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Quantum rate equations for electron transport through an interacting system
in the sequential tunneling regime
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We present a set of modified quantum rate equations, with the help of the nonequilibrium Green’s function
and slave-particle techniques along with the correct quantization, for description of the quantum transport
through an interacting mesoscopic region connected with two leads, in the sequential tunneling regime. The
assumption that only leading order ofuVu2 (V is the tunneling coupling between the interacting central region
and the leads! has been taken into account in deriving these equations implies that the quantum rate equations
are only valid in the case of weak coupling between the central region and the leads. For demonstrations, we
consider two special cases in the central region, a single interacting quantum dot~SQD! with weak spin-flip
scattering and a weakly coupled double quantum dots~CQD!, as examples. In the limit of zero temperature and
large bias voltage, the resulting equations are identical to the previous results derived from the many-body
Schrödinger equation. The numerical simulations reveal~1! the dependence of the spin-flip scattering on the
temperature and bias voltage in the SQD, and~2! the possible negative differential conductance and negative
tunnel magnetoresistance in the CQD, depending on the hopping between the two quantum dots.

DOI: 10.1103/PhysRevB.69.035324 PACS number~s!: 73.21.La, 73.23.Hk, 85.35.Be
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I. INTRODUCTION

For many years, much experimental and theoretical w
have been devoted to exploring the transport propertie
artificially nanofabricated structures containing a discr
number of quantum states and a small number of electr
The tunneling current through these mesoscopic devices,
lated from two macroscopic leads by potential barrie
manifested many novel effects due to this confinement.
example, in a semiconductor quantum dot~QD! one ob-
served the Coulomb blockade oscillations due to the ch
ing energy1 and even the Kondo effect due to the stro
on-site Coulomb interaction in the tunneling transport.2,3 Re-
cently, interest in quantum computation and quantum in
mation processing has attracted increasing attention to
problem of measurement of tunneling currents via a mes
copic system that can be modeled by a two-level Ham
tonian, for example, charges in coupled QD’s~Refs. 4–7!
and spins in a QD under magnetic fields.8 Measurement of
the tunneling current in such systems provides informat
not only about the Rabi oscillations7 between the two levels
but also about the spin precession in quantum s
oscillations,9,10 both of which are crucial improvement in th
control of the superposition of the quantum states and t
quantum information processing. In addition, a similar phy
cal picture has been utilized with success to analyze trans
through molecular nanojunction,11 for example, a system o
benzene12 and DNA molecular chain.13

In order to describe this kind of quantum oscillations
quantum transport through a QD, the master equation
‘‘quantum’’ version of the rate equations had been first p
posed by Nazarov,14 and later derived microscopically from
the Schro¨dinger equation directly15,16and from the von Neu-
mann equation and superoperators,17 respectively. In these
the central point is that the equations of motion~EOM! of the
0163-1829/2004/69~3!/035324~15!/$22.50 69 0353
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diagonal density-matrix elements allow for an addition
term of the nondiagonal density-matrix elements, which
deed stand for the coherent superposition of different qu
tum states and are referred to as the coherent transfer t
along with the time evolutions commanded by their ow
EOM. We have to solve these equations self-consistentl
determine the nonequilibrium probability densities. As a
sult, the tunneling current unavoidably contains the contri
tions of the nondiagonal density-matrix elements and na
rally provides the information of the quantum Ra
oscillation, although the explicit expression of current fo
mulation only involves the diagonal density-matrix elemen
The modified quantum rate equations have proved succe
in describing this quantum oscillation in coherently coupl
quantum dots~CQD!,14 the quantum measurement by usin
quantum point contact near CQD,18–20 and even time-
dependent quantum tunneling through the CQD.21 On the
other hand, the Coulomb interaction inside the small c
fined region plays a crucial role in, as mentioned above,
termining the quantum transport properties of the devices
course in controlling the quantum oscillations of two-lev
systems.22 In fact, the so-called noninvasive quantum me
surement process is also based on the Coulomb coup
between the detector and the measured system.23,24 To our
knowledge, however, a systematic investigation of the qu
tum rate equations at arbitrary temperature associated
the Coulomb interactions has been lacking.

About ten years ago, a ‘‘classical’’ rate equation was d
rived for sequential tunneling through a double-barrier s
tem from the quantum kinetic equation, the nonequilibriu
Green’s function~NGF!, which is believed to be a more
powerful tool for studying nonequilibrium phenomena.25 Our
aim in this paper is to systematically explore the quant
rate equations for the interacting systems in the seque
tunneling regime from the NGF approach. The unique sou
of difficulty is how to deal with the Coulomb interactio
©2004 The American Physical Society24-1
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term in the derivation. This problem is the same as that
have in studies of the strongly correlated fermionic syste
for example, the recent investigations on the Kondo
hanced conductance of a QD at low temperature.2,26,27Many
theoretical methods have been developed to solve the st
correlation effects. Among these methods, the slave-par
technique is of particular elegance.26–28The great advantag
of this approach is that the correlated Hamiltonian for
system under study is transformed to an equivalent one w
out Coulomb correlations while introducing several auxilia
particles. Thus previously well-developed formulations
noninteracting systems can be applied to investigate the
teracting systems in the framework of this representat
Along this line, a further technical advance is made in
present work. Here we extend the approach of the sla
particle representation to the weakly coupled quantum s
tem of interest and give the consistent Hamiltonian formu
tion in terms of the slave particles. The equations of mot
of the density-matrix elements are then studied in the fra
work of NGF and within the slave-particle scheme. Our de
vation contains three approximations. The first is to assu
that the central region has very ‘‘weak’’ coupling with th
external environments~the leads! V. Second, we assume th
the couplings between subsystems are also weak to
them individual, for example, the weak spin-flip scattering
single interacting QD~SQD! and weak interdot hopping in
CQD. As a result, we can give the definitions of the spectr
expressions of the NGF’s of the central region in terms of
nonequilibrium probability densities and keep only the lea
ing order term inuVu2 in the expansions of the equations
motion. The final one is to apply the wide band limit in th
two leads, namely, that the coupling strengths between
central region and the leads are independent of the en
and can be considered as constant.

The rest of the paper is organized as follows. In the f
lowing section, we give the derivations in detail for a SQ
taking the weak spin-flip scattering into account, and est
lish the temperature and bias voltage dependent quantum
equations for arbitrary Coulomb interaction. In Sec. III w
derive the quantum rate equations for the weakly coup
QD’s. In both the sections, after the analytical results
discussed for the no doubly occupied level and the deep l
situations, we perform numerical simulations on the occu
tion numbers and the tunneling current in the general cas
functions of the bare level in the QD and the bias volta
between the source and the drain. Finally, all the results
summarized in Sec. V.

II. SINGLE QUANTUM DOT

We begin with our derivation of the quantum rate equ
tions for a SQD with a weak spin-flip scattering in this se
tion. In the case of no spin-flip terms, the rate equations
of classical variety, which have been adequately describe
other methods. Therefore our results are not new in this c
but are established from a different scheme. The purpos
this section is also to provide an examination to prove t
approach in comparison with the previous results in no sp
flip case.
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A. Model Hamiltonian and slave-particle representation

We use the standard model Hamiltonian to describe
resonant tunneling through a SQD, as depicted in Fig. 1~a!,
with a single bare leveled and a weak intradot spin-flip
scatteringRs connected to two noninteracting leads:

H5 (
h,k,s

ehkschks
† chks1ed(

s
cds

† cds1R↑cd↑
† cd↓

1R↓cd↓
† cd↑1Und↑nd↓1 (

h,k,s
~Vhschks

† cds1H.c.!,

~1!

wherechks
† (chks) andcds

† (cds) are the creation~annihila-
tion! operators for electrons with momentumk, spin s, and
energyehks in the leadh (5L,R) and for a spin-s electron
on the QD, respectively. The third term describes the C
lomb interaction among electrons on the QD.nds5cds

† cds is
the occupation operator in the SQD. The fourth term rep
sents the tunneling coupling between the QD and the re
voirs. We assume that the coupling strengthVhs is spin de-
pendent, being able to describe the ferromagnetic leads. E
of the two leads is separately in thermal equilibrium with t
chemical potentialmh , which is assumed to be zero in equ
librium condition and chosen as the energy referen
throughout the paper. In the nonequilibrium case, the che
cal potentials of the leads differ by the applied bias. In t

FIG. 1. Schematic diagrams for the resonant tunneling thro
~a! a single interacting QD and~b! a coherently coupled QD’s.
4-2
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QUANTUM RATE EQUATIONS FOR ELECTRON . . . PHYSICAL REVIEW B69, 035324 ~2004!
paper, we assume that the tunneling coupling is weak eno
to guarantee no Kondo effect in our model and the QD is
the Coulomb blockade regime. Generally, we haveR↑5R↓*
5R as a constant.

According to the finite-U slave-boson approach intro
duced by Zou and Anderson,29 the electron operatorcds can
be written in four possible single-electron states, namely,
empty stateu0& with zero energy«050, the singly occupied
~with spin up or down! electronic stateus& with energy«s

5ed , and the doubly occupied stateu↑↓& with energy«d
52ed1U, as

cds5u0&^su1sus̄&^↑↓u ~s561!. ~2!

Because these four states expand the entire Hilbert space
completeness relation must be satisfied

u0&^0u1u↑↓&^↑↓u1(
s

us&^su51. ~3!

These Dirac brackets were then treated as operatorse†

5u0&, d†5u↑↓& as slave-boson operators andf s
†5us& as

pseudofermion operator. In terms of these auxiliary ope
tors, Eqs.~2! and ~3! become

cds5e†f s1s f s̄
†d, ~4!

e†e1d†d1(
s

f s
† f s51. ~5!

The explicit~anti!communicators of these auxiliary particle
can be easily established from the definitions of the Di
brackets:30

ee†51, dd†51, f s f s8
†

5dss8 ,

ed†5e fs
†5 f se†5 f sd†5de†5d fs

†50. ~6!

Therefore, along with these correct quantization, the Ham
tonian~1! can be replaced by the following form in the au
iliary particle representation:

H5 (
h,k,s

ehkschks
† chks1ed(

s
f s

† f s1~2ed1U !d†d

1R↑ f ↑
†f ↓1R↓ f ↓

†f ↑1 (
h,k,s

@Vhschks
† ~e†f s1s f s̄

†d!

1H.c.#, ~7!

which was proved to be equivalent to the original one, E
~1!, by Zou and Anderson in the case of no spin-flip term29

Furthermore, as far as the four possible single elec
states are considered as the basis, the statistical expecta
of the diagonal elements of the density-matrix,r i i ( i
5$0,s,d%), give the occupation probabilities of the resona
level in the QD being empty, or singly occupied by spins
electron, or doubly occupied, respectively. The nondiago
term r↑↓ describes the coherent superposition state betw
the spin-up and -down states in the QD. In the slave-part
notation, the corresponding relations between the dens
03532
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matrix elements and these auxiliary operators are obviou
r̂005u0&^0u5e†e, r̂ss5us&^su5 f s

† f s , r̂dd5u↑↓&^↑↓u
5d†d, and the nondiagonal termr̂ss̄5us̄&^su5 f s̄

†f s . Ac-
cording to Eq.~5!, the constraint is subject to the diagon
elements of the density-matrixr̂001(sr̂ss1 r̂dd51.

B. Derivation of the quantum rate equations

In this section, we derive the rate equations for sequen
tunneling starting from the combined fermion-boson Ham
tonian ~7! by using the Keldysh’s NGF.

In order to describe the nonequilibrium state
electrons, we define the retarded~advanced! and lesser
~greater! Green’s functions ~GFs! for the QD
Gss8

r (a),,(.)(t,t8)[^^cds(t)ucds8
† (t8)&& r (a),,(.) as follows:

Gss8
r (a)(t,t8)[6 iu(6t7t8)^$cds(t),cds8

† (t8)%&, Gss8
, (t,t8)

[ i ^cds8
† (t8)cds(t)&, and Gss8

. (t,t8)[2 i ^cds(t)cds8
† (t8)&.

Considering Eq. ~4!, these GF’s in the QD can
be divided into two parts, Gss85Gess81Gds̄s̄8
with Gess8[^^e†(t) f s(t)u f s8

† (t8)e(t8)&& and Gds̄s̄8
5ss8^^ f s̄

†(t)d(t)ud†(t8) f s̄8(t8)&&. Under the weak-
coupling assumption, the central region can be regarded
considerably isolated system and its density-matrix oper
is supposed to ber̂5( i j r i j r̂ i j ( i , j 5$0,s,d%), meanwhile
the reservoirs are taken as ‘‘environment’’ located in loc
thermal equilibrium. Therefore, we can readily define t
decoupled diagonal GF’s of the QD for weak spin-flip tra
sitions in terms of spectrum expression, in the Fourier spa
as

Gess
r0 ~v!5

r001rss

v2ed1 i01
,

Gds̄s̄
r0

~v!5
rdd1rs̄s̄

v2~ed1U !1 i01
,

Gess
,0 ~v!52p irssd~v2ed!,

Gds̄s̄
,0

~v!52p irddd@v2~ed1U !#,

Gess
.0 ~v!522p ir00d~v2ed!,

Gds̄s̄
.0

~v!522p irs̄s̄d@v2~ed1U !#. ~8!

If no bias voltage is added between the two leads,
central region is in a thermal equilibrium state and t
distribution probabilities are well known asr0051/Z,
rss5e2ed /T/Z, and rdd5e2(2ed1U)/T/Z with Z51
12e2ed /T1e2(2ed1U)/T. As far as the spin-flip transition is
considered, the decoupled nondiagonal correlation GFs
crucial in the following derivation. Their Fourier expressio
are easily obtained from the definitions as

Gess̄
,0

~v!52p irss̄d~v2ed!,

Gds̄s
.0

~v!52p irss̄d@v2~ed1U !#,

Gds̄s
,0

~v!50, Gess̄
.0

~v!50. ~9!
4-3
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For the case of nonequilibrium discussed here, these ou
equilibrium probabilities are determined by the coupling
environments with different chemical potentials, and usua
they obey a set of equations of time evolution, the rate eq
tions.

Here, we start from the equations of motion of the ope
tors r̂ i j with the Hamiltonian~7! and modified quantization
Eq. ~6!:

ṙ̂005 i @H,e†e#52 i (
h,k,s

~Vhschks
† e†f s2Vhs* f s

†echks!,

~10a!

ṙ̂ss5 i @H, f s
† f s#5 i(

h,k
~Vhschks

† e†f s2s̄Vhs̄chks̄
† f s

†d

2Vhs* f s
†echks1s̄Vhs̄

* d†f schks̄!

1 iRs̄f s̄
†f s2 iRs f s

† f s̄, ~10b!

ṙ̂ss̄5 i @H, f s̄
†f s#5 i(

h,k
~Vhs̄chks̄

† e†f s2s̄Vhs̄chks̄
† f s̄

†d

2Vhs* f s̄
†echks1sVhs* d†f schks!

1 iRs~ f s
† f s2 f s̄

†f s̄!, ~10c!

ṙ̂dd5 i @H,d†d#5 i (
h,k,s

s~Vhschks
† f s̄

†d2Vhs* d†f s̄chks!.

~10d!

Their statistical expectations involve the time-diagon
parts of the correlation functions:

Ges,hks8
,

~ t,t8![ i ^chks8
†

~ t8!e†~ t ! f s~ t !&,

Gds8,hks
,

~ t,t8![ i ^chks
† ~ t8! f s8

†
~ t !d~ t !&,

Ghks8,es
,

~ t,t8![ i ^ f s
†~ t8!e~ t8!chks8~ t !&,

and

Ghks,ds8
,

~ t,t8![ i ^d†~ t8! f s8~ t8!chks~ t !&.

With the help of the Langreth analytic continuation rules31

we obtain the following expressions in the wide band lim
~the detail derivation will be given in the Appendix!:

ṙ0052
i

2pE dv(
h,s

$Ghs f h~v!Gess
. ~v!

1Ghs@12 f h~v!#Gess
, ~v!%, ~11a!

ṙss5
i

2pE dv(
h

$Ghs f h~v!Gess
. ~v!

1Ghs@12 f h~v!#Gess
, ~v!2Ghs̄f h~v!Gdss

. ~v!

2Ghs̄@12 f h~v!#Gdss
, ~v!%1 iRs̄rss̄2 iRsrs̄s ,

~11b!
03532
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ṙss̄5
i

4pE dv(
h

~Ghs1Ghs̄!$ f h~v!Gess̄
.

~v!

1@12 f h~v!#Gess̄
,

~v!2 f h~v!Gds̄s
.

~v!

2@12 f h~v!#Gds̄s
,

~v!%1 iRs~rss2rs̄s̄!, ~11c!

ṙdd5
i

2pE dv(
h,s

$Ghs f h~v!Gds̄s̄
.

~v!

1Ghs@12 f h~v!#Gds̄s̄
,

~v!% ~11d!

in terms of the QD’s GFs in the Fourier space.32 Here Ghs

52p(kuVhsu2d(v2ehks) denotes the strength of couplin
between the QD level and the leadh. In wide band limit, it
is independent of energy and is supposed to be cons
Under the weak-coupling assumption, it is adequate to k
only the leading order ofuVu2 in evaluation of these occupa
tion densities. So we can replace these QD’s GFs with th
decoupled formulas, Eqs.~8! and ~9!. Finally, the resulting
quantum rate equations become

ṙ005(
s

~Gs
2rss2Gs

1r00!, ~12a!

ṙss5Gs
1r001G̃ s̄

2rdd2~Gs
21G̃ s̄

1!rss22Im~Rs̄rss̄!,
~12b!

ṙss̄5 iRs~rss2rs̄s̄!2 1
2 ~ G̃s

11G̃ s̄
1

1Gs
21Gs̄

2!rss̄,
~12c!

ṙdd5G̃↓
1r↑↑1G̃↑

1r↓↓2~ G̃↑
21G̃↓

2!rdd , ~12d!

together with the normalization relationr001rdd1(srss

51 from Eq. ~3!, with the definitionsGs
65(hGhs f h

6(ed)
and G̃s

65(hGhs f h
6(ed1U), where f h

1(v)5$1
1e(v2mh)/T%21 is the Fermi distribution function of theh
lead andf 2(v)512 f 1(v). Here,Gs

1 (Gs
2) describes the

tunneling rate of electrons with spins into ~out from! the
QD without the occupation of thes̄ state. Similarly,
G̃s

1 (G̃s
2) describes the tunneling rate of electrons with sp

s into ~out from! the QD, when the QD is already occupie
by an electron with spins̄, revealing the modification of the
corresponding rates due to the Coulomb repulsion.

These rate equations, Eqs.~12a!, ~12b!, and ~12d! coin-
cide with the previous classical rate equations in the sequ
tial picture for the resonant tunneling if the intradot spin-fl
transition is quenched.33,34 Obviously, if the left lead has the
same chemical potential as the right lead, the stationary
lutions of Eqs.~12a!, ~12b!, and~12d! reduce exactly to the
above-mentioned thermal equilibrium results in the case
R50. In this situation, they have clear classical interpre
tions. For example, the rate of change of the number of
spin-s electronsrss in the SQD, described by Eq.~12b!, is
contributed from the following four single-particle tunnelin
processes:~1! tunneling into the QD with spin-s electrons
Gs

1 from both left and right leads if the QD is initially in the
empty stater00; ~2! tunneling out from the QD with spin-s̄
4-4
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QUANTUM RATE EQUATIONS FOR ELECTRON . . . PHYSICAL REVIEW B69, 035324 ~2004!
electronsG̃ s̄
2 into both two leads if the QD is initially in the

doubly occupied staterdd ; ~3! tunneling into the QD with
spin-s̄ electronsG̃ s̄

1 from both two leads; and~4! tunneling
out from the QD with spin-s electronsGs

2 into both two
leads, when the QD is initially just in the staterss . Tunnel-
ing events~1! and ~2! increase the probability of the spin-s
state, but events~3! and ~4! decrease this probability. Thes
contributions constitute the classical rate equation fo
Other diagonal equations have similar interpretations. No
that the final term in Eq.~12b! describes transitions betwee
isolated states through the coupling with nondiagonal ter
which has no classical counterpart. Therefore, it is resp
sible for coherent effects in the transport.

The nondiagonal matrix elementrss̄ is ruled by Eq.~12c!,
which resembles the optical Bloch equation and descr
the dynamics of quantum superposition. This is a pure qu
tum effect. As mentioned by Gurvitz and Prager,15 the cou-
plings with the leads~all possible tunneling processes i
volved! always provide negative contribution and cau
damping of the quantum superposition.

The particle currentI h flowing from the leadh to the QD
can be evaluated from the rate of time change of the elec
number operatorNh(t)5(k,schks

† (t)chks(t) of the leadh:32

I h~ t !52
e

\ K dNh

dt L
52 i

e

\ K FH,(
k,s

chks
† ~ t !chks~ t !G L

5 i
e

\ K (
k,s

$Vhschks
† ~ t !@e†~ t ! f s~ t !1s f s̄

†
~ t !d~ t !#

2Vhs* @ f s
†~ t !e~ t !1sd†f s̄~ t !#chks~ t !%L . ~13!

Ultimately, the current can be expressed in terms of the G
in the QD:

I h5 ieE dv

2p (
s

$Ghs f h~v!@Gess
. ~v!1Gds̄s̄

.
~v!#

1Ghs@12 f h~v!#@Gess
, ~v!1Gds̄s̄

,
~v!#%. ~14!

Under the weak-coupling approximation, it becomes

I h /e5(
s

~G̃hs
2 rdd1Ghs

2 rss2G̃hs̄
1 rss2Ghs

1 r00!.

~15!

This formula demonstrates that all possible tunneling p
cesses relevant to the leadh can provide corresponding con
tributions to the current of the leadh and the current is
totally determined by the diagonal elements of the dens
matrix of the central region. However, the nondiagonal e
ment of the density-matrix is coupled with diagonal eleme
in the rate equation~12b!, and therefore influences the tun
neling current indirectly.
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C. Discussion

The rate equations~12! may be readily solved under sta
tionary condition for arbitrary bias voltagesV and tempera-
turesT, and consequently the dc current may be obtained
Eq. ~15!. More interestingly, it is useful to review the follow
ing two special cases in the case of large Coulomb repuls
First, we consider that no doubly occupied state is availa
in the QD, i.e.,rdd50. In this case, we assume that the ba
level ed of the QD is just above the Fermi levelsm of the
two leads under equilibrium condition, meaningG̃s

1.0,
G̃s

2.(hGhs . Then, in steady state, the quantum rate eq
tions ~12b! and ~12c! become

Gs
1r002Gs

2rss22Im~Rs̄rss̄!50, ~16a!

iRs~rss2rs̄s̄!2
1

2
~Gs

21Gs̄
2!rss̄50, ~16b!

with r001(srss51. They can be readily solved

r↑↑5
G↑

1G↓
21x~G↑

11G↓
1!

D
, ~17a!

r↓↓5
G↓

1G↑
21x~G↑

11G↓
1!

D
, ~17b!

in which D5@(G↑
11G↑

2)(G↓
11G↓

2)2G↑
1G↓

1#1x(2G↑
1

12G↓
11G↑

21G↓
2) and x54uRu2/(G↑

21G↓
2). The steady

tunneling current is I R5e(s@(GRs
1 1GRs̄

1
1GRs

2 )rss

2GRs
1 #. For large bias voltage, i.e.,GLs

2 50 and GRs
1 50,

and spin-independent tunneling, the dc current becomes

I R /e5
2GL~GR12x8!

2GL1GR1x8~214GL /GR!
, ~18!

andx852uRu2/GR , which depicts the spin-flip transition in
duced modification for the corresponding formula, Eq.~3.10!
in Ref. 15.

The second case we consider here is the deep level in
large-U limit: the bare leveled is far below the Fermi level
m but ed1U is slightly above the Fermi level in equilibrium
condition, implicating that the QD is always occupied b
electrons. In this situation, we haver0050, Gs

2.0, and
Gs

1.(hGhs . Different from the above case, only singly an
doubly occupied states are permitted in tunneling proces
Under the stationary condition, the quantum rate equati
~12b! and ~12c! reduce to

G̃ s̄
2rdd2G̃ s̄

1rss22Im~Rs̄rss̄!50, ~19a!

iRs~rss2rs̄s̄!2 1
2 ~ G̃s

11G̃ s̄
1!rss̄50, ~19b!

with rdd1(srss51. The solutions are

r↑↑5F ~ G̃↑
11x!~G̃↓

11G̃↓
2!1x~G̃↑

11G̃↑
2!

~ G̃↑
11x!~G̃↓

11x!2x2
21Grdd ,

~20a!
4-5
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BING DONG, H. L. CUI, AND X. L. LEI PHYSICAL REVIEW B 69, 035324 ~2004!
r↓↓5F ~ G̃↓
11x!~G̃↑

11G̃↑
2!1x~G̃↓

11G̃↓
2!

~ G̃↑
11x!~G̃↓

11x!2x2
21Grdd ,

~20b!

rdd5F ~ G̃↓
11x!~G̃↑

11G̃↑
2!1x~G̃↓

11G̃↓
2!

~ G̃↓
11x!G̃↑

11xG̃↓
1

1
~ G̃↑

11x!~G̃↓
11G̃↓

2!1x~G̃↑
11G̃↑

2!

~ G̃↑
11x!G̃↓

11xG̃↑
1

21G21

,

~20c!

with x54uRu2/(G̃↑
11G̃↓

1). The steady tunneling current i
given by I R5e(s@G̃Rs

2 rdd2G̃Rs̄
1 rss#. Large bias voltage

further simplifies the spin-independent current as

I R /e5
2G̃LG̃R12x9

G̃L12G̃R12x9~11G̃R /G̃L!
, ~21!

with x952uRu2/G̃L . This is a modification of Eq.~3.11!
given by Gurvitz and Prager due to spin-flip transitions.15

It should be noted that the same two cases are also
lyzed in Ref. 35 for an interacting QD with spin-flip trans
tions included. They evaluated the occupation numbers f
the classical rate equations and utilized a spin-relaxa
time ts to describe the spin-flip transitions. Therefore, th
results are slightly different from ours. For both cases, if
redefine the spin-relaxation timets as 1/ts5x, which is now
of temperature and bias voltage dependence, their resu35

are the same as ours, Eqs.~17! and~20! of the quantum rate
equations. This is a clear demonstration of the importanc
quantum ‘‘coherence.’’

It is also worth examining the quantum rate equatio
~12! derived here at large bias voltage between the left
right leads without the spin-flip transitions. In this case,
assumeeV@T and eV@U, so GLs

2 5GRs
1 50 and G̃Ls

2

5G̃Rs
1 50. The quantum rate equations lead to the followin

ṙ005GR↑r↑↑1GR↓r↓↓2~GL↑1GL↓!r00, ~22a!

ṙss5GLsr001G̃Rs̄rdd2~GRs1G̃Ls̄!rss , ~22b!

ṙdd5G̃L↓r↑↑1G̃L↑r↓↓2~ G̃R↑1G̃R↓!rdd , ~22c!

and the current isI R5e(s(G̃Rsrdd1GRsrss). At zero tem-
perature and spin-independent tunneling, these equation
deed resemble the rate equations derived from the Sc¨-
dinger equation developed by Gurvitz and Prager.15

D. Numerical results

In this section, we perform numerical calculations for t
spin dependence of the tunneling processes through the
connected to two ferromagnetic leads. In the following c
culations, we consider two magnetic configurations, nam
parallel ~P! and antiparallel~AP! configurations. When the
magnetic electrodes are in P configuration, we assume
the majority electrons are spin ups5↑ and the minority
03532
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electrons are spin downs5↓. We also assume that in the A
configuration the magnetization of the right electrode is
versed.

Therefore, for the identical leads and symmetric barrie
of interest in the present paper, we further assume that
ferromagnetism of the leads can be accounted for by
polarization-dependent couplingsGL↑5GR↑5(11p)G0 ,
GL↓5GR↓5(12p)G0 for the P alignment, whileGL↑5GR↓
5(11p)G0 , GL↓5GR↑5(12p)G0 for the AP alignment.
G0 denotes the tunneling coupling between the QD and
leads without internal magnetization, andp (0<p,1)
stands for the polarization strength of the leads. In the w
band limit, G0 is supposed to be a constant and chosen
unit of energy in the following paper. Moreover, we measu
energy from the Fermi levels of the left and right leads in t
equilibrium condition (mL5mR50) thereafter. The discrete
level ed of the QD can cross the Fermi levels by tuning t
gate voltage in experiments. Without loss of generality,
apply the bias voltageV between the source and drain sym
metricallymL52mR5eV/2, and neglect the shift of the dis
crete level caused by this external voltage. Because of
symmetry, we will restrict to positive bias only,V.0.

From Eqs.~12!, one can find all the expectation values
the density-matrix elements for a given biasV in the station-
ary condition, and thus allow us to calculate the tunnel
current flowing through the system by employing Eq.~15!
and the nonequilibrium occupation numbersn↑ , n↓ , defined
by ns5rss1rdd .

First we consider no spin-flip scattering processes on
QD. Figures 2~a! and 2~b! plot the nonequilibrium occupa
tion numbers as a function of the bare level calculated fo
small biasV51.0 and a large biasV510.0, respectively, in
both P~thin lines! and AP~thick lines! configurations. The
two spacial bias voltages are chosen in order here to dem
strate the linear-response regime (V51.0) and the strong
nonlinear case (V510.0), respectively. For comparison, w
also plot the equilibrium occupation numbers in Fig. 2~b!.
From these figures, we can observe the following:~1! The
complete Coulomb blockade~charging! effect in equilibrium
~the single step inrdd) is partially removed in nonequilib-
rium, i.e.,rdd becomes a multistep function of the gate vo
age;~2! ns has fractional steps in nonequilibrium in contra
to just half-integer steps in equilibrium;~3! n↑5n↓ in the P
configuration, whereasn↑Þn↓ in the AP configuration. Fig-
ure 2~c! shows the tunneling current calculated for both co
figurations. The current in the P alignment is always larg
than that in the AP alignment in the whole range of the g
voltage. In the linear-response regime, the current provi
the information of the conductance of the device: there
pear two resonant peaks with equal heights when the
voltage controlled levelsed and ed1U, respectively, cross
the Fermi levels of two leads. While in the strong noneq
librium case, there are three steps in the current which
respond to the steps in the occupation numbers, wherea
tween the steps the current is constant.

Figure 3 illustrates typical variations of the occupati
numbers and the current with the bias voltageV for ed51
~the no doubly occupied level! anded525 ~the deep level!.
In the first ~second! case, the first step inns occurs at the
4-6
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QUANTUM RATE EQUATIONS FOR ELECTRON . . . PHYSICAL REVIEW B69, 035324 ~2004!
bias, when the Fermi level of the source or drain crosses
discrete leveled (ed1U). This means a new channel ope
for tunneling. Consequently, we find that a step in the curr
appears at this position. As the bias further increases, the
keep constant until the second step at a higher voltage
responding to the case when the Fermi level crossesed
1U(ed), which also induces a step inrdd . The insets in Fig.
3~c! and 3~f! depict the corresponding tunnel magnetores
tance~TMR!, defined as

TMR[
I P2I AP

I AP
. ~23!

The TMR is enhanced by the Coulomb interaction in t
range between the two biases corresponding to the two s
in the current. In these figures, we also display the temp
ture effect in tunneling characteristics. It is easily observ
that increasing temperature gradually smoothes the steep
structure in the occupation numbers and the current, and
creases the TMR.

We now consider the effect of spin-flip scatterings on
tunneling. Because the spin-flip processes have no influe
on the occupation numbers and the current in the P confi
ration, we plot the calculated results for the AP configurat

FIG. 2. Nonequilibrium occupation numbersn↑ , n↓ , and rdd

~a,b!, and tunneling current~c! vs the bare level of the SQD with n
spin-flip scattering for both magnetization configurations.~a! is
plotted at a small biasV51.0 and~b! is at a large biasV510.0. The
thick lines are plotted for the AP configuration, and the thin curv
are for the P configuration. The equilibrium occupation numbers
depicted by the thin lines in~b!. Other parameters areU54, T
50.1, andp50.5.
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with R51 in Fig. 4. It is obvious, in comparison with th
case of no spin-flip scatteringR50 ~thin lines!, that the spin-
flip transition decreases the difference betweenn↑ and n↓ ,
increasesrdd and the current. Moreover, their temperatu
behaviors are similar to the case of no spin-flip transition
is worth noting that when the bias voltage is lower than 10
i.e., the value corresponding to the second step inns and the
only step inrdd , we have approximatelyrdd.0 ~no doubly
occupied level! for ed51 andr00.0 ~deep level! for ed5
25, indicating that Eqs.~17! and ~20! are valid in this bias
range. Therefore, we can utilize the definition of the sp
relaxation rate in these equations to account for the imp
tance of temperature and bias on the spin-flip scattering
depicted in the insets of Figs. 4~b! and 4~e!.

III. COUPLED QUANTUM DOTS

Now we turn to resonant tunneling through a CQD w
weak coupling between the QD’s and the leads, as show
Fig. 1~b!. The presumption that the interdot hopping is al
weak keeps each level of the dots isolated. Then the su
position of the two levels in different QD’s plays a cruci
role in tunneling. In order to simplify our derivation, w
consider here the infinite intradot Coulomb repulsionU8 and
a finite interdot Coulomb interactionU, which excludes the
state of two electrons in the same QD but two electrons
occupy different QD’s.

s
re

FIG. 3. Occupation numbersn↑ , n↓ ~a,d!, rdd ~b,e!, and current
~c,f! vs the bias voltage, calculated for no spin-flip processes
different temperaturesT50.1, 0.5, and 1.0.~a!–~c! are plotted for
ed51 and~d!–~f! for ed525. Insets in~c! and~f!: the correspond-
ing TMR vs the bias voltage. Other parameters are as in Fig. 2
4-7
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A. Model Hamiltonian and slave-particle representation

The tunneling Hamiltonian for the CQD is

H5 (
h,k,s

ehkschks
† chks1e1(

s
c1s

† c1s1e2(
s

c2s
† c2s

1t(
s

~c1s
† c2s1c2s

† c1s!1U8n1↑n1↓1U8n2↑n2↓

1U (
s,s8

n1sn2s81(
k,s

~VLscLks
† c1s1H.c.!

1(
k,s

~VRscRks
† c2s1H.c.!, ~24!

wherec1(2)s
† andc1(2)s are creation and annihilation oper

tors for a spin-s electron in the first~second! QD, respec-
tively. e j ( j 51,2) is the bare-level energy of electrons in t
j th QD, e1(2)5ed6d, in which d is the bare mismatch be
tween the two bare levels. The first term in the second
denotes the hoppingt between the two QD’s. The other no
tations are the same as those in Sec. II.

In the situation discussed here, the bare mismatchd
should be very small. Otherwise, the quantum coherence~the
superposition of the two states! has quite tiny effect on the
tunneling processes. In experiments, this small misma

FIG. 4. Occupation numbersn↑ , n↓ ~a,d!, rdd ~b,e!, and current
~c,f! vs the bias voltage calculated for the AP configuration with
spin-flip transitionR51 and different temperaturesT50.1, 0.5,
and 1.0.~a!–~c! are plotted fored51 and~d!–~f! for ed525. For
comparison, the respective results without the spin-flip transi
are also plotted as thin lines. Insets in~b! and ~e!: the temperature
and bias dependence of the spin relaxation rate. Other param
are as in Fig. 2.
03532
e

h

could be controlled by external time-dependent voltages.
available states and the corresponding energies for the
lated CQD are the following:~1! the whole system is empty
u0&1u0&2, and the energy is zero;~2! the first QD is singly
occupied,us&1u0&2, and the energy ise1; ~3! the second QD
is singly occupied,u0&1us&2, and the energy ise2; and ~4!
both of the QD’s are singly occupied,us&1us8&2, and the
energy is 2ed1U. With the same theoretical point of view a
in the single QD mentioned in the above section, we c
decompose the real electron operatorcj s in these Fock states
as

c1s5u0&1u0&22^0u1^su1(
s8

u0&1us8&22^s8u1^su, ~25!

c2s5u0&1u0&22^0u1^su1(
s8

us8&1u0&22^su1^s8u, ~26!

in association with the completeness relation

u0&1u0&22^0u1^0u1 (
s,s8

us&1us8&22^s8u1^su

1(
s

~ us&1u0&22^0u^su1u0&1us&22^su1^0u!51.

~27!

Again, we assign these Dirac brackets as operators:
slave-boson operatorse†5u0&1u0&2 , dss8

†
5us&1us8&2 and

the pseudofermion operators f 1s
† 5us&1u0&2 , f 2s

†

5u0&1us&2. Then, Eqs.~25!–~27! can be replaced as

c1s5e†f 1s1(
s8

f 2s8
† dss8 , ~28!

c2s5e†f 2s1(
s8

f 1s8
† ds8s , ~29!

e†e1(
s

~ f 1s
† f 1s1 f 2s

† f 2s!1(
ss8

dss8
† dss851. ~30!

And obviously the explicit~anti!communicators of these
auxiliary particles are

ee†51, ds1s2
ds

18s
28

†
5ds1s

18
ds2s

28
, f is f j s8

†
5d i j dss8 ,

edss8
†

5e fj s
† 5 f j se†5 f j sds8s9

†
5dss8e

†5ds8s9 f j s
† 50.

~31!

The density-matrix elements are expressed as

r̂005u0&1u0&22^0u1^0u5e†e,

r̂11s5us&1u0&22^0u1^su5 f 1s
† f 1s ,

r̂22s5u0&1us&22^su1^0u5 f 2s
† f 2s ,

r̂ddss85us&1us8&22^s8u1^su5dss8
† dss8 ,

and

r̂12s5u0&1us&22^0u1^su5 f 2s
† f 1s .

e

n

ers
4-8
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In terms of these slave-particle operators, the Hamiltonian for the CQD can be rewritten as

H5 (
h,k,s

ehkschks
† chks1e1(

s
f 1s

† f 1s1e2(
s

f 2s
† f 2s1t(

s
~ f 1s

† f 2s1 f 2s
† f 1s!

1~2ed1U ! (
s,s8

dss8
† dss81(

k,s FVLscLks
† S e†f 1s1(

s8
f 2s8

† dss8D 1H.c.G
1(

k,s FVRscRks
† S e†f 2s1(

s8
f 1s8

† ds8sD 1H.c.G . ~32!
v

c-

um

c
t
th

n

B. The quantum rate equations for the CQD

Define the retarded~advanced! and lesser~greater! GF’s
for the CQD Gi j s

r (a),,(.)(t,t8)[^^cis(t)ucj s
† (t8)&& r (a),,(.)

as usual. Considering Eqs.~25! and ~26!, these
GFs can be expressed in terms of the sla
particles: Gi j s5Gei js1(s8s9Gdī j̄ ss8s9 @ ī 52(1) if i
51(2)] with Gei js[^^e†(t) f is(t)u f j s

† (t8)e(t8)&& and
Gd11ss8s95^^ f 1s8

† (t)ds8s(t)uds9s
† (t8) f 1s9(t8)&&, Gd22ss8s9

5^^ f 2s8
† (t)dss8(t)udss9

† (t8) f 2s9(t8)&&. In the following
derivation, we will use the nondiagonal doubly o
cupied related GF’s, for example, Gd21ss8s9
5^^ f 2s9

† (t)ds8s9(t)uds8s
† (t8) f 1s(t8)&& and Gd21ss8s9

8

5^^ f 2s
† (t)dss8(t)uds9s8

† (t8) f 1s9(t8)&&. Under the weak-
coupling assumption and small bare detuningd, the decou-
pled GF’s of the CQD can be defined in terms of spectr
expressions, in the Fourier space, as

Geiis
,0 ~v!52p ir i i sd~v2ed!,

Gd11ss8s9
,0

~v!5ds8s92p irdds8sd@v2~ed1U !#,

Gd22ss8s9
,0

~v!5ds8s92p irddss8d@v2~ed1U !#,

Geiis
.0 ~v!522p ir00d~v2ed!,Gdiiss8s9

.0
~v!

52ds8s92p ir i i s8d@v2~ed1U !#, ~33!

Gdi j ss8s9
(8),0

~v!50, Gei js
.0 ~v!50,

Gei js
,0 ~v!52p ir i j sd~v2ed!,

Gdi j ss8s9
(8).0

~v!52dss92p ir j i sd@v2~ed1U !#. ~34!

In order to get the quantum rate equations, we use exa
the same procedure as in the preceding section, evalua
the statistical expectations of the rate of time change of
density-matrix elementsr i j . After tedious but straightfor-
ward calculations, eventually we obtain in the wide ba
limit
03532
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d

ṙ0052
i

2pE dv(
s

$GLs f L~v!Ge11s
. ~v!

1GLs@12 f L~v!#Ge11s
, ~v!1GRs f R~v!Ge22s

. ~v!

1GRs@12 f R~v!#Ge22s
, ~v!%, ~35a!

ṙ11s5
i

2pE dvH GLs f L~v!Ge11s
. ~v!1GLs@1

2 f L~v!#Ge11s
, ~v!2 (

s8,s9
GRs8 f R~v!Gd11s8ss9

.
~v!

2 (
s8,s9

GRs8@12 f R~v!#Gd11s8ss9
,

~v!J
1 i t ~r12s2r21s!, ~35b!

ṙ22s5
i

2pE dvH GRs f R~v!Ge22s
. ~v!1GRs@1

2 f R~v!#Ge22s
, ~v!2 (

s8,s9
GLs8 f L~v!Gd22s8ss9

.
~v!

2 (
s8,s9

GLs8@12 f L~v!#Gd22s8ss9
,

~v!J
1 i t ~r21s2r12s!, ~35c!

ṙ12s5 i ~e22e1!r12s1
i

4pE dvH(h $Ghs f h~v!Ge12s
. ~v!

1Ghs@12 f h~v!#Ge12s
, ~v!%

2 (
s8,s9

$GLs8 f L~v!Gd21ss8s9
.

~v!

1GLs8@12 f L~v!#Gd21ss8s9
,

~v!%

2 (
s8,s9

$GRs8 f R~v!Gd21ss8s9
8.

~v!

1GRs8@12 f R~v!#Gd21ss8s9
8,

~v!%J
1 i t ~r11s2r22s!, ~35d!
4-9
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BING DONG, H. L. CUI, AND X. L. LEI PHYSICAL REVIEW B 69, 035324 ~2004!
ṙddss5
i

2pE dv(
s8

$GLs f L~v!Gd22sss8
.

~v!

1GLs@12 f L~v!#Gd22sss8
,

~v!

1GRs f R~v!Gd11sss8
.

~v!

1GRs@12 f R~v!#Gd11sss8
,

~v!%, ~35e!

ṙddss̄5
i

2pE dv(
s8

$GLs f L~v!Gd22ss̄s8
.

~v!

1GLs@12 f L~v!#Gd22ss̄s8
,

~v!

1GRs̄f R~v!Gd11s̄ss8
.

~v!1GRs̄@1

2 f R~v!#Gd11s̄ss8
,

~v!%. ~35f!

Substituting these correlation GF’s with their decoupled f
mulations, Eqs.~33! and ~34!, the quantum rate equation
can be obtained as

ṙ005(
s

@GLs
2 r11s1GRs

2 r22s2~GLs
1 1GRs

1 !r00#,

~36a!

ṙ11s5GLs
1 r001(

s8
G̃Rs8

2 rddss82GLs
2 r11s

2(
s8

G̃Rs8
1 r11s22tImr12s , ~36b!

ṙ22s5GRs
1 r001(

s8
G̃Ls8

2 rdds8s2GRs
2 r22s

2(
s8

G̃Ls8
1 r22s12tImr12s , ~36c!

ṙ12s5 i ~e22e1!r12s1 i t ~r11s2r22s!

2
1

2 FGLs
2 1GRs

2 1 (
h,s8

G̃hs8
1 Gr12s , ~36d!

ṙddss5G̃Rs
1 r11s1G̃Ls

1 r22s2~ G̃Ls
2 1G̃Rs

2 !rddss ,
~36e!

ṙddss̄5G̃Rs̄
1 r11s1G̃Ls

1 r22s̄2~ G̃Ls
2 1G̃Rs̄

2 !rddss̄, ~36f!

and along withr001(s(r11s1r22s)1(s,s8rddss851, in
which Ghs

6 5Ghs f h
6(ed) and G̃hs

6 5Ghs f h
6(ed1U) have the

similar prescriptions as in the SQD. In addition, the class
parts of the diagonal elements’ equations have the sim
interpretations. For example, Eq.~36b! for the rate of change
of the number of the spin-s electrons in the first QDr11s is
contributed, noting the fact that the first~second! QD does
not directly connect to the right~left! lead, from four single-
particle tunneling processes:~1! tunneling into the QD with
spin-s electronsGLs

1 from the left lead if the QD is initially
in the empty stater00; ~2! tunneling out from the QD with
03532
-
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spin-s8 electronsG̃Rs8
2 into the right lead if the QD is ini-

tially in the doubly occupied staterddss8 ; ~3! tunneling into
the QD with spin-s8 electronsG̃Rs8

1 from the right lead; and
4! tunneling out from the QD with spin-s electronsGLs

2 into
the left lead, when the QD is initially just in this stater11s .
Tunneling events~1! and ~2! increaser11s , but events~3!
and~4! decrease this probability. The final term in Eq.~36b!
is responsible for coherent effects. Equation~36d! for the
nondiagonal matrix elementr12s indicates that the role o
the leads is to provide damping of the quantu
superposition.15 It is also worth noting that the present pro
posed quantum rate equations are reliable for a wide rang
temperature and external bias voltage, where the three m
approximations we use are valid.

The electric currentI L flowing from the leadL to the QD
can be calculated as

I L5 ieE dv

2p (
s H Ghs f h~v!FGe11s

. ~v!

1 (
s8,s9

Gd22ss8s9
.

~v!G1Ghs@12 f h~v!#FGe11s
, ~v!

1 (
s8,s9

Gd22ss8s9
,

~v!G J . ~37!

Under the weak-coupling approximation, it becomes

I L /e5(
s

@G̃Ls
2 ~rddss1rddss̄!1GLs

2 r11s

2G̃Ls
1 ~r22s1r22s̄!2GLs

1 r00#. ~38a!

Similarly, for the current flowing from the leadR we have

I R /e5(
s

@G̃Rs
2 ~rddss1rdds̄s!1GRs

2 r22s

2G̃Rs
1 ~r11s1r11s̄!2GRs

1 r00#. ~38b!

It is easy to prove that, in stationary condition, the curre
conservation is fulfilledI L52I R .

C. Discussion

In order to simplify the analysis, we only consider spi
independent tunneling processes in the following discuss
Two special cases, no doubly occupied state and no em
state, are studied. First we assume the interdot Coulomb
teraction U is infinite, whereas only one electron can b
found inside the system, sorddss850 and G̃hs

1 .0. The
quantum rate equations~36b!–~36f! simplify to

ṙ115GL
1r002GL

2r1122tImr12, ~39a!

ṙ225GR
1r002GR

2r2212tImr12, ~39b!

ṙ125 i ~e22e1!r121 i t ~r112r22!2 1
2 ~GL

21GR
2!r12,

~39c!

with r0012r1112r2251. The steady solutions are

r115@GL
1GR

21t2~GL
11GR

1!~GL
21GR

2!/L#/D, ~40a!
4-10



t

on
s
bi

nd
ys
fo
id
th
le

th

se

-

ia

f

he
um
-
and

e 5
the
ex-

g

r-
s

QUANTUM RATE EQUATIONS FOR ELECTRON . . . PHYSICAL REVIEW B69, 035324 ~2004!
r225@GL
2GR

11t2~GL
11GR

1!~GL
21GR

2!/L#/D, ~40b!

r125t~GL
1GR

22GL
2GR

1!@e12e21 i 1
2 ~GL

21GR
2!#/DL,

~40c!

D5GL
2GR

212GL
2GR

112GL
1GR

21t2~GL
21GR

214GL
114GR

1!

3~GL
21GR

2!/L, ~40d!

in which L5(e22e1)21(GL
21GR

2)2/4. The steady curren
is given byI L /e52(GL

2r112GL
1r00).

It is interesting to compare our results in this situati
with those of Gurvitz and Prager15 for the case of large bia
voltage between the two leads. For example, the large
voltage determinesGL

250, GR
150 andGL

15GL , GR
25GR at

eV@T. Therefore, the dc current becomes

I L /e52
t2GR

t2~21GR/2GL!1~GR!2/41~e22e1!2
, ~41!

which coincides with the result obtained by Gurvitz a
Prager.15 It is quite obvious that the finite temperature pla
a crucial role in the coherence tunneling. The previous
mulations for large bias voltages, however, can not prov
any information about the temperature effects. This is
central improvement of the present approach for the coup
quantum systems.

Second, we consider the deep level situation where
bare levelse1 and e2 are far below the Fermi level buted
1U is just above the Fermi level in equilibrium. In this ca
the CQD is always occupied andr0050, Ghs

2 .0. Therefore,
we have

ṙ1152G̃R
2rdd22G̃R

1r1122tImr12, ~42a!

ṙ2252G̃L
2rdd22G̃L

1r2212tImr12, ~42b!

ṙdd5G̃R
1r111G̃L

1r222~ G̃L
21G̃R

2!rdd , ~42c!

ṙ125 i ~e22e1!r121 i t ~r112r22!2~ G̃L
11G̃R

1!r12,
~42d!

with 2r1112r2214rdd51. After solving the set of equa
tions in the steady state, we obtain

r115@G̃L
1G̃R

21t2~ G̃L
11G̃R

1!~ G̃L
21G̃R

2!/L#/D, ~43a!

r225@G̃L
2G̃R

11t2~ G̃L
11G̃R

1!~ G̃L
21G̃R

2!/L#/D, ~43b!

r125t~ G̃L
1G̃R

22G̃L
2G̃R

1!@e12e21 i ~ G̃L
11G̃R

1!#/DL,
~43c!

D52G̃L
1G̃R

212G̃L
2G̃R

114G̃L
1G̃R

114t2~ G̃L
21G̃R

21G̃L
11G̃R

1!

3~ G̃L
11G̃R

1!/L, ~43d!

in which L5(e22e1)21(G̃L
11G̃R

1)2. The dc current is
I L /e54(G̃L

2rdd2G̃L
1r22).

It is also interesting to consider the situation of large b
voltage in the strong interdot Coulomb repulsionU, whereas
03532
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the Fermi level of the right leadmR lies far belowed1U, but
far above the resonance leveled to satisfy the requirement o
deep level, meanwhile the Fermi level of the left leadmL is
far aboveed1U, so thatG̃L

250, G̃R
150 andG̃L

15GL , G̃R
2

5GR . Finally we obtain

I L /e52
2t2G̃L

2t2~11G̃L /G̃R!12~e22e1!21~ G̃L!2
. ~44!

D. Numerical results

In this section, we perform numerical calculations for t
tunneling transport through the CQD, by using the quant
rate equations~36!, in the stationary condition. We sym
metrically add the bias voltage again between the source
drain mL52mR5eV/2.

First we consider the spin-independent transport. Figur
demonstrates the nonequilibrium occupation numbers in
first and the second QD’s, calculated from the obtained
pectation values of density-matrix elementsn1s5r11s

1(s8rddss8 and n2s5r22s1(s8rdds8s , and the corre-
sponding current versus the discrete level for the hoppint
51.0 between the two QD’s at a small biasV51.0 and a
large biasV510.0, respectively. We find a similar characte
istic as in the SQD~Fig. 2!: ~1! The nonzero bias weaken
the Coulomb blockade effect;~2! n1s and n2s have frac-
tional steps;~3! n1sÞn2s in nonequilibrium; ~4! and the

FIG. 5. Nonequilibrium occupation numbersn1s , n2s , rdd

~a,b!, and current~c! vs the bare level of the CQD.~a! is plotted at
a small biasV51.0 and~b! is at a large biasV510.0. The equilib-
rium occupation numbers are also depicted by the thin lines in~b!
and ~e!. Other parameters areU54, T50.1, andt51.0.
4-11
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conductance has two peaks at the resonant points, while
current has three steps in the strong nonequilibrium regi
Here we observe a higher peak magnitude and a higher
value at the deep level regime than those at the no do
occupied level regime, and the maximum step value loca
at the middle ‘‘window’’ of the bare level. More interes
ingly, an opposite behavior has been found when the hopp
t between two QD’s decreases, as shown in Fig. 6~c!, in
which we plot the corresponding results for a small hopp
t50.5. Generally, one may expect that increasing the h
ping t can reduce the difference between two QD’s, and v
strong hopping can finally give rise to the formation of c
valence. In other words, the difference betweenn1s andn2s

should rise with decreasing the hoppingt. This is the case as
shown in Figs. 6~a! and 6~b!, where the occupation numbe
are displayed for the smaller hoppingt50.5 in comparison
with the results of the hoppingt51.0 in Figs. 5~a! and 5~b!.
One can note that the occupation number in the second
even experiences a descendance in the middle ‘‘window
the bare level for the case oft50.5, which expresses a
opposite behavior in the case oft51.0. This is the reason
why current-voltage characteristics are different in the t
cases.

The effect of the hopping on the tunneling is more clea
illustrated in Fig. 7, where we plot the occupation numbe
the current, and the differential conductance as a functio
the bias for different hoppingst in the no doubly occupied
level ed51 and the deep leveled525. In both cases, we
have two peaks in the differential conductance correspond
to the two steps in the current. More importantly, we find th
the current declines in the second step and consequentl

FIG. 6. Same as Fig. 5 except fort50.5.
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negative differential conductance~NDC! appears in the ac
cording biases when the hoppingt,1.0. We can explain the
appearance of the NDC by variations of the occupation nu
bers with the bias, as shown in Figs. 7~a! and 7~d! for the
hoppingst50.2 ~thick lines! andt51.0 ~thin lines!. Consid-
ering the fact that we apply the bias symmetrically andmR
52eV/2,0, the current flowing from the right lead i
dominated for the caseed51 by the process: tunneling ou
from the second QD into the right lead. According to E
~38b!, we haveI R /e'(sGRsn2s . It is obvious from Fig.
7~a! that the rising second step inn2s for the case oft
51.0 ~thin dashed curve! indicates the rising step in the cu
rent, whereas the declining second step for the caset
50.2 ~thick dashed curve! implies the NDC. In the other
caseed525, the current flowing from the left lead is rule
by the tunneling process into the first QD from the left lea
being approximatelyI L /e5(sGLs@12n1↑2n1↓#. Appar-
ently, the variations ofn1s denoted by the solid lines in Fig
7~d! provide interpretations for the current-voltage charact
istic in Fig. 7~e! and the NDC in Fig. 7~f!. Therefore, it can
be addressed that opening of a new channel provides n
tive contribution to the current in the case oft&1.0.

An interesting question is what happens to the tunnel
current and the NDC when the interdot Coulomb interact
U weakens or strengthens. We show this in Fig. 8, wh
current vs bias is presented for various correlation para
eters fromU50 to ` in the casest51.0 ~thick lines! and

FIG. 7. Occupation numbersn1s , n2s , rdd ~a,d!, current~b,e!,
and the differential conductance~c,f! vs the bias voltage, calculate
for different hoppingt. ~a!–~c! are plotted fored51, ~d!–~f! for
ed525. Other parameters are as in Fig. 5.
4-12
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t50.2 ~thin lines!. For U→`, the current has only one ste
with increasing bias in both cases ofed51 ~a! and ed5
25(b), because no new channel is available due to the
tremely strong charging effect. For the finite interdot Co
lomb correlation, however, the applied bias can overco
the Coulomb blockade effect and open a new channel
tunneling at the corresponding threshold value of volta
For t&1.0, this new channel induces a peak in the curre
This peak becomes narrower with declining value ofU, but
its height remains unchanged ifU is not too small. At suffi-
ciently small values ofU, as shown in the inset of Fig. 8~a!,
height of the peak in current decreases, even vanishes fin
when U50. So we can claim that the interdot Coulom
interactionU50 and` leads to the single peak in the di
ferential conductance, but the finite values result in dou
peaks, and even the NDC in the case oft&1.0.

The temperature effect is also shown in Fig. 8 forU
54. Increasing temperature smoothesI-V curve, but remains
the NDC unchanged.

Now we study the spin-dependent tunneling through
CQD connected to two ferromagnetic leads. Figures. 9
10 depict the occupation numbers in the two QD’s and
current in both P and AP configurations fored51 anded5
25, respectively. We find, besides analogous behaviors w
the spin-independent tunneling, that~1! n1↑Þn1↓ even in
both alignments;~2! n2↑.n2↓ in the P configuration bu
n2↑Þn2↓ in the AP configuration;~3! variations of the cur-
rent flowing in different magnetic configurations are ve
sensitive to the value of the hopping between two QD
which leads to~4! the negative TMR for the sufficiently
small hoppingt50.2, as exhibited in Figs. 9~c! and 10~c! at
certain voltages.

IV. CONCLUSION

In this paper, we have systematically derived the quan
rate equations for sequential tunneling from NGF, and th
utilized them to investigate quantum coherent transport
single QD with weak spin-flip scattering and weakly coupl
QD’s systems taking the intradot and interdot Coulomb
teractions into account. In these systems, the superpos

FIG. 8. The current-voltage characteristics, calculated for in
cated values of the interdot Coulomb interactionU and different
hoppingst50.2 ~thin lines! and 1.0~thick lines!. ~a! is plotted for
ed51 and~b! is for ed525. Inset in~a!: I-V curves for smallU.
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between different states plays a vitally important role in c
herent tunneling processes. Directly, a kind of quantum
cillations in mesoscopic systems is due to this superposi
effect. Now, it is believed that the master equations or
modified quantum rate equations, which are actually eq
tions of motion of density submatrix for diagonal and no
diagonal elements, provide a successful tool to study
phenomenon, and even allow an analytical description.

For this purpose, we have generalized the slave-part
technique, which was developed previously in the single-
space and successfully applied to study the strongly co
lated systems, into the two-site space. Based on this the
ical approach and the correct quantization of these artifici
introduced operators, previously well-developed NGF
noninteracting systems has been used to construct the q
tum rate equations when only three assumptions are m
first, the coupling between the central region and the le

i-

FIG. 9. Occupation numbersn1↑ , n1↓ , n2↑ , andn2↓ in the P
configuration~a! and the AP configuration~b! for t50.2, current
~c!, and TMR ~d! for t50.2 and 0.5 vs the bias voltage. Oth
parameters areed51, T50.1, andp50.5.

FIG. 10. Same as Fig. 9 but for the case ofed525.
4-13
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must be weak; second, the couplings between the subsys
are also weak, for example, weak spin-flip scattering in S
and weak interdot hopping in CQD; and third, the wide ba
limit. The first condition makes it valid that we can keep on
the lowest order terms inuVu2 in the expansion of the equa
tions of motion. It also renders the central region appro
mately a quasiequilibrium isolated system, which facilita
the ‘‘localized’’ energy spectrum expressions for the corre
tion GF’s of every subsystem in the central region in com
nation with the second presumption. These approximati
notwithstanding our approach is appropriate for a wide ra
of temperature and external bias voltage, and incorpora
of the charging effect. Finally, it should be pointed out th
our derivation is equivalent to the lowest-order gradient
pansion technique.25

Employing this approach, we have studied in detail
coherent tunneling through a SQD and a CQD system.
have given some analytic expressions for steady-state tr
port in two special cases: doubly occupied prohibited s
and deep level in large intradot or interdot Coulomb rep
sion. Furthermore, we have compared some of our res
with previously obtained results in the literature. For e
ample, for resonant tunneling through a SQD with spin-fl
scattering, our approach provides a quantum correction to
classical results. When there is no spin-flip scattering,
rate equations reduce exactly to the classical results
Glazman and Matveev,33 and Beenakker.34 In the case of
resonant tunneling through a CQD, our results are in per
agreement with the previous analysis proposed by Gur
and Prager15 under the limitation of zero temperature an
large bias voltage.

In addition, we have performed numerical simulations
variations of occupation numbers and the current with
creasing the bias voltage and varying the discrete leve
QD. We summarize the main common features as follo
~1! Occupation numbers have fractional steps in nonequ
rium, implying that the Coulomb blockade effect is partia
overcome by applying bias voltage, and correspondingly~2!
the current-voltage characteristic displays two steps, giv
rise to double peaks in the differential conductance. Es
cially, our calculations manifest the importance of tempe
ture and bias on the spin-flip transitions in the SQD. For
CQD, a possible NDC can be reached if the interdot C
lomb interaction is finite and the hopping between two QD
is smallt&1.0. Besides, the TMR becomes negative in no
equilibrium for the CQD connected to two ferromagne
leads if the hoppingt is sufficiently small.
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APPENDIX DERIVATION OF QUANTUM RATE
EQUATIONS FOR SQD

In the appendix, we present a detailed derivation of E
~11!. In the following, we take Eq.~11b! as an example. The
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statistical expectation of Eq.~10b! gives

rss5(
h,k

@VhsGes,hks
, ~ t,t !2s̄Vhs̄Gds,hks̄

,
~ t,t !

2Vhs* Ghks,es
, ~ t,t !1s̄Vhs̄

* Ghks̄,ds
,

~ t,t !#

1 iRs̄
* rss̄2 iRsrs̄s . ~A1!

According to Langreth’s operational rules,31 those hybrid
correlation GF’s are given by

Ges,hks8
,

~ t,t8!5dss8E dt1@Gess
r ~ t,t1!Vhs8

* ghks8
,

~ t1 ,t8!

1Gess
, ~ t,t1!Vhs8

* ghks8
a

~ t1 ,t8!#, ~A2a!

Gds,hks8
,

~ t,t8!5dss̄8s8E dt1@Gdss
r ~ t,t1!Vhs8

* ghks8
,

~ t1 ,t8!

1Gdss
, ~ t,t1!Vhs8

* ghks8
a

~ t1 ,t8!#, ~A2b!

Ghks8,es
,

~ t,t8!5dss8E dt1@ghks8
r

~ t,t1!Vhs8Gess
, ~ t1 ,t8!

1ghks8
,

~ t,t8!Vhs8Gess
a ~ t1 ,t8!#, ~A2c!

Ghks8,ds
,

~ t,t8!5dss̄8s8E dt1@ghks8
r

~ t,t1!Vhs8Gdss
, ~ t1 ,t8!

1ghks8
,

~ t,t8!Vhs8Gdss
a ~ t1 ,t8!#. ~A2d!

Substituting Eqs.~A2! into Eq. ~A1! and taking the Fourier
transformation,rss can be expressed as

rss5
1

2pE dv(
h,k

uVhsu2$@Gess
r ~v!2Gess

a ~v!#ghks
, ~v!

1Gess
, ~v!@ghks

a ~v!2ghks
r ~v!#%1uVhs̄u2$@Gdss

a ~v!

2Gdss
r ~v!#ghks̄

,
~v!1Gdss

, ~v!~ghks̄
r

~v!2ghks̄
a

~v!#%

1 iRs̄
* rss̄2 iRsrs̄s , ~A3!

whereghks(v) are the Fourier transform of the exact GF’s
thehth lead without the coupling to the central region. In t
wide band limit, one has

(
k

uVhsu2ghks
, ~v!5 iGhs f h~v!, ~A4a!

(
k

uVhsu2ghks
. ~v!52 iGhs@12 f h~v!#. ~A4b!

Substituting the GF’s~A4! into Eq. ~A3! and employingGr

2Ga[G.2G,, Eq.~11b! can be reached. Analogously, w
can derive other equations in Eq.~11!.
4-14
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