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We present a set of modified quantum rate equations, with the help of the nonequilibrium Green'’s function
and slave-particle techniques along with the correct quantization, for description of the quantum transport
through an interacting mesoscopic region connected with two leads, in the sequential tunneling regime. The
assumption that only leading order || (V is the tunneling coupling between the interacting central region
and the leadshas been taken into account in deriving these equations implies that the quantum rate equations
are only valid in the case of weak coupling between the central region and the leads. For demonstrations, we
consider two special cases in the central region, a single interacting quantu®Qidt with weak spin-flip
scattering and a weakly coupled double quantum @€D), as examples. In the limit of zero temperature and
large bias voltage, the resulting equations are identical to the previous results derived from the many-body
Schralinger equation. The numerical simulations revdalthe dependence of the spin-flip scattering on the
temperature and bias voltage in the SQD, é&?)dthe possible negative differential conductance and negative
tunnel magnetoresistance in the CQD, depending on the hopping between the two quantum dots.
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[. INTRODUCTION diagonal density-matrix elements allow for an additional
term of the nondiagonal density-matrix elements, which in-
For many years, much experimental and theoretical workleed stand for the coherent superposition of different quan-
have been devoted to exploring the transport properties dim states and are referred to as the coherent transfer term,
artificially nanofabricated structures containing a discretedlong with the time evolutions commanded by their own
number of quantum states and a small number of electron§OM. We have to solve these equations self-consistently to
The tunneling current through these mesoscopic devices, is§etermine the nonequilibrium probability densities. As a re-
lated from two macroscopic leads by potential barriers,?um the tunnellng_ current unav_mdablylcontams the contribu-
manifested many novel effects due to this confinement. Folions of the nondiagonal density-matrix elements and natu-

example, in a semiconductor quantum d@D) one ob- rally p_rowdes the mformat_lo_n of thg quantum Rabi
oscillation, although the explicit expression of current for-

served the Coulomb blockade oscillations due to the chargm lati v involves the di | densit trix el ;
ing energy and even the Kondo effect due to the strong uiation only Invoives the diagonal density-matrix elements.
on-site Coulomb interaction in the tunneling transpcrRe- The m0(_j|f_|ed guantum rate equations have proved successful
: . . . in describing this quantum oscillation in coherently coupled
cent_ly, interest in quantum compu.tatlon gnd quantgm infor- uantum dot§CQD),* the quantum measurement by using
mation processing has attracted increasing attention to thg o -vim point contact near CQ&:2° and even time-
problem of measurement of tunneling currents via a MeSOSjependent quantum tunneling throu,gh the CBmN the
copic system that can be modeled by a two-level Hamil-yiher hand, the Coulomb interaction inside the small con-
tonian, for example, charges in coupled QDRefs. 4-7  fined region plays a crucial role in, as mentioned above, de-
and spins in a QD under magnetic fiefdbleasurement of  termining the quantum transport properties of the devices, of
the tunneling current in such systems provides informatiortourse in controlling the quantum oscillations of two-level
not only about the Rabi oscillatiohbetween the two levels system52.2 In fact, the so-called noninvasive quantum mea-
but also about the spin precession in quantum spisurement process is also based on the Coulomb coupling
oscillations?*° both of which are crucial improvement in the between the detector and the measured sy&téfiTo our
control of the superposition of the quantum states and thuknowledge, however, a systematic investigation of the quan-
guantum information processing. In addition, a similar physi-tum rate equations at arbitrary temperature associated with
cal picture has been utilized with success to analyze transpottte Coulomb interactions has been lacking.
through molecular nanojunctidh for example, a system of About ten years ago, a “classical” rate equation was de-
benzen¥ and DNA molecular chaif® rived for sequential tunneling through a double-barrier sys-
In order to describe this kind of quantum oscillations intem from the quantum kinetic equation, the nonequilibrium
guantum transport through a QD, the master equations dereen’s function(NGF), which is believed to be a more
“quantum” version of the rate equations had been first pro-powerful tool for studying nonequilibrium phenomef@ur
posed by Nazaro¥? and later derived microscopically from aim in this paper is to systematically explore the quantum
the Schrdinger equation directly"'®and from the von Neu- rate equations for the interacting systems in the sequential
mann equation and superoperattrsespectively. In these, tunneling regime from the NGF approach. The unique source
the central point is that the equations of mot{&DOM) of the  of difficulty is how to deal with the Coulomb interaction
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term in the derivation. This problem is the same as that we I Ir
have in studies of the strongly correlated fermionic systems, F N N
for example, the recent investigations on the Kondo en-
hanced conductance of a QD at low temperafiffe’’ Many

theoretical methods have been developed to solve the strong My 1
correlation effects. Among these methods, the slave-particle / ‘U
technique is of particular elegant®28 The great advantage /

of this approach is that the correlated Hamiltonian for the % ————————— Y

He
system under study is transformed to an equivalent one with- €, %
out Coulomb correlations while introducing several auxiliary / %
particles. Thus previously well-developed formulations for / /
noninteracting systems can be applied to investigate the in-

teracting systems in the framework of this representation. a)

Along this line, a further technical advance is made in the

present work. Here we extend the approach of the slave- I t Tk
particle representation to the weakly coupled quantum sys- F N F N [

tem of interest and give the consistent Hamiltonian formula-
tion in terms of the slave particles. The equations of motion
of the density-matrix elements are then studied in the frame-
work of NGF and within the slave-particle scheme. Our deri- /
vation contains three approximations. The first is to assume /

that the central region has very “weak” coupling with the / L@ f---- LA

external environmentghe leads V. Second, we assume that / ) %

U l'LR

_

the couplings between subsystems are also weak to keep

them individual, for example, the weak spin-flip scattering in

single interacting QD(SQD) and weak interdot hopping in

CQD. As a result, we can give the definitions of the spectrum b)

expressions of the NGF’s of the central region in terms of the

nonequilibrium probability densities and keep only the lead- FIG. 1. Schematic diagrams for the resonant tunneling through

ing order term inV|? in the expansions of the equations of () a single interacting QD antb) a coherently coupled QD’s.

motion. The final one is to apply the wide band limit in the

two leads, namely, that the coupling strengths between the A. Model Hamiltonian and slave-particle representation

central region and the leads are independent of the energy \e yse the standard model Hamiltonian to describe the

and can be considered as constant. resonant tunneling through a SQD, as depicted in Fig), 1
The rest of the paper is organized as follows. In the fol-iiy 4 single bare leveky and a weak intradot spin-flip

lowing section, we give the derivations in detail for a SQDscatteringRU connected to two noninteracting leads:
taking the weak spin-flip scattering into account, and estab-

lish the temperature and bias voltage dependent quantum rate

equations for arbitrary Coulomb interaction. In Sec. lll we H= > Enkuc;kocnka+ €4 ClyCaot RTCchdl

derive the quantum rate equations for the weakly coupled n.ko o

QD's. In both the sections, after the analytical results are

discussed for the no doubly occupied level and the deep level + Rlchch +Ungng, + (VnaC:rkaCda+ H.c.),
situations, we perform numerical simulations on the occupa- nKo

tion numbers and the tunneling current in the general case as (1)

functions of the bare level in the QD and the bias voltage
between the source and the drain. Finally, all the results arﬁ/herec;kq (C ko) andcgo (cq,) are the creatiotfannihila-
summarized in Sec. V. tion) operators for electrons with momentumspin o, and
energye ., in the leadn (=L,R) and for a spins electron
on the QD, respectively. The third term describes the Cou-
lomb interaction among electrons on the Qiy, = cgocd,, is

We begin with our derivation of the quantum rate equa-the occupation operator in the SQD. The fourth term repre-
tions for a SQD with a weak spin-flip scattering in this sec-sents the tunneling coupling between the QD and the reser-
tion. In the case of no spin-flip terms, the rate equations argoirs. We assume that the coupling strenit)), is spin de-
of classical variety, which have been adequately described byendent, being able to describe the ferromagnetic leads. Each
other methods. Therefore our results are not new in this casef the two leads is separately in thermal equilibrium with the
but are established from a different scheme. The purpose @hemical potentiak,, which is assumed to be zero in equi-
this section is also to provide an examination to prove thidibrium condition and chosen as the energy reference
approach in comparison with the previous results in no spinthroughout the paper. In the nonequilibrium case, the chemi-
flip case. cal potentials of the leads differ by the applied bias. In this

II. SINGLE QUANTUM DOT
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paper, we assume that the tunneling coupling is weak enoughatrix elements and these auxiliary operators are obvious as
to guarantee no Kondo effect in our model and the QD is inpo,=|0)(0|=e'e, p,o=|oNa|=F1f ., paa=IT1)T1]

the Coulomb blockade regime. Generally, we h&ye= R’f =d’d, and the nondiagonal terﬁﬂu;:|;><g|:f%fw Ac-

=R as a constant. cording to Eq.(5), the constraint is subject to the diagonal

According to the finited slave-boson approach intro- elements of the density-matrpoo+ = pye+ Pag=1.
duced by Zou and Andersdithe electron operatary, can

be written in four possible single-electron states, namely, the B. Derivation of the quantum rate equations
empty statg0) with zero energy,=0, the singly occupied
(with spin up or dowi electronic statéo) with energye,,
=e€4, and the doubly occupied staf¢|) with energyeq
=2e4+U, as

In this section, we derive the rate equations for sequential
tunneling starting from the combined fermion-boson Hamil-
tonian(7) by using the Keldysh's NGF.

In order to describe the nonequilibrium state of
Cao= 0| +alaNT]] (o==1). (2)  electrons, we define the retarddddvanceyl and lesser

. ) (greatey Green's functions (GF9 for the QD
Because these four states expand the entire Hilbert space, tb’e(ag,<(>)(tt,)5<<cd (t)|c$ (t))@<() as follows:

completeness relation must be satisfied G[T(:?gt,t’)zti e(ttit’)({cdo(t),cga,(t’)}), G;U,(t,t’)

=i(Cqg,(t")Cao(t)), and G, (t,t")=—i(cqq(t)Cq, (t'))-
|O><O|+|”><”|+§U: lo)(e|=1. 3 Considering Eq. (4), these GF's in the QD can

be divided into two parts, G, =GCeys' T Gior

These Dirac brackets were then treated as opera#rs: with G, =((e'(t)f ()|f!,(t)e(t’))) and G
=10), d'=|1]) as slave-boson operators ahfi=|c) as — oo’ ((F(0)d()]d'(t) Fx(t))).  Under the weak-

fosrzug::g;';?] do(pS()arg::rc.)r:\r:e terms of these auxiliary OperaE:oupling assumption, the central region can be regarded as a

considerably isolated system and its density-matrix operator
Cdozeff0+0f¢d, 4) is supposeq to b@IZijpijpij“(i,j_={0,0’,d}"), meanvyhile
v the reservoirs are taken as “environment” located in local
thermal equilibrium. Therefore, we can readily define the
efe+dfd+ 2 fj;fg: 1. (5) decoupled diagonal GF’s of the QD for weak spin-flip tran-
o sitions in terms of spectrum expression, in the Fourier space,
The explicit(anticommunicators of these auxiliary particles 25
can be easily established from the definitions of the Dirac N
brackets® GIO ()= PO Poo_
eoco . + 1
t w—€qti0
ee'=1, dd'=1, f,f,=5,.,
Pddt Poy
w—(eg+U)+i0"

ed'=efl=f,e'=f,d'=de’=df! =0, ©) Gl @)=

Therefore, along with these correct quantization, the Hamil- 0 .
tonian(1) can be replaced by the following form in the aux- Gegol ®)=27ipye6(w— €g),

iliary particle representation:
G;—(g(w)ZZWipddﬁ[w— (eg+U)],

_ t t t .
H‘ﬁ%g € pkoCakoCrko T fdz;f fofot(2€4+U)d'd G;opg(w):_ZW|p005(w_ed)l
Gy w)=—2mipmdlw—(eg+U)]. 8
+R I R T+ D [V, el (ef, +ofld) it ) ol (et D)) o
nko If no bias voltage is added between the two leads, the
+H.C] (7) central region is in a thermal equilibrium state and the

distribution probabilities are well known agy,=1/Z,
which was proved to be equivalent to the original one, Eqp,,=€e %'7/Z, and pgq=e @<a™V'T/z with z=1
(1), by Zou and Anderson in the case of no spin-flip téfm. +2e /T+e~(<«a*U)T Ag far as the spin-flip transition is
Furthermore, as far as the four possible single electriconsidered, the decoupled nondiagonal correlation GFs are
states are considered as the basis, the statistical expectatianscial in the following derivation. Their Fourier expressions
of the diagonal elements of the density-matrix,; (i are easily obtained from the definitions as
={0,0,d}), give the occupation probabilities of the resonant

<0 ;
level in the QD being empty, or singly occupied by spin- Gepol @) =2ip ;50(w— €q),
electron, or doubly occupied, respectively. The nondiagonal -0 .
term p; | describes the coherent superposition state between Gl @) =27 pszdl 0= (eg+U)],
the spin-up and -down states in the QD. In the slave-particle -0 -0
notation, the corresponding relations between the density- Ggm(®)=0, Gg {w)=0. ©)
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For the case of nonequilibrium discussed here, these out-of-
equilibrium probabilities are determined by the coupling to
environments with different chemical potentials, and usually
they obey a set of equations of time evolution, the rate equa-
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. [ >
p&F:Z;J‘dwz;(an+ri9{ﬂﬁw)Ge&iw)

+[1-"1,( a))]Ge(r—n(a)) f (0)G dm(w)

tions.

Here, we start from the equations of motion of the opera- —[1- f”(w)]Gd—w(w)}+ IR (Pye— Po), (110

tors [)ij with the Hamiltonian(7) and modified quantization
Eq. (6):
I-BOO: [ [H veTe] =—i (V 7;ko'eJr]c - V”;]U'f ;e Cr]k(r)a

7K, 0

(109

p,,,,:i[H,f:r,fU]zi;((Vwc;kae’rf —oV, el fhd

—V* flec,, ooV d,C)

no' o

+|R—f SR, f f-

o g

(10b

peo=ilH, fgfg]—|2 (Vor e, — oV el fid

—VE flec,, ot oVE A Cou,)

iR, (F1f,— 1),

(109

paa=i[H,dTd]=i > o(V,,ch, Fld—V* d'fc ).

nK,o

Their statistical expectations involve the time-diagonal

parts of the correlation functions:
Gey, o (L) =I(Ch L (1T (1)),
Gy o(Lt)=i(C ()T (Dd(D),

G;ko./’ea(t,t,)Ei(fl.(t,)e(t,)anG,(t)>,
and

G eoao (L) =1 (1) C (D).

(10d)

Pdd= py fdwE {I',of (0)C A @)

+T .1 (0) ]G A w)} (119

in terms of the QD’s GFs in the Fourier spa”&d—lerel’
=272V, ]?8(w—€,x,) denotes the strength of coupllng
between the QD level and the lead In wide band limit, it

is independent of energy and is supposed to be constant.
Under the weak-coupling assumption, it is adequate to keep
only the leading order diV|? in evaluation of these occupa-
tion densities. So we can replace these QD’s GFs with their
decoupled formulas, Eq$8) and (9). Finally, the resulting
quantum rate equations become

bOOZE (F;pUU_F;pOO)! (123)

_F0p00+r Pdd— (r +F )po'o'_ZIm(R_apa')

(12b)
Pe=iRy(poo—pa) — 2T E+T2 4T, +15)p s,

(120

paa=Tp11+T{p, —(T; +T)pga, (129

together with the normalization relatiopyy+ pgq+ E,,pm,
=1 from Eq. (3), with the definitionsI', == . 77Uf (€q)
and I‘——E,,F,,Uf (eq+ V), where {7 ,(@)=1{1
+elor)/M-1 s the Fermi distribution function of they
lead andf ~(w)=1—f"(w). Here,I'} (I',) describes the
tunneling rate of electrons with spim into (out from) the
QD without the occupation of thes state. Similarly,
rt (F ) describes the tunneling rate of electrons with spin
o mto (out from) the QD, when the QD is already occupied

With the help of the Langreth analytic continuation rutés, by an electron with spiir, revealing the modification of the
we obtain the following expressions in the wide band limit corresponding rates due to the Coulomb repulsion.

(the detail derivation will be given in the Appenglix
pOO_ - _f dwz {Fm)’f n(w)Gelr(r(w)
r,,[1-f, (0)]Gg, ()},

Z—f dwE {FT](T n(w)GeU(r(w)

+1,,[1— f,,(a))]G

(11a

emr )_Fn;f n(w)GcToo(w)

_I‘?]Tr[l_fr](w)]Gdaa(w)}+iR—opo'_a'_iRa'p;tri

(11b

These rate equations, Eq4.2a), (12b), and (12d coin-
cide with the previous classical rate equations in the sequen-
tial picture for the resonant tunneling if the intradot spin-flip
transition is quenche®:>* Obviously, if the left lead has the
same chemical potential as the right lead, the stationary so-
lutions of Egs.(12a), (12b), and(12d) reduce exactly to the
above-mentioned thermal equilibrium results in the case of
R=0. In this situation, they have clear classical interpreta-
tions. For example, the rate of change of the number of the
spinu electronsp,,,, in the SQD, described by EqL2b), is
contributed from the following four single-particle tunneling
processes(l) tunneling into the QD with spirr electrons
'} from both left and right leads if the QD is initially in the
empty statepg; (2) tunneling out from the QD with spip-
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electronsf: into both two leads if the QD is initially in the C. Discussion

doubly occup|ed statpyq; (3) tunneling into the QD with The rate equation€l2) may be readily solved under sta-
spino eIectronslL from both two leads; an) tunneling tionary condition for arbitrary bias voltagééand tempera-
out from the QD W.m spins electronsI"; into both two  turesT, and consequently the dc current may be obtained via
|eads when the QD is |n|t|a||y just in the Statga_ Tunnel- Eq (15) More interestingly, it is useful to review the follow-
ing events(1) and (2) increase the probability of the spin- ing two special cases in the case of large Coulomb repulsion.
state, but event§3) and (4) decrease this probability. These First, we consider that no doubly occupied state is available

contributions constitute the classical rate equation formin the QD, i.e.,pqq=0. In this case, we assume that the bare
Other diagonal equations have similar interpretations. NoticéeVel €q of the QD is just above the Fermi levels of the
that the final term in Eq(12b) describes transitions between two leads under equilibrium condition, meanidg =
isolated states through the coupling with nondiagonal terms? ~3,T',,. Then, in steady state, the quantum rate equa—
which has no classical counterpart. Therefore, it is responmns (12b) and(12¢) become
sible for coherent effects in the transport.

The nondiagonal matrix elemepy is ruled by Eq(120), T2 po0— T, poe—2IM(Rps5) =0, (16a
which resembles the optical Bloch equation and describes
the dynamics of quantum superposition. This is a pure quan- 1
tum effect. As mentioned by Gurvitz and Pragethe cou- Ro(proe= P = 5 (Lo +15)p5e=0, (16b
plings with the leadqall possible tunneling processes in-
volved) always provide negative contribution and causewith poo+=,p,,=1. They can be readily solved
damping of the quantum superposition.
The particle current,, flowing from the leady to the QD LT+ (T +T))

can be evaluated from the rate of time change of the electron P A ' (173
number operata ,(t) = = ,C1\,(t)C,k,(t) of the leads:*

T +x(TF+T7)

1T 1 |

dN = , 17b
n<t>———<—> o A o

dt
in which A=[(I'}+T; )(rl+r )T /T ]+x(2r;
:_iEqH,E ¢ (e (I)D F20 (4T 4T]) and y=a[RP/(, +1] ). The steady
h o T tunnehng current  is 1g=€Z [ (T g, + T 5t Tro)Poo
o —T'%,]. For large bias voltage, i.el;_,=0 andT'},=0,
=j %< kz,r {VWC;kU(t)[eT(t)fU(t)+gf%(t)d(t)] and spin-independent tunneling, the dc current becomes

2I' (Tr+2x")
VI e <t>+od*fz<t>1cnko<t>}>- 13 e Ty a2

2
ltimatelv. th ¢ int f the gp@ndx’ 2|R|4/T'g, which depicts the spin-flip transition in-
hj] tlrr]r;a(ggz e current can be expressed in terms of the G %uced modification for the corresponding formula, 310

in Ref. 15.
The second case we consider here is the deep level in the
I _|ef 2 (T of (0)[Gg o w)+Gd>;(w)] largeU limit: the bare leveley is far below the Fermi level
u but e4+ U is slightly above the Fermi level in equilibrium
condition, implicating that the QD is always occupied by
electrons. In this situation, we hayg,=0, I' /=0, and
Under the weak-coupling approximation, it becomes 1"*~E,,F 5o - Different from the al?ove case, onl-y singly and
doubly occupied states are permitted in tunneling processes.
Under the stationary condition, the quantum rate equations

+T,,[1-f(0)][Ggpo(@)+Gimf )]} (14)

|n/e:§ (F;UpderF;UPW—F;T,PW—F;UPoo)- (12b) and (120 reduce to
(19 T2 paa— Ty pos—2IM(Rops)=0, (198
This formula demonstrates that all possible tunneling pro- _ L
cesses relevant to the legdcan provide corresponding con- IRG(poo— P —2(I'y +175)pse=0, (19

tributions to the current of the leag and the current is
totally determined by the diagonal elements of the density-
matrix of the central region. However, the nondiagonal ele-
ment of the density-matrix is coupled with diagonal elements pii= A _ —1{pyq,

in the rate equatiori12b), and therefore influences the tun- (T +x)—x?

neling current indirectly. (209

with pyq+2,p,,=1. The solutions are

(T +x) (T +T )+ x(T7+T7)
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_(ff +X)(1:T++1:T_)+X(1~“f “:f) electrons are spin down= | . We also assume that in the AP
P = = = > —1|pgd, configuration the magnetization of the right electrode is re-
I Iy + 0 +x)—x versed.
(20b) Therefore, for the identical leads and symmetric barriers,
o - - - - of interest in the present paper, we further assume that the
(CT+x) T +T )+ (T +T)) ferromagnetism of the leads can be accounted for by the
Pdd= o T, polarization-dependent couplingd’ ;=T'g;=(1+p)Ty,
(I 20T+ T I =g =(1-p)l, for the P aIiganent, vthiIeFLTszl
(l:f+X)(1:f+l:j)+X('fT*+1~“{) -1 =(1+p)lo, Ty =Tgr=(1-p)Tg for the AP alignment.
+ = == -1| , I'y denotes the tunneling coupling between the QD and the
(I + Xy leads without internal magnetization, arml (0<p<1)

(200 stands for the polarization strength of the leads. In the wide

-~ band limit, I'y is supposed to be a constant and chosen as

with x=4|R|?/(I'{ +T ). The steady tunneling current is unit of energy in the following paper. Moreover, we measure
given by IR:eEU[Fggpdd—F;—apM]. Large bias voltage energy from the Fermi levels of the left and right leads in the

further simplifies the spin-independent current as equilibrium condition | =ugr=0) thereafter. The discrete
level €4 of the QD can cross the Fermi levels by tuning the
2f‘L1~“R+ 2x" gate voltage in experiments. Without loss of generality, we

Ir/e== (21 apply the bias voltag¥ between the source and drain sym-

Pt 2lr+2x" (14 TR/Ty) metrically u, = — ur=eV/2, and neglect the shift of the dis-
with X":2|R|2/TL- This is a modification of Eq(3.11) crete level caused by this external voltage. Because of the

given by Gurvitz and Prager due to spin-flip transitidhs. ~ Symmetry, we will restrict to positive bias only,>0.

It should be noted that the same two cases are also ana- F70M Eqs(12), one can find all the expectation values of
lyzed in Ref. 35 for an interacting QD with spin-flip transi- N€ density-matrix elements for a given bsn the station-
tions included. They evaluated the occupation numbers frord"y condition, and thus allow us to calculate the tunneling
the classical rate equations and utilized a spin-relaxatiofUrrent flowing through the system by employing E&5)
time 7, to describe the spin-flip transitions. Therefore, their@"d the nonequilibrium occupation numbers n,, defined
results are slightly different from ours. For both cases, if webY Ne=Poo™ Pdd- o ,
redefine the spin-relaxation time as 1= y, which is now FII‘S.'[ we consider no spin-flip scattering processes on the
of temperature and bias voltage dependence, their résultsQD- Figures 2a) and 2b) plot the nonequilibrium occupa-
are the same as ours, E¢$7) and(20) of the quantum rate tion numbers as a function of the bare level calculated for a

equations. This is a clear demonstration of the importance ofMall biasV=1.0 and a large bia¥'=10.0, respectively, in
guantum “coherence.” both P(thin lineg and AP (thick lines configurations. The

It is also worth examining the quantum rate equationstWO spacial _bias voltages are chosen in order here to demon-
(12) derived here at large bias voltage between the left angtrate the linear-response regimé=(1.0) and the strong
right leads without the spin-flip transitions. In this case, wehonlinear case\(=10.0), respectively. For comparison, we
assumeeVs>T and evV>U. so '™ =T =0 and T’ also plot the equilibrium occupation numbers in Figb)2

’ Lo™ * Ro— Lo

= : . From these figures, we can observe the followif: The
=I'r,=0. The quantum rate equations lead to the fOHOW'ng'complete Coulomb blockadeharging effect in equilibrium

(the single step impyg) is partially removed in nonequilib-
rium, i.e.,pqq becomes a multistep function of the gate volt-
age;(2) n, has fractional steps in nonequilibrium in contrast
to just half-integer steps in equilibriung3) n,=n, in the P
L= ~ ~ ~ configuration, whereas;#n, in the AP configuration. Fig-
paa=T'Lipy1 TP = (Tri+TR)Dpag, (220 e 2c) shows the tunneling current calculated for both con-
and the current ig=e> (fR pag+ Tropos). Al ZETO tem- figurations. The current in the P alignment is always larger
perature and spin-independent tunneling, these equations if1an that in the AP alignment in the whole range of the gate

deed resemble the rate equations derived from the ‘Schry©lt@ge. In the linear-response regime, the current provides
dinger equation developed by Gurvitz and Prdger. the information of the conductance of the device: there ap-

pear two resonant peaks with equal heights when the gate

voltage controlled levelgy and e4+ U, respectively, cross

the Fermi levels of two leads. While in the strong nonequi-
In this section, we perform numerical calculations for thelibrium case, there are three steps in the current which cor-

spin dependence of the tunneling processes through the SQBspond to the steps in the occupation numbers, whereas be-

connected to two ferromagnetic leads. In the following cal-tween the steps the current is constant.

culations, we consider two magnetic configurations, namely, Figure 3 illustrates typical variations of the occupation

parallel (P) and antiparallelAP) configurations. When the numbers and the current with the bias voltagdor ;=1

magnetic electrodes are in P configuration, we assume th@he no doubly occupied leveandey= —5 (the deep level

the majority electrons are spin up=1 and the minority In the first (second case, the first step in, occurs at the

poo=Trip11TTrip; = (T +TL ) poos (229

.pO'U:FLa'pOO_l—FR_opdd_(FR0'+FLTT)p0'0'v (22b)

D. Numerical results
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FIG. 3. Occupation numbers, , n; (a,0, pqq (b,8), and current
g (c,f) vs the bias voltage, calculated for no spin-flip processes and
o ] different temperature$=0.1, 0.5, and 1.0(a)—(c) are plotted for
FIG. 2. Nonequilibrium occupation numbens, n;, andpas  ¢,=1 and(d)—(f) for e;=—5. Insets in(c) and(f): the correspond-
(a,b, and tunneling currer(t) vs the bare level of the SQD with no  jng TMR vs the bias voltage. Other parameters are as in Fig. 2.
spin-flip scattering for both magnetization configuratiof®. is

plotted at a small biag= 1.0 and(b) is at a large bia¥=10.0. The
thick lines are plotted for the AP configuration, and the thin curves o ) ] ) ] )
are for the P configuration. The equilibrium occupation numbers aréVith R=1 in Fig. 4. It is obvious, in comparison with the
depicted by the thin lines ifb). Other parameters atld=4, T case of no spin-flip scatteririg=0 (thin lineg, that the spin-
=0.1, andp=0.5. flip transition decreases the difference betweerandn ,
increasespyq and the current. Moreover, their temperature
_ _ _ behaviors are similar to the case of no spin-flip transition. It
bias, when the Fermi level of the source or drain crosses thg worth noting that when the bias voltage is lower than 10.0,
discrete leveky (eq+U). This means a new channel opens; e the value corresponding to the second step,iand the
for tunnelmg..Cons.equentIy, we f}nd that a step in the curren&my step inpqy, We have approximatelyyy=0 (no doubly
appears at this position. As the bias further increases, they a(yccupied level for eg=1 and pey=0 (deep level for ;=
keep constant until the second step at a hlgher voltage cor_—5, indicating that Eqs(17) and (20) are valid in this bias
responding to the case when the Fermi level crosses range. Therefore, we can utilize the definition of the spin

+U(€q), which also induces a step jryq. The insets in Fig. . . : .

. h ._relaxation rate in these equations to account for the impor-
3(c) and 3f) depict the corresponding tunnel magnetore5|s-t fi i d bi h Al tteri
tance(TMR), defined as ance of temperature and bias on the spin-flip scattering, as

depicted in the insets of Figs(l#) and 4e).

AP Ill. COUPLED QUANTUM DOTS

The TMR is enhanced by the Coulomb interaction in the
range between the two biases corresponding to the two steps Now we turn to resonant tunneling through a CQD with
in the current. In these figures, we also display the temperaweak coupling between the QD’s and the leads, as shown in
ture effect in tunneling characteristics. It is easily observed-ig. 1(b). The presumption that the interdot hopping is also
that increasing temperature gradually smoothes the steep stejgak keeps each level of the dots isolated. Then the super-
structure in the occupation numbers and the current, and dgosition of the two levels in different QD’s plays a crucial
creases the TMR. role in tunneling. In order to simplify our derivation, we

We now consider the effect of spin-flip scatterings on theconsider here the infinite intradot Coulomb repulsidhand
tunneling. Because the spin-flip processes have no influeneefinite interdot Coulomb interactiod, which excludes the
on the occupation numbers and the current in the P configustate of two electrons in the same QD but two electrons can
ration, we plot the calculated results for the AP configurationoccupy different QD’s.
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1.0 could be controlled by external time-dependent voltages. The
available states and the corresponding energies for the iso-

08 |-

£ L lated CQD are the following(l) the whole system is empty,
g 061 ol |0),]0),, and the energy is zerd?) the first QD is singly
5 04l = occupied|a),]|0),, and the energy is;; (3) the second QD
o 0z b o is singly occupied|0),|c),, and the energy i%,; and (4)
Tl both of the QD’s are singly occupiedig)i|o’),, and the

energy is 24+ U. With the same theoretical point of view as
in the single QD mentioned in the above section, we can
decompose the real electron operatgyrin these Fock states
as

0.0 [t

C1,=10)1/0)2(0[ (o] +Z |0)1] 0" )2x(0" [1(a], (25

CZU:|0>1|O>22<0|1<U|+2 |a")1]0)2( 0] 1(a'], (26)

in association with the completeness relation

I/ell

10)1]0)22(0[1(0[ + 2, lo)a]o") 20" [1(0]

T,0

v v + 2 (|0)1]0)2(0(a| +[0) 1] o) o] 1O =1.
FIG. 4. Occupation numbers, , n, (a,0, pqq (b,8), and current
(c,f) vs the bias voltage calculated for the AP configuration with the 27

spin-flip transitionR=1 and different temperatureE=0.1, 0.5, Again, we assign these Dirac brackets as operators: the
and 1.0:(a)—(c) are pIotteq foreg=1 and(d)—(f) for €= —.5. For. _ slave-boson operatoreT= |0>1|0>27 dT = |0>1|U,>2 and
comparison, the respective results without the spin-flip transmonh f i fTW_ ¢

are also plotted as thin lines. Insets(b) and (e): the temperature € Pseudofermion  operators 10= 01|02, 20
and bias dependence of the spin relaxation rate. Other paramete?s|0>1|(7>2- Then, Eqs(25)—(27) can be replaced as

are as in Fig. 2.

t
. _ _ Cro=€"f1+ 2 £, dey, (28)
A. Model Hamiltonian and slave-particle representation o’
The tunneling Hamiltonian for the CQD is t
CZ(r:eTf2fr+Z flg'd(r’(ri (29)
g

— t t t
H= Ek eryko’C nkocnka+ 612 Clzrclo'+ 622 C245C2¢
7,K,0 [oa o2 t
efe+ > (fl,fi,+1l,f20)+ 2 d,,dypr=1. (30)
o

(7'(7"

T T ’ ’
+t§g: (€16C20+ C25C10) + U NyyNy +U NNz, And obviously the explicit(antjcommunicators of these
auxiliary particles are
T t_ T _ Tt
+U E nla.nzo./‘i‘% (VLG'CLko'ClU'+ HC) ee —1, dglazdlrilré—aolgiégzgé, fio'fjg—’_gijéo'o" y

T = T = . T: . T = ’ 1‘: 7 " -.r =
+ 2 (VRoChiyCootH.C), (24) ed,, =efj,=fj,e'=f,d, ,=d,, e =dsfj, (()él)
k,o

+ . I The density-matrix elements are expressed as
wherec ), andcy,), are creation and annihilation opera-

tors for a spine electron in the firs{second QD, respec- Poo=10)1]0),2(0] (0| =€Te,
tively. € (j=1,2) is the bare-level energy of electrons in the R ;
jth QD, €1(2)= €4+ 8, in which & is the bare mismatch be- p115,=10)1]0)22(0] {0 = 1, f 1,
tween the two bare levels. The first term in the second line . +
denotes the hoppingbetween the two QD’s. The other no- P220=10)1| ) 22(]1(0[ =T, T2,
tations are the same as those in Sec. Il . , , N

In the situation discussed here, the bare mismatch Padoo =|0)1l0")2x(0" [0 =0, Ao,

should be very small. Otherwise, the quantum coheréihee gnd
superposition of the two statebas quite tiny effect on the R :
tunneling processes. In experiments, this small mismatch p120=10)1 0)22(0[1( o] = T3, 1, .
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In terms of these slave-particle operators, the Hamiltonian for the CQD can be rewritten as

— T T T
H= Ek 677ku'c7]ku'c7]ko'+ 612 fl(rfl(r+ EZE f f2U+tE (fl(rf20+f2l)'fl()')
mK,0 o [oa

+(2€4+V) Z d’ .d w,+2 VLUch(,(e fl(,+2 £ ,dyq | +H.C.
+k2 vRchkU(eszﬁz f1 iy | TH.C.|. (32
|
B. The quantum rate equations for the CQD _
; Poo:__ dwE {FefL w)G 11,(@)
Define the retardedadvancedl and Iessel(greate} GF's ello

for the CQD Gi@~)(t,t")=((c;,(1)[c], (1)) @ =)

as usual. ConS|der|ng Eqs.(25) and (26), these +T L[ 1 fL(©)]1Gg1,( @) + Trofr(@) Geppp( @)

GFs can be expressed in terms of the slave T o[ 1~ fr(@) ]G5 (@)}, (353

particles: Gij,=Geijot = 107G o1 [i=2(1) if i

=1(2)] with Gy, =((e"(V)fi, (V)] f],(t')e(t'))) and '

Garirg o =((1], (0 Ol () 1)), Caopror P27 77 0] TG ) T

—<<f 2o (D) dggr (t)|d;g,,(t)f20,,(t ))). In the following

derivation, we will use the nondiagonal doubly oc- _f G= _ o f G>

cupied related GF’s, for example, Gy o on L(@)]Gerso(@) Z Ro' TR(®) Cg1177 g 0(@)

= (0o (D)), (1) F1o(t)))  aNd Gy o

=((f3,()dger (1) [T, (') F1on(t))). Under the weak- — D Trol 1= ()]G, yyr @)
coupling assumption and small bare detunif)gthe decou- o' o"
pled GF’s of the CQD can be defined in terms of spectrum +Hit(Pron— Poty) (35b)

expressions, in the Fourier space, as

. _i_ _
eII(r(w) 27T|P||(,5(w—6d), p220'_2ﬂ_J' dw[FRUfR(w)GEZZ(r(w)+FRU[1

G(?lolg-g- g-”(w) 50"0'"277ipdd0"0'6[w_(6d+U)]v _fR(w)]ng%(w) 2 FLg’fL(w)Gdzzg.ro.g.u( )
G;ZOZW (@)= 641 02T pygyq Ol @ —(€g+U)], - E g1 (w)]GdZZ(r (r(r”(w)’
Gaity( @)= =271 pood( 0~ €4), Gy yr () +it(P210— P120) (350

:_50./(,.//27Ti "(,./5 w—(eq+U y 33 . . |
piigdlo—(eg+U)], (33 pm:.(ez—q)pnﬁﬂf dw[Zﬂ {T of (©)Gergp ()

0
Glrergr(©)=0, GZf,(@)=0, +T,,[1-f () 1Ggz0(w)}
e”a(w) 2mipij,0(w—€q), - 2” {FLU/fL(w)G;Lm,Uu(w)

<
)70 (@)=~ 8,pr2mipj o0 (egt U)]. (34 L= (@G0 (@)
In order to get the quantum rate equations, we use exactly N 2 {FRU’fR(“’)Gdzlmr (@)
the same procedure as in the preceding section, evaluating
the statistical expectations of the rate of time change of the
density-matrix elementsg;; . After tedious but straightfor-
ward calculations, eventually we obtain in the wide band

limit +it(p11,— P225), (350

+ T re [ 1= FR(0) ]G 1, (@)}
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. i
pddao:Zj dwz {FLUfL(w)G(TZZmT(T’(w)

AT L[ 1= FL(0)]G 1oy e (@)

+T R FR(0) Gy 1 (@)

+TRe[ 1~ fR(®)1Gg 1pge (@)}, (350
b= 7| 903 (L1005 (0)

T L[ 1= FL(0)1G Gy (@)

+ T ot R(©) G gy gy (@) + T L

— fr(©)1G g 150 (@)} (35f)

Substituting these correlation GF's with their decoupled for-
mulations, Eqgs(33) and (34), the quantum rate equations

can be obtained as

poo= 2 [TLop110+ Tropaze— (Tl Tro) Pool,
(on

(363
bllU:FEUpOO+§ f;UrPddaa'_FfaP1w
_g f;g’plhr_ZtlmPIZGv (36b)
-P220=F|§UP00+§ fL_,,/Pddo'o_rﬁapzza
(360

- 2 L P2zt 2tiMpyy,,
g

P120=1(€2— €1) P12yt it(P115— P225)

i -
-3 I+ gt E/ F:,—,,r P12s (360
7,0
bddo’o’zrgopllo'—f—rlfopZZo’_(Fljo'—’_rlgo')pddoa"
(368

Padoo= 1 pp 110+ UL ooz (D Lo+ T padse (360

and along withpoot 2 ,(p115+ P225) + 24,6/ Pddoor =1, N
whichT'7 =T, (eq) andl', =T, f; (eq+U) have the

similar prescriptions as in the SQD. In addition, the classical

PHYSICAL REVIEW B 69, 035324 (2004

spinu’ electronsl'y , into the right lead if the QD is ini-
tially in the doubly occupied statg,q,, ; (3) tunneling into
the QD with spineg’ electronsrgg, from the right lead; and
4) tunneling out from the QD with spig- electrond’_,, into
the left lead, when the QD is initially just in this stgie;, .
Tunneling eventg1) and (2) increasep;;,, but events(3)
and(4) decrease this probability. The final term in Eg6b)
is responsible for coherent effects. Equati@®bd) for the
nondiagonal matrix element;,, indicates that the role of
the leads is to provide damping of the quantum
superpositior® It is also worth noting that the present pro-
posed quantum rate equations are reliable for a wide range of
temperature and external bias voltage, where the three major
approximations we use are valid.

The electric current; flowing from the lead. to the QD
can be calculated as

d
I,_=ief§; {wan(w){ ct10(®)

>
+ E GdZZUo”o”’(w)
o'

+F”U[1—f”(w)][G§1m(w)

<
+ 2 Gd220'0"0'”(w)
(T, ,O'"

] . (37)

Under the weak-coupling approximation, it becomes
IL/e= 2 [T ,(Padoot Paasd) + T LoP11s
(o8

T, (p22st p22) — T yPo0l- (383
Similarly, for the current flowing from the leald we have

INEEDS [T'ro(Pddoot Pddor) T TReP220
o

_f;(r(pll(r+ pl]}) - FFJ;(rPOO]' (38b)

It is easy to prove that, in stationary condition, the current
conservation is fulfilled = — I .
C. Discussion

In order to simplify the analysis, we only consider spin-
independent tunneling processes in the following discussion.
Two special cases, no doubly occupied state and no empty
state, are studied. First we assume the interdot Coulomb in-
teraction U is infinite, whereas only one electron can be
found inside the system, spyq,.r=0 and r;,:o. The
quantum rate equationi86b)—(36f) simplify to

p11=T"{ poo—T'[ p1a—2tImp,, (393

parts of the diagonal elements’ equations have the similar

interpretations. For example, E@6b) for the rate of change

of the number of the spio- electrons in the first Q@p,,, IS

contributed, noting the fact that the firfgecond QD does
not directly connect to the righteft) lead, from four single-
particle tunneling processegl) tunneling into the QD with
spino electronsl'/ from the left lead if the QD is initially
in the empty stateqg; (2) tunneling out from the QD with

p22=Tgpoo—Trpaot2timpyy, (390

p12=i(€3—€1)p1o+it(p1—p2)— (L +TR)p1a,
(390

with poot2p11+2p2o=1. The steady solutions are

pu=[T[ T+t +T)(I' +Tg)/AJA, (408
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par=[T T+t +Tg)(I' +Tg)/A/A, (40D

pr=t(T[Tr—T Tp)ler—e+iz (I +Tr)I/AA,
(400
A=T Tr+2l Th+2 T +t3(I'[ +Tg+4l [ +4I'g)

X(I' +TR)/A, (400

in which A =(e,—€,)?+ (I'_ +T'g)?/4. The steady current

is given byl /e=2(T[ p11— T poo)-

It is interesting to compare our results in this situation
with those of Gurvitz and Prag@rfor the case of large bias
voltage between the two leads. For example, the large bias

voltage determineE, =0, ;=0 andl'| =T', [=Trat
eV>T. Therefore, the dc current becomes

t°I's

|, le=— (41
- £2(2+ T /20 ) + (D) 24+ (€ep— €1)? “1

which coincides with the result obtained by Gurvitz and
Prager'® It is quite obvious that the finite temperature plays
a crucial role in the coherence tunneling. The previous for- 0.0
mulations for large bias voltages, however, can not provide
any information about the temperature effects. This is the

PHYSICAL REVIEW B9, 035324 (2004
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central improvement of the present approach for the coupled d

quantum systems.

FIG. 5. Nonequilibrium occupation numbers,, n,,, pqq

Second, we consider the deep level situation where thg, 1y and currentc) vs the bare level of the CQa) is plotted at

bare levelse; and e, are far below the Fermi level buy

a small biasv=1.0 and(b) is at a large bia¥=10.0. The equilib-

+U is just above the Fermi level in equilibrium. In this case rium occupation numbers are also depicted by the thin lingb)in

the CQD is always occupied apgy=0, I', ,=0. Therefore,
we have

p11=2T g paa— 2L g p11—2timpyy, (429

p22=2T [ paa— 2T part2timpy,, (42b

paa=Lpp1t T poo— (UL +TR)pga, (429
pro=i(€— €1)p1o+it(p1r—pao)— (T +T§)pao,

(420

with 2pq1+2po0t4pgq=1. After solving the set of equa-

tions in the steady state, we obtain
pu=[T TR+ +T3) (T +TR)AJA, (433
poo=[T TR+t +T3)(T +TR)AJA, (43b)

o=t TR ~T TRl er— e +i(T ] +TR)1AA,
(430)
A=2T To+2l [ TH+4T; TH+at3(T +Tr+T; +T%)
(430

in which A= (e~ e)2+ (T +T5)2 The dc current is
I /e=4(T pag—T\ p2o).

(T +T A,

and(e). Other parameters ate¢=4, T=0.1, andt=1.0.

the Fermi level of the right leadg, lies far belowey+ U, but
far above the resonance lewg|lto satisfy the requirement of
deep level, meanwhile the Fermi level of the left lgad is
far aboveey+U, so thatl'| =0, I';=0 andl'/ =T, I'y
=I"g. Finally we obtain

2t2T,
IL/e=—————=—= =—. (49
2t2(1+ T ITR) +2(ey— €1)%+(I')?

D. Numerical results

In this section, we perform numerical calculations for the
tunneling transport through the CQD, by using the quantum
rate equationg36), in the stationary condition. We sym-
metrically add the bias voltage again between the source and
drain u = —ug=eV/2.

First we consider the spin-independent transport. Figure 5
demonstrates the nonequilibrium occupation numbers in the
first and the second QD’s, calculated from the obtained ex-
pectation values of density-matrix elements,=pqy,
+2 0 Pddee’ @Nd Noy=pos.+ 2 pyde s, @nd the corre-
sponding current versus the discrete level for the hopping
=1.0 between the two QD’s at a small bigs=1.0 and a
large biasv=10.0, respectively. We find a similar character-
istic as in the SQOFig. 2): (1) The nonzero bias weakens

It is also interesting to consider the situation of large biaghe Coulomb blockade effect?) n,, and n,, have frac-

voltage in the strong interdot Coulomb repulsidnwhereas

tional steps;(3) n;,#n,, in nonequilibrium;(4) and the
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FIG. 6. Same as Fig. 5 except for0.5.

FIG. 7. Occupation numbers,,,, n,,, pqq (@,9, current(b,e),
conductance has two peaks at the resonant points, while t#d t_he differentia_l conductance,f) vs the bias voltage, calculated
current has three steps in the strong nonequilibrium regimdor different hoppingt. (2)—(c) are plotted fore,=1, (d)—(f) for
Here we observe a higher peak magnitude and a higher stép~ —>- Other parameters are as in Fig. 5.
value at the deep level regime than those at the no doubly
occupied level regime, and the maximum step value locatetiegative differential conductan¢®IDC) appears in the ac-
at the middle “window” of the bare level. More interest- cording biases when the hoppig 1.0. We can explain the
ingly, an opposite behavior has been found when the hoppingppearance of the NDC by variations of the occupation num-
t between two QD’s decreases, as shown in Fig),6n bers with the bias, as shown in Figgaj/and 7d) for the
which we plot the corresponding results for a small hoppinghoppingst=0.2 (thick lines andt=1.0 (thin lines. Consid-
t=0.5. Generally, one may expect that increasing the hopering the fact that we apply the bias symmetrically ang
ping t can reduce the difference between two QD’s, and very= —eV/2<0, the current flowing from the right lead is
strong hopping can finally give rise to the formation of co- dominated for the case;=1 by the process: tunneling out
valence. In other words, the difference betwegp andn,,  from the second QD into the right lead. According to Eqg.
should rise with decreasing the hoppindhis is the case as (38b), we havelg/e~ZX I'r,n,,. It is obvious from Fig.
shown in Figs. 6) and &b), where the occupation numbers 7(a) that the rising second step im,, for the case oft
are displayed for the smaller hopping 0.5 in comparison = 1.0 (thin dashed curveindicates the rising step in the cur-
with the results of the hoppingg=1.0 in Figs. %a) and §b). rent, whereas the declining second step for the case of
One can note that the occupation number in the second QB 0.2 (thick dashed curyeimplies the NDC. In the other
even experiences a descendance in the middle “window” otaseey= — 5, the current flowing from the left lead is ruled
the bare level for the case @of=0.5, which expresses an by the tunneling process into the first QD from the left lead,
opposite behavior in the case bf1.0. This is the reason being approximatelyl, /e==,I'| ,[1—ny;—ny]. Appar-
why current-voltage characteristics are different in the twoently, the variations of;, denoted by the solid lines in Fig.
cases. 7(d) provide interpretations for the current-voltage character-

The effect of the hopping on the tunneling is more clearlyistic in Fig. 7e) and the NDC in Fig. ). Therefore, it can
illustrated in Fig. 7, where we plot the occupation numbershe addressed that opening of a new channel provides nega-
the current, and the differential conductance as a function dfive contribution to the current in the casetef 1.0.
the bias for different hoppingsin the no doubly occupied An interesting question is what happens to the tunneling
level e4=1 and the deep levedy=—5. In both cases, we current and the NDC when the interdot Coulomb interaction
have two peaks in the differential conductance correspondiny weakens or strengthens. We show this in Fig. 8, where
to the two steps in the current. More importantly, we find thatcurrent vs bias is presented for various correlation param-
the current declines in the second step and consequently tle¢ers fromU=0 to « in the cases=1.0 (thick lineg and
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(b)

Occupation

I/el

FIG. 8. The current-voltage characteristics, calculated for indi-
cated values of the interdot Coulomb interactidnand different
hoppingst=0.2 (thin lines and 1.0(thick lines. (a) is plotted for
eq=1 and(b) is for e;=—5. Inset in(a): I-V curves for smalU.

o FIG. 9. Occupation numbers;;, ny;, Ny, andn,, in the P

t=0.2 (thin lines. For U—=, the current has only one step configuration(a) and the AP configuratiofib) for t=0.2, current
with increasing bias in both cases ef=1 (a) and e4= (c), and TMR (d) for t=0.2 and 0.5 vs the bias voltage. Other
—5(b), because no new channel is available due to the exparameters are;=1, T=0.1, andp=0.5.
tremely strong charging effect. For the finite interdot Cou-
lomb correlation, however, the applied bias can overcomgetween different states plays a vitally important role in co-
the Coulomb blockade effect and open a new channel foperent tunneling processes. Directly, a kind of quantum os-
tunneling at the corresponding threshold value of voltagegijjations in mesoscopic systems is due to this superposition
Fort=1.0, this new channel induces a peak in the currenteffect. Now, it is believed that the master equations or the
This peak becomes narrower with declining valudlofbut  mogified quantum rate equations, which are actually equa-
its height remains unchangedUfis not too small. At suffi-  tions of motion of density submatrix for diagonal and non-
ciently small values obJ, as shown in the inset of Fig(®,  diagonal elements, provide a successful tool to study this
height of the peak in current decreases, even vanishes finalyhenomenon, and even allow an analytical description.
when U=0. So we can claim that the interdot Coulomb  For this purpose, we have generalized the slave-particle
interactionU=0 and leads to the single peak in the dif- technique, which was developed previously in the single-site
ferential Conductance, but the finite values result in doubl%pace and Successfu”y app“ed to Study the Strong'y corre-
peaks, and even the NDC in the case sfl.0. lated systems, into the two-site space. Based on this theoret-

The temperature effect is also shown in Fig. 8 for jcal approach and the correct quantization of these artificially
=4. Increasing temperature smoottes curve, but remains  introduced operators, previously well-developed NGF for
the NDC unchanged. noninteracting systems has been used to construct the quan-

Now we study the spin-dependent tunneling through theym rate equations when only three assumptions are made:

CQD connected to two ferromagnetic leads. Figures. 9 angrst, the coupling between the central region and the leads
10 depict the occupation numbers in the two QD’s and the

current in both P and AP configurations fef=1 andey=

—5, respectively. We find, besides analogous behaviors with or @ (v
the spin-independent tunneling, théf) n,,;#n;; even in - 0.8 Z——ﬁ'
both alignmentsi(2) n,;=n,, in the P configuration but % 0.6 b ::ﬁ [ Ap
Ny # Ny in the AP configuration(3) variations of the cur- £ 04 l:\\ R I'.'“
rent flowing in different magnetic configurations are very 8§ ., }T-“‘--—-:—}i-‘"” -----
sensitive to the value of the hopping between two QD’s, S T e
which leads to(4) the negative TMR for the sufficiently 00 P R n
small hoppingt=0.2, as exhibited in Figs.(§) and 1Qc) at
certain voltages.
IV. CONCLUSION 5

In this paper, we have systematically derived the quantum

rate equations for sequential tunneling from NGF, and then

utilized them to investigate quantum coherent transport in a
single QD with weak spin-flip scattering and weakly coupled
QD’s systems taking the intradot and interdot Coulomb in-
teractions into account. In these systems, the superposition  FIG. 10. Same as Fig. 9 but for the caseegt —5.
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must be weak; second, the couplings between the subsystemigtistical expectation of Eq10b) gives
are also weak, for example, weak spin-flip scattering in SQD
and weak interdot hopping in CQD; and third, the wide band

limit. The first condition _mal;e§ it valid that we can keep only Poo™ zk [VWG;nka(t:t)—;Vnﬁ;g,,,@(t't)

the lowest order terms ifV|? in the expansion of the equa- K

tions of motion. It also renders the central region approxi- k< Sk ~<

mately a quasiequilibrium isolated system, which facilitates Ve ”k‘f’e“(t'tHUV’?}G"kadU(t’t)]

the “localized” energy spectrum expressions for the correla- T iRT’;p,;,— iR, - (A1)

tion GF's of every subsystem in the central region in combi-
nation with the second presumption. These approximation
notwithstanding our approach is appropriate for a wide rang
of temperature and external bias voltage, and incorporatio
of the charging effect. Finally, it should be pointed out that
our derivation is equivalent to the lowest-order gradient ex- G=

iccording to Langreth’s operational ruldsthose hybrid
orrelation GF's are given hy

(t,t') = 50.0./J' dtl[Grea(r(t'tl)V;g'g;kg-’(tl ,t/)

pansion techniqu®. eo, ko’
Employing this approach, we have studied in detail the _ + a ,
coherent tunneling through a SQD and a CQD system. We +Gero LtV O (tt) ], (A28)

have given some analytic expressions for steady-state trans-

port in two special cases: doubly occupied prohibited state

and deep level in large intradot or interdot Coulomb repuI-G;”kU,(t,t’)=5(,;,0’J’ dtl[G[jw(t,tl)V’;U,g;ko,(tl,t’)

sion. Furthermore, we have compared some of our results

with previously obtained results in the literature. For ex- < x _a /

amplg, for res}o/nant tunneling through a SQD with spin-flip +Ggro(tt)V) 9 (tst)], (A2b)

scattering, our approach provides a quantum correction to the

classical results. When there is no spin-flip scattering, our - , r -

rate equations reduce exactly to thI(Ja clazsical resSIts aanka’,eo(t't ):500’f dtl[gnko'(t'tl)vvtf’Geao(tl't’)

Glazman and Matveel’, and Beenakket! In the case of

resonant tunneling through a CQD, our results are in perfect +g;k(,r(t,t’)Vw'Gzélw(tl,t')], (A20)

agreement with the previous analysis proposed by Gurvitz

and Pragér under the limitation of zero temperature and

large bias voltage. < N=8—o' r ,G< '
?n addition, V\?e have performed numerical simulations for Cor ao(L8) = g7 j 4Gy (Lt o Garo(tr 1)

variations of occupation numbers and the current with in-

creasing the bias voltage and varying the discrete level in

QD. We summarize the main common features as follows; " . . .

(1) Occupation numbers have fractional steps in nonequilib=>uPstituting Eqs(A2) into Eq. (A1) and taking the Fourier

rium, implying that the Coulomb blockade effect is partially ransformationp,,, can be expressed as

overcome by applying bias voltage, and correspondig)ly

the current-voltage characteristic displays two steps, giving 1 -

rise to double peaks in the differential conductance. Espepw:ﬂf dw%( |v,7(,|2{[e,gm,(w)—Gg(,(,(w)]g,?k(,(w)

cially, our calculations manifest the importance of tempera-

ture and bias on the spin-flip transitions in the SQD. For the +G:(m(w)[g%k(,(w)—grnk(,(w)]}Jr |V,];lz{[G§(m(w)

CQD, a possible NDC can be reached if the interdot Cou- ; - - ; a

lomb interaction is finite and the hopping between two QD’s ~Gyoo( )19kl @) + Gy 0) (9 @) =g @) I}

is smallt=<1.0. Besides, the TMR becomes negative in non- - .

equilibrium for the CQD connected to two ferromagnetic IR Poe 1RO (A3)

leads if the hopping is sufficiently small.

+070 (LU0 Ga (1)), (A2d)

whereg, () are the Fourier transform of the exact GF’s in
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APPENDIX DERIVATION OF QUANTUM RATE K

EQUATIONS FOR SQD Substituting the GF’€A4) into Eg. (A3) and employingG'

In the appendix, we present a detailed derivation of Eqs—G?*=G~ —G~, Eq.(11b) can be reached. Analogously, we
(11). In the following, we take Eq(11b) as an example. The can derive other equations in Ed.1).
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