can be simultaneously
not go to zero as the oxide crystal is expanded to infinity. ToRchieved if the following equation is strictly enforced:
be consistent with the underlying assumption of our model
that isolated atoms have zero charge, we have used a cutoff Ei=Eest En=Erose (17)

on y. We assumed thay takes the fitted value when the ntice that all the unknown parameters at this stage are con-
distance between any oxygen atom and a nearby atom {§ine in the expression fé&, . For fitting, all the parameters
small. x then diminishes towards zero as this distance appeeded to define the oxygen electron density and the O-O
proaches the cutoff distance of the potential.x}f is the 5.4 o (M denotes Al and Zrpair potentials were first
fitted value ofy, r is the distance between an oxygen atomapproximated by a best guess. This allows all the energy
and its nearby neighbor, is the starting point fol to vary,  terms and their first and second derivativesEinto be cal-
andr is the cutoff distance, a smooth approach to fhe ¢ jated except for those related to oxygen embedding energy
cutoff can be achieved: functions. The oxygen embedding energy and its first and
second derivatives at the equilibrium electron density of the
_ E l+cos{ r—=rg ) - oxygen site in each oxide can then be solved from #@)
X—32 re—rs as the oxygen embedding energy is the only unknown in the
equation. Knowledge of these oxygen embedding energy val-
It should be pointed out that we provided Hd4) for the  ues is sufficient to calculate all the elastic constafe
integrity of the model and applied it in our calculations. We point out that while the position dependence of the charge
did not find any serious problems without the inclusion ofdoes not affect forces and stresses as shown in Appendix B,
Eqg. (14) in the simulations, as the Coulomb interaction is the
dominant cause for the introduction of charge and the charge Approximate nearest neighbor distance (A)
caused by self-ionization is small for the fitted parameter &
values used here. S o5 100 1.|50 _ 200 28 300
The primary considerations during parametrization of the _‘g Corundum Al,Os
potential is to determine the remaining unknown parameters® .0
so that the potential best predicts the equilibrium lattice con- ©
stant, cohesive energy, and elastic constants of the oxide sysg, 05 | 4
tems (here the corundum AD; and cubic ZrQ crystals.
We have utilized the Rose universal equatiao assist with
parameter fitting. The Rose crystal energy equation can be
written

Xo- (14

new model

Erose= —Ec(1+ag)exp—ay), (15

25 1 1 1 ) 1
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

fe r ) Isotropic strain, ¢

Average oxygen charge ¢

TABLE V. EAM parameters for oxygen electron density.

1.502 175 2.444 388 0.645585 FIG. 3. Average anion charge of corundum,®} as a function
of isotropic strain predicted by our CTIP model.
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TABLE VI. EAM parameters for the oxygen embedding energy spline function.

i Foj Fy, Fa; Fs; Pe,i Prinj Pmaxi

0 —1.514 833 —3.726 519 —2.911951 —0.700 265 57.825 648 0 57.825 648

1 —1.945 745 —1.361 354 10.075953 68.030174 57.825 648 71.584 480
3 —1.965 159 0.883 740 7.620277 75.138 786 71.584 480 0

it does affect the elastic constant$he total squared devia- experimental lattice constants of &5,° the experimental
tion between predicted elastic constants and the target elasi@hesive energies of AD;,*"**and ZrQ, (see Appendix A
constants was then calculated for all the independent elastighd experimental elastic constants of®@4 (Ref. 31) were
constants €15, Cy3, Ca3, Cs4, andCy, for the hcp ALO;,  used as the target values. The target values of the lattice
and Cy3, Cyp, and Cyy for the cubic ZrQ). The oxygen constants and elastic constants of the cubic Zn@re ob-
embedding energy and its first and second derivatives at thgined using oumb initio calculations. It can be seen from

equilibrium electron density of the oxygen site in each oxideTaple VII that the predicted properties are in very good
were then used in Eq12) to calculate the oxygen embed- agreement with the target values.
ding energy and its derivatives at the spline junctions. The

squared deviation of oxygen embedding energy and its de- VI. CHARACTERISTICS OF THE MODIFIED

rivatives at each junction were then added to the squared CTIP+EAM POTENTIAL

deviation of the elastic constants. To guarantee the correct

lattice constants for noncubic structur@s., zero normal The modified CTIR- EAM potential is essentially equiva-

stresses in all coordinate directionthe squares of the three lent to the existing EAM potential databasevhen used for
normal stresses were also included to obtain a total squargaire metals. This EAM potential database has been well
deviation. The conjugate graduate method as described icharacterized and has been successfully applied to a variety
Appendix D was used to minimize the total squared deviaof metal problems’*® As a result, the several simulations
tion by adjusting the parameters needed to define the oxygguerformed here were all chosen to involve oxygen so that the
electron density and the O-O and@-(M = Al and Zr) pair ~ application of the CTIR- EAM model in metal oxides can be
potentials. Once this was performed, the oxygen embeddingharacterized. For a given crystal, the calculated charges are
energy values were used to define Etp). Finally, Eq.(13)  determined only from the CTIP part of the potential and are
was defined under the condition that the function is zero aindependent of the EAM parameters. For a first test, the
p=0 and is continuous with a continuous derivative at theCTIP model as described above was used to calculate the
right junction,p= pnin.1. The fitted parameters deduced with charge as a function of isotropic lattice strain for the corun-
this procedure are listed in Table IV for various pair interac-dum phase of AlO; and the cubic phase of ZyO During
tions, Table V for oxygen electron density, and Table VI for calculations, we used a coefficient of 10.0 for establishing
oxygen embedding energy. Based upon this set of parancharge bounds. Results for the anion charges gDAlare
eters, the predicteflinrelaxedl properties of the oxides are plotted in Fig. 3. Similar results were obtained for ZrOo
compared with their target values in Table VII. Here, thetest the charge stability, results were obtained for a wide

TABLE VII. Model predicted and target lattice constargsand ¢, cohesive energieg., and elastic
constantECq;, Cy3, Cs3, Cas, Ciz, Cqs, andCgg.

Al,O ZrO,
Physical property Predicted Target Predicted Target
Lattice a 4.759 4.759 5.150 5.150
constantgA) c 12.991 12.991
E. (eV) 6.461 6.461 7.640 7.640
Elastic B 1.577 1.577 1.481 1.481
constants
(eVIAd)
Cu 3.452 3.108 3.158 3.181
Cis 0.632 0.701 0.642 0.631
Cas 3.259 3.119 3.158 3.181
Cus 0.879 0.921 0.543 0.558
Ci 0.750 1.025 0.642 0.631
Cua —0.161 —-0.147 0.000 0.000
Ces 1.351 1.042 0.543 0.558
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Approximate nearest neighbor distance (A) Approximate nearest neighbor distance (A)
1.0 15 20 25 3.0 3.5 4.0 0.75 1.0 1.25 1.5 1.75
00 T T T T T 700 T T T T
10 |t (a) Corundum Al,O3 | 600 | (a) Corundum Al,O3 |
S s
L 20t 2 500 ¢t
w w
= 30 | > 400 t
= 2
2 40t 2 a00 |
[ @
$ =m0 ! £ 200 D
[ [73
£ 60 £ 100
o =0. r o -
(& o
7.0 | ] o |
-8.0 I 1 1 ! 1 -100 I i 1 1 i
050  -0.25 0.00 0.25 0.50 0.75 1.00 -0.6 -0.5 -0.4 0.3 -0.2 -0.1 0.0
Isotropic strain, € Isotropic strain, €
Approximate nearest neighbor distance (A) Approximate nearest neighbor distance (A)
1.5 2.0 25 3.0 3.5 4.0 45 1.00 1.25 1.50 1.75 2.00 225
00 T T T T T T 700 T T T T T
40 |t (b) Cubic ZrO, ] 600 | (b) Cubic ZrO,
S S
2 20t 2 500
w w
- 30 s 400 |
) )
2 40t 2 800 |
o (7]
2 50} 2 200 |
3 3
< 60 | £ 100 |
Q [=]
(&) O
70 0
8.0 I I t { ' -100 L L I ' L
050  -0.25 0.00 0.25 0.50 0.75 1.00 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Isotropic strain, € Isotropic strain, €
FIG. 4. Cohesive energies () corundum A}O; and(b) cubic FIG. 5. Cohesive energies () corundum A}O; and(b) cubic
Zr0O, as a function of isotropic straitnear equilibrium predicted  ZrO, as a function of isotropic straithighly compressedpredicted
by our CTIP+ EAM model. by our CTIP+ EAM model.

range of lattice strains from0.6 to 0.6, which correspond to CTIP+EAM model. Calculations were further extended to
nearest-neighbor spacings from about 0.75 to 3.0 A. Figure 8ven lower strain ranges, and the results are shown in Fig. 5
indicates that the improved CTIP model predicts chargewith a greatly compressed ordinate scale. It can be seen that
variation similar to the Streitz-Mintmire mod&lwhen the the stable calculations were achieved even at nearest-
crystal lattice was stretched. On the other hand, it enables theeighbor distance significantly smaller than 1.0 A. Addi-
oxygen charge to be bounded approximately—t@ as the tional calculations for even more compressed crystals also
lattice was compressed, demonstrating the successful impleid not indicate instability. We believe these results revealed
mentation of the electron valence concept and elimination o$ufficient stability for the application of this potential.
the charge fluctuation problem. Since one of our intentions is to provide a potential that
The fitting procedures guarantee that the modified CTIRcan be used in MD to simulate the growth Zr@t high
+EAM potential reproduces the Rose equation for the cohetemperatures. When ZgQs stabilized by %03, ZrO, ex-
sive energy as a function of lattice constant in the vicinity ofhibits a tetragonal structure at high temperatures. However,
equilibrium bulk crystal for both corundum 405 and cubic  the tetragonal Zr@transforms into a cubic structure when
ZrO, structures. It is important to test that there is no instathe yttrium concentration is reduced. For pure ZyGt is
bility when the crystal is highly compressed. For this, theimportant to ensure that the cubic phase is most stable. To
cohesive energies of both the corundum@y and the cubic test this, both monoclinic and tetragonal Zr€@mputational
ZrO, were calculated for various isotropic strains frend.5  crystals were created according to the experimental crystal
to 1.0. The results are shown in Figgagand 4b), respec- data®® The unrelaxed cohesive energies for both structures
tively, for Al,O; and ZrQ. The approximate nearest- were lower(less stablethan that for the cubic structure. The
neighbor distances are also included in the figures. Figurederived CTIP-EAM potential was then used to relax the
4(a) and 4b) indicate that the instability problem observed in crystals. We found that the tetragonal structure relaxed to the
Fig. 1 at small lattice constant is resolved by the improveccubic structure with a cohesive energy of 7.64 eV/atom. The
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TABLE VIII. Surface energie:{eV/Az) for various surfaces.

Our CTIP+ EAM Our ab initio
model model Otherab initio model$

Crystal Surface  Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relaxed
Al,O; {0003 0.37 0.25 0.22 0.09 0.24 0.11

{10T0} 0.37 0.31 0.22 0.09

{10T1} 0.36 0.31 0.23 0.16

{1120} 0.32 0.28 0.16 0.12

{1012} 0.38 0.32 0.16 0.12
ZrO, {110 0.39 0.36 0.13 0.08 0.14

®References 26, 32-34.

monoclinic nature of the monoclinic phase was reduced afteyrO,. Theseab initio results are included in Table VIII.
relaxation. Its relaxed cohesive energy was 7.42 eV/atom, The surface energies calculated by our CFEAM
lower than that of a cubic structure. Since the cubic phase gf,gdel are higher than theb initio results. The CTIP
ZrO, has the highest cohesive enei@ye have fitted to this | pam potential can be fitted to closely reproduce thie
phase, the potential is therefore only applicable to simula-jnjtio surface energies as demonstrated by Streitz and

tions where the cubic Zrgphase is expected to for(a.g., at Mintmire 25 However, we noticed that ZrOhas a consider-

high temperaturgs It can also be used to simulate other_ ably larger cohesive energy than,@k and yet ourab initio

phenpmena such as sglf—dlﬁusmn and dlslocatlon motion, Methods generally predicted very small unrelaxed and re-
previously formed cubic Zr@crystals. In its present form,

the potential is not suited to simulate the growth of crystals:axed j_urface energies .I.O ' ZﬁOA(;fCOTn;Otcri]atl(f)_g_ of SL:CChtﬁ
under conditions where other Zs@hases are preferred. arge discrepancy signincantly affecte € ntting ot other

The surface energies predicted by the potential have alsgroPerties. On the other hand, it is still an open debate as
been explored. First, the effects of crystal thickness on suf?oW Well ab initio methods can be used to calculate surface
face energy was determined. A corundum@y crystal with ~ €nergies in these systems. We also realized that all the crys-

[1100] x direction, [0001] y direction, and[1120] z direc- tals used in theab initio calculations are less thag A in

tion was used. Crystals with different thicknesses in yhe ch'CkneS.Z'. This dthlckneslf IS too shorttf%r !Ont'ﬁ n teracliu?[ﬂs;[
direction were created. The equilibrium bulk crystal was ob- anassidis and co-workers commented in their work tha

tained using periodic boundary conditions in all three coor{N€Y €xpected the use of larger thicknesses may lead to sub-

dinate directions with a flexible period length condition. TheStantially different surface energies. From these consider-
crystals with two equivalent Al-terminatef®001 surfaces ations, we did not _spe_cmcally_ fit the surface energies during
were then created by using periodic boundary conditions ifpotential parametrization. This was found to result in much
the x andz directions and a free boundary condition in the better fitting to the other properties.
direction. Both unrelaxed and relaxed surfaces were calcu- CTIP+EAM potential calculations revealed a significant
lated. For relaxing the surfaces, the positions of atoms in theurface relaxation of the Al-terminat¢d001} surface of the
middle part of the crystals were fixed, and periodic lengthsAl,O; crystal. On this surface, the first surface monolayer is
were not allowed to change. The surface energy was thealuminum, the second monolayer is oxygen, the third and
calculated as the energy difference between the crystal witfourth monolayers are aluminum, and the subsequent mono-
two y surfaces and the bulk cryst@caled to have the same layers are an alternative stacking of one oxygen and two
number of atomsdivided by the total area of the two sur- aluminum layers. Simulations indicated that the outer Al
faces. The results of the Al-terminat@@D01} surface energy monolayer was relaxed towards and became merged with the
of Al,O; indicated that the surface energy is almost indepensecondoxygen layer. To test this result, the displacement of
dent of the crystal thickness beyond the thickness of 30 Aatoms near the surfacésith respect to their bulk positions
As a result, crystals with a thickneg® y direction of at  was calculated using both CTHEEAM molecular statics and
least 30 A were used for calculating various surface energieab initio energy minimization methods. The results are com-
for both corundum AJIO; and cubic ZrQ crystals. The re- pared in Fig. 6, where the filled and unfilled circles represent
sults for relaxed and unrelaxed surface energies are listed @TIP+EAM and ab initio data, respectively. For tH@®001
Table VIILI. surface in the positivegy direction, a positive displacement
For comparison, we selectively calculated some surfaceneans that the plane moves out of the crystal while a nega-
energies using ab initio methods. Manassidis and tive displacement implies that the plane moves into the crys-
co-worker§?*? also reported first-principles local-density tal. Figure 6 indicates that the CTHEAM generally match
functional calculations of surface energies of corundumthe relaxation pattern found in thab initio calculations.
Al,O;, and Christensen and Cartepublished theimb ini-  They both indicate a strong relaxation of the outer Al surface
tio calculations of unrelaxell10; surface energy of cubic into the bulk.
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0.50 ' - ~ - ' ' much lower than that in the bulk after relaxation.

025 | ° Corundum Al,O3 | In heterostructure systems involving metals and oxygen,
< 000 | o r\oo\r, s the electric field causgd by charge; can be effectively
= / . screened by any metallic clusters. A significant problem of
% 025 | 1 any other type of empirical potentials is that they cannot
2 050 | ] physically implement this screening effect. One advantage of
2 ° the CTIP model is that it naturally simulates such a screening
S 078 effect by charge transfer. This is illustrated using a Zr/O
'% -1.00 | ® CTIP+EAM 1 multilayer. For simplicity, the Zr/O multilayer crystal is as-
& 45 |4 o ab initio ] sumed to be simple cubic, with a lattice constant of 2.23 A.

150 .' l ‘ . J . . The geometry of the crystal is shown in FigaB where the

00 10 20 30 40 50 60 70 bottom three monolayers are oxygen layers, and the top 17
monolayers are metallic zirconium layers. Using periodic
boundary conditions in the and z directions and a free
FIG. 6. Surface relaxation of the Al-terminat¢@001 Al,O,  boundary condition in thg direction, and by fixing the oxy-
surface. gen charge at-2e, the CTIP model was used to calculate
the induced charge in the zirconium layers. The charge as a
The calculations also yielded the charges on all of thefunction ofy coordinate(in units of monolayensis shown in
ions. The anion and cation charges as a function of atorfig. §b), where data for oxygen and zirconium are repre-
position from the Al-terminate0001} surface of a corun- sented by filled and open circles, respectively, and the solid
dum Al,O; crystal are shown in Figs.(@ and 7b). The line is used to guide the eye.
anion and cation charges as a function of atom position from It can be seen that positive charges are induced in the two
the O-terminated111} surface of a cubic Zr@crystal are  zirconium monolayers closest to the negatively charged oxy-
shown in Figs. {c) and 7d). The open and filled circles in gen region, while charge on the other zirconium monolayers
the figures represent the relaxed and unrelaxed crystal datemains essentially zero. The existence of these charges can
respectively. It can be seen that the unrelaxed charge d@roduce an electric field in thedirection. Using the assump-
creased as the free surface was approached. This agreed w#h of point charges, the electric field at each ion’s éite-
with the original CTIP modéf and physics of charge induc- cluding the field produced by the ion itseléan be easily
tion between cations and anions. The significant relaxation ofalculated. Figure @) shows the electric field as a function
the {0001} Al,O; surface greatly reduced this effect. How- of the y coordinate, where the filled and open circles now
ever, since little surface relaxation occurred on fi¢l}  represent the electric field measured at the oxygen and zir-
ZrO, surface, the charge on thgl1} ZrO, surface remained conium sites, respectively, and the solid line is again used to
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FIG. 7. Averagga) cation andb) anion charges as a function of position along [id@01] thickness direction of the corundum /8s;
and averagéc) cation and(d) anion charges as a function of position along [th&l] thickness direction of the cubic ZyO
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FIG. 9. (a) Average Al, Zr, and O charges arfb) oxygen con-
centration as a function of position along e 1] thickness direc-
tion of the oxidized AdyZrsq alloy.

direction, and 10 (?Q) planes in the direction was created.

Using a free surface boundary condition in thalirection

and periodic boundary conditions in tk@ndz directions, an
oxygen atom vapor density of approximately 0.0003
atoms/® (about 10 atmospheric pressuneas introduced
above the topy surface. A molecular dynamics simulation
was then used to simulate oxidation of the surface at a tem-
perature of 300 K. An abnormally high oxygen pressure was
used to accelerate the oxidation. The charge was solved ev-
ery 0.1 ps.

guide the eye. It can be seen that the electric field in the The simulation resulted in the formation ofe20-A-thick
metal rapldly fell from—150 V/A to almost 0 within three amorphous AeryOZ oxide |ayer on the Wrso a”oy after
monolayers of the interface. For comparison, the electriciog ps of oxidation. The average O, Al, and Zr charges as a
field produced at the zirconium site by the oxygen layerfynction of depth in the AZrs, alloy and its oxide are plot-
alone(i.e., zero zirconium ion charges also shown as the teq in Fig. 9a). The oxygen concentration profile through the
dashed line. It is seen that the infinitely large plane of negagyide layer is shown in Fig. ®). It can be seen that the
tively charged oxygen produced an almost constgiihde-  model predicted zero charge in the interior of the&ts,
pendent electric field of about-100 V/A. This result dem- ajjoy. Towards the surface, the aluminum and zirconium
onstrated that the CTIP model captures the metalliGharges rise until they approach their maximum values ®f
screening phenomenon, which is essential for valid simulagng +4, respectively. This corresponds well with the ex-
tions of metal-oxygen heterostructures. pected maximum oxygen concentration at the surface as
model is that it predicts zero charges in any local metal alloyexhibits a maximum within the oxide bulk; it decreases as
regions within metal/metal oxide mixtures. It should there-poth the free surface and the metal/metal oxide interface are
fore be well suited for study of metal alloy oxidation. To test gnproached. The reduction of the oxygen charge at the sur-
the validity of the potential for such simulations, the oxida-face is expected because the oxygen-rich surface region has
tion of a metal alloy containing two metal elements wasan insufficient concentration of cations to ionize the oxygen
explored. A disordered fcc AdZrso alloy crystal with 36 atoms. The oxygen charge at the interface should also be low
(224) planes in thex direction, 15(111) planes in they  because the oxygen atoms are ionized by cations whose

-200

0 4 8 12 16 20
y coordinate (nth monolayer)

FIG. 8. Screen effect of our CTIP moddh) a simple cubic
(lattice constant 2.23 AZr on O crystal;(b) the induced charge
distribution in the Zr crystal when the O charge is fixed-a2e;
and (c) the resulting electric field across the interface.
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Adatom energy 2 eV TABLE IX. Chemical reactions associated with oxide forma-
Normal incidence .
I l 1 I I Temperature 900 K tion.

_ Deposition rate 5m/s

Vapor composition 2 Al - 3 O

EP T (b) Right view Chemical reactions Heat of formation
) xM(in crystal)+ (y/2)O,(in gas) AH
T y [0001] deposited Al,O, layer T y [0001] :Mxoy (in crysta) '
(y/2)Oy(in gas)=yO(in gas) yAH,
> 29 LAl xM(in crystal}=xM(in gas) XAH3=XE y
338 o

tial to address such interactions. We found that by setting

charge bounds upon each ion, the instability of the original

CTIP potential can be removed. By setting metal charge
bounds to a positive range and oxygen charge bounds to a

negative range, the modified potential first allowed the CTIP

model be used to analyze multimetal element problems. The

charge bounds were implemented by a simple modification

7 [1010] of the electrostatic energy. This modification of the energy
— has no effect if the charges are within the bounds. The new
energy expression is numerically solvable using a computa-

tionally efficient conjugate gradient method. The proposed

potential has been parameterized for the O-Al-Zr system by

FIG. 10. (Color onling (a) Front and(b) right view of the vapor  fitting to the bulk properties of the pure metals and their
deposited AJO; film. oxides. It describes well the cohesive energy and the ion

charge as a function of lattice constants. It was also success-

charges are low at the interface. These results provide goqghy ysed to predict surface relaxation and charge variations
evidence that the CTHPEAM model has captured much of i, yarious regions of a multilayer system including at free

the physics and chemistry needed to simulate the oxidatiopyeta| oxide surfaces, inside metal alloy bulk, inside metal

of metallic alloys. o oxide bulk, and at metal/metal oxide interfaces. The use of
Finally, we have used the CTH#PEAM potential in a pre-  the potential in a molecular dynamics simulation of the vapor

liminary simulation of the vapor phase growth of a corun-phase growth of a crystalline metal oxide film has also been
dum AL O5 thin film. The basic approach was similar to that yemonstrated.

used for metal depositioH:*® The initial corundum crystal
was created with §1120] x direction, a[0001] y direction,

and &l 1010] z direction. With periodic boundary conditions ACKNOWLEDGMENT

applied inx andz directions, the growth of the film in the ) ,
direction was simulated using an adatom energy 2.0 eV, an e are grateful to the Office of Navy Researth Fish-
adatom’s incidence perpendicular to the film surface, a depd2™man, Program Managefor support of this work through
sition temperature of 900 K, a deposition rate of 5 nm/nsdrant N00014-01-1-0312,

and an exact aluminum oxygen atom vapor ratio of 2:3. The

atomic structure obtained after 200 ps of deposition is shown

in Fig. 10, wherg@ and(b) correspond to the andx views APPENDIX A:  COHESIVE ENERGY OF OXIDES

of the structure, respectively. Epitaxial growth of the crystal- The handbook of thermochemical data usually lists the

line Al,O; film was foqnd to have occurred. This is in gqqd heat of formation AH) of various chemical reactions. The
agree_ment 5W'th h_|gh-temperature vapor dep05|t|0rheat of formation can be used to calculate cohesive energy of
experiments® We believe that the potential has capturedoxides To derive the cohesive energy of an 0xigO

many of the important physical phenomena needed to realis- . 9y v

tically simulate the growth of metal/metal oxide heterostruc— - needs to know the heat of formation for the chemical
y 9 . . : reactions given in Table IXE. \, is the cohesive energy of
tures, though as with all empirical potentials, improvements :

- . . ) o metal. The cohesive energy of the oxide is then
are anticipated following more intensive applications.

BB |initial corundum
W | Al,O; substrate

x [1120]

—>

VII. CONCLUSIONS Ec.m,0,=AH1—YAH,~XAH;. (A1)
Simulations of structures involving both metals and their

oxides require simultaneous treatment of metallic and ionic 36 2

interactions. A charge transfer potential for ionic solids origi-For ZrG;, Alylz —11.388eV;” AH,=2.586 eV~ E 7

nally proposed by Streitz and Mintmire has been modified™ —6.36 eV’ and hence E 7o,= —22.92 eV/formula

and coupled to a metal alloy embedded atom method poten= — 7.64 eV/atom.
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APPENDIX B: PHYSICAL ORIGIN OF THE STREITZ- where §(r) is a delta functioni.e., 5(r)=1 atr=0 and
MINTMIRE CTIP MODEL 4(r)=0 atr#0], Z; is an effective core chardgéreated as a
fitting parameter heje which should satisfy the condition
0<Z;<N;, with N; the total nuclear charge of the atom, and
the functionf;(r) describes the radial distribution of the va-
Ei(q)=E;(0)+ x;q; + 23i0?, (B1) lence charge in space that satisfies the condition that the
volume integral off;(r) over the entire space equals unity,
wherey; is the electronegativity of atoi®andJ; (>0)is  je., [f,(r)dV=1. Note thatq; is partitioned intop(r,q;)
referred to as an “atomic hardnes¥” or a self-Coulomb becausef p;(r,q;)dV=gq;. It is pointed out that Eq(B4)
repulsion:.gB If N such ionizable atoms form an ionic CryStaI, assumes r|g|d ions, and the shell model is ignored for sim-
the total electrostatic energy of the crystal is composed ofjicity. The main purpose is to develop a potential that can be
both ionization energies and Coulomb energies resultingised in MD simulations for random metal-oxygen mixtures.
from interactions among the cations and anions. This totagych a simulation has not been possible with other potentials
electrostatic energy can be written and we want to demonstrate that the CTIP model can achieve
N N iy this using the simpler rigid ion case. Although the shell
_ 1 model is not used, we believe that it should have a negligible
Bres= 21 Ei(q)+ 221 ,—;1 Vij(rij.qi.qy). - (B2) effect on the structure evolution during molecular dynamics
) ) simulations®® On the other hand, a more realistic shell model
Here,Vj;(ri; ,q;,q;) is the Coulomb energy between atom 54 pe implemented by directly modifying Ed@4).26

with a charge ofy; and atonj with a chargey; , separated by With distributed charge, the electrostatic interaction
a distancej;, and the notations, andiy represent the first Vi;(rij ,q;,q;) must be integrated using

and the last Kith) neighbor of atomi. It should be pointed

out that for simulations using long-range Coulomb interac- pi(ri, i) p;i(r;,a;)

tions, it is often necessary to use cutoff distance that is much  V;j(rj ,q; vqj):kcJ f dvidv;,

longer than the size of the periodic computational crystal (B5)

cell. The neighbor list notation adopted here is concise be-

cause Eq(B2) is valid for any cutoff distances as long as the wheredV; anddV; are the two integrating volume units, is

neighbor listi,...,iy covers all image atoms within the cut- the center distance between atoranddV;, r; the center

off distance from atoni, including the images of itself. distance between atopanddV;, andr,, the center distance
In the simplest case where all ions are point charges, thbetweendV; anddV;. Note that an approximation is made

Coulomb energy in Eq(B2) can be written because strictly, EqB5) holds only for fixed charge distri-

butions. Applying Eqs(B4) and (B5), one can derive

The ionization energy of an isolated ionizable atam,
with a chargeg; can be expressed to second order as

rUU

_ 49 .
Vij (1 .G, 0) = Ke rj (B3) Vi (rij,ai,95) =keaia;[ fil 1+ keai Z; ([j [ fi1—[fil ;1)

Because the neighboring cations and anions have opposite +keay Zi([i[f;1-[Fil;1) +keZiZ;

sign charges in an ionic crystal, an increase of the magnitude

of the charge may reduce the Coulomb energy. The tradeoff %

between an increase in ionization energy and a decrease in

e e e cnetOeiere notaiongal o] and (1] (a1, b=1.J, 1)
) o . .~ denote the Coulomb interaction integrals:

static energy. These equilibrium charges will vary depending

upon the local environment. Replacing the fixed charges with fo(Fp Qo)

the equilibrium charges deduced with a knowledge of the [a|fb]=f—’dvb, (B7)

local environment overcomes many of the problems of fixed Fav

charge models and is the basis for the Streitz-Mintmire CTIP

model?e [f |f ]:J'J' fa(ravqa)fb(rbiqb)
Point charges do not represent the electron distributions of al’h

ions well. It is more realistic to describe the charges in terms

of an electron density distribution around an atom. Suppose In general, the electron density is assumed to decrease

that the chargej; is partitioned into an electron density dis- With distance from the core of an atom. To capture the decay

tribution functionp;(r,q;) around an atoni, where the po- Of fi(r) with r while maintaining mathematical simplicity, an

sition vectorr emphasizes the spatial dependence rather tha@xponential function foff;(r) was used:

radial dependence. To simplify, spherically symmetric orbit-

als such as orbitals can be assumegl(r,q;) then becomes i

a radial functionp;(r,q;) wherer can be simply viewed as fi(r)=—exp(=2¢r), (B9)

the distance from the core of atdiFor this simple case, the

electron density distribution function can be written where the parametef; controls the spread of the electron
distribution. Based upon Eq¢B2) and (B6), the total elec-

pi(r,q)=2Z;8(r)+(qi—2Z;)fi(r), (B4)  trostatic energy can be written as

1
[fi|fj]_[i|fj]_[j|fi]+r , (B6)
ij

dv,dv,. (BS)

rUU

3
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N
Etes E0+i21 Qixi+%izl le Qiq;Vij » (B10)
where
N N [N
EozE Ei(0)+%z Z KeZiZ;
i=1 i=1j=iy
_ _ 1
<|[RIE=LIf=[ilf0+ =), (B1Y
i
IN
xi=xi+j2i keZ;(Li|fi1—[filf;D), (B12)
-1
jn)
Vi=3id;+ X kdfilfil. (B13)

k=j(ip)

In Eq. (B13), 6;;=1 wheni=j and 6;;=0 wheni#j, and
the summation indexej{i;) andj(iy) means that the sum-
mation is over all thg atoms(i.e., atomj and all its images
that arei’s neighbors. Note thaE, in Eg. (B10) is indepen-

PHYSICAL REVIEW B9, 035402 (2004

Once the charge is solved, E@®14) can be used to cal-
culate the electrostatic interaction between atoms. A feature
of the CTIP model that is useful for implementing it within a
MD code is that while the charge generally changes as the
atom moves, this position dependence of charge does not
affect the calculations of forces and stresses. For instance,
thex component of the force on an atardue to the position
dependence af can be expressed as

JEd¢

(9Ees@
=1 Jdq; ox’

fX,ilq:_ IX (818)

Because charges are obtained from equilibrium conditions
JEes/ Qi = ;= p, and the system is neutrél,-Nzlqi =0, Eq.
(B18) becomes

" aq;

0.
1 OX

(B19)

fx,i|q: _Mi

APPENDIX C: EWALD SUMMATION

Coulomb interactions are long-range interactions that de-

dent of charge). Such a potential term can be absorbed intoc@y With 1k . For an ionic crystal that is periodically
the nonelectrostatic energy and hence can be ignored her@acked to infinity, a direct sum of this kind of long-range

We can then define a normalized electrostatic en&igyhat
has the required zero value when all the charges are zero

N N N
Ees= El_EOZEl Qixi+%zl ]2::1 qiq;Vi;. (B14

In Eq. (B14), X; and V;; can be calculated using Egs.
(B12) and(B13) for a given crystal configuration if the po-
tential parameters;, Z;, x; and J; are given. Equation
(B14) is then a quadratic function with respect tp (i
=1,...N). Under the condition that the system is neutral
>N ,g;=0, E.s becomes a function oN—1 independent
variablesq; (i=1,...N—1). Setting the derivatives dt.g
with respect to thesdl—1 independent variables to zero is
equivalent to setting equal values for the derivative€gf
with respect to theN dependent variabledi.e., wu;
=0Ec/dq;=pum, i=1,...N). This leads toN linear equations

for solving equilibrium charges that give the minimum en-

ergy:

N
121 Vijgj=p—xi, i=12,.N. (B15)

If Vijl is the matrix inverse o¥;;, g; can be solved as

N
6= 2, Vi (1=x)): (B16)
g; can be determined j& is known. Using the system neutral
condition=N_,q;=0, u in fact can be calculated as

> /(ﬁléj}lvijl). (B17)

i=1]

N
M= -

-1
1Vij Xj

potentials,

in

2 >

1
=EEROE

M =z

S

N

imposes a serious divergent problem. Using the Zr-O
potentials?* for instance, one can easily show that the lattice
energy of ZrQ based upon the direct sum of the Coulomb
energy oscillates between positive and negative values with a
cutoff distance. There are a number of approaches to resolve
this problem. One commonly used approach is the Ewald
'summatiofi’>*! technique.

In the Ewald summation method, an error function»>grf(
and its complimentary function erfgE=1—erf(x) were used
to decompose the Coulomb summation into two parts:

N iy iN
diq; erfo(71;)q;q;
S=32 2 =12 X —
i=1j=i Fij i=1j=i; Fij
N iy
erf(7r;;)Q;q;
+%2 E (7 .I{)qlqj. (C1)
i=1=i, Fij

One useful feature of erfg) is that it decreases rapidly with

X. By choosing the proper convergent coefficiemt
erfc(mr;;)/r; can be made negligibly small at largg . This
short-range interaction can then be directly summed up. The
term erf(r;;)/r;; is small at short distances, but cannot be
neglected at large distances. However, if the computational
cell has periodic boundary conditions in all the three coordi-
nate dimensions, a Fourier transform can be applied to con-
vert the periodic summation

N erf(7ri;)q;q;

>

i=1

i Fij

=l 1]
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in normal space to a summation in reciprocal space: space can also be made fast by the proper choiee™iere-
: fore, Egs.(C1) and (C2) can be used for atomistic simula-
N erf(7rij)qiq; tions for three dimensional ionic atomic assenfBly.

N

The computational cell is two-dimensional for surface
problems. If the two-dimensional cell is in tiez plane, then
N op NN it will lose the periodicity in they direction. EquationC2),
:__E : _E 2 which is based upon periodic boundary conditions in all
Jmri= Vis= three directions, cannot be used then. One can imagine, how-
0 - ever, that a three-dimensional space is occupied by equally
D exp(— R¥47%)Re exp(\— 1R ;)] separated sheets of two-dimensional crystals of the same
S R? ' thickness. If we allow thg dimension of our computational
H(l=m=n=0) cell to be exactly one sheet thickness plus the sheet spacing,
(c2)  then the periodic boundary condition holds even in the
" e _ direction for these equally separated sheets. Equ
where ! excludes the condition specified(in V=LyL,L,iS 3y pe used for thiéq casye. prwe further imagi?]eafrll’);t the
the volume of the periodic cell.,, Ly, andL, are the  ghacing petween sheets is increased to infinity while the
lengths of the cell in thex, y, andz directions, sheet thickness is kept constant, then we virtually simulate
) | m n an isolated two dimensional slab.
R=2m| —%+ —y+ 2 One can decomposR into out-of-plane componerf,
. ) ) * yﬁ ‘ . _andin-plane componeﬁtp, rij into out-of-plane component
is a reciprocal-lattice vectorrij=(x;—x)X+(y;j=Vi)y  f, ;; and in-plane component, ; . To adapt Eq(C2) for the
+(zj—z)Z is the vector between atomandj in the normal  two-dimensional case, the computational cell size in yhe
space,R is the norm ofR, Re() takes the real part of the direction is assumed to be The volume of the unit cell is
complex number, and, y, andZ are unit vectors in the three V=cA, with A being the area of the two-dimensional cell.
coordinate directions. The convergence in the reciprocaBased on these notations, EG2) becomes:

2

i=1j=iy

X

NIy erf(Trij)qqu' T N NN 2T RS -
> JEi rfz——z E 2 Z Re| 1o > exp — 73| exp(V— 1Ry Fy i)
—t1Th B mi=t T == (I=men=0) T

N

R2
exp( - 4%) exp(V—1R/ry )

T

X (C3

7 p?
Ry+Ry

Since Ry(m)=2m(m/c), dR,=dR,(m)—dR,(m—-1)=2n/c—0 asc—0. The summation ovem can be replaced by
integral, and Eq(C3) becomes

) N In erf(7r;;)d;q; N 2 NoX 1 R3 .
EizljgilT:_\/_—z i Z 21 giq; R K% exp 72 eXIO(\/—_lRp'rp,ij)
= exp(— R4 exp(/— 1 Ryryi)
XJ’% RZ+R2 Ryf- (C4)

Notice that in Eq(C4) the condition !fn=n=1=0) in the summation has been removed. This is valid in the summation of
Coulomb interactions where the system is neui?%ﬂlqi=0. The integral in Eq(C4) can be solved to yield

exp—7 ry”)>
Jmr

exp(Ryry ij)erfaRy/27+ 7ry ;) +expl —Ryry i) erfd Ry/2r— 71 ;)

+ > ’ Y =

G erflrry)q,
%2 Z erflrtad; _ _72‘1 q’+ %2 92 qj[—2(ry,i,—[1—erfc(rry,ij)]+

Fij

cos{ﬁy-r*y,ij)].
y
(CH
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Equation(C5) can be used for Ewald summation for two- The potential cutoff distances fitted for individual elements

dimensional crystal& are also not necessarily consistent. Because of these, the
EAM potentials developed for atoms of a single element
APPENDIX D: CONJUGATE GRADIENT METHOD generally cannot be applied to alloys. While alloys can still

. . . ) ] be studied by fitting individual alloy potentials separately,

For a functionF with N independent variables; (i the alloys that can be explored are greatly limited. By nor-

=1,2,...N), the function can be efficiently minimized using majizing the EAM potentials and introducing an EAM alloy
the conjugate gradient meth8The method contains the model** a generalized EAM databagewvhere alloy poten-

following iteration procedures: tials can be constructed from elemental potentials without
(1) Starting from initial guessed variables, sgy=0, F  any more fitting has been developed. In the EAM database,

was first minimized along the steepest descent directjgn  the generalized elemental pair potentials are written:

=gjo=—dF/dX; o, 1=1,2,..N. This results in new vari-

ables x; ;=X; o+ 0¢d; 9, Where o is the march distance r r

along the search direction and can be obtained from Aex;{ _a(__l> Bexr{—,B r__l)

dFldog=0. In some cases, such as E@14) where ¢(r)= : 50 ° 0 »

JEed 0g)/dog is a linear function ofoy, og can be directly 1+ r K) 1+(L_)\)

solved. For other cases, such as Ey.wheredE.{ o)/ dog le le

can only be calculated locally as it contains nonconstant (E3)

prefactors,op cannot be solved in a closed form. A generalwherer, is the equilibrium spacing between nearest neigh-

function, such as Eq9), however, can be solved with many phors, AB,a, are four adjustable parameters. Notice that

standard iteration algorithms. We used the Newton-Raphsofhe denominators introduced in B&3) equal to 1 when is

method® to solve forog. small, but go to infinity as increases. This provides a natu-
~ (2) The search direction for the next and the subsequeng cutoff for the potential and the additional two parameters
iterations k=2,3,...) was obtained using the relation «, \ control how fast the potential is cutoff.
N The electron density function is taken with the same form
S gk as the attractive term in the pair potential with the same
i=1 values of3, and\, i.e.,
dik=gixt v dik-1, (D1)
e 5[ L1
e
Wheregi'k=—8F/&Xi’k. f(r) 1+ L_)\)ZO (E4)
(3) The new iteration was obtained as y.1=X; le
+ oy d; ¢, with oy solved fromdF/do=0. The iteration is
continued until the updates are sufficiently small. To have embedding energy functions that can work well
over a wide range of electron density, three equations are
APPENDIX E: ALLOY EMBEDDED ATOM used to separately fit to different electron density ranges. For
METHOD MODEL a smooth variation of the embedding energy, these equations

_ _ are required to match values and slopes at their junctions.
Using the EAM, the nonelectrostatic energy can be exThese equations are listed in the following:

pressed &§

3 [
Ny N Fip)=S k.l 21 ~08
p)=. ni v P<pn, pn=0.8%e,
En=32 2 ¢i(ri)+ 2 Fi(p), (ED) =0 Tl
i=1j=i4 =1 (E5)
where ¢;;(r;;) represents the pair energy between atoms 3 i
and j separated by;;, andF; stands for the embedding _ (ﬂ_ ) <p< _
energy to embed an atoiminto a local site with electron Fp) izo a Pe L) pa=p=po. po=11%e,
densityp; . p; can be calculated using (E6)
X p\"(p\”
pi= 2 firyp), (E2 F(p)=Fe[1—ln(—) }(—) . po=<p.  (E7)
i=iq Ps Ps
with f;(r;;) the electron density at the site of atararising ~ Note that Eq.(E7) has been modified from Ref. 1p{ is
from atomj at a distance;; away. replaced by a new parametey) to better describe the metal

It has been demonstrated that for elemental systems, theoperties. Equation§E3)—(E7) sufficiently define the po-
representation of a given potential using the EAM formattentials for elemental metals. For metal alloy calculations,
described in Eq(E1) is not uniqué'* This arbitrary repre- one also needs cross pair potentials between different species
sentation of elemental potentials, however, would change ak andb. According to the alloy EAM modét! the pair po-
loy properties when elemental potentials are used for alloygential between different speciesandb can be written
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1(fo(r)

fa(r
¢ab(r)=§ — ()

) ®asDF§ y don] - (ED

PHYSICAL REVIEW B 69, 035402 (2004

the equilibrium lattice structurgsin summary, one needs 20
parameters for each element, f, pe, ps, @, B, A, B, k, \,
Fno, Fnlv Fnz, Fn3, Fo, Fl! Fz, F3, 7, Fe, to fU”y deﬁne

To normalize all elemental potentials, the embedding enthe elemental and alloy metal potentials. These parameters
ergy and the elemental pair potentials are required to sepdrave been published for 16 met&Su, Ag, Au, Ni, Pd, Pt,

rately satisfy equilibriundi.e., the functions are minimum at

Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zt’
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