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Dimensional crossover of localization and delocalization in a quantum Hall bar
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The two- to one-dimensional crossover of the localization of electrons confined to a disordered quantum
wire of finite widthL, is studied in a model of electrons moving in the potential of uncorrelated impurities. The
localization length is derived as a function of the perpendicular magneticBjetae wire widthL,, and the
conductance parametgr The analytical theory allows us to study the localization continuously from weak to
strong magnetic fields. On the basis of these results, the scaling analysis of the quantum Hall effect in high
Landau levels and the delocalization transition in a quantum Hall wire are reconsidered. We conclude that in
quantum Hall bars, the quantum Hall transition is driven in all but the lowest two Landau bands by a
noncritical dimensional crossover of the localization length.
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. INTRODUCTION lengthsé,p (En) =1 yeeXp@g?) in the middle of higher Lan-
dau levelsn>1, which are macroscopically lar§é® Thus,

The Hall conductance of a two-dimensional electron syseyen when the wire width is smaller thanp(E,) there are
tem in a strong magnetic fields precisely quantized due to wide quantum Hall plateaus, whose widths are determined
the trapping of electrons to localized states in the bulk of theyy the number of states with localization length smaller than
system. Thereby, a change of electron density does not resyle wire width.
in a change of the Hall conductanté. In the tail of the When the width of the wird-, is smaller than the length
Landau bands the localization |en@ﬁs Sma", on the order scale éf, the localization is expected to become quasi_one_
of the cyclotron lengthh., .= v2n+1l5, where the magnetic dimensional; that is, the electrons in the middle of a Landau
lengthlg is defined byig=%/(qB). The localization length  band can diffuse freely between the edges of the wire, but are
increases towards the middle of the Landau bands, located kicalized along the wire. The quasi-one-dimensional local-
energiesE, =% w (n+1/2), wherew.=qB/m is the cyclo- ization length is known to depend only linearly on the con-
tron frequency, q being the electron charge, and ductance, and is, in a magnetic field, with broken time-

=0,1,2 ... . In aninfinite system the localization length of reversal symmetry, given B§*°
an eigenstate with energlf is expected to diverge a§
~(E—E,)"". The exponent is found for the lowest two §=29(B)L,. 2

Landau bandsn=0,1, to bev~2.3 for spin split Landau ]

levels, as supported by analytiCZinumerical® and experi-  Thus, forLy<&p(E,) there is a crossover from two- to
mental studies, reminiscent of a second-order transition One-dimensional localization as the Fermi energy is moved
from an insulator to a metal. Thus, for a finite system, therdfom the tails into the middle of a Landau band. It is known
should exist in the middle of a disorder broadened Landadfom numerical and analytical studiebthat in a finite quan-
band,E,,, n being the Landau index, a band of states, whichtum Hall bar, the criticality in the middle of the Landau band
extend through the whole system of sizewith bandwidth ~ results in a finite localization lengify;~1.2,, exceeding
AE=(lgyc/L) YT, where T'=#2/7Jw./7. On the other the wire widthL, . Comparing this value with the quasi-one-
hand, the localization length in two-dimensional SyStemsd|men.5|onal localization length foruncorrelated impurities in
with broken time-reversal symmetry is from the one-the middie of the Landau band, obtained from E8),
parameter scaling theory expected to depend exponential§nio=(2/m)(2n+1)L,, we see that this length scale ex-

on the conductancg as® 13 ceeds theritical localization lengthé,,;, in all but the low-
est Landau levelh=0. Thus, the question arises, if the tran-
E~exp(mg?), (1)  sitions between Hall plateaus in quantum Hall wires in

higher Landau bands are at all sensitive to the critical point
where g is the conductance parameter per spin chamgel. existing in an infinite system.
exhibits the Shubnikov—de Haas oscillations as a function of It is the aim of this paper to resolve this question and to
the magnetic field, forw.>1/7, where 1f is the elastic- derive analytically the dimensional crossover of the localiza-
scattering rate. The maxima occur, when the Fermi energy igon length¢ in a wire as a function of a perpendicular mag-
in the middle of the Landau band. Thus, the localizationnetic field. This might also help to identify the irrelevant
length is expected to increase strongly from the tails to thescaling parameters observed in numerical studies of the inte-
middle of the Landau bands, irrespective of the existence ofier quantum Hall transition in lower Landau baridstur-
the quantum critical point. For uncorrelated impurities,thermore, these results suggest that in quantum Hall bars of
within self-consistent Born approximatidf,one finds that finite width Ly, there exists at low temperatures a new
the maxima in the longitudinal conductance are given byphase, when the phase coherence lerigthexceeds the
g(E=E,)=(1l/m)(2n+1)=g,. Thus, one gets localization quasi-one-dimensional localization length, in the middle of
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the Landau band, ;> ¢, .29 This phase may accordingly be theory. Furthermore it is shown that in higher Landau bands
called the mesoscopic quantum Hall phase, exhibiting plathe transition between quantized Hall plateaus is driven by
teaus in the Hall conductance, when the bulk localizatiorthe dimensional crossover of the noncritical localization
length is smaller than the wire width, and the Hall conduc-length. In the last section, a summary is given, and implica-
tance is carried by edge states, separated by regions in efons for experimental investigations of quantum wires are
ergy where all states are localized along the wire, and th@ointed out. The derivations are given in AppendixetA
conductance is zero. The quasi-one-dimensional localizatioi'ogonal localization length as a function of wire widtf),
along the quantum Hall bar has been speculated on BaforeB (unitary localization as a function of wire width,), and
and noted recently in a renormalization-group study of arfc [orthogonal to unitary crossover of two-dimensofiD)
effective quantum percolation model in Ref. 6. Here, this islocalization length In Appendk D a generalized derivation
confirmed by an explicit analytical calculation, and extendecPf the field theory including an edge state potential and the
to the localization in higher Landau levels, on the assump:[opologlcal term in the presence of a magnetic field is given.
tion that the edge states do mix with the bulk states when the
localization length exceeds the wire width. II. DIMENSIONAL CROSSOVER OF LOCALIZATION

While in previous treatments, limiting behaviors have In the following, we study the localization length of
been addressed, here a consistent theory for the dimensiona}l tron nfin d’t disordered wire of finite wid
crossover is provided. The nonlinear equations describing the o rons contined to a disordere €o e widih.
dimensional crossover of the localization are derived and _Orthogonal r_eg|.me.FEst, let us consider th_e problem
their solution is obtained. This theory allows us to study theWIthOUt magnetic fieldB=0, the orthogonal regime.

localization length continuously from weak to strong mag- An estimate of the Iocallzatlon Iengpfl can be obtalr_led
netic field, and thus allows a more detailed evaluation of?y performing a perturbative renormalization of the dimen-

experimental and numerical studies of quantum wires in glonless conductanag: which appears as the coupling con-

magnetic field. On the technical side, we note that we opStant of the action in the nonperturbative theory of disordered
lectrons. The bare conductanceis obtained in self-

tained the magnetic-field dependence of the localizatiorf <™ ‘matidh -
length by calculating theg8 function in second loop, the so- con§|stent Born appiomman 'Th? vanishing of the renor-
called Hikami boxes, as a function of the magnetic field. Malized conductancg—0 as one increases the wavelength
Based on the nonlinear sigma modRILSM) with topo- of reno_rmal|zat|_on signals the Io<_:aI|z_at|on, and can be_used
logical term, which is rederived in Appendix D, allowing for t© obtam an estimate of the localization lengthas done in
an inhomogeneous conductivity and for a confining potenAPpend'_X A. . . o
tial, it is shown and discussed in Sec. IV that the topological The first order in g of the perturbative renormalization
term, which is responsible for criticality in the middle of the corresponds to the weak localization correction to the con-
Landau bands, does not become effective in higher Landa@uctivity. Thus, one can estimate the localization lenget
bands for uncorrelated disorder in quantum Hall wires of anyz€ro magnetic field@=0 as done in Appendix A. There, the
finite width, since to become critical the NLSM must be two renormalization is performed for arbitrary finite widthg of
dimensional on length scales of the order of the noncriticafhe wire. One thus gets the following equation for the local-
localization length, which becomes exponentially large inization length¢:
higher Landau bands. Thus, we conclude that the plateau
transition in high Landau bands is driven by the noncritical _ y KoLy /(27r)
dimensional crossover of the localization length, and that g_gLy—?In 1+ V1+[L,/(2mé)]?)
there the topological term does not become effective. This Y
has important consequences for the experimental and niyhere ko=27/I=mke/g, and we assumed that the wire
merical scaling studies of plateau transitions in higher Lanwidth is diffusive,L,>1.
dau bands. In the quasi-1D limit,¢>L,, we find a logarithmic cor-
Furthermore, we show that the noncritical crossover cariection to the expected quasi-1- D resdl gl :
qualitatively account for the irrelevant scaling observed in
lower Landau bands. Section IV contains a short review of _ _ ﬂ
. " éE=gL In(keLy /9). (4)
what is known on the critical theory of the quantum Hall Yoo y
transition. We review how information on critical parameters
can be obtained from the dimensional crossover analysis of In the opposite limit,{<L,, the nonlinear equation for
the conformal theory. There, an account is given on how théhe localization length simplifies to
edge states do affect the critical behavior. The possible local-
ization transition_ of these_ edges states is discussed. E=lexp wg)exp< _ WE) (5)
In the following section the crossover between one- Ly
dimensional and two-dimensional localization is studied. In ) ] ] ) )
Sec. Il the localization length is derived as a function of The solution of this equation can be written in closed
magnetic field. In Sec. IV, the scaling theory of the integerform in terms of the Lambeit-function Wo(2):
quantum Hall effect is considered. It is shown that the irrel- L 5
evant scaling parameter and the scaling function are in quali- = (_77 9 )
; . ; 1 3 Wo exp(7g) |, (6)
tative agreement with those obtained from the noncritical T Ly ke

()
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FIG. 1. The width dependence of the localization lengthat FIG. 2. The localization lengtl (full line) in units ofk;1 as a

fixed conductancg=2 without magnetic fieldB=0, is shown as function of the conductancg at fixed widthL,=40 and without

the full line. For comparison, the quasi-one-dimensional linjg ~ Magnetic fieldB=0. Itis plotted using Eq(6) for £<L, and Eq.

is drawn as the dashed-dotted line. The crossover occugs at (4) for =L, . For comparison, we show the quasi-two-dimensional

= Lyo=exp(—m)(29/ke) exp(mg). &p=(29/kg) exp(mg) _(da_sh_e_d Ilntan_d the quasi-one-dimensional
L,g (dashed-dotted lindimiting functions.

where we substituted=2g/kg. The Lambert-function

W,(x) is defined as the solution of the nonlinear equdfion close tog=1. The derivation given above has been done for

wires of diffusive width,| <L, or g<Lkg/2, correspond-

—aexp—b3z), 7 ing to g<20 in Fig. 2.
z XA~ b2) @ Unitary regime.At moderately strong magnetic field, the
given by time-reversal symmetry is broken, and the so-called unitary

regime is reached, when the localization length exceeds the
1 magnetic diffusion length® é>Lg [where Lg=lg, when
z=i; Wo(ab). @)  lg<L, and Lg=(3)"4%/L,, whenlg>L,>I]. Then, the
first-order, weak localization correction vanishes and one
Thus, the localization length is found to increase Iinearlyneeds to do the perturbative renormalization to second order
with the width as in 1/9. Thus, we have to calculate all diagrams contributing
to this order, the so-called Hikami box¥&sto study the di-
(9) mensional crossover in a magnetic field. An efficient way to
do this is to start from the supersymmetric nonlinear sigma
model and do an expansion around its classical point, as
hdone in Ref. 16 for the pure orthogonal and unitary regimes
in two dimensions.

3 §>Ly:g|-yv
when the localization length exceeds the witlth £>L, . It
logarithmically deviates from this behavior when the widt
LY is on the order ofLyc=exp(—7-r)Iexp(7-rg). F(_)r larger
widths, it slowly saturates towards the width mdependenﬁ_
2D-localization length

Performing this renormalization for wires of finite width
y in the unitary regime, we obtain in Appendix B that the
localization lengthé satisfies in the unitary regime the equa-
tion,

29
§|§<Ly:k_FexF(7Tg)a (10

T 2
1+[él(2mL,)] D a

2_ 12 s2(402—1
¢ y(z< oo 1+ (£ko)?

2
as seen in Fig. 1. w2
For intermediate widths there is a wide regime where the _ .
localization lengths deviate strongly from both 1D, E8), Here, the Iength.scaleqﬂko |s.the short-distance cutoff of
and 2D, Eq.(10), which would yield £,p(g=2)=2142 on the nonperturbative theory, beihg 2g(B=0)/ks at moder-
the scale X, used in Fig. 1. ate magnetic fields, whew.7<<1, and crossing over to the
As one fixes the width., and increases the dimensionless cyclotron lengthlc at strong magnetic fields wheacr
conductanceg, a crossover from 2D to 1D localization is = , .
observed, as shown in Fig. 2. There, Eg). is plotted as a Here,% =1, unless the spin degeneracy is broken, and the
function of g, for ¢<L,. For £&>L,, the localization length ~ €"€"9Y levels are mixed by spin flip as by scattering from
is plotted using Eq(4). In the intermediate regime, the so- Magnetic impurities, thell =2. Note that the above results
lution of the general equation, E¢3), deviates only little qor)f|£r7n1§he result for the localization length in the quasi-1D
from these asymptotic solutions. Note that the validity of theliMit ™"
derivation is limited tog>1, while the deviations from 2D —s gal 12
localization behavior occur for the chosen width already g|§>Ly_ paLy, (12
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¢ ; experimentally* That doubling is governed by the magnetic
' diffusion length Lg=(D7g)*? where 75 is the magnetic

2ge™ 9 phase shifting time, which is a function of magnetic length
|z, mean free path and width of the wireL,.?* Thus, the
localization length crosses over §e=2gL,, when the mag-
netic diffusion length becomes smaller than the localization
length,Lg<<¢.

This crossover has recently been derived analytically with
a nonperturbative method, based on the exact solution of the
transfer matrix equation of the one-dimensional NLEM?
The quasi-1D localization length, valid fgf>L,, is ob-
tained to be given by

300

0 05 1 1.5 2 25 3 3.5
g §(B)=2f(Lg/£(0))gLy. (16)
FIG. 3. The localization length as a function of conductange ~ Here,
for large enough magnetic fields such t§atL g at fixed widthL, .
For comparison, the quasi-two-dimensional behavidpp f(X)=2/(2+ 49+ 64X2— \/25+ 64X2). (17)
=2(g/kp)exp(®g?) (dotted ling and the quasi-one-dimensional

limit L,g (dashed-dotted line The width L, is indicated by the
dashed line.

For a wire of diffusive width W>I, one finds X
=§(0)/Lg=m?3"Y"N?b, whereN, =KL,/ is the number
of transverse channels aihd= w.7=eB7/m the dimension-
less magnetic-field parameter. The factor 64 was not noticed
in a previous publicatiof® and is a consequence of the par-
ticular properties of the autocorrelation function of spectral
determinants, and its relation to the actual localization length
1 12 which was used to derive Eq&l6) and (17).22> When the
1- ?In\/lnL[Lykol(qu)]2 . localization is two-dimensional, the localization lengttve-
™ comes exponentially enhanced. In 2D the transfer matrix
13 equation cannot be solved, and we have to employ the loop
expansion used in the preceding section. The crossover be-
tween the orthogonal, E¢L0), and unitary, Eq(1), localiza-
tion lengths is governed by the parameXet &é/Lg. In pre-
vious studie®?°it has been argued that when integrating out
(14) modes on length scales smaller thiag, one can use the
one-loop expansion in the orthogonal regime, corresponding
to vanishing magnetic field. It was argued in Ref. 26 further
that for length scales larger thag one can use the two-loop
B function in the unitary regime. Here, we note that e

whereB=1,2 with, without time-reversal symmetry. We will
set2=1 in the following. We can solve Eq11) in two

limiting cases. WherL <¢, the quasi-one-dimensional lo-
calization length is obtained with a logarithmic correction,

§|§>Ly:2|-yg

In the limit of two-dimensional localizations<L,, the
localization length is found to satisfy the equation

2 ? £
_ 2_ 2
§|§<Ly— Ko ex;{ 7 (4 2|

y

Its solution can be written in terms of the Lambert-
W-functiorf? as

V2L 0. function itself depends continuously on the magnetic field.
= —IWY ——exp272g?) |. (15)  Therefore we extend the perturbative renormalization by ex-
™ kgLi plicitly calculating the two-loop diagrams, the Hikami boxes

as a function of magnetic field as outlined in Appendix B.
Fixing the widthL, the dimensional crossover is seen in (We note that the magnetic-field induced crossover of the
Fig. 3, where the localization length is plotted as a functionyeak localization corrections to the conductivity, had been
of the dimensionless conductange using Eq.(13) for £  considered to second order inglalso in Ref. 29, but using
>L, and Eq.(19) for §<L,. the complex matrix modelOne obtains the following equa-
tion for the 2D-localization length:
IIl. THE MAGNETIC-FIELD DEPENDENCE OF THE
LOCALIZATION LENGTH £=lexp(mg) (1+ X2 Y2 Ym0, (18)

Weak magnetic fieldn disordered quantum wires without
strong spin-orbit scattering or magnetic impurities, the elec- Thus, when the time-reversal symmetry is broken,
tron localization length is enhanced by a weak magnetic>Lg, the localization is given by Eq13) for £>L, and Eq.
field. If the localization is quasi-one-dimensiondt>L,, (15 for é<L,. The effective short-distance cutoff of the
then the magnetic field results in a doubling, Efj2), ¢ renormalization is a function of the magnetic field itself. We
=pgLy, whereg=1,2, corresponding to no magnetic field get 2m/k,=1 at small magnetic fieldshb<1, and 2r/k,
and finite magnetic field, respectiveiy'® Recently, such a =1, at large fields from the renormalization of the diffusive
doubling of the localization length was observed nonlinear sigma model. But, we should note that an analysis
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of the nonlinear sigma model on ballistic scales is needed to
get more reliable information on K.

Strong magnetic fieldin the following, we consider a
guantum wire of disordered electrons in a strong magnetic
field, which is expected to exhibit the quantum Hall effect,
when its widthL, and the mean free pathdo exceed the
cyclotron lengthl .. We consider quantum Hall wires of dif-
fusive width, where the mean free path is smaller than the
wire width, | <L, . In the opposite limit)>L,, the ballistic
motion between the edges of the wire leads to anomalous
magnetoresistance phenomena due to classical commensura-
bility effects of cyclotron orbits with the confinement poten- , ‘ ‘ N
tial of the wire?”?8This will not be pursued here, since these 0.01 0.02 0.03 0.04 0.05
effects are not related to disorder induced quantum localiza-
tion, which is the focus of this paper.,,(B) is the conduc-
tivity in self-consistent Born approximation. For weak mag- FIG. 4. The localization length as a function of magnetic flux
netic field, b<1, it is identical to the Drude resultr,,  through a unit cell of area®=1kg, x=a%2wl3, with conduc-
=ne’r/(1+b%). With the electron density n, tance parameteg(B:O):_lo_. For weak mggn_etic field, Eq16) is
_ Em/(27rh2) this can be rewritten asy(b)= o, /oq _used._For strohg magnetic fields the Iocallzatlon_ Iength Is plotted by
=g/(1+b2), whereg=E /% per spin channel. Fixing the insertingg(B) in the second-order Born approximation in the for-

electron density,, the Fermi energy depends on magnetichI"’_‘ for the quasi_—one-dimensional Iocalization_length,(Eq.in-
field Eq(B) for b>el In the following, we will fix the Fermi cluding a summation over all Landau levefsll line). The short
energ;E instead ' ’ dashed line is obtained by using the self-consistent Born approxi-
Fs A . . . mation (SCBA) for g(B) for one Landau band, Eq20), and in-
The conductivity in self-consistent Born approximation ( ) 9(B) d20

serting it into the formula for the quasi-one-dimensional localiza-
(SCBA) for b>1, when the cyclotron length, becomes tion length, Eq. (2). The long dashed curve denotes the

smaller than the mean free pdftor w>1/7, and disregard-  ¢orresponding result using the SCBA conductance and inserting it
ing the overlap between Landau bands, is given by in the crossover formula, Eq15). The width of the wireL,
=40a is indicated as the horizontal dashed line.

1
B)=—(2n+1)[1—(Er—E,)%T?2 19
g( ) 77( )[ ( F n) ] ( ) IV. THE QUANTUM HALL TRANSITION

for |E—E,|<TI', wherel'2= (2/m)h 2w,/ 7 for T <hw,. In the above analysis of a disordered wire in a magnetic
One obtains thus the localization length for-1 and field we disregarded the effect of the topological term, which
|e/b—n—1/2|<1, by substituting the expression for the di- appears in a derivation of the nonlinear sigma mdett;*®
mensionless conductance, E(L9), into Eq. (13) for ¢  see Eq(D13). It is known that in the two-dimensional limit
>Ly, and Eq.(15) for é£<L,, respectively. Thus, the local- this topological term is needed in order that the field theory
ization length is found to oscillate between maximal valuesoecomes critical in the middle of Landau bands, and the
in the middle of the Landau bands and minimal values on th€uantum-Hall-transition from localized states in the Landau
order of the cyclotron length in the tail of the Landau band tails to a critical state in the middle of the Landau
bands, as seen in Fig. 4. bands can be describdd®*-3
The localization is quasi-one-dimensional as long as Both in numerical calculatiodsand experiments one
£(W)>L,. We see that fon>1 this is, for uncorrelated needs to perform a finite-size scaling analysis in order to
disorder potential, practically always the case in the middleextract the critical divergence of the localization lenggh,
of the Landau bands, with a logarithmic correction as given~(E—E;) ™", when approaching the middle of a Landau
by Eq. (10), yielding band,E,. The procedure is to find numerically the scaling
function A=§/Ly=A(Ly/~§(E)), rescaling with the critical
Ly 2]V localization length, which diverges according §6E) ~ (E
[ . —E,) " and does not depend on width, . Then, one can
(20) determiner by optimizing the accuracy of scaling. The scal-
ing function is not knowna priori. It is clear thatA(x)

1+

2
§n=;(2n+1)Ly{1—

| cyc

——1n
(2n+1)?

We note that we have assumed in the derivation of Eqs.” /X for x>1, since in the tails of the Landau bard

(18) and (20) that the conductivity is homogeneous. In a <Ly, and¢ becomes independent bf, approaching.

strong magnetic field, the formation of edge states can result For the higher Landau bands>0, the single-parameter

in strongly inhomogeneous and anisotropic conductivity,scaling is not accurate, and it is important to include irrel-
thereby preventing the mixing of edge states with the bulkevant scaling parametet$apart from the relevant param-
states*? The consequences of these effects will be dis-eter, Ly/~§(E).7'40 So far the irrelevant scaling parameters
cussed in more detail, in the following section and in a forth-have been included in the numerical scaling analysis on a
coming paper, including a numerical analyds. phenomenological ground, without a precise knowledge of
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their physical origin. It has been observed, however, that the A 2

irrelevant scaling length increases by several orders of mag- 1
nitude in higher Landau bands for uncorrelated disofder.
Therefore, it seems worthwhile to first analyze, if the non- 0.5
critical width dependence of(B), derived above, Eq3), 02
can yield analytical knowledge on the scaling functib(x) :
and moreover account for the observed irrelevant scaling pa- 0.1
rameter in higher Landau bands. 0.05
According to Eq.(23), the ratioA scales with the large
length scaleé,pnit, Which is a huge length scale in the 0.02
middle of higher Landau bands, whege-1. Therefore, it is 0.01
natural to expect tha,,;; can be identified with the irrel- ' 0.00000.0010.01 0.1 1 10 100
evant length scalg,, , and to compare the scaling function,
Egs. (22) and (23), with the one obtained numerically, Eq. z = Ly/&Dunit

(24). Furthermore, the noncritical localization length as a

function of magnetic field¢(B) and the respective scaling FIG. 5. The noncritical scaling function obtained analytically
function may dominate the transition between Hall plateausfull line), Egs.(22) and(23), for the Landau bandy =3, with g,

in quantum wires of finite width. Therefore we consider first = 7/7- The dashed line, &/ is approached in the 2D limit, when
the noncritical scaling function in the following section. ~ he localization length becomes equalfunit-

A. The noncritical quantum Hall transition the noncritical analysis, E@23). Note that this function con-
verges to zero ak,— o, corresponding to\.;=0, since it
was obtained from the noncritical field theory, disregarding
the topological term. Thus, as expected, the form of the non-
critical irrelevant scaling function defers from the results of
the numerical analysis as seen in Fig. 6, but is in some quan-
20 titative agrement. In spite of this, it is expected that the scal-
§2Dunit=k—OeXF(7ngz)- (21)  ing function itself is changed by the presence of the critical
point in the middle of the Landau band, and the similarity to
Thus, Egs(13) and (15 become the noncritical scaling function derived above is only of
qualitative nature. Since in higher Landau levels one is in the
A= E[—In\/x2+(2w/k0§2Dumt)2]l’2 (22) study of wires of finite width!__y for u_ncorrelated disorder
™ always far away from the critical point, however, we con-
clude that this noncritical scaling function is important in
order to enable one to analyze the quantum Hall transition in
) higher Landau band$y>1. We can estimate the region of

Let us rewrite the equations for the localization length in
the unitary regime, Eqg.13) and (15), as a function ofx
:ij/§2Dunit.v Where§2Dumt is the 2D limiting value of the
unitary localization length,

for x=Ly/&xpynit<exp(—m/4)~0.085, while

\/E w1

for x=Ly/&xpynic>eXp(—14/4).
This noncritical scaling function is plotted in Fig. 5, A — AC
where g=7/7 has been chosen, corresponding to the un- 1
renormalized conductance in the Landau bame,3. We
note that the derivation is only valid fge=1, so that we are
able to compare this function only with the scaling function
in higher Landau bands, whegg>1. It is expected that this
noncritical scaling function is accurate as long &s
:Ly/§2Dunit<1- 0.5
Close to the critical pointx=_L,/&,puni>1, the scaling
function is from the numerical analysis obtained to be in the
middle of the Landau band,

(23 criticality by the condition thag(E)/ &>pynic>1. Thereby we
find for the interval of criticality aroundk,,

0.7

¢ L,\? 0.3
A—A=—"=c| 2| , (24) 0.1 0.2 05 1

2 5
I-y Iirr Ly/‘fum't

whereA=1.2, and the irrelevant critical scaling exponentis  FiG. 6. The irrelevant scaling function obtained analytically for
numerically found to bey=0.38+0.04, andc is a constant.  the Landau banch=1, g=3/7 (full line) as compared with the

In Fig. 6, we plotA—A., Eq.(24) using y=0.3 andc  function, Eq.(24) (dashed lingfor y=0.3 andc=0.5, double loga-
=0.5, and compare it witth as obtained from the result of rithmic scale.
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(2n+1)? cal localization lengtté,pynit, When the assumption of uni-
AE:FGXF{ - (29 form coupling paramters;; is made.
Taking into account the spatial variation of;(x), there
which yields AE/I'=0.65,0.02,%10°° ..., for n are extended regions whersg, (x)—0, indicating the de-
=0,1,2 ... . Thus, we conclude that criticality can for un- coupling of the edge states from the bulk stafeShus, the

correlated disorder only be observed in the lowest two Lanfree energy for spatial variations @ is reduced in these
dau levels. Since the width of the quantum Hall plateaus isegions. Thereby, one can find instantons with nonzero topo-
determined by the conditio&i(E)=L,, there are neverthe- |ogical chargeq, whose spatial variations are restricted to
less wide plateaus between higher Landau bands, and WRese edge regions with vanishing real part of the free en-
conclude that criticality is not essential to observe the quangrgy: Fqedge 1270, (edge), wherer, (edge) is the Hall

tum Hall effect. Indeed, the transition between Hall platéaugonductance of the edge states, which is quantized to integer
in higher Landau bands is driven solely by the noncriticalyayes, Thus, we conclude that the renormalization and
dimensional crossover of the localization length. thereby the scaling function of the bulh=¢/L,, is not

influenced noticeably by the presence of the edge states for
B. Towards the theory of the critical quantum Hall transition g>1.

Next, let us consider the effect of the topological term in ~ Closer to the critical point, the NLSM, E(6), cannot be
the derivation of the scaling function. At small length scales,used to derive further information, since that theory flows to
in high Landau bands, the dimensionless conductangés  strong couplingg<1. It has been established numerically
large, and the instanton approximation can be used. To thidat the quantum Hall criticality is not sensitive to the type of
end, one finds solutions which minimize the action of thedisorder. This observation found further support by the proof
NLSM, Eg. (D13), that the Hamiltonian of a chain of antiferromagnetically in-
teracting superspins can be derived both from the nonlinear
h sigma model for short-ranged disorder at the critical point
F= rGeZJ dX,Z o(@=0);;(x)STr(V;Q(x)]%) ow=1/2" and from the Chalker—Coddington mod&,
Y which is the reduced version of the quantum percolating net-
work model of unidirectionalchiral) drifting modes along
J dxa(w=0),,(x)STr(Q4,QdyQ). (26)  equipotential lines of a slowly varying disorder potentralt
has been shown by numerical solution of a finite number of
antiferromagnetically coupled super spins that this theory is
critical. So far, no analytical information has been obtained
for the critical parameters, such as the localization exponent

; . . ) . o v and the critical value\ .. However, building on this model
particle density, which yields a finite contribution at the o¢ 5 gyperspin chain, supersymmetric conformal field theo-
boundary of the wire in the presence of a confinement pojjes have been suggested, which ultimately should yield the
tential, from the edge statés>*

. . , . , critical parameters of the quantum Hall transitf3a*® The
Disregarding the spatial variation of the coupling func-

. : S : .~ critical value of the scaling function . has been related to
tions o;j(x) in Eqg. (26), and assuming isotropy, one finds in

) ) A X . the free parameters of a class of conformal field thedfies.
the two-dimensional limit that there are instantons with NONRestricting this theory to quasi-113,by choosing a finite

zero topological chargg, which are identical to the skyrmi-
ons of the compadD(3) NLSM, as obtained form the com-
pact part of the supersymmetric NLS¥11® Their action is
given by

1h
“T6 a2

Here o(w=0)y,=0'(0=0),/(X)+0c"(0=0),, where
a'l(w=0)xy is the dissipative part of the Hall
conductivity'**** and ¢"' (w=0),,= —e dWdB, n is the

width L, on the order o€, Which serves as the ultra-
violet cutoff of the conformal field theory, one finds that the
critical value of the scaling functiof ., is inversely propor-
tional to the gap between the lowest two eigenvalues of the
27 Laplace-Beltrami operator of this reduced class of supersym-
metric conformal field theories. Furthermore, it was con-
whereo,,= oy, and o, are the spatially averaged conduc- cluded that the critical wave-function amplitudes are widely,
tivities. Now, we can repeat the derivation of the scalingnamely, lognormally distributed, corresponding to a para-
function by integrating out Gaussian fluctuations aroundoolic distribution of multicritical exponents around a value
these instantons. It is clear, however, that the contributiorry which was argued to be related o, as A.=1/7(ag
from instantons withg# 0 is negligible, as long as,,>1. —2).4" These assertions have found precise numerical
Within the validity of the 1¢ expansion one does not find a confirmation>®! Thus, it seems that the critical value, of
sizable influence of the topological term on the scaling functhe scaling function at the critical point can be obtained from
tion A=¢/t . Still, the tendency is seen thatat,=1/2 the  the dimensional crossover of the conformal field theory. So
renormalization of the longitudinal conductance is slowedfar, the critical exponent of the localization lengthcould
down and one may conclude from this observation the twoenly be derived for special classes of systems showing a type
parameter scaling diagram with a critical state of finite con-of quantum-Hall transitior? For the critical point of the
ductance & ¢* <1.4%3% Furthermore, it is seen explicitly integer quantum-Hall transition, howeverhas not been de-
that in order that the instanton solutions with nonzero topo+ived analytically from the conformal field theory, nor from
logical charge do exist the system must exceed the noncritthe theory of superspin chains. Therefore, it is so far not

Fq=2m|q|oxxt+2miqoyy,
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possible to give an analytical derivation of the scaling func-clude that the transition between quantized Hall plateaus in

tion close to criticality. higher Landau bands is due to the noncritical dimensional
crossover of the localization length derived above.
V. CONCLUSIONS In the tails of the Landau bands, extended edge states

exist due to the edge confinement potential of the wires,

In disordered quantum wires the electrons are localizegyhich can carry a quantized Hall current. When the dimen-
due to quantum interference along the wire with a localizasional crossover of the localization of the bulk states occurs,
tion length which scales linearly with the wire width, as long the edge states are expected to mix and become localized

as the electrons can diffuse freely across the wire width. Foglong the wire. In order to study this localization transition,
wires, which would classically be good metals, as charactetthe edge states have to be taken into account explicitly, by
ized by a large dimensionless conductageekg|>1, the  accounting for a strongly inhomogeneous and anisotropic
2D quantum localization limit is never reached, but rather aonductivity. The ballistic length scales of the edge states

slow crossover between quasi-1D and -2D localization ocexceeding the elastic mean free path in the bulk do have to
curs as a function of the wire width. Therefore, we think thatbe taken into account explicitly, in the derivation of the field

the crossover function derived here can be relevant for théneory of localization, as outlined in Appendix D. A full

study of strong localization in weak magnetic fields in disor-analysis of this theory, including the edge states and the to-
dered quantum wires. These have been studied mainly byological term, in deriving dimensional crossover of local-
means of activated transport measuremé&h®Recently, the  ization remains to be done, as well as a numerical analysis of

scanning of the local density of states has become possiblghe metal-insulator transition of the edge states in quantum
by means of the scanning tunneling microscopyhich has  Hall wires2®

a resolution corresponding to few eigenstates. Thus this will
alloyv us to study the magnetic—field dependence of the local- ACKNOWLEDGMENTS
ization length most directly. Furthermore, low-temperature
capacitance measurements would yield the localization The author gratefully acknowledges useful discussions
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moments proportional to their localization length, the metal-Mikhail Raikh, Ferdinand Evers, Alexander Struck, and Isa
lic divergence of the dielectrical constant is cuto#(q  Zarekeshev. This research was supported by the German Re-
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e(q—>0,w=0)=47re2M§2. (28
APPENDIX A:
Thus, the measurement of the dielectrical constant has been
used to study the metal—insulator transittdiwyhere the lo- Information on the dimensional crossover in a wire of
calization length and thus the dielectrical constant isfinite width L, can be obtained from the renormalization of
diverging®® For a quasi-one-dimensional wire one obtains the action of the nonperturbative theory of disordered elec-
trons, the nonlinear sigma model, Ha1).1!
€(q—0,0=0)=32/(3)e?vy&?, (29 First, let us consider the problem without magnetic field,

) . i ) B=0. The coupling parameter is the conductance per spin
where{ is the Riemann zeta-functidr.Measuring the mag- channel,g= o,/ a, in the action forB=0, which is given

netocapacitanceC(B) = €,e(B)S/L, where S is the cross |
section and. the length of the wire, one would expect an
enhancement of the dielectrical consta(B) by a factor 4 g 5
as the magnetic field is turned on. To our knowledge this F= Ef dxSTr((VQ(X)]%). (A1)
positive magnetocapacitance in a wire has not yet been ex-
perimentally observed, and would be a means to study th&0ing to momentum representation, one performs successive
dimensional crossover of localization directly. integration over modes with momenta within the interval

In a strong magnetic field, the kinetic energy is quenchedko/b'<|k|<ko/b'~*, wherek,~ 1/ is the high momentum
resulting in enhanced localization. While in the tails of thecutoff of the diffusive NLSM, Eq.(A1). b>1 is the renor-
Landau bands the localization length is small, on the order ofmalization parameter. Rescaling the coupling parangeégf
the cyclotron length, it increases towards the center of théer each renormalization stépinteger, one obtains in one-
Landau bands, due to an increased classical conductance. Fopp approximation
wires of finite width, this results in a dimensional crossover
of localization form two- to one- dimensional behavior. The ~ 2 dk 1
noncritical crossover function derived above is relevant for gﬂg=g( 1= §J0<|k|<k (2m)2 K2+ \2) (A2)

. . . . L 0 7T) ke+X\

localization in higher Landau bands, where the noncritical
2D-localization length is exponentially large, dominating itswhere\ is the low momentum cutoff. The first-order term in
behavior since the critical point in the middle of the Landauthe perturbative renormalization indl/corresponds to the
band becomes relevant only in the 2D limit. Thus, we con-weak localization correction to the conductivity. One can es-
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2D . 1D 1M Clearly, we cannot simply s&&=0 in the first term of Eq.

] L g (B1), because of the logarithmic divergency of the integral
I,_y,|o. Going to dimensiord=2— 6, and taking the limits

FIG. 7. Crossover in dimensionality as momentanof renor-  —0, the expression, one has to evaluate, is given by
malization is changed.

2 1-5 \ 2
Ko (1 1) fsz_,; fdkk
. . . - =1Imi|—=—- ’
t!mate the Io_cahzaﬂon Ieng@ by.the~fact that the conduc Ml27 2= (2m)2-0 K2\ 2
tivity of a wire of length¢ is unity, g—1, when\=1/£.
" (B4)
Noting that
where [dQ,_ 5 is the angular integral in 2 § dimensions.

f dk 1 dky By performing an analytical continuation,
. —
o<lki<ko (2m)2 Ly J 2w

o0 Ki=9 i 1
for a wire of finite widthL,, with k,=2mn, /L, wheren, f dk = — — o (B5)
is an integer, one finds that the localization length in a wire o KEHNE (N)° 1mexp—2mid)
of finite width L, satisfies the equation and using that Iilp 0[_(1/5)(5]:'” k, one finds
N
2 0 1
E=gW—- =L, > 1
72 7i=1 YnZ+ [Ny /(Koé) 2 K=——=InX\. (B6)
82
X arct r( No ) (A3)
arctal ) Thus, setting\ = 1/£, we get that the localization length sat-
"+ [Nol (ko) ] Q=1 we g g

isfies Eq.(11),
whereNg=KkoL/(27). ForNg>1 this equation can be ap-
proximated by Eq(3).

2
&= Li( ag?-1)+ Lot - 2TELy) D .

2 2 2
APPENDIX B: m [ (2mE/Ly) +(€ko) &

In a finite magnetic field, the first order inglLtorrection
to the conductance is vanishing. An efficient way to do the APPENDIX C:
perturbative renormalization to second order ig i/'to start L L
from the supersymmetric nonlinear sigma model and do an Here, we extend the derivation of the localization length
expansion around its classical point, as done in Ref. 16 fo}? the 2 D limit to the crossover in a magnetic field between
the pure unitary limit. Here we extend this derivation takingth€ Orthogonal and unitary limits.
into account the finite wire width.,. We note that the di- One obtains in two-loop approxmiation,
mensionality changes as one integrates ouiimodesrom
large momenta, corresponding to the smallest length scales; |

f dk 1 +16(1 1)
9Jo<k<ky (2m)2 K®+N\2+1/D7rg @?l2 d

f dk 1 \?
0<lkl<kg (277)2 k2+\?

which is |y in the unitary limit, to the largest length scale,
which is the localization lengtlj, see Fig. 7.
Integrating the renormalization flow from the smallest to
the largest length scale, one finds forL,: X

a(é) 1 1 2
4| "ago=| 161im| 5 - 5= (130, 1300 dk L
a(lo) 5-02 270 y X , (CY
0<k<ko (27)% k>+ X%+ 1/D7g
1 . .
+16| = — 1) (|§D —12) 1. (B1)  where\ is the low momentum cutoff. Setting the lower mo-
2 & 1DI ) . .
mentum cutoff equal to the inverse localization lengkh,
=1/¢, we find
Here,
~ 2 & &
|2 :j dk 1 (BZ) g:g[ 1——[”1('—)—'” 1+D—]
O Jikekes (2)2 K242 gm 78
and 1 &
- 2In 1+D— —1. (C2
| f dk, 1 1 (77 t 1 g 7B
= — ———=——| = —arctan—|.
X ) ek <Ly kK2+\2  wLyh |2 X\ Thereby one obtains the equation for the localization length

(B3) in a magnetic field, Eq(18).
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APPENDIX D: 1 (E)—CIA)Z
In the following we review the nonperturbative theory of G(x,p)=1/ @A
a disordered quantum wire in a magnetic field. The Hamil-
tonian of disordered noninteracting electrons is ~ _h A
_Vo(X)+lz_Q4x4(X) : (D5)

H=[p—qgA]%2m+V(x)+ V,(X), (DY)
To summarize the notation, here, and in the followingare
Whereq is the e|ectron Charge[(x) is taken to be a Gauss- the Pauli matrices in the subbasis of the retarded and ad-
ian distributed random function, with a distribution function vanced propagators. We used the notationin order to
stress that it is an operator and does not commute with the
dx dx’ kinetic-energy termHqy=(p—qA)%/2m. Here, o=E—E’
P(V)ZGXF{ - J v TJ(X—X')V(X)V(X') . (D2)  breaks the symmetry between the retarded and advanced sec-
tors. The long-wavelength modes Qfdo contain the non-
perturbative information on the diffusion and cooperon
modes, and thus on localization.

In order to consider the action of these long-wavelength
modes governing the physics of diffusion and localization,
J(X=x")=VAhIT6(x—=X") one can now expand around the saddle-point solution of the

action ofQ, sF=0, satisfying foro=0,

Impurity averaging is thus given by. . .)y=[TI,dVP(V)
-+ . We take

for uncorrelated impurities, where 7/is the elastic-

scattering rate and = 1/(»)) the mean level spacing of the Q=i/(mv){(X|I[E—Ho—Vo(x)+i/(27)Q]|x). (D6)
mesoscopic sample with volumeé Vy(x) is the electrostatic

confinement pot_ential dt_afining the width of the wirg. The  This saddle-point equation is found to be solved @y
vector potential is used in the gauge=(—By,0,0), wherex  _ 5 .p which is the self-consistent Born approximation for
is the coordinate along the wire of lendthy the one in the ¢ self-energyP. At =0 the rotationdJ, which leaveQ in

direction perpendicular both to the wire and to the magnetigyq supersymmetric space, yield the complete manifold of

field B, which is directed perpendicular to the wire. The . . — .
: . : saddle-point solutions @@=UA3;PU, whereUU=1, with
electron spin degree of freedom is not considered here. QTC=CQ. In general, in order to account for the ballistic

While the disorder averaged electron wave-function A hotion of electrons along the edges, or to account for differ-
plitude decays on time scales on the order of the eIaStiCént sources of randomngess a d?reétional dependence of the
scattering timer, information on quantum localization is ' P

: _ _ H ,58
contained in the impurity averaged evolution of the eIectron?k‘;’lﬁt;r'r):“gJ d_eéJ\stHir(]:)hvlveh;vrgn%sgrpi)gr?ta;rteosz? ?Sgsfféezaén be
density n(x,t) ={|#(x,t)|%). Thus, nonperturbative averag- 3 pIus,

ing of products of retarded and advanced propagatorsfaCtonzed out, leaving the saddle-point solutions to be ele-

, - . thents of the semisimple supersymmetric space
GR(E)GA(E")) has to be performed to obtain information .
gn q(uaZntUSn Ic)Jz:aIization. P GI(2|2)/[GI(1]1)x GI(1]1)].%° In addition to these gap-

In useful analogy to the study of spin systems, the supetjis‘ls Vn;ﬁgﬁscézegg iii g?;;'\éiﬁlonn dglttrijgln:rlti?o%dﬁjsn?ﬂiz
symmetry method contracts the information on localization| ™’ 9 a P

into a theory of Goldstone mod& arising from the global thereby reduces to a functional integral over the transverse

. odesU.
symmetry of rotations between the retarded propagato'm Now, the action of finite frequency and spatial fluctua-

(“spin up”) and the advanced propagattspin down”) in a . . .

representation of superfieldsomposed of scalar and Grass- tions of Q a_round fthti saddig—r%omltzsolugzn clan b‘:‘. found by
mann componentsSpatial fluctuations of these modes con- an_expanspn of the actiof, q..( ) nser ing Q
tribute to the partition function =UA3PU into Eq. (D4), and performing the cyclic permu-

tation of U under the trace Tr, yield¥,

Z= J d x)exp(—F : D3 1 — —
[T dQuatexn=FIQ) 3 F=—§f dx(X|TrIN(Gy 1~ U[Ho, U]+ wUAU)|x),
and are governed by the action (D7)
where
F oom h f dx T 5
[Q]_ZA_T m 1(Qaxa(x)%) i
. Gy '=E—Ho—Vo(x)+ S-AP. (D8)
+ EJ dx(x| TrIn[ G(x,p]|x), (D4)
Expansion to first order in the energy differenseand to
where second order in the commutatof Hy,U] yields
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1 _ h
F[U]=—§wj dx(x|Tr GoeUA U|x) (raﬁ(w,x)=ﬁ<r|ﬂ'aG§EwﬁGéE+w|r>, (D12

1 o wheres=(#/i)V — qA The remaining averaged correlators
+ Ef dx(x|Tr GoeU[H,U]|x) involve productsGi-Gg:. ,, and GpGy:. ,, and ar.e.there—
fore by a factori/(7E) smaller than the conductivity, and
1 _ can be disregarded for small disordefr<E. In order to
+ Zf dx{x|Tr(GogU[Ho,U])?|x). (DY) insert the Kubo-Greenwood formula in the saddle-point ex-
pansion of the nonlinear sigma model, it is convenient to

The first-order term irU[HO,U] is proportional to the rewrite the propagator iff as

local current, and found to be finite only at the edge of the Goe=1GR(1+A)+1Gh(1-A).
wire in a strong magnetic field, due to the chiral edge cur-
rents. It can be rewritten as Then, we can use that
d
Tr 1+sA)U(V, U)(1-sA)U(V U
Foyti= fd ay STrQ<9er9yQ (D10 2, 2 (rsHUVD)A-sMUT,U)
- _ 2
where the prefactor is the nondissipative term in the Hall =~ T(VQ)].
conductivity in self-consistent Born approximatioh: Using the Kubo formula, Eq(D12), this functional ofQ

simplifies to
2

1 he

1(x)=— = —(x|(xmy— ImGE|r). (D11

Txy(X) i m2< |(x7y—ym)ImGE[r). (D11) 16e2j dx S o(w=0);(x)STr(V;Q(x)]?)
i= X,y

One can separate the physics on different length scales, not-
ing that the physics of diffusion and localization is governed
by spatial variations ofJ on length scales larger than the - ——f dxo(@=0),,(X)STr(Qd,Q4,Q), (D13
mean free path. The smaller length scale physics is then
included in the correlation function of Green'’s functions, be-where o(w= O)Xy—a (0= O)Xy(X)+0'||(w 0)xy Where
ing related to the conductivity by the Kubo-Greenwood for- o' (w= O)xy is the dissipative part of the Hall
mula, conduct|V|ty14 34,33
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