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Dimensional crossover of localization and delocalization in a quantum Hall bar

Stefan Kettemann
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The two- to one-dimensional crossover of the localization of electrons confined to a disordered quantum
wire of finite widthLy is studied in a model of electrons moving in the potential of uncorrelated impurities. The
localization length is derived as a function of the perpendicular magnetic fieldB, the wire widthLy , and the
conductance parameterg. The analytical theory allows us to study the localization continuously from weak to
strong magnetic fields. On the basis of these results, the scaling analysis of the quantum Hall effect in high
Landau levels and the delocalization transition in a quantum Hall wire are reconsidered. We conclude that in
quantum Hall bars, the quantum Hall transition is driven in all but the lowest two Landau bands by a
noncritical dimensional crossover of the localization length.
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I. INTRODUCTION

The Hall conductance of a two-dimensional electron s
tem in a strong magnetic field1 is precisely quantized due t
the trapping of electrons to localized states in the bulk of
system. Thereby, a change of electron density does not r
in a change of the Hall conductance.2–4 In the tail of the
Landau bands the localization lengthj is small, on the order
of the cyclotron lengthl cyc5A2n11l B , where the magnetic
length l B is defined byl B

25\/(qB). The localization length
increases towards the middle of the Landau bands, locate
energiesEn5\vc(n11/2), wherevc5qB/m is the cyclo-
tron frequency, q being the electron charge, andn
50,1,2, . . . . In aninfinite system the localization length o
an eigenstate with energyE is expected to diverge asj
;(E2En)2n. The exponentn is found for the lowest two
Landau bands,n50,1, to ben'2.3 for spin split Landau
levels, as supported by analytical,5,6 numerical7,8 and experi-
mental studies,9 reminiscent of a second-order transitio
from an insulator to a metal. Thus, for a finite system, th
should exist in the middle of a disorder broadened Lan
band,En , n being the Landau index, a band of states, wh
extend through the whole system of sizeL, with bandwidth
DE5( l cyc /L)1/nG, where G5\A2/pAvc /t. On the other
hand, the localization length in two-dimensional syste
with broken time-reversal symmetry is from the on
parameter scaling theory expected to depend exponent
on the conductanceg as10–13

j;exp~p2g2!, ~1!

where g is the conductance parameter per spin channeg
exhibits the Shubnikov–de Haas oscillations as a function
the magnetic field, forvc.1/t, where 1/t is the elastic-
scattering rate. The maxima occur, when the Fermi energ
in the middle of the Landau band. Thus, the localizat
length is expected to increase strongly from the tails to
middle of the Landau bands, irrespective of the existenc
the quantum critical point. For uncorrelated impuritie
within self-consistent Born approximation,14 one finds that
the maxima in the longitudinal conductance are given
g(E5En)5(1/p)(2n11)5gn . Thus, one gets localizatio
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lengthsj2D(En)5 l cycexp(p2gn
2) in the middle of higher Lan-

dau levels,n.1, which are macroscopically large.8,15 Thus,
even when the wire width is smaller thanj2D(En) there are
wide quantum Hall plateaus, whose widths are determi
by the number of states with localization length smaller th
the wire width.

When the width of the wireLy is smaller than the length
scalej, the localization is expected to become quasi-o
dimensional; that is, the electrons in the middle of a Land
band can diffuse freely between the edges of the wire, but
localized along the wire. The quasi-one-dimensional loc
ization length is known to depend only linearly on the co
ductance, and is, in a magnetic field, with broken tim
reversal symmetry, given by16–19

j52g~B!Ly . ~2!

Thus, for Ly!j2D(En) there is a crossover from two- t
one-dimensional localization as the Fermi energy is mo
from the tails into the middle of a Landau band. It is know
from numerical7 and analytical studies,6 that in a finite quan-
tum Hall bar, the criticality in the middle of the Landau ban
results in a finite localization lengthjcrit'1.2Ly , exceeding
the wire widthLy . Comparing this value with the quasi-one
dimensional localization length for uncorrelated impurities
the middle of the Landau band, obtained from Eq.~2!,
jn1D5(2/p)(2n11)Ly , we see that this length scale e
ceeds thecritical localization lengthjcrit in all but the low-
est Landau level,n50. Thus, the question arises, if the tra
sitions between Hall plateaus in quantum Hall wires
higher Landau bands are at all sensitive to the critical po
existing in an infinite system.

It is the aim of this paper to resolve this question and
derive analytically the dimensional crossover of the locali
tion lengthj in a wire as a function of a perpendicular ma
netic field. This might also help to identify the irreleva
scaling parameters observed in numerical studies of the i
ger quantum Hall transition in lower Landau bands.7,8 Fur-
thermore, these results suggest that in quantum Hall bar
finite width Ly , there exists at low temperatures a ne
phase, when the phase coherence lengthLw exceeds the
quasi-one-dimensional localization length, in the middle
©2004 The American Physical Society39-1
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STEFAN KETTEMANN PHYSICAL REVIEW B69, 035339 ~2004!
the Landau band,Lw.jn .20 This phase may accordingly b
called the mesoscopic quantum Hall phase, exhibiting p
teaus in the Hall conductance, when the bulk localizat
length is smaller than the wire width, and the Hall condu
tance is carried by edge states, separated by regions in
ergy where all states are localized along the wire, and
conductance is zero. The quasi-one-dimensional localiza
along the quantum Hall bar has been speculated on befo21

and noted recently in a renormalization-group study of
effective quantum percolation model in Ref. 6. Here, this
confirmed by an explicit analytical calculation, and extend
to the localization in higher Landau levels, on the assum
tion that the edge states do mix with the bulk states when
localization length exceeds the wire width.

While in previous treatments, limiting behaviors ha
been addressed, here a consistent theory for the dimens
crossover is provided. The nonlinear equations describing
dimensional crossover of the localization are derived a
their solution is obtained. This theory allows us to study
localization length continuously from weak to strong ma
netic field, and thus allows a more detailed evaluation
experimental and numerical studies of quantum wires i
magnetic field. On the technical side, we note that we
tained the magnetic-field dependence of the localiza
length by calculating theb function in second loop, the so
called Hikami boxes, as a function of the magnetic field.

Based on the nonlinear sigma model~NLSM! with topo-
logical term, which is rederived in Appendix D, allowing fo
an inhomogeneous conductivity and for a confining pot
tial, it is shown and discussed in Sec. IV that the topologi
term, which is responsible for criticality in the middle of th
Landau bands, does not become effective in higher Lan
bands for uncorrelated disorder in quantum Hall wires of a
finite width, since to become critical the NLSM must be tw
dimensional on length scales of the order of the noncrit
localization length, which becomes exponentially large
higher Landau bands. Thus, we conclude that the pla
transition in high Landau bands is driven by the noncriti
dimensional crossover of the localization length, and t
there the topological term does not become effective. T
has important consequences for the experimental and
merical scaling studies of plateau transitions in higher L
dau bands.

Furthermore, we show that the noncritical crossover
qualitatively account for the irrelevant scaling observed
lower Landau bands. Section IV contains a short review
what is known on the critical theory of the quantum H
transition. We review how information on critical paramete
can be obtained from the dimensional crossover analysi
the conformal theory. There, an account is given on how
edge states do affect the critical behavior. The possible lo
ization transition of these edges states is discussed.

In the following section the crossover between on
dimensional and two-dimensional localization is studied.
Sec. III the localization length is derived as a function
magnetic field. In Sec. IV, the scaling theory of the integ
quantum Hall effect is considered. It is shown that the irr
evant scaling parameter and the scaling function are in qu
tative agreement with those obtained from the noncriti
03533
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theory. Furthermore it is shown that in higher Landau ban
the transition between quantized Hall plateaus is driven
the dimensional crossover of the noncritical localizati
length. In the last section, a summary is given, and impli
tions for experimental investigations of quantum wires a
pointed out. The derivations are given in Appendixes A~or-
thogonal localization length as a function of wire widthLy),
B ~unitary localization as a function of wire widthLy), and
C @orthogonal to unitary crossover of two-dimensonal~2D!
localization length#. In Appendix D a generalized derivation
of the field theory including an edge state potential and
topological term in the presence of a magnetic field is giv

II. DIMENSIONAL CROSSOVER OF LOCALIZATION

In the following, we study the localization lengthj of
electrons confined to a disordered wire of finite widthLy .

Orthogonal regime.First, let us consider the problem
without magnetic field,B50, the orthogonal regime.

An estimate of the localization lengthj can be obtained
by performing a perturbative renormalization of the dime
sionless conductanceg, which appears as the coupling co
stant of the action in the nonperturbative theory of disorde
electrons. The bare conductanceg is obtained in self-
consistent Born approximation.14 The vanishing of the renor
malized conductanceg̃→0 as one increases the waveleng
of renormalization signals the localization, and can be u
to obtain an estimate of the localization lengthj, as done in
Appendix A.

The first order in 1/g of the perturbative renormalizatio
corresponds to the weak localization correction to the c
ductivity. Thus, one can estimate the localization lengthj at
zero magnetic fieldB50 as done in Appendix A. There, th
renormalization is performed for arbitrary finite widthsLy of
the wire. One thus gets the following equation for the loc
ization lengthj:

j5gLy2
Ly

p
lnF2

k0Ly /~2p!

11A11@Ly /~2pj!#2G , ~3!

where k052p/ l 5pkF /g, and we assumed that the wir
width is diffusive,Ly. l .

In the quasi-1D limit,j@Ly , we find a logarithmic cor-
rection to the expected quasi-1- D result,j5gLy :

j5gLy2
Ly

p
ln~kFLy /g!. ~4!

In the opposite limit,j!Ly , the nonlinear equation fo
the localization length simplifies to

j5 lexp~pg!expS 2p
j

Ly
D . ~5!

The solution of this equation can be written in clos
form in terms of the Lambert-W-function W0(z):22

j5
Ly

p
W0S 2p

Ly

g

kF
exp~pg! D , ~6!
9-2
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DIMENSIONAL CROSSOVER OF LOCALIZATION AND . . . PHYSICAL REVIEW B69, 035339 ~2004!
where we substitutedl 52g/kF . The Lambert-W-function
W0(x) is defined as the solution of the nonlinear equatio22

z5aexp~2bz!, ~7!

given by

z5
1

b
W0~ab!. ~8!

Thus, the localization length is found to increase linea
with the width as

juj@Ly
5gLy , ~9!

when the localization length exceeds the widthLy , j@Ly . It
logarithmically deviates from this behavior when the wid
Ly is on the order ofLyc5exp(2p)lexp(pg). For larger
widths, it slowly saturates towards the width independ
2D-localization length

juj!Ly
5

2g

kF
exp~pg!, ~10!

as seen in Fig. 1.
For intermediate widths there is a wide regime where

localization lengths deviate strongly from both 1D, Eq.~9!,
and 2D, Eq.~10!, which would yieldj2D(g52)52142 on
the scale 1/kF , used in Fig. 1.

As one fixes the widthLy and increases the dimensionle
conductanceg, a crossover from 2D to 1D localization i
observed, as shown in Fig. 2. There, Eq.~6! is plotted as a
function of g, for j,Ly . For j.Ly , the localization length
is plotted using Eq.~4!. In the intermediate regime, the so
lution of the general equation, Eq.~3!, deviates only little
from these asymptotic solutions. Note that the validity of t
derivation is limited tog.1, while the deviations from 2D
localization behavior occur for the chosen widthLy already

FIG. 1. The width dependence of the localization lengthj at
fixed conductanceg52 without magnetic field,B50, is shown as
the full line. For comparison, the quasi-one-dimensional limitLyg
is drawn as the dashed-dotted line. The crossover occursj
5Lyc5exp(2p)(2g/kF)exp(pg).
03533
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close tog51. The derivation given above has been done
wires of diffusive width,l ,Ly , or g,LykF/2, correspond-
ing to g,20 in Fig. 2.

Unitary regime.At moderately strong magnetic field, th
time-reversal symmetry is broken, and the so-called unit
regime is reached, when the localization length exceeds
magnetic diffusion length,23 j.LB @where LB5 l B , when
l B,Ly and LB5(3)1/2l B

2/Ly , when l B.Ly. l ]. Then, the
first-order, weak localization correction vanishes and o
needs to do the perturbative renormalization to second o
in 1/g. Thus, we have to calculate all diagrams contributi
to this order, the so-called Hikami boxes,12 to study the di-
mensional crossover in a magnetic field. An efficient way
do this is to start from the supersymmetric nonlinear sig
model and do an expansion around its classical point,
done in Ref. 16 for the pure orthogonal and unitary regim
in two dimensions.

Performing this renormalization for wires of finite widt
Ly in the unitary regime, we obtain in Appendix B that th
localization lengthj satisfies in the unitary regime the equ
tion,

j25Ly
2S S2~4g221!1

2

p2
lnF11@j/~2pLy!#2

11~jk0!2 G D . ~11!

Here, the length scale 2p/k0 is the short-distance cutoff o
the nonperturbative theory, beingl 52g(B50)/kF at moder-
ate magnetic fields, whenvct,1, and crossing over to the
cyclotron length l cyc at strong magnetic fields whenvct
.1.

Here,S51, unless the spin degeneracy is broken, and
energy levels are mixed by spin flip as by scattering fro
magnetic impurities, thenS52. Note that the above result
confirm the result for the localization length in the quasi-1
limit,17,18

juj@Ly
5SbgLy , ~12!

FIG. 2. The localization lengthj ~full line! in units of kF
21 as a

function of the conductanceg at fixed widthLy540 and without
magnetic field,B50. It is plotted using Eq.~6! for j,Ly , and Eq.
~4! for j.Ly . For comparison, we show the quasi-two-dimensio
j2D5(2g/kF)exp(pg) ~dashed line! and the quasi-one-dimensiona
Lyg ~dashed-dotted line! limiting functions.
9-3
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STEFAN KETTEMANN PHYSICAL REVIEW B69, 035339 ~2004!
whereb51,2 with, without time-reversal symmetry. We wi
set S51 in the following. We can solve Eq.~11! in two
limiting cases. WhenLy!j, the quasi-one-dimensional lo
calization length is obtained with a logarithmic correction

juj@Ly
52LygF12

1

p2g2
lnA11@Lyk0 /~2p!#2G 1/2

.

~13!

In the limit of two-dimensional localization,j!Ly , the
localization length is found to satisfy the equation

juj!Ly
5

2p

k0
expFp2

4 S 4g22
j2

Ly
2D G . ~14!

Its solution can be written in terms of the Lambe
W-function22 as

j5
A2Ly

p
W0

1/2F 2p4

k0
2Ly

2
exp~2p2g2!G . ~15!

Fixing the widthLy the dimensional crossover is seen
Fig. 3, where the localization length is plotted as a funct
of the dimensionless conductanceg, using Eq.~13! for j
.Ly and Eq.~15! for j,Ly .

III. THE MAGNETIC-FIELD DEPENDENCE OF THE
LOCALIZATION LENGTH

Weak magnetic field.In disordered quantum wires withou
strong spin-orbit scattering or magnetic impurities, the el
tron localization length is enhanced by a weak magn
field. If the localization is quasi-one-dimensional,j.Ly ,
then the magnetic field results in a doubling, Eq.~12!, j
5bgLy , whereb51,2, corresponding to no magnetic fie
and finite magnetic field, respectively.17,18 Recently, such a
doubling of the localization length was observ

FIG. 3. The localization lengthj as a function of conductanceg
for large enough magnetic fields such thatj.LB at fixed widthLy .
For comparison, the quasi-two-dimensional behaviorj2D

52(g/kF)exp(p2g2) ~dotted line! and the quasi-one-dimension
limit Lyg ~dashed-dotted line!. The width Ly is indicated by the
dashed line.
03533
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experimentally.24 That doubling is governed by the magnet
diffusion length LB5(DtB)1/2, where tB is the magnetic
phase shifting time, which is a function of magnetic leng
l B , mean free pathl and width of the wireLy .23 Thus, the
localization length crosses over toj52gLy , when the mag-
netic diffusion length becomes smaller than the localizat
length,LB,j.

This crossover has recently been derived analytically w
a nonperturbative method, based on the exact solution of
transfer matrix equation of the one-dimensional NLSM.19,23

The quasi-1D localization length, valid forj.Ly , is ob-
tained to be given by

j~B!52 f „LB /j~0!…gLy . ~16!

Here,

f ~x!52/~21A49164X22A25164X2!. ~17!

For a wire of diffusive width W. l , one finds X
5j(0)/LB5p2321/2N2b, whereNy5kFLy /p is the number
of transverse channels andb5vct5eBt/m the dimension-
less magnetic-field parameter. The factor 64 was not noti
in a previous publication,23 and is a consequence of the pa
ticular properties of the autocorrelation function of spect
determinants, and its relation to the actual localization len
which was used to derive Eqs.~16! and ~17!.23 When the
localization is two-dimensional, the localization lengthj be-
comes exponentially enhanced. In 2D the transfer ma
equation cannot be solved, and we have to employ the l
expansion used in the preceding section. The crossover
tween the orthogonal, Eq.~10!, and unitary, Eq.~1!, localiza-
tion lengths is governed by the parameterX5j/LB . In pre-
vious studies25,26it has been argued that when integrating o
modes on length scales smaller thanLB , one can use the
one-loop expansion in the orthogonal regime, correspond
to vanishing magnetic field. It was argued in Ref. 26 furth
that for length scales larger thanLB one can use the two-loop
b function in the unitary regime. Here, we note that theb
function itself depends continuously on the magnetic fie
Therefore we extend the perturbative renormalization by
plicitly calculating the two-loop diagrams, the Hikami boxe
as a function of magnetic field as outlined in Appendix
~We note that the magnetic-field induced crossover of
weak localization corrections to the conductivity, had be
considered to second order in 1/g also in Ref. 29, but using
the complex matrix model.! One obtains the following equa
tion for the 2D-localization length:

j5 lexp~pg!~11X2!1/221/(2pg)uX5j/LB
. ~18!

Thus, when the time-reversal symmetry is broken,j
.LB , the localization is given by Eq.~13! for j.Ly and Eq.
~15! for j,Ly . The effective short-distance cutoff of th
renormalization is a function of the magnetic field itself. W
get 2p/k05 l at small magnetic fields,b,1, and 2p/k0
5 l cyc at large fields from the renormalization of the diffusiv
nonlinear sigma model. But, we should note that an anal
9-4
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DIMENSIONAL CROSSOVER OF LOCALIZATION AND . . . PHYSICAL REVIEW B69, 035339 ~2004!
of the nonlinear sigma model on ballistic scales is neede
get more reliable information on 1/k0.

Strong magnetic field.In the following, we consider a
quantum wire of disordered electrons in a strong magn
field, which is expected to exhibit the quantum Hall effe
when its widthLy and the mean free pathl do exceed the
cyclotron lengthl c . We consider quantum Hall wires of dif
fusive width, where the mean free path is smaller than
wire width, l ,Ly . In the opposite limit,l .Ly , the ballistic
motion between the edges of the wire leads to anoma
magnetoresistance phenomena due to classical commen
bility effects of cyclotron orbits with the confinement pote
tial of the wire.27,28This will not be pursued here, since the
effects are not related to disorder induced quantum local
tion, which is the focus of this paper.sxx(B) is the conduc-
tivity in self-consistent Born approximation. For weak ma
netic field, b,1, it is identical to the Drude resultsxx
5ne2t/(11b2). With the electron density ne
5Em/(2p\2) this can be rewritten asg(b)5sxx /s0
5g/(11b2), whereg5Et/\ per spin channel. Fixing the
electron densityne , the Fermi energy depends on magne
field EF(B) for b.1. In the following, we will fix the Fermi
energyEF , instead.

The conductivity in self-consistent Born approximatio
~SCBA! for b.1, when the cyclotron lengthl c becomes
smaller than the mean free pathl, or vc.1/t, and disregard-
ing the overlap between Landau bands, is given by

g~B!5
1

p
~2n11!@12~EF2En!2/G2# ~19!

for uE2Enu,G, whereG25(2/p)\2vc /t for G,\vc .
One obtains thus the localization length forb.1 and

ue/b2n21/2u,1, by substituting the expression for the d
mensionless conductance, Eq.~19!, into Eq. ~13! for j
.Ly , and Eq.~15! for j,Ly , respectively. Thus, the local
ization length is found to oscillate between maximal valu
in the middle of the Landau bands and minimal values on
order of the cyclotron lengthl cyc in the tail of the Landau
bands, as seen in Fig. 4.

The localization is quasi-one-dimensional as long
j(W).Ly . We see that forn.1 this is, for uncorrelated
disorder potential, practically always the case in the mid
of the Landau bands, with a logarithmic correction as giv
by Eq. ~10!, yielding

jn5
2

p
~2n11!LyF12

1

~2n11!2
lnA11S Ly

l cyc
D 2G 1/2

.

~20!

We note that we have assumed in the derivation of E
~18! and ~20! that the conductivity is homogeneous. In
strong magnetic field, the formation of edge states can re
in strongly inhomogeneous and anisotropic conductiv
thereby preventing the mixing of edge states with the b
states.31,32 The consequences of these effects will be d
cussed in more detail, in the following section and in a for
coming paper, including a numerical analysis.20
03533
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IV. THE QUANTUM HALL TRANSITION

In the above analysis of a disordered wire in a magne
field we disregarded the effect of the topological term, wh
appears in a derivation of the nonlinear sigma model,30,34,35

see Eq.~D13!. It is known that in the two-dimensional limi
this topological term is needed in order that the field the
becomes critical in the middle of Landau bands, and
quantum-Hall-transition from localized states in the Land
band tails to a critical state in the middle of the Land
bands can be described.30,34–38

Both in numerical calculations7 and experiments one
needs to perform a finite-size scaling analysis in order
extract the critical divergence of the localization length,j
;(E2En)2n, when approaching the middle of a Landa
band,En . The procedure is to find numerically the scalin
function L5j/Ly5L„Ly / j̃(E)…, rescaling with the critical
localization length, which diverges according toj̃(E);(E
2En)2n and does not depend on widthLy . Then, one can
determinen by optimizing the accuracy of scaling. The sca
ing function is not knowna priori. It is clear thatL(x)
→1/x for x@1, since in the tails of the Landau bandj
!Ly , andj becomes independent ofLy , approachingj̃.

For the higher Landau bands,n.0, the single-paramete
scaling is not accurate, and it is important to include irr
evant scaling parameters,39 apart from the relevant param
eter, Ly / j̃(E).7,40 So far the irrelevant scaling paramete
have been included in the numerical scaling analysis o
phenomenological ground, without a precise knowledge

FIG. 4. The localization length as a function of magnetic fl
through a unit cell of areaa251/kF

2 , x5a2/2p l B
2 , with conduc-

tance parameterg(B50)510. For weak magnetic field, Eq.~16! is
used. For strong magnetic fields the localization length is plotted
insertingg(B) in the second-order Born approximation in the fo
mula for the quasi-one-dimensional localization length, Eq.~2!, in-
cluding a summation over all Landau levels~full line!. The short
dashed line is obtained by using the self-consistent Born appr
mation ~SCBA! for g(B) for one Landau band, Eq.~20!, and in-
serting it into the formula for the quasi-one-dimensional localiz
tion length, Eq. ~2!. The long dashed curve denotes th
corresponding result using the SCBA conductance and insertin
in the crossover formula, Eq.~15!. The width of the wireLy

540a is indicated as the horizontal dashed line.
9-5
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STEFAN KETTEMANN PHYSICAL REVIEW B69, 035339 ~2004!
their physical origin. It has been observed, however, that
irrelevant scaling length increases by several orders of m
nitude in higher Landau bands for uncorrelated disorder.7

Therefore, it seems worthwhile to first analyze, if the no
critical width dependence ofj(B), derived above, Eq.~3!,
can yield analytical knowledge on the scaling functionL(x)
and moreover account for the observed irrelevant scaling
rameter in higher Landau bands.

According to Eq.~23!, the ratioL scales with the large
length scalej2Dunit , which is a huge length scale in th
middle of higher Landau bands, whereg@1. Therefore, it is
natural to expect thatjunit can be identified with the irrel-
evant length scalel irr , and to compare the scaling functio
Eqs. ~22! and ~23!, with the one obtained numerically, Eq
~24!. Furthermore, the noncritical localization length as
function of magnetic field,j(B) and the respective scalin
function may dominate the transition between Hall plate
in quantum wires of finite width. Therefore we consider fi
the noncritical scaling function in the following section.

A. The noncritical quantum Hall transition

Let us rewrite the equations for the localization length
the unitary regime, Eqs.~13! and ~15!, as a function ofx
5Ly /j2Dunit , wherej2Dunit is the 2D limiting value of the
unitary localization length,

j2Dunit5
2p

k0
exp~p2g2!. ~21!

Thus, Eqs.~13! and ~15! become

L5
2

p
@2 lnAx21~2p/k0j2Dunit!

2#1/2 ~22!

for x5Ly /j2Dunit,exp(2p2/4)'0.085, while

L5
A2

p
AW0S p2

2

1

x2D , ~23!

for x5Ly /j2Dunit.exp(2p2/4).
This noncritical scaling function is plotted in Fig. 5

where g57/p has been chosen, corresponding to the
renormalized conductance in the Landau band,n53. We
note that the derivation is only valid forg@1, so that we are
able to compare this function only with the scaling functi
in higher Landau bands, wheregn@1. It is expected that this
noncritical scaling function is accurate as long asx
5Ly /j2Dunit,1.

Close to the critical point,x5Ly /j2Dunit@1, the scaling
function is from the numerical analysis obtained to be in
middle of the Landau band,

L2Lc5
j

Ly
5cS Ly

l irr
D 2g

, ~24!

whereLc51.2, and the irrelevant critical scaling exponent
numerically found to beg50.3860.04, andc is a constant.

In Fig. 6, we plotL2Lc , Eq. ~24! using g50.3 andc
50.5, and compare it withL as obtained from the result o
03533
e
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s
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e

the noncritical analysis, Eq.~23!. Note that this function con-
verges to zero asLy→`, corresponding toLcrit50, since it
was obtained from the noncritical field theory, disregardi
the topological term. Thus, as expected, the form of the n
critical irrelevant scaling function defers from the results
the numerical analysis as seen in Fig. 6, but is in some qu
titative agrement. In spite of this, it is expected that the sc
ing function itself is changed by the presence of the criti
point in the middle of the Landau band, and the similarity
the noncritical scaling function derived above is only
qualitative nature. Since in higher Landau levels one is in
study of wires of finite widthLy for uncorrelated disorde
always far away from the critical point, however, we co
clude that this noncritical scaling function is important
order to enable one to analyze the quantum Hall transitio
higher Landau bands,n.1. We can estimate the region o
criticality by the condition thatj̃(E)/j2Dunit.1. Thereby we
find for the interval of criticality aroundEn

FIG. 5. The noncritical scaling function obtained analytica
~full line!, Eqs.~22! and ~23!, for the Landau band,n53, with gn

57/p. The dashed line, 1/x, is approached in the 2D limit, when
the localization length becomes equal toj2Dunit .

FIG. 6. The irrelevant scaling function obtained analytically f
the Landau bandn51, g53/p ~full line! as compared with the
function, Eq.~24! ~dashed line! for g50.3 andc50.5, double loga-
rithmic scale.
9-6
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DE5GexpS 2
~2n11!2

n D , ~25!

which yields DE/G50.65,0.02,231025, . . . , for n
50,1,2, . . . . Thus, we conclude that criticality can for un
correlated disorder only be observed in the lowest two L
dau levels. Since the width of the quantum Hall plateau
determined by the conditionj(E)5Ly , there are neverthe
less wide plateaus between higher Landau bands, and
conclude that criticality is not essential to observe the qu
tum Hall effect. Indeed, the transition between Hall platea
in higher Landau bands is driven solely by the noncriti
dimensional crossover of the localization length.

B. Towards the theory of the critical quantum Hall transition

Next, let us consider the effect of the topological term
the derivation of the scaling function. At small length scal
in high Landau bands, the dimensionless conductancesxx is
large, and the instanton approximation can be used. To
end, one finds solutions which minimize the action of t
NLSM, Eq. ~D13!,

F5
h

16e2E dx (
i 5x,y

s~v50! i i ~x!STr„@“ iQ~x!#2
…

2
1

16

h

e2E dxs~v50!xy~x!STr~Q]xQ]yQ!. ~26!

Here s(v50)xy5s I(v50)xy(x)1s II (v50)xy where
s I(v50)xy is the dissipative part of the Ha
conductivity,14,34,33 and s II (v50)xy52e dn/dB, n is the
particle density, which yields a finite contribution at th
boundary of the wire in the presence of a confinement
tential, from the edge states.41,33,16

Disregarding the spatial variation of the coupling fun
tions s i j (x) in Eq. ~26!, and assuming isotropy, one finds
the two-dimensional limit that there are instantons with no
zero topological chargeq, which are identical to the skyrmi
ons of the compactO(3) NLSM, as obtained form the com
pact part of the supersymmetric NLSM.34,16 Their action is
given by

Fq52puqusxx12p iqsxy , ~27!

wheresxx5syy andsxy are the spatially averaged condu
tivities. Now, we can repeat the derivation of the scali
function by integrating out Gaussian fluctuations arou
these instantons. It is clear, however, that the contribu
from instantons withqÞ0 is negligible, as long assxx.1.
Within the validity of the 1/g expansion one does not find
sizable influence of the topological term on the scaling fu
tion L5j/Ły . Still, the tendency is seen that atsxy51/2 the
renormalization of the longitudinal conductance is slow
down and one may conclude from this observation the tw
parameter scaling diagram with a critical state of finite co
ductance 0,s* ,1.42,34 Furthermore, it is seen explicitly
that in order that the instanton solutions with nonzero to
logical charge do exist the system must exceed the nonc
03533
-
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we
-
s
l
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d
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d
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cal localization lengthj2Dunit , when the assumption of uni
form coupling paramterss i j is made.

Taking into account the spatial variation ofs i j (x), there
are extended regions wheresyy(x)→0, indicating the de-
coupling of the edge states from the bulk states.31 Thus, the
free energy for spatial variations ofQ is reduced in these
regions. Thereby, one can find instantons with nonzero to
logical chargeq, whose spatial variations are restricted
these edge regions with vanishing real part of the free
ergy: Fq edge5 i2psxy(edge), wheresxy(edge) is the Hall
conductance of the edge states, which is quantized to int
values. Thus, we conclude that the renormalization a
thereby the scaling function of the bulk,L5j/Ly , is not
influenced noticeably by the presence of the edge states
g.1.

Closer to the critical point, the NLSM, Eq.~26!, cannot be
used to derive further information, since that theory flows
strong coupling,g,1. It has been established numerica
that the quantum Hall criticality is not sensitive to the type
disorder. This observation found further support by the pr
that the Hamiltonian of a chain of antiferromagnetically i
teracting superspins can be derived both from the nonlin
sigma model for short-ranged disorder at the critical po
sxy51/2,43 and from the Chalker–Coddington model,44

which is the reduced version of the quantum percolating n
work model of unidirectional~chiral! drifting modes along
equipotential lines of a slowly varying disorder potential.45 It
has been shown by numerical solution of a finite number
antiferromagnetically coupled super spins that this theor
critical. So far, no analytical information has been obtain
for the critical parameters, such as the localization expon
n and the critical valueLc . However, building on this mode
of a superspin chain, supersymmetric conformal field th
ries have been suggested, which ultimately should yield
critical parameters of the quantum Hall transition.46–48 The
critical value of the scaling functionLc has been related to
the free parameters of a class of conformal field theorie47

Restricting this theory to quasi-1D,49 by choosing a finite
width Ly , on the order ofj2Dunit , which serves as the ultra
violet cutoff of the conformal field theory, one finds that th
critical value of the scaling functionLc is inversely propor-
tional to the gap between the lowest two eigenvalues of
Laplace-Beltrami operator of this reduced class of supers
metric conformal field theories. Furthermore, it was co
cluded that the critical wave-function amplitudes are wide
namely, lognormally distributed, corresponding to a pa
bolic distribution of multicritical exponents around a valu
a0 which was argued to be related toLc as Lc51/p(a0
22).47 These assertions have found precise numer
confirmation.50,51Thus, it seems that the critical valueLc of
the scaling function at the critical point can be obtained fro
the dimensional crossover of the conformal field theory.
far, the critical exponent of the localization lengthn could
only be derived for special classes of systems showing a
of quantum-Hall transition.52 For the critical point of the
integer quantum-Hall transition, however,n has not been de
rived analytically from the conformal field theory, nor from
the theory of superspin chains. Therefore, it is so far
9-7
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possible to give an analytical derivation of the scaling fun
tion close to criticality.

V. CONCLUSIONS

In disordered quantum wires the electrons are locali
due to quantum interference along the wire with a locali
tion length which scales linearly with the wire width, as lon
as the electrons can diffuse freely across the wire width.
wires, which would classically be good metals, as charac
ized by a large dimensionless conductanceg5kFl @1, the
2D quantum localization limit is never reached, but rathe
slow crossover between quasi-1D and -2D localization
curs as a function of the wire width. Therefore, we think th
the crossover function derived here can be relevant for
study of strong localization in weak magnetic fields in dis
dered quantum wires. These have been studied mainly
means of activated transport measurements.24 Recently, the
scanning of the local density of states has become poss
by means of the scanning tunneling microscopy,53 which has
a resolution corresponding to few eigenstates. Thus this
allow us to study the magnetic-field dependence of the lo
ization length most directly. Furthermore, low-temperatu
capacitance measurements would yield the localiza
length directly. Since insulators are dielectrics, with dipo
moments proportional to their localization length, the met
lic divergence of the dielectrical constant is cutoff,e(q
→0);j2. In general, for an insulator one obtains forT
!Dc51/jdnd ,54

e~q→0,v50!54pe2
dn

dm
j2. ~28!

Thus, the measurement of the dielectrical constant has b
used to study the metal–insulator transition,55 where the lo-
calization length and thus the dielectrical constant
diverging.56 For a quasi-one-dimensional wire one obtain

e~q→0,v50!532z~3!e2ndj2, ~29!

wherez is the Riemann zeta-function.17 Measuring the mag-
netocapacitance,C(B)5e0e(B)S/L, where S is the cross
section andL the length of the wire, one would expect a
enhancement of the dielectrical constante(B) by a factor 4
as the magnetic field is turned on. To our knowledge t
positive magnetocapacitance in a wire has not yet been
perimentally observed, and would be a means to study
dimensional crossover of localization directly.

In a strong magnetic field, the kinetic energy is quench
resulting in enhanced localization. While in the tails of t
Landau bands the localization length is small, on the orde
the cyclotron length, it increases towards the center of
Landau bands, due to an increased classical conductance
wires of finite width, this results in a dimensional crossov
of localization form two- to one- dimensional behavior. T
noncritical crossover function derived above is relevant
localization in higher Landau bands, where the noncriti
2D-localization length is exponentially large, dominating
behavior since the critical point in the middle of the Land
band becomes relevant only in the 2D limit. Thus, we co
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clude that the transition between quantized Hall plateau
higher Landau bands is due to the noncritical dimensio
crossover of the localization length derived above.

In the tails of the Landau bands, extended edge st
exist due to the edge confinement potential of the wir
which can carry a quantized Hall current. When the dime
sional crossover of the localization of the bulk states occu
the edge states are expected to mix and become loca
along the wire. In order to study this localization transitio
the edge states have to be taken into account explicitly,
accounting for a strongly inhomogeneous and anisotro
conductivity. The ballistic length scales of the edge sta
exceeding the elastic mean free path in the bulk do hav
be taken into account explicitly, in the derivation of the fie
theory of localization, as outlined in Appendix D. A fu
analysis of this theory, including the edge states and the
pological term, in deriving dimensional crossover of loca
ization remains to be done, as well as a numerical analys
the metal-insulator transition of the edge states in quan
Hall wires.20
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APPENDIX A:

Information on the dimensional crossover in a wire
finite width Ly can be obtained from the renormalization
the action of the nonperturbative theory of disordered el
trons, the nonlinear sigma model, Eq.~A1!.11

First, let us consider the problem without magnetic fie
B50. The coupling parameter is the conductance per s
channel,g5sxx /s0 in the action forB50, which is given
by

F5
g

16E dxSTr„@“Q~x!#2
…. ~A1!

Going to momentum representation, one performs succes
integration over modes with momenta within the interv
k0 /bl,uku,k0 /bl 21, wherek0;1/l is the high momentum
cutoff of the diffusive NLSM, Eq.~A1!. b.1 is the renor-
malization parameter. Rescaling the coupling parameterg af-
ter each renormalization stepl, integer, one obtains in one
loop approximation

g→g̃5gS 12
2

gE0,uku,k0

dk

~2p!2

1

k21l2D , ~A2!

wherel is the low momentum cutoff. The first-order term
the perturbative renormalization in 1/g corresponds to the
weak localization correction to the conductivity. One can
9-8
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timate the localization lengthj by the fact that the conduc
tivity of a wire of length j is unity, g̃→1, whenl51/j.
Noting that

E
0,uku,k0

dk

~2p!2
→ 1

Ly
(
ny

E dkx

2p
,

for a wire of finite widthLy , with ky52pny /Ly , whereny
is an integer, one finds that the localization length in a w
of finite width Ly satisfies the equation

j5gW2
2

p2
Ly(

n51

N0 1

An21@N0 /~k0j!#2

3arctanS N0

An21@N0 /~k0j!#2D , ~A3!

whereN05k0Ly /(2p). For N0@1 this equation can be ap
proximated by Eq.~3!.

APPENDIX B:

In a finite magnetic field, the first order in 1/g correction
to the conductance is vanishing. An efficient way to do
perturbative renormalization to second order in 1/g is to start
from the supersymmetric nonlinear sigma model and do
expansion around its classical point, as done in Ref. 16
the pure unitary limit. Here we extend this derivation taki
into account the finite wire widthLy . We note that the di-
mensionality changes as one integrates out theQ modesfrom
large momenta, corresponding to the smallest length sc
which is l 0 in the unitary limit, to the largest length scal
which is the localization lengthj, see Fig. 7.

Integrating the renormalization flow from the smallest
the largest length scale, one finds forj.Ly :

4E
g( l 0)

g(j)

dgg5F16 lim
d→0

S 1

2
2

1

22d D ~ I 2DLy

2 2 l 2Dl
2 !

116S 1

2
21D ~ I 1Dj

2 2I 1Dl
2 !G . ~B1!

Here,

I 2Dx5E
1/x,k,`

dk

~2p!2

1

k21l2
, ~B2!

and

I 1Dx5E
1/x,kx,`

dkx

pLy

1

kx
21l2

5
1

pLyl
S p

2
2arctan

1

xl D .

~B3!

FIG. 7. Crossover in dimensionality as momentuml of renor-
malization is changed.
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Clearly, we cannot simply setd50 in the first term of Eq.
~B1!, because of the logarithmic divergency of the integ
I Ly ,l 0

. Going to dimensiond522d, and taking the limitd
→0, the expression, one has to evaluate, is given by

K5 lim
d→0

S 1

2
2

1

22d D S E dV22d

~2p!22dD 2S E dk
k12d

k21l2D 2

,

~B4!

where*dV22d is the angular integral in 22d dimensions.
By performing an analytical continuation,

E
0

`

dk
k12d

k21l2
5

p i

~l!d

1

12exp~22p id!
, ~B5!

and using that lim
d→0

@2(1/d)k2d#5 ln k, one finds

K5
1

8p2
ln l. ~B6!

Thus, settingl51/j, we get that the localization length sa
isfies Eq.~11!,

j25Ly
2S 4~g221!1

2

p2
lnF 11~2pj/Ly!2

~2pj/Ly!21~jk0!2G D .

~B7!

APPENDIX C:

Here, we extend the derivation of the localization leng
in the 2 D limit to the crossover in a magnetic field betwe
the orthogonal and unitary limits.

One obtains in two-loop approxmiation,

g̃5gH 12
4

gE0,k,k0

dk

~2p!2

1

k21l211/DtB

1
16

g2 S 1

2
2

1

dD
3F S E

0,uku,k0

dk

~2p!2

1

k21l2D 2

3S E
0,k,k0

dk

~2p!2

1

k21l211/DtB
D 2G J , ~C1!

wherel is the low momentum cutoff. Setting the lower mo
mentum cutoff equal to the inverse localization length,l
51/j, we find

g̃5gH 12
2

gp
F lnS j

l
D 2 lnA11

j2

DtB
G

2
1

p2g2
lnA11

j2

DtB
J →1. ~C2!

Thereby one obtains the equation for the localization len
in a magnetic field, Eq.~18!.
9-9
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APPENDIX D:

In the following we review the nonperturbative theory
a disordered quantum wire in a magnetic field. The Ham
tonian of disordered noninteracting electrons is

H5@p2qA#2/2m1V~x!1V0~x!, ~D1!

whereq is the electron charge.V(x) is taken to be a Gauss
ian distributed random function, with a distribution functio

P~V!5expS 2E dx

V
dx8

V J~x2x8!V~x!V~x8! D . ~D2!

Impurity averaging is thus given bŷ. . . &V5*)xdVP(V)
•••. We take

J~x2x8!5VD\/td~x2x8!

for uncorrelated impurities, where 1/t is the elastic-
scattering rate andD51/(nV) the mean level spacing of th
mesoscopic sample with volumeV. V0(x) is the electrostatic
confinement potential defining the width of the wireLy . The
vector potential is used in the gaugeA5(2By,0,0), wherex
is the coordinate along the wire of lengthL, y the one in the
direction perpendicular both to the wire and to the magn
field B, which is directed perpendicular to the wire. Th
electron spin degree of freedom is not considered here.

While the disorder averaged electron wave-function a
plitude decays on time scales on the order of the elas
scattering timet, information on quantum localization i
contained in the impurity averaged evolution of the elect
density n(x,t)5^uc(x,t)u2&. Thus, nonperturbative averag
ing of products of retarded and advanced propagat
^GR(E)GA(E8)& has to be performed to obtain informatio
on quantum localization.

In useful analogy to the study of spin systems, the sup
symmetry method contracts the information on localizat
into a theory of Goldstone modesQ, arising from the global
symmetry of rotations between the retarded propag
~‘‘spin up’’ ! and the advanced propagator~‘‘spin down’’ ! in a
representation of superfields~composed of scalar and Gras
mann components!. Spatial fluctuations of these modes co
tribute to the partition function

Z5E ) dQ434~x!exp~2F@Q# !, ~D3!

and are governed by the action

F@Q#5
p

4

\

DtE dx

LyL
Tr„Q434~x!2

…

1
1

2E dx^xuTr ln@G~ x̂,p̂#ux&, ~D4!

where
03533
l-

ic

-
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G~ x̂,p̂!51YS 1

2
vL32

~ p̂2qA!2

2m

2V0~ x̂!1 i
\

2t
Q434~ x̂! D . ~D5!

To summarize the notation, here, and in the following,L i are
the Pauli matrices in the subbasis of the retarded and
vanced propagators. We used the notationx̂, in order to
stress that it is an operator and does not commute with
kinetic-energy termH05( p̂2qA)2/2m. Here, v5E2E8
breaks the symmetry between the retarded and advanced
tors. The long-wavelength modes ofQ do contain the non-
perturbative information on the diffusion and cooper
modes, and thus on localization.

In order to consider the action of these long-wavelen
modes governing the physics of diffusion and localizatio
one can now expand around the saddle-point solution of
action ofQ, dF50, satisfying forv50,

Q5 i /~pn!^xu1/@E2H02V0~x!1 i /~2t!Q#ux&. ~D6!

This saddle-point equation is found to be solved byQ0
5L3P, which is the self-consistent Born approximation f
the self-energyP. At v50 the rotationsU, which leaveQ in
the supersymmetric space, yield the complete manifold
saddle-point solutions asQ5ŪL3PU, whereUŪ51, with
QTC5CQ. In general, in order to account for the ballist
motion of electrons along the edges, or to account for diff
ent sources of randomness, a directional dependence o
matrix U5U(x.n) wheren5p/upu has to be considered.57,58

The modes which leaveL3 invariant are surplus, and can b
factorized out, leaving the saddle-point solutions to be e
ments of the semisimple supersymmetric spa
Gl(2u2)/@Gl(1u1)3Gl(1u1)#.59 In addition to these gap
less modes there are massive longitudinal modes withQ2

Þ1, which can be integrated out,16 and the partition function
thereby reduces to a functional integral over the transve
modesU.

Now, the action of finite frequencyv and spatial fluctua-
tions of Q around the saddle-point solution can be found
an expansion of the actionF, Eq. ~D4!. Inserting Q

5ŪL3PU into Eq. ~D4!, and performing the cyclic permu
tation of U under the trace Tr, yields,34

F52
1

2E dx^xuTr ln~G0
212U@H0 ,Ū#1vULŪ !ux&,

~D7!

where

G0
215E2H02V0~x!1

i\

2t
LP. ~D8!

Expansion to first order in the energy differencev and to
second order in the commutatorU@H0 ,Ū# yields
9-10
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F@U#52
1

2
vE dx^xuTr G0EULŪux&

1
1

2E dx^xuTr G0EU@H0 ,Ū#ux&

1
1

4E dx^xuTr~G0EU@H0 ,Ū# !2ux&. ~D9!

The first-order term inU@H0 ,Ū# is proportional to the
local current, and found to be finite only at the edge of
wire in a strong magnetic field, due to the chiral edge c
rents. It can be rewritten as

FxyII52
1

8E dx dy
sxy

II ~x!

e2/h
STr Q]xQ]yQ, ~D10!

where the prefactor is the nondissipative term in the H
conductivity in self-consistent Born approximation:33

sxy
II ~x!52

1

p

\e2

m2
^xu~xpy2ypx!Im GE

Rur &. ~D11!

One can separate the physics on different length scales,
ing that the physics of diffusion and localization is govern
by spatial variations ofU on length scales larger than th
mean free pathl. The smaller length scale physics is th
included in the correlation function of Green’s functions, b
ing related to the conductivity by the Kubo-Greenwood fo
mula,
ys

.

,

a

03533
e
-

ll
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-
-

sab~v,x!5
\

pSL
^r upaG0E

R pbG0E1v
A ur &, ~D12!

wherep5(\/ i )“2qA. The remaining averaged correlato
involve productsG0E

R G0E1v
R and G0E

A G0E1v
A and are there-

fore by a factor\/(tE) smaller than the conductivity, an
can be disregarded for small disorder\/t!E. In order to
insert the Kubo-Greenwood formula in the saddle-point
pansion of the nonlinear sigma model, it is convenient
rewrite the propagator inF as

G0E5 1
2 G0E

R ~11L!1 1
2 G0E

A ~12L!.

Then, we can use that

TrF (
a51

d

(
s56

~11sL!U~“aŪ !~12sL!U~“aŪ !G
52Tr@~“Q!2#.

Using the Kubo formula, Eq.~D12!, this functional ofQ
simplifies to

F5
h

16e2E dx (
i 5x,y

s~v50! i i ~x!STr„@“ iQ~x!#2
…

2
1

8

h

e2E dxs~v50!xy~x!STr„Q]xQ]yQ…, ~D13!

where s(v50)xy5s I(v50)xy(x)1s II (v50)xy where
s I(v50)xy is the dissipative part of the Hal
conductivity.14,34,33
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Éksp. Teor. Fiz.85, 721 ~1983! @Sov. Phys. JETP58, 421
~1983!#; M.E. Raikh and T.V. Shahbazyan, Phys. Rev. B51,
9682 ~1995!.

32R. Johnston, B. Kramer, A. MacKinnon, and L. Schweitzer, Su
Sci. 170, 256 ~1986!.

33M. Janssen, O. Viehweger, U. Fastenrath, and J. Hajdu,Introduc-
tion to the Theory of the Integer Quantum Hall Effect~VCH,
Weinheim, 1994!.

34H. Levine, S.B. Libby, and A.M.M. Pruisken, Phys. Rev. Lett.51,
1915 ~1983!.

35H.A. Weidenmu¨ller, Nucl. Phys. B290, 87 ~1987!; H.A. Weiden-
mueller and M.R. Zirnbauer,ibid. 305, 339 ~1988!.

36I. Affleck, Nucl. Phys. B265, 409 ~1986!.
37J.B. Marston and Shan-Wen Tsai, Phys. Rev. Lett.82, 4906

~1999!.
38S. Kettemann and A. Tsvelik, Phys. Rev. Lett.82, 3689~1999!.
39F.J. Wegner, Phys. Rev. B5, 4529~1972!.
40F. Evers and W. Brenig, Phys. Rev. B57, 1805~1998!.
41L. Smrcka and P. Streda, J. Phys. C10, 2153~1977!.
42D.E. Khmel’nitskii, JETP Lett.38, 552 ~1983!.
03533
.

.

43M.R. Zirnbauer, Ann. Phys.~Berlin! 3, 513 ~1994!.
44D.H. Lee, Phys. Rev. B50, 10 788~1994!; J. Kondev and J.B.

Marston, Nucl. Phys. B497, 639 ~1997!; M.R. Zirnbauer, J.
Math. Phys.38, 2007~1997!.

45J.T. Chalker and P.D. Coddington, J. Phys. C21, 2665~1988!.
46M. Zirnbauer, hep-th/9905054~unpublished!.
47M.J. Bhaseen, I.I. Kogan, O.A. Soloviev, N. Taniguchi, and A.M

Tsvelik, Nucl. Phys. B580, 688 ~2000!.
48R. Klesse and M.R. Zirnbauer, Phys. Rev. Lett.86, 2094~2001!.
49M.R. Zirnbauer, Phys. Rev. Lett.69, 1584~1992!; A.D. Mirlin, A.

Muellergroeling, and M.R. Zirnbauer, Ann. Phys.~N.Y.! 236,
325 ~1994!; P.W. Brouwer and K. Frahm, Phys. Rev. B53, 1490
~1996!; B. Rejaei,ibid. 53, R13235~1996!; B. Rejaei,ibid. 53,
R13235~1996!.

50M. Janssen, M. Metzler, and M.R. Zirnbauer, Phys. Rev. B59, 15
836 ~1999!.

51F. Evers, A. Mildenberger, and A.D. Mirlin, Phys. Rev. B64,
241303~R! ~2001!.

52A.W.W. Ludwig, M.P.A. Fisher, R. Shankar, and G. Grinste
Phys. Rev. B50, 7526~1994!.

53C. Meyer, J. Klijn, M. Morgenstern, and R. Wiesendanger, Ph
Rev. Lett.91, 076803~2003!.

54P.A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys.57, 287
~1985!.

55B. Kramer and A. Mac Kinnon, Rep. Prog. Phys.56, 1469~1993!.
56H.F. Hess, K. DeConde, T.F. Rosenbaum, and G.A. Thom

Phys. Rev. B25, 5578~1982!.
57D. Taras-Semchuk and K.B. Efetov, Phys. Rev. Lett.85, 1060

~2000!; Phys. Rev. B64, 115301~2001!.
58Ya.M. Blanter, A.D. Mirlin, and B.A. Muzykantskii, Phys. Rev. B

63, 235315~2001!.
59M.R. Zirnbauer J. Math. Phys.37, 4986~1996!.
9-12


