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Modified charge transfer–embedded atom method potential for metalÕmetal oxide systems
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Atomistic simulations using interatomic potentials are widely used for analyzing phenomena as diverse as
crystal growth and plastic deformation in all classes of materials. The potentials for some material classes,
particularly those for metal oxides, are less satisfactory for certain simulations. Many of the potentials currently
utilized for metal oxides incorporate a fixed charge ionic component to the interatomic binding. However, these
fixed charge potentials incorrectly predict the cohesive energy of ionic materials, and they cannot be used to
simulate oxidation at metal surfaces or analyze metal/oxide interfaces where the local ion charge can be
significantly different from that in the bulk oxide. A recent charge transfer model proposed by Streitz and
Mintmire has in part successfully addressed these issues. However, we find that this charge transfer model
becomes unstable at small atomic spacings. As a result, it cannot be used for the studies of energetic processes
such as ion bombardment~e.g., plasma-assisted vapor deposition! where some ions closely approach the
others. Additionally, the Streitz-Mintmire charge transfer model cannot be applied to systems involving more
than one metal element, precluding study of the oxidation of metal alloys and dissimilar metal oxide/metal
oxide interfaces. We have analyzed the origin of these limitations and propose a modified charge transfer model
to overcome them. We then unify metal alloy embedded atom method potentials and the modified form of the
charge transfer potential to create a general potential that can be used to explore the oxidation of the metallic
alloy and the energetic vapor deposition of oxides, and to probe the structure of dissimilar metal oxide/metal
oxide or metal alloy/oxide multilayers. Numerical procedures have been developed to efficiently incorporate
the potential in molecular dynamics simulations. Several case studies are presented to enable the potential
fidelity to be assessed, and an example simulation of the vapor deposition of aluminum oxide is shown to
illustrate the potential utility.

DOI: 10.1103/PhysRevB.69.035402 PACS number~s!: 34.20.Cf, 61.50.Lt
ta
th
-
it
a

l
a-
em
e
o

in
de
in

in
ai
t
a
t

ss

v
on
’

ox-
ides
the
ons
de-
xide
xi-

rtant
ect
ce.
and
re-
nt

ng
m-

res,
bar-
are

uc-
ems
ter-
the
o-

o-
tials
I. INTRODUCTION

There are many technologically important uses of me
oxides and metal/metal oxide multilayers. For instance,
formation of aluminum oxide on aluminum or aluminum
rich alloys passivates the surface and kinetically inhibits
further oxidation, enabling aluminum’s widespread use as
engineering material.1 Metal oxides such as alumina (Al2O3)
and zirconia (ZrO2) are widely used as structura
ceramics.2,3 Yttria-stabilized zirconia deposited on alumin
forming alloys is widely used as a thermal protection syst
to significantly improve the life of hot-gas turbine engin
components.4 These thermal protection systems are one
the most critical technologies responsible for the ongo
performance improvements of aircraft engines. Metal oxi
are also very widely used as dielectric insulators
electronics.5 More recently, it has been found that a th
~,10 nm! aluminum oxide layer sandwiched between a p
of ferromagnetic metal layers can be used to construc
magnetic tunnel junction that can be used either as a m
netic sensor~for example, to read magnetically recorded da
on a hard disk drive6! or as a magnetic random acce
memory.7–11The recent discovery of the TiO2 /Co ferromag-
netic oxide semiconductor with Curie temperature abo
ambient12 may extend the use of metal oxides to electr
spin injection and spin filtering in future ‘‘spintronic’
devices.13
0163-1829/2004/69~3!/035402~20!/$22.50 69 0354
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The atomic scale structure and defects in bulk metal
ides and at the interfaces between different oxides or ox
and metals can significantly impact the performance of
materials and devices described above. Atomistic simulati
in principle provide a way to study these structures and
fects as well as the processes by which the oxides and o
multilayers are synthesized either by vapor deposition or o
dation at a metal surface. These studies can reveal impo
insights into a variety of phenomena ranging from def
incorporation during synthesis to deformation during servi
Such insights may help enhance many of the more recent
future applications of oxide-based materials and devices
ferred to above, provided some of the limitations of curre
interatomic potentials are overcome.

The structure of a metal oxide and its evolution duri
growth on a metal surface can be studied by several ‘‘ato
istic’’ approaches.Ab initio or density-function calculations
can be used to determine the energetics, crystal structu
lattice constants, elastic constants, and diffusion energy
riers. However, these quantum-mechanical calculations
currently too computationally expensive to explore the str
tures and morphologies that arise in the larger scale syst
that contain more than 200 atoms. When accurate in
atomic potentials are available, it is possible to simulate
structure of thousands or even millions of atoms using m
lecular dynamics~MD! and therefore to attack problems m
tivated by the technologies described above. Such poten
©2004 The American Physical Society02-1



ta
la
r

ur

dd

th
.
p
l
c
n
ta
o-

il-
s
o

ca
is

a

-
at
n

io
t

ee
o

fo

-
ul

uc
e,

a
a

io
n

ar
st
o

-

d
om-

a

rge
te a

d’’
ice
tly
rgy,
stal

und
om

ong
e a
al
as

on-

it
een
po-
ons
ns
the
a
ac-
tive
ed

gen
t is
tive
ged
ur-

de
ave
the
ould

nt-

lic
be
z-
gs,
etal
ious
ters
e in-
m-
e
zed
ts
be-
oy

ZHOU, WADLEY, FILHOL, AND NEUROCK PHYSICAL REVIEW B69, 035402 ~2004!
also provide a convenient means to identify fundamen
phenomena such as diffusion mechanisms and to calcu
the energy barriers for mass transport either in the bulk o
the surface of a material.14 This information can in turn be
used in vary large scale Monte Carlo simulations of struct
evolution.15

Numerous potentials have been proposed. The embe
atom method~EAM! potential originally proposed by Daw
and Baskes16 is a high-fidelity interatomic potential widely
used for modeling metals~especially the fcc metals!. This is
because EAM captures the concept of metallic cohesion
arises from embedding ions in a gas of free electrons
unified EAM potential database has recently been develo
for 16 metals and their alloys.17 Because the EAM potentia
captures many-body effects, the database has been suc
fully utilized to simulate atomic assembly mechanisms a
to investigate the atomic structures of vapor deposited me
and metallic multilayers that exhibit giant magnet
resistance.17,18

A very rich interatomic potential literature is also ava
able for the atomistic simulation of ionic systems. In the
systems, a significant part of the interaction between the c
stituent atoms arises from the Coulomb force between
ions and anions. Most ionic potentials have used a pairw
potential superimposed upon an electron shell model.19–22

These potentials assume fixed charges on the cations
anions. In this limit, the pairwise potential,w i j (r i j ), between
ionized atomsi and j separated by a distancer i j can be
written22–24

w i j ~r i j !5kc

qiqj

r i j
1Ai j exp~2n i j r i j !2

z i j

r i j
6 , ~1!

whereqi andqj are the charges on ionsi and j, respectively,
kc514.4 eV Åe22 is the Coulomb constant~e represents the
electron charge!, andAi j , n i j , andz i j are three free param
eters that are determined by fitting to properties of the m
rial system of interest. Typically, these consist of lattice co
stants, elastic constants, and cohesive energies.23 In Eq. ~1!,
the first term represents a long-range Coulomb interact
the second term stands for a short-range repulsion, and
third term describes van der Waals attractions betw
charge clouds. For a fixed ion charge model, the charge
the ion is taken to be that of the valency of the atom, i.e.,
aluminum,qAl53e; for zirconium,qZr54e; and for oxygen,
qO522e. Equation~1! can be easily implemented in effi
cient MD algorithms and has been widely used to study b
oxides.24,25 However, it has a number of shortcomings.

First, the fixed charge model does not allow the introd
tion of different oxidation states. Aluminum, for instanc
can form different oxide compounds such as Al2O3 and AlO
~or more generally, AlOx) where the charge on the ions is
function of oxygen/aluminum ratio. If the charge utilized in
potential is fixed, it can only be used to study one oxidat
state and cannot be used for a process such as oxidatio
which the charge state varies. Furthermore, the fixed ch
model cannot ensure charge neutrality for a simulated cry
if the cation and anion composition varies. The simulation
oxide vapor film deposition~which involves the random ad
03540
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dition of cations and anions! can cause such unbalance
charges, which then affects the energetics of the entire c
putational system. As a result, simulations using such
model produce unrealistic results.

Second, the lattice energy calculated using a fixed cha
potential corresponds to the energy required to separa
crystal into its individual~charged! ions so widely separated
that they are no longer interacting. Such a charge ‘‘clou
has a significant Coulomb energy. As a result, the latt
energy predicted by a fixed charge model is significan
higher than the experimentally measured cohesive ene
which is defined as the energy required to separate a cry
into individual neutral atoms. For cubic ZrO2 , the average
lattice energy predicted by a fixed charge potential is aro
30 eV/atom,24 whereas the cohesive energy deduced fr
experimental data~see Appendix A! is only 7–8 eV/atom.
This misrepresentation of cohesive energy results in wr
latent heat release during adatom condensation. Sinc
metal oxide is created from initially neutral atoms, an ide
ionic potential must allow the charge to decrease to zero
the ionically bonded crystal is pulled apart to create its c
stituent atoms.

A third problem with a fixed charge potential is that
cannot be used to study the structure of the interface betw
a metal and its oxide. The requirement here is that the
tential switches between one dominated by ionic interacti
in the oxide region to one dominated by metallic interactio
in the metal region. The precise response will depend on
local ~chemical! environment. A metal atom must have
zero charge when its neighbors are all metal atoms. It
quires a positive charge only when it gets close to nega
charged oxygen atoms. A high positive charge is obtain
when the metal surroundings have a high density of oxy
ions. Similarly, an oxygen atom should be neutral when i
embedded in an oxygen environment. It acquires nega
charge only when it closely approaches positive char
metal atoms. A high negative charge results when its s
roundings have a high density of metal ions. If an oxi
crystal is cleaved, then the ions at unrelaxed surfaces h
fewer neighbors of opposite charge but the bond length is
same as that in a bulk. As a result, charges on the ions sh
be able to decrease near unrelaxed surfaces.

A variable charge potential proposed by Streitz and Mi
mire addressed these deficiencies.26 This potential can be
combined with an EAM potential so that ionic and metal
components of the interatomic interaction can both
incorporated.26 However, as analyzed below, the Streit
Mintmire potential becomes unstable for small ion spacin
and it lacks the generality to incorporate more than one m
element. The first problem has been found to impose ser
constraints on the acceptable ranges for the EAM parame
needed to ensure stable simulations. The ensuing charg
stability prevents the variable charge model from being co
bined with many existing EAM potentials, including th
EAM potential database that successfully parameteri
many metals and their alloys.17 The second problem preven
the charge model from being used to simulate interfaces
tween different metal alloy oxides, or between metal all
and metal alloy oxide.
2-2



e
de
su
m
an
n
th
e
ng
in

b
f
y
e

n
ic
-

el

ir

re

a
e
-
IP

ch-
lcu-

ed
atic
m-

he
the
the
e-

ale

s.
of

as
e
l-
sfer
the
e
um

MODIFIED CHARGE TRANSFER-EMBEDDED ATOM . . . PHYSICAL REVIEW B69, 035402 ~2004!
Here, we explore these limitations and develop a modifi
charge transfer potential that overcomes the difficulties
scribed above. We believe that the proposed potential is
ficiently general that it can be used to simulate the ato
scale structure of metal alloys, metal alloy oxides, and
mixtures of metal alloys and their oxides. As an impleme
tation case study, we developed a specific potential for
O-Al-Zr system, and perform several simulations to ass
the potential fidelity. We also show an example for applyi
the potential to simulate the vapor deposition of an alum
thin film.

II. CHARGE TRANSFER POTENTIALS

The newest variable charge potential was proposed
Streitz and Mintmire.26 In their potential, the total energy o
an ionic crystal,Et , was divided into an electrostatic energ
(Ees) that is ion charge dependent and a nonelectrostatic
ergy (En) that is ion charge independent:

Et5Ees1En . ~2!

If we normalizeEes so that it becomes zero when the io
charge is zero,En can be viewed as the energy of a nonion
crystal ~e.g., a metal! andEes then accounts for the electro
static energy change as this crystal is ionized~e.g., by oxi-
dation!. Atomistic simulations require two separate mod
for calculating, respectively,Ees and En . In the Streitz-
Mintmire formalism,En could not be represented by a pa
potential because its integration with theEes led to instabili-
ties at metal oxide surfaces.26 The modifiedEes potential
described below resolved this instability problem, and the
fore any nonelectrostatic potential model can be used forEn .

Since the ionic interactions and the charge transfer
only related toEes, the Ees model is referred to as a charg
transfer ionic potential~CTIP!. For the convenience of dis
cussion to follow, we summarize the Streitz-Mintmire CT
model in Appendix B. To apply Eq.~B14! to calculateEes,
one needs to first calculate functionsXi andVi j described in
Appendix B by Eqs.~B12! and ~B13! in terms of Coulomb
integrals @au f b# and @ f au f b#, where a5 i , j , b5 i , j , aÞb.
The expressions for@au f b# and @ f au f b# are not trivial to de-
duce. As a result, we list our derived equations for@au f b#
and @ f au f b# here:

@au f b#5
1

r ab
2jb exp~22jbr ab!2

1

r ab
exp~22jbr ab!,

~3!

for ja5jb5j,

@ f au f b#5
1

r ab
@12~11 11

8 jr ab1 3
4 j2r ab

2 1 1
6 j3r ab

3 !

3exp~22jr ab!#, ~4!

and forjaÞjb ,
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@ f au f b#5
1

r ab
2

jajb
4 exp~22jar ab!

~ja1jb!2~ja2jb!22
jbja

4 exp~22jbr ab!

~jb1ja!2~jb2ja!2

2
~3ja

2jb
42jb

6!exp~22jar ab!

r ab~ja1jb!3~ja2jb!3

2
~3jb

2ja
42ja

6!exp~22jbr ab!

r ab~jb1ja!3~jb2ja!3 . ~5!

It should be pointed out thatVi j involves a summation of
(k5 j ( i 1)

j ( i N)
kc@ f i u f k# @see Eq.~B13!#. According to Eqs.~4! and

~5!, Vi j includes a summation of(k5 j ( i 1)
j ( i N)

kc/r ik . The direct

summation of the slowly decaying 1/r ik function imposes a
serious divergence problem. The Ewald summation te
nique as described in Appendix C is therefore used to ca
late Vi j .

The Streitz-Mintmire CTIP model has been combin
with an embedded atom method potential for nonelectrost
interactions and used to simulate the binary aluminu
oxygen system.26 Using this Al-O potential, our simulations
of Al/AlO x multilayers correctly predicted zero charge in t
bulk aluminum, a maximum cation and anion charge in
bulk oxide, and a partial cation and anion charge near
Al/AlO x interface. It also correctly predicted the charge d
crease near an oxide surface.26 This Al-O potential has al-
lowed a successful simulation of the dynamics of oxide sc
formation on aluminum surfaces.27,28

However, we found that the potential has two problem
To illustrate the first, we calculated the cohesive energy
the a ~corundum! phase of Al2O3 over a wide range of lat-
tice constants using the original potential.26 The results are
plotted in Fig. 1 as a function of isotropic strain defined
«5(a2a0)/a0 , wherea0 represents the equilibrium lattic
constant anda is the lattice constant after a hydrostatic vo
ume change. Figure 1 indicates that the charge tran
model reasonably predicts a local energy minimum at
equilibrium ~nonstrained! crystal lattice length. However, th
cohesive energy versus strain relation has a local maxim

FIG. 1. Cohesive energy of corundum Al2O3 as a function of
isotropic strain predicted by the old charge transfer model.
2-3
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as the crystal is compressed beyond a strain of about20.16
and becomes unstable when the crystal is further compre
beyond a strain of about20.23.

To investigate the origin of this effect, we calculated t
charge on each ion as a function of crystal size. The ave
oxygen ion charge is plotted in Fig. 2 as a function of t
isotropic strain. It can be seen that the magnitude of
charge asymptotically decreases towards near-zero as
crystal is expanded. It becomes increasingly negative
crystal is slightly compressed. However, when the crysta
compressed below a strain of20.2, the charge becomes u
stable and oscillates between large physically unrealistic
ues.

To understand the origin of the charge instability, we ne
to consider only a simplified system containing a cation a
an anion pair, with each assumed to be a point charge.
cording to Eqs.~B1!–~B3! and ~B14!, the electrostatic en
ergy for such a pair can be written as

Ees5x1q11 1
2 J1q1

21x2q21 1
2 J2q2

21kc

q1q2

r 12
. ~6!

If the overall system is charge neutral,q152q2 . Equation
~6! then becomes

Ees5~x12x2!q11S J11J2

2
2

kc

r 12
Dq1

2. ~7!

Equation ~7! only has a well-defined minimum when (J1
1J2)/22kc/r 12.0 ~i.e., a concave parabolic curve!. How-
ever, for a set of model parameters (J1 and J2) that are
prescribed to satisfy this condition at the initialr 12, there is
always a critical value for a reducedr 12 below which (J1
1J2)/22kc/r 12,0. This corresponds to the condition whe
the Coulomb interaction between the neighboring cation
anion overpowers the other energy terms. When this h
pens, Eq.~7! ceases to have a minimum~it becomes a con-
vex parabolic curve!, andEes always reduces as the magn
tude of charge increases. The problem is serious for vari
charge models because as the magnitude of the charg
neighboring cation and anion increases to reduceEes, the

FIG. 2. Average anion charge of corundum Al2O3 as a function
of isotropic strain predicted by the old charge transfer model.
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increased attraction drives the two ions closer. This promo
a further increase in the magnitude of the charges. Repet
of this process results either in calculation overflow~most
likely! or unrealistic results. It should be noted that for
system containing many atoms, the problem can be trigge
when any pair of ions becomes close.

In spite of the instability shown in Fig. 1, the origina
model and the proposed potential parameters26 have been
satisfactorily used in a number of different simulations.26–28

This is because the nonelectrostatic parameters defining
short-range repulsion between atoms have been constru
to prevent atoms from getting too close~thus, the unstable
charge crystal configurations such as the highly compres
one shown in Figs. 1 and 2 do not occur! in the simulations.
However, the instability is still a very serious problem for th
original CTIP model. This is because while Fig. 1 shows
occurrence of the problem when a bulk ionic system
highly compressed~to below20.2!, the same problem could
occur in much less compressed systems that contain non
configurations such as free surfaces and interfaces. It
also occur when a surface is impacted by energetic atom
ions. In these cases, the local interaction difference or
impact can cause an atom or ion to closely approach ano
atom or ion. We have also found that the original CT
model26 is always unstable and always causes calcula
overflow if it is combined with other EAM potentials such a
that reported in Ref. 17 to even simulate an uncompres
ZrO2 or AlO2 surface. In addition, we have discovered th
the overflow encountered during efforts to use the pair
tential to approximateEn ~Ref. 26! also resulted from this
instability. The constraint that the original CTIP model im
poses on the choice of the nonelectrostatic potential~includ-
ing both format and parameters! is clearly nonphysical and
prevents a merging of the CTIP with the existing metal all
EAM potential database for a variety of metals.

The second problem with the original charge trans
model is that it can only be used to study oxygen–sing
metal~binary! systems. Our underlying objective is to supe
impose a CTIP potential with an EAM potential so that t
integrated CTIP1EAM potential can be simultaneously ap
plicable to pure metals, pure oxygen, and to the mixtures
different oxides and different metals. The total energy of
EAM model, represented here by the nonelectrostatic ene
En has been established to fully describe metal al
systems.17 In order for the integrated CTIP1EAM potential
to be invariant against the EAM potential of metals, the to
energy of the CTIP1EAM potential,Et5Ees1En , must be
reduced toEt5En in pure metal alloy systems. This require
thatEes50 for all metal alloy systems. Equation~B14! indi-
cates that the normalized electrostatic potentialEes vanishes
when all the chargesqi become zero. This means that th
CTIP model must predict zero charges in pure metal al
systems. Note here that metal alloys can have minor cha
from first principles. This charge contribution, however, h
been implicitly included in the EAM and the zero charg
assumption is in fact mandatory to comply with the noti
that the EAM fully describes metal systems.
2-4
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The Streitz-Mintmire original CTIP model correctly pre
dicts zero charge for aluminum atoms in either bulk alum
num or a local aluminum region of the Al/AlOx multilayers.
However, this is achieved only when a single metal is
volved and nonzero charge will be obtained in any me
alloy systems. To illustrate, consider again a simple pair
point charges. Setting the first derivative of the electrost
energy@Eq. ~7!# with respect toq1 equal to zero yields

q15
x22x1

J11J222kc/r 12
. ~8!

It is seen thatq1 is zero only whenx1 andx2 are identical
~i.e., 1 and 2 are of the same species!. In a single-metal
region, all atoms have the same charge properties. As a
sult, no atoms can have a preference to become a pos
charge by inducing negative charges to its neighbors,
zero charge is naturally achieved. In metal alloys, howe
neighboring atoms can be different metal species. T
therefore will have different charge parameters. As a res
the original CTIP model will predict nonzero charges for
pure ~unoxidized! metal alloy region. If this happens, th
integrated CTIP1EAM potential will be different from the
EAM potential for pure metal systems. A physical method
ensure zero charge in any metal alloy needs to be develo
in order for the model to be used in systems that inclu
more than one metal elements.

III. CTIP MODIFICATIONS

The discussions above clearly indicate that simulati
based upon the old CTIP model are unstable when confi
rations with small lattice spacings are encountered. In
regime, the electrostatic energy is dominated by Coulo
interactions. When this occurs, the system energy cont
ously decreases as the magnitude of the charge on the n
boring cation and anion increases. Energy minimization t
leads to unrealistically large charges. In reality, the charge
an ion is always bounded. For instance, the maximum cha
of a cation is usually limited by the number of valence ele
trons as much higher energies are required to extract in
shell electrons. Obviously, a physical CTIP-type model m
ensure reasonable charge bounds for each ion. It shoul
pointed out that unlimited charge is directly responsible
the observed divergence. For instance, when negative ch
and positive charge start to interact, they tend to incre
their magnitudes of charge~due to energy minimization!.
This will increase the attraction between them and ca
them to become closer. This in turn promotes further
creases in charge. If the charges are not bounded, the
tinuous increase of the attraction due to increases in ch
during this process can cause atoms to become infin
close and a divergence occurs. As a result, while impos
charge bounds does not directly change the Coulomb e
tion at small atomic distances, it effectively eliminated t
instability problem.

To extend a CTIP model to metal alloy oxidation, the k
is to predict zero charges for the unoxidized metal alloy a
significant charges for metal oxides. It should be pointed
that in the original CTIP model, the oxygen and the me
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were distinguished only by their charge parameters. As
~8! has indicated, the only driving force to induce charges
this model is the relative difference of the charge parame
between the neighboring atoms. When the charge param
are prescribed, the charges are defined regardless of the
cies ~oxygen or metal! of the neighboring atoms. The diffi
culty is that different metal species always have differe
charge parameters. The problem is compounded becaus
difference of the charge parameters between some m
may even be more significant than that between oxygen
some of the metals. To ensure zero charges in unoxid
metals and significant charges in oxidized metals is the
challenging task. Obviously, the potential must also dist
guish between metal and oxygen atoms by something o
than their charge parameters.

As discussed above, charge bounds can be used to s
the instability problem of the original CTIP model. The sam
approach can also be used to ensure zero charges for u
dized metal alloys. Because metal atoms are assumed t
cations and oxygen atoms are assumed to be anions, it is
reasonable to bound the charge of each metal atom toqM ,
such that 0<qM<qmax,M , and to bound the charge of eac
oxygen atom toqO, such thatqmin,O<qM<0. The potential
then naturally distinguishes metal and oxygen atoms by
sign of their charge bound. This guarantees zero charg
unoxidized metal alloy regions.

To illustrate, consider an aluminum and zirconium ato
pair. Let us assume that the zirconium atom wants to beco
positively charged by inducing a negative charge on the a
minum atom. The aluminum atom, however, cannot beco
negatively charged because it is set to be in the posi
charge range. This would force the aluminum charge to
come zero. Zirconium, on the other hand, cannot stay p
tively charged because it does not have anions to inte
with. Note in this simple case of a dimer, the system neut
ity requirement also forces the charges to be zero. Since
charges are guaranteed, the full CTIP1EAM model is in-
variant against the EAM potential, providing a basis for t
general combination of an alloy EAM database with a CT
model.

This simple approach captures the essential physics
ing charge transfer, i.e., metal atoms only lose electrons u
all their valence electrons are gone, while oxygen atoms o
acquire electrons until their outer electron shells are filled
is the implementation of this physics that solves both pr
lems of the original CTIP model.

While the physical underpinnings of this idea are simp
a modestly elaborate methodology is required to apply it.
overcome the difficulties in enforcing the charge bounds,
added two additional terms to the electrostatic energy,
~B14!. To maintain the integrity of the Streitz-Mintmire
model, it is required that the additional terms become exa
equal to zero when the ion charges are within their cho
bounds. To prevent charges from far exceeding the bou
the additional energy terms increase rapidly as the cha
exceed the bound values. Such terms can be simply wri
as
2-5
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Ees5(
i 51

N

qix i1
1
2 (

i 51

N

(
j 51

N

qiqjVi j 1(
i 51

N

vS 12
qi2qmin,i

uqi2qmin,i u
D

3~qi2qmin,i !
21(

i 51

N

vS 12
qmax,i2qi

uqi2qmax,i u
D ~qi2qmax,i !

2,

~9!

whereqmin,i andqmax,i are the bounds for the charge of ato
i, qmin,i,qi,qmax,i , and the coefficientv can control how
strongly the charge is confined by the bounds~physically this
also corresponds to the energy penalty for metal atom
obtain electrons or to lose inner-shell electrons or for oxyg
atoms to lose electrons or to receive more than two e
trons!.

Using the simple case of a cation and anion pair, it can
proven that Eq.~9! significantly stabilizes the calculation
Assuming that the anion chargeq1 and the cation chargeq2
both seek to exceed the intended charge bounds, Eq.~7! can
be rewritten with the modified model as

Ees5@x12x214v~qmax,22qmin,1!#q1

1S J11J2

2
2

kc

r 12
14v Dq1

212v~qmin,1
2 1qmax,2

2 !.

~10!

Using the Streitz and Mintmire data (J1514.04 eV,J2
510.33 eV), the separation distance below which div
gence occurs for a dimer is approximatelyr 1252kc/(J1
1J2)51.2 Å in the Streitz-Mintmire old model@Eq. ~7!#.
Using the new model, Eq.~10!, and a value ofv520.0, this
divergence separation is significantly reduced tor 12
52kc/(J11J218v)50.156 Å. Most importantly, the
modified model allowsJ1 andJ2 to be freely fitted to physi-
cal values without any constraints because even whenJ1 and
J2 are both zero, Eq.~10! still predicts a very small diver-
gence radiusr 1252kc/8v50.18 Å, whereas the earlie
model predictsr 125`.

Equation~9! must be numerically solvable for this mod
to be successful. In order for Eq.~9! to possess a well
defined minimum, it must be continuous and have conti
ous first derivatives. The prefactors before the (qi2qmin,i)

2

and (qi2qmax,i)
2 terms abruptly change from 0 to 2v at their

respective junctionsqmin,i andqmax,i . However, because bot
(qi2qmin,i)

2 and (qi2qmax,i)
2 and their first derivatives di-

minish at the junctions, the added terms are still continu
and have continuous first derivatives.

The modified equation~9! remains quadratic in nature
Unlike the quadratic function, Eq.~B14!, some prefactors in
Eq. ~9! are not constant~step functions!. As a result,
]Eeq/]qi50 will not be the ‘‘normal’’ system of linear equa
tions. Equations~B16! and ~B17! can no longer be used t
solve for the charges. On the other hand, solving charge
a matrix operation is not efficient, especially when the nu
ber of atoms is large. An alternative computationally efficie
algorithm was therefore sought.

Using ( i 51
N qi50, Eq. ~9! is a function ofN21 indepen-

dent variablesq1 ,q2 ,...,qN21 . Appendix D illustrates that
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an integrated conjugate gradient technique combined wi
Newton-Raphson method can be used to minimize this fu
tion containing nonconstant coefficients. Since the funct
to be minimized is essentially quadratic, the conjugate g
dient method guarantees the convergence to the charge
tions that can provide accurate calculations for ener
forces, and stresses. This was also found to be much m
computationally efficient than the matrix operations usi
Eqs.~B16! and ~B17!.

IV. MODIFIED EMBEDDED ATOM METHOD

Pair potentials can, of course, be used for the nonelec
static interactionsEn . Since the intent here is to extend th
approach to study the oxidation of a variety of metals,
seek to apply an existing good metallic potential databas
approximateEn . The EAM potentials initially developed by
Daw and Baskes16 improve over the pair potentials by inco
porating environment dependence of the atomic interactio
The existing EAM metallic potential database17 has been
successfully utilized to simulate a variety of metal problem
especially the atomic assembly mechanisms and ato
structures of vapor-deposited metals and meta
multilayers.17,18The EAM database17 is hence chosen for ou
work. The EAM database model is described in Appendix

Since our improved CTIP model has zero effect on
calculation of the metal systems, the existing metal EA
potential parameters17 and Eqs.~E1!–~E8! can in principle
be used directly. However, it is useful to notice that the n
malized embedding energy functions, Eqs.~E5!–~E7!, are
expressed in terms of relative electron density. As a res
only the ratios~not the absolute values! of f e , re , and rs
affect the predicted properties of elemental metals. This f
ture can be utilized to fine-tune the properties of alloys a
oxides. As a result, we adjust the parametersf e , re andrs in
the EAM database17 by a scaling factorg ~i.e., f eg→ f e ,
reg→re , and rsg→rs , with g being the only adjustable
parameter! to fit to the corresponding oxide’s propertie
Once theg factor is given, the metal potentials are com
pletely defined by the existing EAM database.17 Then, we
need only determine the pair potential between oxygen
oms, the various pair potentials between oxygen and
various metal atoms, the electron density of oxygen, the
bedding energy of oxygen, and theg factors for the different
metal species. These can be defined by fitting model pre
tions to the known properties of oxides. To avoid the ad
tional complexity due to different interactions between O2
molecules and between the two oxygen atoms within an2
molecule, we assumed that oxygen takes the atomic f
rather than a diatomic molecule. While this is an approxim
tion, the interaction between a solid surface and O2 gas can
still be conducted in MD by introducing oxygen dime
rather than atomic oxygen on the surface. This is a sens
approach for the simple potential being sought. Note that
experimental cohesive energy of metal oxides implicitly
cludes the cohesive energy of the diatomic oxygen molec
~see Appendix A!.

Equation~E3! is a universal format for pair potentials. W
find that the pair potential between oxygen atoms can be w
2-6
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fitted by Eq.~E3!. Efforts have been made to use the all
formula, Eq.~E8!, to approximate the cross pair potentia
between oxygen and metal atoms so that no additional fit
is required once the elemental potentials are known. H
ever, the results have not been satisfactory. It was real
that the oxygen crystal has a lower melting temperature
therefore a lower cohesive energy than the metals. On
other hand, metal oxides usually have larger cohesive e
gies than metals. The extra cohesive energies of the ox
must therefore come from a stronger interaction betw
oxygen and metal atoms. The Coulomb interaction predic
by the CTIP model cannot alone provide this stronger in
action. The covalent nature of this interaction must theref
be included in the pair potentials. It cannot be approxima
by Eq.~E8!, which is essentially the weighted average of t
oxygen-oxygen and metal-metal pair potentials. We there
independently fit each oxygen-metal pair potential using
~E3!.

The electron density of oxygen was fitted using Eq.~11!.
Unlike Eq. ~E4! whereb andl are the same as those in th
attractive part in the pair potential, we introduce here n
fitting parametersG and C to provide more freedom for a
better fit to the oxide properties:

f ~r !5
f e exp@2G~r /r e21!#

11~r /r e2C!20 . ~11!

The present model is intended to be applicable for s
tems with oxygen and an arbitrary number~M! of metal el-
ements. At leastM different binary oxides involving theM
metal elements need to be simultaneously fitted to get
cross pair potentials between oxygen and these metals. I
want to fit M binary oxides, there will beM nonequivalent
oxygen lattice sites in theseM oxides. TheseM sites corre-
spond to M equilibrium electron densities,re,i , where i
51,2,...,M . An oxygen embedding energy function must s
quentially go through these electron densities as the elec
density increases. For the convenience of discussion, we
03540
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arrange theM oxides so thatre,1 ,re,2 ,...,re,M , refers to an
increasing sequence of the electron densities.

The most straightforward way to fit an oxygen embedd
energy function that smoothly goes through these elec
densities is to use the spline functions. To fit the cohes
energy, the lattice constant, and bulk modulus of an oxidi
exactly, the oxygen embedding energy and its first and s
ond derivatives need to be exact, at least within a small e
tron density range nearre,i ,rmin,i<r,rmax,i , where rmin,i
,re,i , and rmax,i.re,i . A quadratic function can be used t
achieve this. ForM oxides, we then obtain anM number of
oxygen embedding energy functions:

F0,i~r!5 (
n50

2

Fn,i S r

re,i
21D n

, rmin,i<r,rmax,i ,

i 51,2,...,M . ~12!

For an oxygen embedding energy function to be continuo
rmin,i and rmax,i can be simply set asrmin,i50.5(re,i 21
1re,i), andrmax,i50.5(re,i1re,i 11), where onlyrmin,1 and
rmax,M are not defined. We then takermin,1 as 0.85re,1 , and
rmax,M as`. The only undefined embedding energy functi
is in the 0 –rmin,1 range. We can again use a polynom
function as shown in Eq.~13! to fit this range, where a highe
power (n53) term is introduced so the function can be fitt
under the physical condition ofF0,050 at r50. With these
function formats given, the fitting was designed to result
smooth values and first derivatives for the oxygen emb
ding energy function at the spline junctions:

F0,0~r!5 (
n50

3

Fn,0S r

re,0
21D n

, r,rmin,1, re,05rmin,1.

~13!

V. PARAMETRIZATION

To accurately account for the Coulomb interactions
relatively long cutoff distance of 12 Å was used. Although
65
90

92
TABLE I. EAM parameters for metals.

Metal r e ~Å! f e re rs a

Al 2.863 924 1.343 867 19.556 03 22.216 28 6.613 1
Zr 3.199 978 1.591 439 22.028 52 22.028 52 8.559 1

b A ~eV! B ~eV! k l

Al 3.527 021 0.314 873 0.365 551 0.379 846 0.759 6
Zr 4.564 902 0.424 667 0.640 054 0.5 1.0

Fn0 ~eV! Fn1 ~eV! Fn2 ~eV! Fn3 ~eV! F0 ~eV!

Al 22.807 602 20.301 435 1.258 562 21.247 604 22.83
Zr 24.485 793 20.293 128 0.990 145 23.202 519 24.51

F1 ~eV! F2 ~eV! F3 ~eV! h Fe ~eV!

Al 0.0 0.622 245 22.488 244 0.785 910 22.824 528
Zr 0.0 0.928 602 20.981 870 0.597 001 24.509 017
2-7
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TABLE II. Model predicted and target properties of fcc aluminum and hcp zirconium.

Physical property

Al Zr

Predicted Target Predicted Targ

Lattice constants~Å! a 4.050 4.050 3.202 3.202
c 5.229 5.229

Ec ~eV! 3.580 3.580 6.360 6.360
Bulk modulus~eV/Å3! B 0.474 0.474 0.606 0.604
Shear modulus~eV/Å3! G 0.164 0.164 0.228 0.230

anisotropy ratio A 0.819 0.820 1.384
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is possible to use a second shorter cutoff distance for
nonelectrostatic EAM interactions to improve calculation
ficiency, for simplicity no such efforts were made here.

The CTIP1EAM model retains the invariance of th
EAM for pure metal systems. Based on this, the same m
EAM parameters as those published17 could be used. Never
theless, since the publication of the EAM database,17 we
have slightly modified some of the parameters in light
additional studies. The modified set of the parameters
shown in Table I. Because the EAM format allows the p
tential to be naturally cut off at around the fifth neare
neighbor~Appendix E!, the extension of the cutoff distanc
does not affect the results of the EAM calculations. The
EAM potentials for elemental cubic metals have alrea
been well fitted to the lattice constant, cohesive energy, b
modulus, shear modulus, anisotropic ratio, and the pres
derivative of the bulk modulus.17 A comparison between pre
dicted properties and target properties is shown in Table

In Table II, the target values of lattice constant, cohes
energy, and elastic constants are all experimental data.17 The
anisotropy ratio of hcp Zr have not been specifically fitted17

It can be seen that by using the EAM parameters of Tab
the experimental properties of the pure metals can be
predicted.

Potential parameters that give rise to good predictions
the properties of both aluminum oxides and zirconium o
ides are needed. The corundum phase of Al2O3 is a stable
structure at both low and high temperatures, and hence it
the natural choice for the parametrization. ZrO2 has several
different crystal structure forms. It exhibits a monoclin
structure at low temperatures, a tetragonal structure at in
mediate temperatures, and a cubic structure at high temp
tures. Since many zirconia materials are either manufactu
or applied at high temperatures, the cubic ZrO2 structure was
used for deriving the potentials described below. A simi
approach can also be used to fit other structures of inter

The input properties of the oxides are the charge in
equilibrium bulk crystal, the electrostatic energy, the co
sive energy, the lattice constant, and the single-crystal ela
constants. With the metal EAM potential parameters~Table
I! given, the remaining adjustable parameters are the
parametersx, J, j, andZ for the charge properties of each
the three elements O, Al, and Zr, seven parametersr e , a, b,
A, B, k, andl for the pair potential between each of the thr
pairs O-O, O-Al, and O-Zr, three additional parametersf e ,
G, andC for the electron density of oxygen, and 10 para
03540
e
-

al

f
is
-
t

e
y
lk
re

.
e

I,
ll

f
-

as

r-
ra-
ed

r
t.
e
-
tic

ur

-

etersF0,1, F1,1, F2,1, F0,2, F1,2, F2,2, F0,0, F1,0, F2,0, and
F3,0 that define the spline to the oxygen embedding ene
Note thatre,i ( i 5Al2O3 ,ZrO2) is known for the given crys-
tals once the electron density of oxygen is defined. One
ditional requirement is that the splined oxygen embedd
energy be continuous and have smooth first derivative
junctions.

Of the four charge parameters above,j characterizes the
electron shell and defines the rate at which the electron d
sity decays as the distance from the nucleus increase
realistic value ofj was determined by fitting the electro
density distribution in the oxide crystal to that obtained fro
the ab initio calculation. The values of other charge para
eters determine the equilibrium cation and anion charge
the bulk oxides, the electrostatic components of the cohe
energies, and the function forms of the charge versus lat
constant relation. These charge-related quantities, unfo
nately, have traditionally not been well defined or det
mined. On the other hand, the precise determination of th
quantities that are only used for the input of the CTIP mo
may not be necessary because all the measurable prop
of oxides will be fitted to the integrated CTIP1EAM model.
In the Streitz-Mintmire original CTIP model,26 the Al charge
in an equilibrium corundum Al2O3 was taken to be 2.900e.
This equilibrium charge is about 97% of the maximum a
minum charge of 3e. It is also equivalent to an oxyge
charge of21.933e. While fitting of the charge parameter
can be improved in the future whenab initio calculations or
experiments provide better definition and data for charg
our tests indicated that the Streitz-Mintmire choice of t
charges is reasonable and can produce realistic results w
the context of the model. Hence, we assumed an equilibr
oxygen charge of21.933e in both Al2O3 and ZrO2 bulk
crystals. The electrostatic components of the cohesive e
gies of oxides were constrained in a range so that they m
account for the extra cohesive energies of oxides with
spect to those of pure metal and pure oxygen crystals. Th
electrostatic components were adjusted iteratively with EA

TABLE III. CTIP parameters for O, Al, and Zr.

Element qmin qmax x ~eV! J ~eV! j ~Å21! Z

O 22 0 2.000 13.992 2.144 0.00
Al 0 3 23.402 10.216 0.968 0.561
Zr 0 4 23.360 7.954 0.816 0.641
2-8
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TABLE IV. EAM parameters for O-O, O-Al, and O-Zr pair potentials.

Pair r e ~Å! a b A ~eV! B ~eV! k l

O-O 3.315 171 5.716 137 3.758 299 0.263 795 0.273 569 0.498 438 0.56
O-Al 2.511 075 8.574 224 4.669 743 0.208 662 0.678 293 0.355 898 1.014
O-Zr 2.311 373 7.932 056 4.487 195 1.316 054 1.646 021 0.069 542 1.391
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parameters so that the overall fitting was optimized. W
these, the charge parameters of the three elements wer
termined and are listed in Table III, where the charge boun
qmin,i and qmax,i , are also listed for each elementi
5O,Al,Zr).

For perfect oxides, analytical relationships between
charge parameters that give exactly the target equilibr
charges can be derived. By fitting to the bulk charge, a n
zero x is obtained, Whenx is not zero, isolated atoms wil
have a nonzero charge due to self-ionization. This can
seen from Eq.~B1! where aq of opposite sign withx reduces
the energy. The consequence of this is that the charge
not go to zero as the oxide crystal is expanded to infinity.
be consistent with the underlying assumption of our mo
that isolated atoms have zero charge, we have used a c
on x. We assumed thatx takes the fitted value when th
distance between any oxygen atom and a nearby atom
small. x then diminishes towards zero as this distance
proaches the cutoff distance of the potential. Ifx0 is the
fitted value ofx, r is the distance between an oxygen ato
and its nearby neighbor,r s is the starting point forx to vary,
and r c is the cutoff distance, a smooth approach to thex
cutoff can be achieved:

x5
1

2 F11cosS r 2r s

r c2r s
DpGx0 . ~14!

It should be pointed out that we provided Eq.~14! for the
integrity of the model and applied it in our calculations. W
did not find any serious problems without the inclusion
Eq. ~14! in the simulations, as the Coulomb interaction is t
dominant cause for the introduction of charge and the cha
caused by self-ionization is small for the fitted parame
values used here.

The primary considerations during parametrization of
potential is to determine the remaining unknown parame
so that the potential best predicts the equilibrium lattice c
stant, cohesive energy, and elastic constants of the oxide
tems ~here the corundum Al2O3 and cubic ZrO2 crystals!.
We have utilized the Rose universal equation29 to assist with
parameter fitting. The Rose crystal energy equation can
written

ERose52Ec~11as!exp~2as!, ~15!

TABLE V. EAM parameters for oxygen electron density.

f e G C

1.502 175 2.444 388 0.645 585
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, ~16!

where« is the isotropic strain,B is the bulk modulus,Ec is
the equilibrium cohesive energy, andV0 is the equilibrium
atomic volume. A convenient feature of the Rose equatio
that at«50, it has an energy minimumEc , and a second
derivative that exactly predicts the bulk modulusB. Because
of this, an exact fit of the cohesive energy, lattice consta
and bulk modulus for a cubic oxide can be simultaneou
achieved if the following equation is strictly enforced:

Et5Ees1En5ERose. ~17!

Notice that all the unknown parameters at this stage are c
tained in the expression forEn . For fitting, all the parameters
needed to define the oxygen electron density and the O
and O-M ~M denotes Al and Zr! pair potentials were first
approximated by a best guess. This allows all the ene
terms and their first and second derivatives inEn to be cal-
culated except for those related to oxygen embedding en
functions. The oxygen embedding energy and its first a
second derivatives at the equilibrium electron density of
oxygen site in each oxide can then be solved from Eq.~17!
as the oxygen embedding energy is the only unknown in
equation. Knowledge of these oxygen embedding energy
ues is sufficient to calculate all the elastic constants~we
point out that while the position dependence of the cha
does not affect forces and stresses as shown in Appendi

FIG. 3. Average anion charge of corundum Al2O3 as a function
of isotropic strain predicted by our CTIP model.
2-9
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TABLE VI. EAM parameters for the oxygen embedding energy spline function.

i F 0,i F1,i F2,i F3,i re,i rmin,i rmax,i

0 21.514 833 23.726 519 22.911 951 20.700 265 57.825 648 0 57.825 64
1 21.945 745 21.361 354 10.075 953 68.030 174 57.825 648 71.584
3 21.965 159 0.883 740 7.620 277 75.138 786 71.584 480 `
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it does affect the elastic constants!. The total squared devia
tion between predicted elastic constants and the target el
constants was then calculated for all the independent ela
constants (C11, C13, C33, C44, andC12 for the hcp Al2O3 ,
and C11, C12, and C44 for the cubic ZrO2). The oxygen
embedding energy and its first and second derivatives a
equilibrium electron density of the oxygen site in each ox
were then used in Eq.~12! to calculate the oxygen embed
ding energy and its derivatives at the spline junctions. T
squared deviation of oxygen embedding energy and its
rivatives at each junction were then added to the squa
deviation of the elastic constants. To guarantee the cor
lattice constants for noncubic structures~i.e., zero normal
stresses in all coordinate directions!, the squares of the thre
normal stresses were also included to obtain a total squ
deviation. The conjugate graduate method as describe
Appendix D was used to minimize the total squared dev
tion by adjusting the parameters needed to define the oxy
electron density and the O-O and O-M (M5Al and Zr! pair
potentials. Once this was performed, the oxygen embed
energy values were used to define Eq.~12!. Finally, Eq.~13!
was defined under the condition that the function is zero
r50 and is continuous with a continuous derivative at
right junction,r5rmin,1. The fitted parameters deduced wi
this procedure are listed in Table IV for various pair intera
tions, Table V for oxygen electron density, and Table VI f
oxygen embedding energy. Based upon this set of par
eters, the predicted~unrelaxed! properties of the oxides ar
compared with their target values in Table VII. Here, t
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experimental lattice constants of Al2O3 ,30 the experimental
cohesive energies of Al2O3 ,17,31and ZrO2 ~see Appendix A!,
and experimental elastic constants of Al2O3 ~Ref. 31! were
used as the target values. The target values of the la
constants and elastic constants of the cubic ZrO2 were ob-
tained using ourab initio calculations. It can be seen from
Table VII that the predicted properties are in very go
agreement with the target values.

VI. CHARACTERISTICS OF THE MODIFIED
CTIP¿EAM POTENTIAL

The modified CTIP1EAM potential is essentially equiva
lent to the existing EAM potential database17 when used for
pure metals. This EAM potential database has been w
characterized and has been successfully applied to a va
of metal problems.17,18 As a result, the several simulation
performed here were all chosen to involve oxygen so that
application of the CTIP1EAM model in metal oxides can be
characterized. For a given crystal, the calculated charges
determined only from the CTIP part of the potential and a
independent of the EAM parameters. For a first test,
CTIP model as described above was used to calculate
charge as a function of isotropic lattice strain for the coru
dum phase of Al2O3 and the cubic phase of ZrO2 . During
calculations, we used av coefficient of 10.0 for establishing
charge bounds. Results for the anion charges of Al2O3 are
plotted in Fig. 3. Similar results were obtained for ZrO2 . To
test the charge stability, results were obtained for a w
TABLE VII. Model predicted and target lattice constantsa and c, cohesive energiesEc , and elastic
constantsC11, C13, C33, C44, C12, C14, andC66.

Physical property

Al2O3 ZrO2

Predicted Target Predicted Target

Lattice
constants~Å!

a 4.759 4.759 5.150 5.150
c 12.991 12.991

Ec ~eV! 6.461 6.461 7.640 7.640
Elastic
constants
~eV/Å3!

B 1.577 1.577 1.481 1.481

C11 3.452 3.108 3.158 3.181
C13 0.632 0.701 0.642 0.631
C33 3.259 3.119 3.158 3.181
C44 0.879 0.921 0.543 0.558
C12 0.750 1.025 0.642 0.631
C14 20.161 20.147 0.000 0.000
C66 1.351 1.042 0.543 0.558
2-10



o
re
rg

t

p
o

TI
he
o

ta
he

t-
r

in
e

to
g. 5
that
est-
i-
lso
led

at

ver,
n

. To

stal
res
e
e
the
he

MODIFIED CHARGE TRANSFER-EMBEDDED ATOM . . . PHYSICAL REVIEW B69, 035402 ~2004!
range of lattice strains from20.6 to 0.6, which correspond t
nearest-neighbor spacings from about 0.75 to 3.0 Å. Figu
indicates that the improved CTIP model predicts cha
variation similar to the Streitz-Mintmire model26 when the
crystal lattice was stretched. On the other hand, it enables
oxygen charge to be bounded approximately to22 as the
lattice was compressed, demonstrating the successful im
mentation of the electron valence concept and elimination
the charge fluctuation problem.

The fitting procedures guarantee that the modified C
1EAM potential reproduces the Rose equation for the co
sive energy as a function of lattice constant in the vicinity
equilibrium bulk crystal for both corundum Al2O3 and cubic
ZrO2 structures. It is important to test that there is no ins
bility when the crystal is highly compressed. For this, t
cohesive energies of both the corundum Al2O3 and the cubic
ZrO2 were calculated for various isotropic strains from20.5
to 1.0. The results are shown in Figs. 4~a! and 4~b!, respec-
tively, for Al2O3 and ZrO2. The approximate neares
neighbor distances are also included in the figures. Figu
4~a! and 4~b! indicate that the instability problem observed
Fig. 1 at small lattice constant is resolved by the improv

FIG. 4. Cohesive energies of~a! corundum Al2O3 and~b! cubic
ZrO2 as a function of isotropic strain~near equilibrium! predicted
by our CTIP1EAM model.
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CTIP1EAM model. Calculations were further extended
even lower strain ranges, and the results are shown in Fi
with a greatly compressed ordinate scale. It can be seen
the stable calculations were achieved even at near
neighbor distance significantly smaller than 1.0 Å. Add
tional calculations for even more compressed crystals a
did not indicate instability. We believe these results revea
sufficient stability for the application of this potential.

Since one of our intentions is to provide a potential th
can be used in MD to simulate the growth ZrO2 at high
temperatures. When ZrO2 is stabilized by Y2O3, ZrO2 ex-
hibits a tetragonal structure at high temperatures. Howe
the tetragonal ZrO2 transforms into a cubic structure whe
the yttrium concentration is reduced. For pure ZrO2 , it is
important to ensure that the cubic phase is most stable
test this, both monoclinic and tetragonal ZrO2 computational
crystals were created according to the experimental cry
data.30 The unrelaxed cohesive energies for both structu
were lower~less stable! than that for the cubic structure. Th
derived CTIP1EAM potential was then used to relax th
crystals. We found that the tetragonal structure relaxed to
cubic structure with a cohesive energy of 7.64 eV/atom. T

FIG. 5. Cohesive energies of~a! corundum Al2O3 and~b! cubic
ZrO2 as a function of isotropic strain~highly compressed! predicted
by our CTIP1EAM model.
2-11
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TABLE VIII. Surface energies~eV/Å2! for various surfaces.

Crystal Surface

Our CTIP1EAM
model

Our ab initio
model Otherab initio modelsa

Unrelaxed Relaxed Unrelaxed Relaxed Unrelaxed Relax

Al2O3 $0001% 0.37 0.25 0.22 0.09 0.24 0.11

$101̄0% 0.37 0.31 0.22 0.09

$101̄1% 0.36 0.31 0.23 0.16

$112̄0% 0.32 0.28 0.16 0.12

$101̄2% 0.38 0.32 0.16 0.12

ZrO2 $110% 0.39 0.36 0.13 0.08 0.14

aReferences 26, 32–34.
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monoclinic nature of the monoclinic phase was reduced a
relaxation. Its relaxed cohesive energy was 7.42 eV/at
lower than that of a cubic structure. Since the cubic phas
ZrO2 has the highest cohesive energy~we have fitted to this
phase!, the potential is therefore only applicable to simu
tions where the cubic ZrO2 phase is expected to form~e.g., at
high temperatures!. It can also be used to simulate oth
phenomena such as self-diffusion and dislocation motion
previously formed cubic ZrO2 crystals. In its present form
the potential is not suited to simulate the growth of cryst
under conditions where other ZrO2 phases are preferred.

The surface energies predicted by the potential have
been explored. First, the effects of crystal thickness on
face energy was determined. A corundum Al2O3 crystal with

@ 1̄100# x direction, @0001# y direction, and@112̄0# z direc-
tion was used. Crystals with different thicknesses in thy
direction were created. The equilibrium bulk crystal was o
tained using periodic boundary conditions in all three co
dinate directions with a flexible period length condition. T
crystals with two equivalent Al-terminated$0001% surfaces
were then created by using periodic boundary conditions
the x andz directions and a free boundary condition in they
direction. Both unrelaxed and relaxed surfaces were ca
lated. For relaxing the surfaces, the positions of atoms in
middle part of the crystals were fixed, and periodic leng
were not allowed to change. The surface energy was t
calculated as the energy difference between the crystal
two y surfaces and the bulk crystal~scaled to have the sam
number of atoms! divided by the total area of the two su
faces. The results of the Al-terminated$0001% surface energy
of Al2O3 indicated that the surface energy is almost indep
dent of the crystal thickness beyond the thickness of 30
As a result, crystals with a thickness~in y direction! of at
least 30 Å were used for calculating various surface ener
for both corundum Al2O3 and cubic ZrO2 crystals. The re-
sults for relaxed and unrelaxed surface energies are liste
Table VIII.

For comparison, we selectively calculated some surf
energies using ab initio methods. Manassidis an
co-workers32,33 also reported first-principles local-densi
functional calculations of surface energies of corund
Al2O3 , and Christensen and Carter34 published theirab ini-
tio calculations of unrelaxed$110% surface energy of cubic
03540
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ZrO2. Theseab initio results are included in Table VIII.
The surface energies calculated by our CTIP1EAM

model are higher than theab initio results. The CTIP
1EAM potential can be fitted to closely reproduce theab
initio surface energies as demonstrated by Streitz
Mintmire.26 However, we noticed that ZrO2 has a consider-
ably larger cohesive energy than Al2O3 and yet ourab initio
methods generally predicted very small unrelaxed and
laxed surface energies for ZrO2 . Accommodation of such a
large discrepancy significantly affected the fitting of oth
properties. On the other hand, it is still an open debate
how well ab initio methods can be used to calculate surfa
energies in these systems. We also realized that all the c
tals used in theab initio calculations are less than 8 Å in
thickness. This thickness is too short for ionic interactio
Manassidis and co-workers commented in their work t
they expected the use of larger thicknesses may lead to
stantially different surface energies. From these consid
ations, we did not specifically fit the surface energies dur
potential parametrization. This was found to result in mu
better fitting to the other properties.

CTIP1EAM potential calculations revealed a significa
surface relaxation of the Al-terminated$0001% surface of the
Al2O3 crystal. On this surface, the first surface monolaye
aluminum, the second monolayer is oxygen, the third a
fourth monolayers are aluminum, and the subsequent mo
layers are an alternative stacking of one oxygen and
aluminum layers. Simulations indicated that the outer
monolayer was relaxed towards and became merged with
second~oxygen! layer. To test this result, the displacement
atoms near the surfaces~with respect to their bulk positions!
was calculated using both CTIP1EAM molecular statics and
ab initio energy minimization methods. The results are co
pared in Fig. 6, where the filled and unfilled circles repres
CTIP1EAM and ab initio data, respectively. For the$0001%
surface in the positivey direction, a positive displacemen
means that the plane moves out of the crystal while a ne
tive displacement implies that the plane moves into the cr
tal. Figure 6 indicates that the CTIP1EAM generally match
the relaxation pattern found in theab initio calculations.
They both indicate a strong relaxation of the outer Al surfa
into the bulk.
2-12
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The calculations also yielded the charges on all of
ions. The anion and cation charges as a function of a
position from the Al-terminated$0001% surface of a corun-
dum Al2O3 crystal are shown in Figs. 7~a! and 7~b!. The
anion and cation charges as a function of atom position fr
the O-terminated$111% surface of a cubic ZrO2 crystal are
shown in Figs. 7~c! and 7~d!. The open and filled circles in
the figures represent the relaxed and unrelaxed crystal d
respectively. It can be seen that the unrelaxed charge
creased as the free surface was approached. This agreed
with the original CTIP model26 and physics of charge induc
tion between cations and anions. The significant relaxatio
the $0001% Al2O3 surface greatly reduced this effect. How
ever, since little surface relaxation occurred on the$111%
ZrO2 surface, the charge on the$111% ZrO2 surface remained

FIG. 6. Surface relaxation of the Al-terminated$0001% Al2O3

surface.
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much lower than that in the bulk after relaxation.
In heterostructure systems involving metals and oxyg

the electric field caused by charges can be effectiv
screened by any metallic clusters. A significant problem
any other type of empirical potentials is that they cann
physically implement this screening effect. One advantag
the CTIP model is that it naturally simulates such a screen
effect by charge transfer. This is illustrated using a Zr
multilayer. For simplicity, the Zr/O multilayer crystal is as
sumed to be simple cubic, with a lattice constant of 2.23
The geometry of the crystal is shown in Fig. 8~a!, where the
bottom three monolayers are oxygen layers, and the top
monolayers are metallic zirconium layers. Using period
boundary conditions in thex and z directions and a free
boundary condition in they direction, and by fixing the oxy-
gen charge at22e, the CTIP model was used to calcula
the induced charge in the zirconium layers. The charge a
function ofy coordinate~in units of monolayers! is shown in
Fig. 8~b!, where data for oxygen and zirconium are rep
sented by filled and open circles, respectively, and the s
line is used to guide the eye.

It can be seen that positive charges are induced in the
zirconium monolayers closest to the negatively charged o
gen region, while charge on the other zirconium monolay
remains essentially zero. The existence of these charges
produce an electric field in they direction. Using the assump
tion of point charges, the electric field at each ion’s site~ex-
cluding the field produced by the ion itself! can be easily
calculated. Figure 8~c! shows the electric field as a functio
of the y coordinate, where the filled and open circles no
represent the electric field measured at the oxygen and
conium sites, respectively, and the solid line is again use
FIG. 7. Average~a! cation and~b! anion charges as a function of position along the@0001# thickness direction of the corundum Al2O3 ;
and average~c! cation and~d! anion charges as a function of position along the@111# thickness direction of the cubic ZrO2 .
2-13
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ZHOU, WADLEY, FILHOL, AND NEUROCK PHYSICAL REVIEW B69, 035402 ~2004!
guide the eye. It can be seen that the electric field in
metal rapidly fell from2150 V/Å to almost 0 within three
monolayers of the interface. For comparison, the elec
field produced at the zirconium site by the oxygen lay
alone~i.e., zero zirconium ion charge! is also shown as the
dashed line. It is seen that the infinitely large plane of ne
tively charged oxygen produced an almost constant~y inde-
pendent! electric field of about2100 V/Å. This result dem-
onstrated that the CTIP model captures the meta
screening phenomenon, which is essential for valid simu
tions of metal-oxygen heterostructures.

An essential advantage for the modified CTIP1EAM
model is that it predicts zero charges in any local metal a
regions within metal/metal oxide mixtures. It should the
fore be well suited for study of metal alloy oxidation. To te
the validity of the potential for such simulations, the oxid
tion of a metal alloy containing two metal elements w
explored. A disordered fcc Al50Zr50 alloy crystal with 36
(224̄) planes in thex direction, 15 ~111! planes in they

FIG. 8. Screen effect of our CTIP model.~a! a simple cubic
~lattice constant 2.23 Å! Zr on O crystal;~b! the induced charge
distribution in the Zr crystal when the O charge is fixed at22e;
and ~c! the resulting electric field across the interface.
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direction, and 10 (22̄0) planes in thez direction was created
Using a free surface boundary condition in they direction
and periodic boundary conditions in thex andz directions, an
oxygen atom vapor density of approximately 0.00
atoms/Å3 ~about 10 atmospheric pressure! was introduced
above the topy surface. A molecular dynamics simulatio
was then used to simulate oxidation of the surface at a t
perature of 300 K. An abnormally high oxygen pressure w
used to accelerate the oxidation. The charge was solved
ery 0.1 ps.

The simulation resulted in the formation of a;20-Å-thick
amorphous AlxZryOz oxide layer on the Al50Zr50 alloy after
100 ps of oxidation. The average O, Al, and Zr charges a
function of depth in the Al50Zr50 alloy and its oxide are plot-
ted in Fig. 9~a!. The oxygen concentration profile through th
oxide layer is shown in Fig. 9~b!. It can be seen that the
model predicted zero charge in the interior of the Al50Zr50
alloy. Towards the surface, the aluminum and zirconiu
charges rise until they approach their maximum values of13
and 14, respectively. This corresponds well with the e
pected maximum oxygen concentration at the surface
shown in Fig. 9~b!. The magnitude of the oxygen charg
exhibits a maximum within the oxide bulk; it decreases
both the free surface and the metal/metal oxide interface
approached. The reduction of the oxygen charge at the
face is expected because the oxygen-rich surface region
an insufficient concentration of cations to ionize the oxyg
atoms. The oxygen charge at the interface should also be
because the oxygen atoms are ionized by cations wh

FIG. 9. ~a! Average Al, Zr, and O charges and~b! oxygen con-
centration as a function of position along the@111# thickness direc-
tion of the oxidized Al50Zr50 alloy.
2-14
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MODIFIED CHARGE TRANSFER-EMBEDDED ATOM . . . PHYSICAL REVIEW B69, 035402 ~2004!
charges are low at the interface. These results provide g
evidence that the CTIP1EAM model has captured much o
the physics and chemistry needed to simulate the oxida
of metallic alloys.

Finally, we have used the CTIP1EAM potential in a pre-
liminary simulation of the vapor phase growth of a coru
dum Al2O3 thin film. The basic approach was similar to th
used for metal deposition.17,18 The initial corundum crysta
was created with a@112̄0# x direction, a@0001# y direction,
and a@101̄0# z direction. With periodic boundary condition
applied inx andz directions, the growth of the film in they
direction was simulated using an adatom energy 2.0 eV
adatom’s incidence perpendicular to the film surface, a de
sition temperature of 900 K, a deposition rate of 5 nm/
and an exact aluminum oxygen atom vapor ratio of 2:3. T
atomic structure obtained after 200 ps of deposition is sho
in Fig. 10, where~a! and~b! correspond to thez andx views
of the structure, respectively. Epitaxial growth of the cryst
line Al2O3 film was found to have occurred. This is in goo
agreement with high-temperature vapor deposit
experiments.35 We believe that the potential has captur
many of the important physical phenomena needed to re
tically simulate the growth of metal/metal oxide heterostru
tures, though as with all empirical potentials, improveme
are anticipated following more intensive applications.

VII. CONCLUSIONS

Simulations of structures involving both metals and th
oxides require simultaneous treatment of metallic and io
interactions. A charge transfer potential for ionic solids ori
nally proposed by Streitz and Mintmire has been modifi
and coupled to a metal alloy embedded atom method po

FIG. 10. ~Color online! ~a! Front and~b! right view of the vapor
deposited Al2O3 film.
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tial to address such interactions. We found that by sett
charge bounds upon each ion, the instability of the origi
CTIP potential can be removed. By setting metal cha
bounds to a positive range and oxygen charge bounds
negative range, the modified potential first allowed the CT
model be used to analyze multimetal element problems.
charge bounds were implemented by a simple modifica
of the electrostatic energy. This modification of the ene
has no effect if the charges are within the bounds. The n
energy expression is numerically solvable using a comp
tionally efficient conjugate gradient method. The propos
potential has been parameterized for the O-Al-Zr system
fitting to the bulk properties of the pure metals and th
oxides. It describes well the cohesive energy and the
charge as a function of lattice constants. It was also succ
fully used to predict surface relaxation and charge variati
in various regions of a multilayer system including at fr
metal oxide surfaces, inside metal alloy bulk, inside me
oxide bulk, and at metal/metal oxide interfaces. The use
the potential in a molecular dynamics simulation of the vap
phase growth of a crystalline metal oxide film has also be
demonstrated.
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APPENDIX A: COHESIVE ENERGY OF OXIDES

The handbook of thermochemical data usually lists
heat of formation (DH) of various chemical reactions. Th
heat of formation can be used to calculate cohesive energ
oxides. To derive the cohesive energy of an oxideMxOy ,
one needs to know the heat of formation for the chemi
reactions given in Table IX.Ec,M is the cohesive energy o
metal. The cohesive energy of the oxide is then

Ec,MxOy
5DH12yDH22xDH3 . ~A1!

For ZrO2 , DH15211.388 eV,36 DH252.586 eV,31 Ec,Zr
526.36 eV,17 and hence Ec,ZrO2

5222.92 eV/formula

527.64 eV/atom.

TABLE IX. Chemical reactions associated with oxide form
tion.

Chemical reactions Heat of formation

xM(in crystal)1(y/2)O2(in gas)
5MxOy ~in crystal!

DH1

(y/2)O2(in gas)5yO(in gas) yDH2

xM(in crystal)5xM(in gas) xDH35xEc,M
2-15



l,
o

tin
ot

t

ac
uc
ta
b
he
t-

th

os
u
eo
e
ge
ro
in
i

th
e

TI

s
m
os
s-

th
it

e

d
-
the

y,

im-
be
s.

tials
ieve
ell
ible
ics
el

on

e

ase
cay
n

n

ZHOU, WADLEY, FILHOL, AND NEUROCK PHYSICAL REVIEW B69, 035402 ~2004!
APPENDIX B: PHYSICAL ORIGIN OF THE STREITZ-
MINTMIRE CTIP MODEL

The ionization energy of an isolated ionizable atom,i,
with a chargeqi can be expressed to second order as

Ei~qi !5Ei~0!1x iqi1
1
2 Jiqi

2, ~B1!

wherex i is the electronegativity of atomi,26 andJi ~.0! is
referred to as an ‘‘atomic hardness’’37 or a self-Coulomb
repulsion.38 If N such ionizable atoms form an ionic crysta
the total electrostatic energy of the crystal is composed
both ionization energies and Coulomb energies resul
from interactions among the cations and anions. This t
electrostatic energy can be written

Etes5(
i 51

N

Ei~qi !1 1
2 (

i 51

N

(
j 5 i 1

i N

Vi j ~r i j ,qi ,qj !. ~B2!

Here,Vi j (r i j ,qi ,qj ) is the Coulomb energy between atomi
with a charge ofqi and atomj with a chargeqj , separated by
a distancer i j , and the notationsi 1 and i N represent the firs
and the last (Nth) neighbor of atomi. It should be pointed
out that for simulations using long-range Coulomb inter
tions, it is often necessary to use cutoff distance that is m
longer than the size of the periodic computational crys
cell. The neighbor list notation adopted here is concise
cause Eq.~B2! is valid for any cutoff distances as long as t
neighbor listi 1 ,...,i N covers all image atoms within the cu
off distance from atomi, including the images ofi itself.

In the simplest case where all ions are point charges,
Coulomb energy in Eq.~B2! can be written

Vi j ~r i j ,qi ,qj !5kc

qiqj

r i j
. ~B3!

Because the neighboring cations and anions have opp
sign charges in an ionic crystal, an increase of the magnit
of the charge may reduce the Coulomb energy. The trad
between an increase in ionization energy and a decreas
Coulomb energy can then define a set of equilibrium char
for all cations and anions that minimizes the total elect
static energy. These equilibrium charges will vary depend
upon the local environment. Replacing the fixed charges w
the equilibrium charges deduced with a knowledge of
local environment overcomes many of the problems of fix
charge models and is the basis for the Streitz-Mintmire C
model.26

Point charges do not represent the electron distribution
ions well. It is more realistic to describe the charges in ter
of an electron density distribution around an atom. Supp
that the chargeqi is partitioned into an electron density di
tribution functionr i(r ,qi) around an atomi, where the po-
sition vectorr emphasizes the spatial dependence rather
radial dependence. To simplify, spherically symmetric orb
als such ass orbitals can be assumed.r i(r ,qi) then becomes
a radial functionr i(r ,qi) wherer can be simply viewed as
the distance from the core of atomi. For this simple case, th
electron density distribution function can be written

r i~r ,qi !5Zid~r !1~qi2Zi ! f i~r !, ~B4!
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where d(r ) is a delta function@i.e., d(r )51 at r 50 and
d(r )50 at rÞ0], Zi is an effective core charge~treated as a
fitting parameter here!, which should satisfy the condition
0,Zi,Ni , with Ni the total nuclear charge of the atom, an
the functionf i(r ) describes the radial distribution of the va
lence charge in space that satisfies the condition that
volume integral off i(r ) over the entire space equals unit
i.e., * f i(r )dV51. Note thatqi is partitioned intor i(r ,qi)
because*r i(r ,qi)dV5qi . It is pointed out that Eq.~B4!
assumes rigid ions, and the shell model is ignored for s
plicity. The main purpose is to develop a potential that can
used in MD simulations for random metal-oxygen mixture
Such a simulation has not been possible with other poten
and we want to demonstrate that the CTIP model can ach
this using the simpler rigid ion case. Although the sh
model is not used, we believe that it should have a neglig
effect on the structure evolution during molecular dynam
simulations.39 On the other hand, a more realistic shell mod
can be implemented by directly modifying Eq.~B4!.26

With distributed charge, the electrostatic interacti
Vi j (r i j ,qi ,qj ) must be integrated using

Vi j ~r i j ,qi ,qj !5kcE E r i~r i ,qi !r j~r j ,qj !

r vv
dVidVj ,

~B5!

wheredVi anddVj are the two integrating volume units,r i is
the center distance between atomi and dVi , r j the center
distance between atomj anddVj , andr vv the center distance
betweendVi anddVj . Note that an approximation is mad
because strictly, Eq.~B5! holds only for fixed charge distri-
butions. Applying Eqs.~B4! and ~B5!, one can derive

Vi j ~r i j ,qi ,qj !5kcqiqj@ f i u f j #1kcqiZj~@ j u f i #2@ f i u f j # !

1kcqjZi~@ i u f j #2@ f i u f j # !1kcZiZj

3S @ f i u f j #2@ i u f j #2@ j u f i #1
1

r i j
D , ~B6!

where notations@au f b# and @ f au f b# (a5 i , j , b5 i , j , aÞb)
denote the Coulomb interaction integrals:

@au f b#5E f b~r b ,qb!

r av
dVb , ~B7!

@ f au f b#5E E f a~r a ,qa! f b~r b ,qb!

r vv
dVadVb . ~B8!

In general, the electron density is assumed to decre
with distance from the core of an atom. To capture the de
of f i(r ) with r while maintaining mathematical simplicity, a
exponential function forf i(r ) was used:

f i~r !5
j i

3

p
exp~22j i r !, ~B9!

where the parameterj i controls the spread of the electro
distribution. Based upon Eqs.~B2! and ~B6!, the total elec-
trostatic energy can be written as
2-16
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Etes5E01(
i 51

N

qiXi1
1
2 (

i 51

N

(
j 51

N

qiqjVi j , ~B10!

where

E05(
i 51

N

Ei~0!1 1
2 (

i 51

N

(
j 5 i 1

i N

kcZiZj

3S @ f i u f j #2@ i u f j #2@ j u f i #1
1

r i j
D , ~B11!

Xi5x i1 (
j 5 i 1

i N

kcZj~@ j u f i #2@ f i u f j # !, ~B12!

Vi j 5Jid i j 1 (
k5 j ~ i 1!

j ~ i N!

kc@ f i u f k#. ~B13!

In Eq. ~B13!, d i j 51 when i 5 j andd i j 50 when iÞ j , and
the summation indexesj ( i 1) and j ( i N) means that the sum
mation is over all thej atoms~i.e., atomj and all its images!
that arei’s neighbors. Note thatE0 in Eq. ~B10! is indepen-
dent of chargeq. Such a potential term can be absorbed in
the nonelectrostatic energy and hence can be ignored h
We can then define a normalized electrostatic energyEes that
has the required zero value when all the charges are ze

Ees5E12E05(
i 51

N

qiXi1
1
2 (

i 51

N

(
j 51

N

qiqjVi j . ~B14!

In Eq. ~B14!, Xi and Vi j can be calculated using Eq
~B12! and ~B13! for a given crystal configuration if the po
tential parametersj i , Zi , x i and Ji are given. Equation
~B14! is then a quadratic function with respect toqi ( i
51,...,N). Under the condition that the system is neutr
( i 51

N qi50, Ees becomes a function ofN21 independent
variablesqi ( i 51,...,N21). Setting the derivatives ofEes
with respect to theseN21 independent variables to zero
equivalent to setting equal values for the derivatives ofEes
with respect to the N dependent variables~i.e., m i
5]Ees/]qi5m, i 51,...,N). This leads toN linear equations
for solving equilibrium charges that give the minimum e
ergy:

(
j 51

N

Vi j qj5m2x i , i 51,2,...,N. ~B15!

If Vi j
21 is the matrix inverse ofVi j , qi can be solved as

qi5(
j 51

N

Vi j
21~m2x j !. ~B16!

qi can be determined ifm is known. Using the system neutra
condition( i 51

N qi50, m in fact can be calculated as

m5S (
i 51

N

(
j 51

N

Vi j
21x j D Y S (

i 51

N

(
j 51

N

Vi j
21D . ~B17!
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Once the charge is solved, Eq.~B14! can be used to cal
culate the electrostatic interaction between atoms. A fea
of the CTIP model that is useful for implementing it within
MD code is that while the charge generally changes as
atom moves, this position dependence of charge does
affect the calculations of forces and stresses. For insta
thex component of the force on an atomi due to the position
dependence ofq can be expressed as

f x,i uq52
]Ees

]x Uq

52(
i 51

N
]Ees

]qi

]qi

]x
. ~B18!

Because charges are obtained from equilibrium conditi
]Ees/]qi5m i5m, and the system is neutral,( i 51

N qi50, Eq.
~B18! becomes

f x,i uq52m(
i 51

N
]qi

]x
50. ~B19!

APPENDIX C: EWALD SUMMATION

Coulomb interactions are long-range interactions that
cay with 1/r i j . For an ionic crystal that is periodically
stacked to infinity, a direct sum of this kind of long-rang
potentials,

S5 1
2 (

i 51

N

(
j 5 i 1

i N 1

r i j
,

imposes a serious divergent problem. Using the Z
potentials,24 for instance, one can easily show that the latt
energy of ZrO2 based upon the direct sum of the Coulom
energy oscillates between positive and negative values w
cutoff distance. There are a number of approaches to res
this problem. One commonly used approach is the Ew
summation40,41 technique.

In the Ewald summation method, an error function erfx)
and its complimentary function erfc(x)512erf(x) were used
to decompose the Coulomb summation into two parts:

S5 1
2 (

i 51

N

(
j 5 i 1

i N qiqj

r i j
5 1

2 (
i 51

N

(
j 5 i 1

i N erfc~tr i j !qiqj

r i j

1 1
2 (

i 51

N

(
j 5 i 1

i N erf~tr i j !qiqj

r i j
. ~C1!

One useful feature of erfc(x) is that it decreases rapidly with
x. By choosing the proper convergent coefficientt,
erfc(trij)/rij can be made negligibly small at larger i j . This
short-range interaction can then be directly summed up.
term erf(trij)/rij is small at short distances, but cannot
neglected at large distances. However, if the computatio
cell has periodic boundary conditions in all the three coor
nate dimensions, a Fourier transform can be applied to c
vert the periodic summation

1
2 (

i 51

N

(
j 5 i 1

i N erf~tr i j !qiqj

r i j
2-17
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in normal space to a summation in reciprocal space:

1
2 (

i 51

N

(
j 5 i 1

i N erf~tr i j !qiqj

r i j

52
t

Ap
(
i 51

N

qi
21

2p

V (
i 51

N

(
j 51

N

qiqj

3 (
l ,m,n

! ~ l 5m5n50!

exp~2R2/4t2!Re@exp~A21RW •rW i j !#

R2 ,

~C2!

where ! excludes the condition specified in~ !, V5LxLyLz is
the volume of the periodic cell,Lx , Ly , and Lz are the
lengths of the cell in thex, y, andz directions,

RW 52pS l

Lx
xW 1

m

Ly
yW 1

n

Lz
zW D

is a reciprocal-lattice vector,rW i j 5(xj2xi)xW1(yj2yi)yW
1(zj2zi)zW is the vector between atomi and j in the normal
space,R is the norm ofRW , Re( ) takes the real part of th
complex number, andxW , yW , andzW are unit vectors in the thre
coordinate directions. The convergence in the recipro
03540
al

space can also be made fast by the proper choice oft. There-
fore, Eqs.~C1! and ~C2! can be used for atomistic simula
tions for three dimensional ionic atomic assembly.40

The computational cell is two-dimensional for surfa
problems. If the two-dimensional cell is in thex-zplane, then
it will lose the periodicity in they direction. Equation~C2!,
which is based upon periodic boundary conditions in
three directions, cannot be used then. One can imagine, h
ever, that a three-dimensional space is occupied by equ
separated sheets of two-dimensional crystals of the s
thickness. If we allow they dimension of our computationa
cell to be exactly one sheet thickness plus the sheet spa
then the periodic boundary condition holds even in they
direction for these equally separated sheets. Equation~C2!
can be used for this case. If we further imagine that
spacing between sheets is increased to infinity while
sheet thickness is kept constant, then we virtually simu
an isolated two dimensional slab.

One can decomposeRW into out-of-plane componentRW y

and in-plane componentRW p , rW i j into out-of-plane componen
rWy,i j and in-plane componentrWp,i j . To adapt Eq.~C2! for the
two-dimensional case, the computational cell size in thy
direction is assumed to bec. The volume of the unit cell is
V5cA, with A being the area of the two-dimensional ce
Based on these notations, Eq.~C2! becomes:
n of
1
2 (

i 51

N

(
j 5 i 1

i N erf~tr i j !qiqj

r i j
52

t

Ap
(
i 51

N

qi
21(

i 51

N

(
j 51

N

qiqj (
m52`

`

ReH 2p

Ac (
l ,n

! ~ l 5m5n50!

expS 2
Rp

2

4t2Dexp~A21RW p•rWp,i j !

3

expS 2
Ry

2

4t2Dexp~A21Ryr y,i j !

Ry
21Rp

2 J . ~C3!

Since Ry(m)52p(m/c), dRy5dRy(m)2dRy(m21)52p/c→0 as c→0. The summation overm can be replaced by
integral, and Eq.~C3! becomes

1
2 (

i 51

N

(
j 5 i 1

i N erf~tr i j !qiqj

r i j
52

t

Ap
(
i 51

N

qi
21(

i 51

N

(
j 51

N

qiqj ReH 1

A (
l ,n

expS 2
Rp

2

4t2Dexp~A21RW p•rWp,i j !

3E
2`

` exp~2Ry
2/4t2!exp~A21Ryr y,i j !

Ry
21Rp

2 dRyJ . ~C4!

Notice that in Eq.~C4! the condition !(m5n5150) in the summation has been removed. This is valid in the summatio
Coulomb interactions where the system is neutral( i 51

N qi50. The integral in Eq.~C4! can be solved to yield

1
2 (

i 51

N

(
j 5 i 1

i N erf~tr i j !qiqj

r i j
52

t

Ap
(
i 51

N

qi
21

p

2A (
i 51

N

qi (
j 51

N

qjH 22S r y,i j @12erfc~tr y,i j !#1
exp~2t2r y,i j

2 !

Apt
D

1 (
l ,n

! ~ l 5n50!

exp~Ryr y,i j !erfc~Ry/2t1tr y,i j !1exp~2Ryr y,i j !erfc~Ry/2t2tr y,i j !

Ry
cos~RW y•rWy,i j !J .

~C5!
2-18
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Equation~C5! can be used for Ewald summation for tw
dimensional crystals.41

APPENDIX D: CONJUGATE GRADIENT METHOD

For a function F with N independent variablesxi ( i
51,2,...,N), the function can be efficiently minimized usin
the conjugate gradient method.42 The method contains th
following iteration procedures:

~1! Starting from initial guessed variables, sayxi ,050, F
was first minimized along the steepest descent directiondi ,0
5gi ,052]F/]xi ,0 , i 51,2,...,N. This results in new vari-
ables xi ,15xi ,01s0di ,0 , where s0 is the march distance
along the search direction and can be obtained fr
]F/]s050. In some cases, such as Eq.~B14! where
]Ees(s0)/]s0 is a linear function ofs0 , s0 can be directly
solved. For other cases, such as Eq.~9! where]Ees(s0)/]s0
can only be calculated locally as it contains nonconst
prefactors,s0 cannot be solved in a closed form. A gene
function, such as Eq.~9!, however, can be solved with man
standard iteration algorithms. We used the Newton-Raph
method43 to solve fors0 .

~2! The search direction for the next and the subsequ
iterations (k52,3,...) was obtained using the relation

di ,k5gi ,k1

(
i 51

N

gi ,k

(
i 51

N

gi ,k21

di ,k21 , ~D1!

wheregi ,k52]F/]xi ,k .
~3! The new iteration was obtained asxi ,k115xi ,k

1skdi ,k , with sk solved from]F/]sk50. The iteration is
continued until the updates are sufficiently small.

APPENDIX E: ALLOY EMBEDDED ATOM
METHOD MODEL

Using the EAM, the nonelectrostatic energy can be
pressed as16

En5 1
2 (

i 51

N

(
j 5 i 1

i N

f i j ~r i j !1(
i 51

N

Fi~r i !, ~E1!

where f i j (r i j ) represents the pair energy between atomi
and j separated byr i j , and Fi stands for the embeddin
energy to embed an atomi into a local site with electron
densityr i . r i can be calculated using

r i5 (
j 5 i 1

i N

f j~r i j !, ~E2!

with f j (r i j ) the electron density at the site of atomi arising
from atomj at a distancer i j away.

It has been demonstrated that for elemental systems
representation of a given potential using the EAM form
described in Eq.~E1! is not unique.44 This arbitrary repre-
sentation of elemental potentials, however, would change
loy properties when elemental potentials are used for allo
03540
t
l

on

nt

-

he
t

l-
s.

The potential cutoff distances fitted for individual elemen
are also not necessarily consistent. Because of these
EAM potentials developed for atoms of a single eleme
generally cannot be applied to alloys. While alloys can s
be studied by fitting individual alloy potentials separate
the alloys that can be explored are greatly limited. By n
malizing the EAM potentials and introducing an EAM allo
model,44 a generalized EAM database17 where alloy poten-
tials can be constructed from elemental potentials with
any more fitting has been developed. In the EAM databa
the generalized elemental pair potentials are written:

f~r !5

A expF2aS r

r e
21D G

11S r

r e
2k D 20 2

B expF2bS r

r e
21D G

11S r

r e
2l D 20 ,

~E3!

wherer e is the equilibrium spacing between nearest neig
bors, A,B,a,b are four adjustable parameters. Notice th
the denominators introduced in Eq.~E3! equal to 1 whenr is
small, but go to infinity asr increases. This provides a natu
ral cutoff for the potential and the additional two paramet
k, l control how fast the potential is cutoff.

The electron density function is taken with the same fo
as the attractive term in the pair potential with the sa
values ofb, andl, i.e.,

f ~r !5

f e expF2bS r

r e
21D G

11S r

r e
2l D 20 . ~E4!

To have embedding energy functions that can work w
over a wide range of electron density, three equations
used to separately fit to different electron density ranges.
a smooth variation of the embedding energy, these equat
are required to match values and slopes at their junctio
These equations are listed in the following:

F~r!5(
i 50

3

FniS r

rn
21D i

, r,rn , rn50.85re ,

~E5!

F~r!5(
i 50

3

Fi S r

re
21D i

, rn<r,r0 , r051.15re ,

~E6!

F~r!5FeF12 lnS r

rs
D hG S r

rs
D h

, r0<r. ~E7!

Note that Eq.~E7! has been modified from Ref. 17 (re is
replaced by a new parameterrs) to better describe the meta
properties. Equations~E3!–~E7! sufficiently define the po-
tentials for elemental metals. For metal alloy calculatio
one also needs cross pair potentials between different spe
a andb. According to the alloy EAM model,44 the pair po-
tential between different speciesa andb can be written
2-19
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fab~r !5
1

2 S f b~r !

f a~r !
faa~r !1

f a~r !

f b~r !
fbbD . ~E8!

To normalize all elemental potentials, the embedding
ergy and the elemental pair potentials are required to s
rately satisfy equilibrium~i.e., the functions are minimum a
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