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Laser-generated nonlinear surface wave pulses in silicon crystals
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The absorption-layer method for inducing pressure shocks is employed to generate finite-amplitude, broad-
band surface wave pulses in crystalline silicon. Spectral evolution equations are used to compute the wave
form distortion from the first to the second measurement location, and the results are shown to be in quanti-
tative agreement with the measured data. The measurements also confirm that a nonlinearity matrix which
describes the coupling of harmonics provides a useful tool for characterizing wave form distortion(@@lhe
plane, the measurements show that the longitudinal velocity wave forms develop rarefaction shocks along
[100] and compression shocks along 26° frp®0Q]. In the (110) plane, compression shocks are observed in
the longitudinal velocity wave forms in the direction 37° frgrh00], whereas rarefaction shocks are seen
along[110]. The results in thé001) and (110) planes are consistent with sign changes in the nonlinearity
matrix elements. In th¢l11) plane, the measured wave form distortion is consistent with the phase changes
associated with the computed complex-valued matrix elements. In particular, the characteristics of propagation
in the[llf] and [HZ] directions are shown to differ. This specific case is proved to follow from a more
general result based on the symmetry properties of surface acoustic waves in this plane. In all the planes, it is
demonstrated that, unlike bulk waves, the peak acoustic amplitude of surface waves can increase as they
propagate, thereby allowing large stresses to be generated at surfaces. Finally, the power flux and total power
of the pulses are shown to be substantially higher than in previous reports.
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[. INTRODUCTION also been excited in isotropigolycrystalling aluminum,
Understanding the nonlinear properties of surface wavesopper, and stainless steel sampie$.
in crystalline materials is important for many applications. Experiments have also been performed by Lomonosov
Piezoelectric surface acoustic wal@AW) devices like con- g Hess in crystalline silicon. In tHd 12] direction of the
volvers, cor_relators, and. ampllfle_rs use nonlinear eﬁeCtsflll) plane, the measured pulse datand the theory for
to perform signal processing functlon_s. Many of these_ Co_ménisotropic medi agreed well. Strikingly, it was fourtdin
ponents are used in mobile and wireless communlcatloguhe(OOl) plane that the pulses distort in opposite ways, with

devices for person_al communication serwc(esg., pagers, longitudinal velocity wave forms forming rarefaction shocks
cellular phoneg wide-area networks, and wireless local .

area network$. SAW’s have also been used to perform n the[°100] direction and comprgssion shoc;ks in' the direc-
nondestructive evaluatiotNDE). Defects, material proper- tion 26 fro”,‘[l‘?o]- (A c.ompress[on.shock IS defined such
ties (density, elastic constantspplied and residual stresses, that the longitudinal particle velocity is negative ahead of the
adhesive bonding, surface roughness, and plate arhock and_posmve behind the shock; a rarefactlo_n shock is
layer thickness may all be measured using linear SA\'s,the opposite case.The same effects are predicted by
and the use of nonlinear SAW's to characterize materials —theory;” which reproduces the wave form evolution in both
e.g., their fracture behavior — is a subject of currentdirections. For a couple of the propagation directions de-
research. scribed in Refs. 11 and 13, some additional measurerhents
Until the mid-1990s, much of the experimental work on have been presented, but a simplified, approximate theory
nonlinear SAW'’s in crystals was limited to measurements ofvas used to model those results.
the first few harmonics. In 1996, Lomonosov and Hezse- The present article provides measured data in more cuts
sented results of pulsed SAW's generated using amnd directions than previous articles, with higher time reso-
absorption-layer technique. Unlike previous experiments|ution and more detailed analysis. The results corroborate
this technique generates extremely high-amplitude pulsegrevious theoretical investigatioris® of nonlinear surface
(peak strains approaching 0)Od&ith broadband spectra and waves in cubic crystals.
allows the same pulse to be measured at multiple locations. Finally, we note that measurements have also been made
Their original article showed wave forms in fused quartz thatof finite-amplitude SAW'’s in systems of fused quartz sub-
clearly exhibit shock formation. Additional wave forms in strates covered with titanium nitride films, and good agree-
fused quartz were subsequently presefitt@omparison of ment has been obtained with simulatidfs’ However, be-
those wave forms to the theory of Zabolotskaya andcause SAW's in these systems are dispersive, the resulting
co-worker§’ for isotropic materials exhibited excellent wave form evolution is qualitatively different than that pre-
guantitative agreement. Nonlinear surface wave pulses haweented herde.g., shocks do not formIn addition, finite-
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pulsed excitation CW probe beams assumed to be plane waves expanded as follows:
<= = == 0o
vi(x,7)= 2, Ay(x)Bje " +c.c., (1)
n=1

wherej=1,2,3=x,y,z with x=x,; the coordinate along the
A X direction of propagation ang= x5 the coordinate normal to
3 \ the surface and directed outwar@ee Fig. 1, 7=t—x/c is
the retarded timeg is the linear wave speed in the propaga-
tion direction, B; are derived from the eigenvectors of the

{ linear problent* and » is the fundamental angular fre-

quency. This assumption has two implications. First, the sig-
nal must be periodic. In order to model pulses, they are as-
X4 sumed to repeat with a frequen€y,=2.5 MHz in all cases
considered. Second, the signal must have planar wave fronts.
o _ ~ Hence the theory is applicable only if diffraction effects are
FIG. 1. Schematic diagram of the experimental apparatus “5'“ﬂegligible; i.e., the total propagation distancés less than
the absorption-layer method for finite-amplitude SAW generationthe characteristic Rayleigh distancgof the beam. The ratio
and dual laser-probe SAW detection. of these two lengths is given by the dimensionless diffraction

. - . . parameterD = x/xg=4xc/ 7f yo50%, whered is the beam
amplitude wave forms in silicdfi have been published in "¢ P
which the excitation has been so large that fracture has odvidth at the source anfiye IS the frequency of the peak

curred. These results extend beyond the range of the t‘r?eorysDeCtraI amplltudg. In all cas§‘5< 1, and_ therefo_re the wave
. AR . fronts are essentially planar in the regions of interest.
for elastic waves used in this article.

To perform the simulations, the frequency spectrum of the
measured wave form at the probe beam location closest to
IIl. EXPERIMENT the excitation region is computed from the time wave form,

A schematic diagram of the experimental setup is showr@Ppropriately scaled, and used as the source condition for the

in Fig. 1. Excitation of the SAW’s is accomplished using a SPectral evolution equatiotfs
Nd:YAG laser of wavelength 1064 nm, pulse duration 8 ns,

2
and energy up to 60 mJ, which is focused into a strip of d;"‘nJra A= _ 1 0Cau S sgrim)S o AA
length 7 mm and width 5@m on the surface of the solid. dx ~™" 2pc? 14m=n m=nATm:
This geometry creates a SAW beam which propagates out- 2

ward _from the the excitation region. A str ongly absorblngWhereAn and a, are the spectral amplitude and absorption
layer in the form of an aqueous suspension of carbon par-

ticles is placed in the strip area. By explosive evaporation of©€fficient of thenth harmonic andS, is the nonlinearity
this layer strong forces are exerted onto the surface, theretpatrix. (Note thatS,= — S,,/C44, WhereS, is defined in
intensifying the SAW excitation process. The nearly com-Ref. 12. This new matriX is introduced so that sign and
plete absorption of the laser pulse by the layer protects thdimensions oSm are consistent with the nonlinearity matrix
surface from melting and ablation. To measure the transiergreviously introduced for isotropic media.Physically, the
SAW wave forms, a laser probe beam deflection setup usingyatrix elementS,, describes the coupling between thé

stabilized cw Nd:YAG laser probes of wavelength 532 nmgngmth harmonics to generate théh harmonic. This matrix
and power 100 mW is employed. Two probe beams are fop 55 the property that

cused into spots approximately4m in diameter located 16

mm apart, with the closest probe between 0 and 5 mm from Soi om=Sim/pP 3)

the excitation region. As the SAW pulse passes through the php

area covered by the probe beams, the deflection of the las& any nonzero integes, and hence the character of nonlin-
beams is detected by two position-sensitive detectors. Begar distortions for a wave witlfipea= pfrep usually can be
cause the deflection of the beam is proportional to the slopgualitatively characterized by the first few elemetfts2The

of the surface, it follows that the detector output is propor-absorption terms are introduced hocto maintain numeri-
tional to the vertical velocity component of the traveling cal stability as shocks develop in the wave forms. Assuming
wave. The bandwidth of the whole detection system is lim-classical absorption due to viscosity and heat conduttion

ited to about 500 MHz. yields the quadratic frequency dependerGe=n?a;. The
absorption coefficient; =0.00025%, is selected so that the
IIl. SIMULATIONS absorption length is substantially larger than the characteris-

tic length scale, (defined belowfor nonlinear effects. Pro-
Numerical simulations are performed to compare theoryided that this condition was satified, we found that varia-
and experiment for the three different data sets taken in crysions in the absorption coefficient primarily affected the
talline silicon. In the theoretical descriptitnof the wave  magnitude of the sharp cusped peaks near the shock fronts
forms on the surface, the particle velocity components arand had relatively little effect on the rest of the wave form.
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Moreover, this selection is reasonable given that measure- 0.08 I r - I
ments of longitudinal and transverse elastic waves in crystal- : :
line silicon indicate that the absorption is low, typically 0.5— . :
1.5 dB/cm in the frequency range 200-500 MHAIll the 0.06 - I : 7
remaining coefficients including the nonlinearity matrix ele- ' '
ments are computed from fundamental material constants:
density (=2331 kg/ni), second-order elastic constants
from HearmoRr® (c;;=165 GPa,c;,=64 GPa,c,,=79.2
GPa, and third-order elastic constants from McSkimin and @ 545 |
Andreatc? (d;;;=—825 GPa, d;;,= —451 GPa, dj,3

= _64 GPa,d144: 12 GPa,d155= _310 GPa,d456: _64

GPa. Nonlinear coupling to bulk wave modes has been 0
shown to be negligible in all cases considered Réfehe

evolution equations are then integrated numerically using a

0.04

fixed-step-size, fourth-order Runge-Kutta routine over the -0.02 . .
distance between the probe beams. | L. L1 1

The resulting frequency spectra are reconstructed into 0 10 20 28 30 40
time wave forms using Eq1) and compared with the mea- 0 [deg]

sured wave form at the second probe beam location. The
longitudinal velocity wave forms are computed from the ver-  FIG. 2. Dependence of nonlinearity matrix elements on direc-
tical velocity wave forms using the linear transformatfbn  tion of propagation in the (001) plane in Si. The solid, long dashed,
and short dashed lines correspond3g, S;,, and S5, respec-
v1(X, 7)=Re(B1/B3)va(x,7) —Im(B1/Bz) H[vs(X,7)], tively. Due to the symmetries of this cut, the matrix elements are
(4) symmetric about 45° and periodic every 90°. The circles indicate

where the directions of propagation considered in Figs. 3 and 4.

f(7') cusped peaks and thg wave forms developing rarefaction
dr’ (5)  shocks. In region Il (21% §<32°), the nonlinearity matrix
elements are positive. Correspondingly, thewave forms

defines the Hilbert transform. The computations are perform sharply cusped troughs and thewave forms develop
formed with N=1200 harmonicgi.e., I=n<N, with A_, compression shocks. In region Il (32°9<45°), the non-
=A%), although the wave forms are reconstructed by usindinearity matrix elements are negative like region I, but sig-
only enough harmonicsN=200-500) to match the time nificantly weaker. Surface wave pulses are measured in the
resolution of the measured data. pure mode directiong=0° and §=28° (marked by circles

In each case a characteristic nonlinear |ength %M@ in Flg 2) Table | presents parameters associated with the
=1/|B| ek is computed to determine the effect of the nonlin-data in these directions. _
earity over the distance between the probe beams, whsre Figure 3 shows a comparison of experiment and theory
a characteristic wave number associated with the peak spet@r 6=0°. Figure 3a) gives the directly measured vertical
tral component anc is the characteristic acoustic strain Velocity component ; while Fig. 3b) gives the longitudinal
(acoustic Mach numbgrin cases where shocks forxg is ~ velocity wave formuv,, calculated from the measureds
an estimate of the shock formation distai¢@he estimated Wave form via Eq.(4). The velocity components are scaled

nonlinearity coefficierit is given by,8=4§11044/p02 . Note
that becaus&,, can be complex valuegg can also be com-

plex valued. Physically, complex-valued matrix eleméts
mean that both the magnitude and phase of the harmonics aggrameter Direction frorfil00]
changed as the wave propagates.

1 ®
H[f(r)]=;PrJ7

wr' —171

TABLE |. Parameters for SAW pulses in th@01) plane of
crystalline silicon.

0 0° 28°
IV. RESULTS c 4902 m/s 4954 m/s
|B,/B| 0.632 0.534
A. Silicon in the (001 plane 1B, /B| 0.000 0.339
Figure 2 shows that the nonlinearity matrix elements oflBs/Bl| 0.774 0.775
SAW's in the (001) plane of Si divide into three distinct D 0.081 0.12
regions* based upon the anglé between the propagation $,, —0.022 0.052
direction and 100]. The matrix elements are all real valued g -0.12 0.29
as a result of the mirror symmetry of this plane. In region | ¢ 0.0016 0.0082
(0°=<6<21°), the nonlinearity matrix elements are nega-f ., 25 MHz 17.5 MHz
tive. In simulations with initially monofrequency wavés, Xo 150 mm 19 mm

this condition results in the; wave forms forming sharply
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FIG. 3. Comparison of measured and simulated data for surface 0 20t [ns] 40 60
waves propagating in the directigri00] (#=0°) in the (001)
plane of crystalline silicon, from=5 mm (dashed lingto x=21 FIG. 4. Comparison of measured and simulated data for surface
mm (solid line, measured; dotted line, simulated waves propagating in the directiah=28° from[100] in the (001)

plane of crystalline silicon, froox=5 mm (dashed lingto x=21

by the linear wave speed in the direction of propagation mm (solid line, measured; dotted line, simulated
because, as shown in Appendix A, the strain and stress com-
ponents of the surface wave at the surface of the crystal ailies graph is omitted here. In this direction, the nonlinearity
proportional to linear combinations of /c. The dashed and matrix elements are positive. Hence the peaks jrtravel
solid lines give the experimental data for the close and refaster than the linear wave speed, the troughs travel slower,
mote probe beam locations from the source, and the dottegind compression shocks form. The troughs ptieepen and
line gives the simulated result at the remote location. Thehe peaks become flatter and shallower. Both of these fea-
wave has no transverse displacement compor@ntQ) in  tures are clearly seen in the wave forms of Fig&) 4nd
this direction. Because the propagation distance is much legkb). Note that while the wave forms measured at the close
than the estimated shock formation distance, the pulse onlpcations in the 0° and 28° directions are initially similar in
exhibits mild distortion. As seen in Fig. 2, the nonlinearity form, they evolve to wave forms that are different. The re-
matrix elements are negative in this direction. As a result, theulting distortion in both cases is consistent with the regions
peaks ofv ; are expected to rise, and the troughs are expectedf negative and positive nonlinearity delineated in Fig. 2.
to become flatter and shallower. In addition, the peaks,of Figure 5 shows the strain wave forms corresponding to
are expected to travel slower than the linear wave speed, aritde velocity wave forms in Fig. 4See Appendix A for ana-
the troughs are expected to travel faster, with the result thdytical formulas for the strains and stresse©nly the
rarefaction shocks form. Unfortunately, the weak distortione;;, €33, ande;, components are nonzero in this direction.
of the wave forms makes it difficult to determine if the pre- The shape of the wave forms is similar #@ in all cases,
dicted features are consistent with the observed evolutioralthough thee;; ande;, wave forms are inverted. As might
However, this weakness itself is in agreement with the lowbe expected, the shear horizontal straip arises mainly
magnitude of the nonlinearity matrix elements in this direc-from the transverse velocity component, and waves without
tion. In particular, the estimated shock formation distance isransverse componengs.g., the previous case aloht00])
nearly an order of magnitude greater than the propagatiohave no shear strain component. Note that the peak strains
distance. are a few percent, but only act over a period of around a

In contrast, the magnitudes of the nonlinearity matrix el-nanosecond. Figure 6 shows the corresponding stress wave
ements are significantly larger in the directior-28°. Fig- forms at the surface. Because of the stress-free boundary
ure 4 shows a comparison of the experiment with theory foconditions, only ther,;, o,,, ando;, components are non-
this case. Unlike th@=0° direction, the particle motion is zero. The primary effect of the wave is a rapid longitudinal
tilted out of the sagittal plane. The resulting transverse veeompressional stress followed by a smallbut still very
locity (shear horizontalcomponent is not qualitatively dif- large tensile stress. The peak stress is several gigapascals, a
ferent fromv 4, and while included in the full computations, value typical for the strongest excitations reported here. A
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FIG. 5. Comparison of measured and simulated strain wav? FIG. 6. Comparison of measgred_ and sim ulgted s;tress wave
forms for surface waves propagating in the direction28° from  10'MS for surface waves propagating in the directin28° from
[100] in the (001) plane of crystalline silicon, from=5 mm [100] in Fhe (001) plane Of_ cr_ystallme silicon, from=_5 mm
(dashed lingto x=21 mm(solid line, measured; dotted line, simu- (dashed I'n_?to x=21 mm(solid line, measured, ‘?"’“ed “.ne’ simu-
lated. Positive values of strain are compressive, while negativelate@' Positive values of stress are compressive, while negative

values are tensile. Only the nonzero components of strain argalues are tensile. The remaining s_tr_ess components are identically
shown zero by the surface boundary conditions.

sizable shear horizontal stress exists because of the signiHr-]e "?‘”9'9. betwegn the propagation direction ] " Th_e
cant transverse velocity component in this case. In both thgonlmeamy matnx_ elements_ for this cut are shown_ in Fig. 7,
strain and stress wave forms it is clear that the peak amph"fmd _the propagation gllrec'_uons are markeo_l by C_lrcles. T_he
tude increases as the wave propagates, an effect that is ?nlmearlty matrix divides inio regions of mixed sign, posi-
seen in nonlinear bulk waves. Because it is relatively ve, and negat|ye real—yalued elem_ents. Tablc_e I presents pa-
straightforward to compute the strains and stresses from thréﬁlmeters associated with the data in these directions.

velocity components, we omit these graphs for the other cutfc, Flguriz 8 shows a comparison of exp_erlment and theory
o or #=0°. The wave has no transverse displacement compo-

and directions that follow. ; TR . X .

nent B,=0) in this direction. The nonlinearity matrix ele-

ments have mixed sign in this direction wi,>0, S;,

>0, and Sl3<0. In simulations with initially monofre-

Next consider propagation in t@10) plane of Si. Sur- quency waveé? distortion occurs but shocks do not form

face wave pulses are measured in the pure mode directiom&cause the various harmonic components change in oppo-

#=0°, 37°, and 90°, where in this sectighis defined as site ways. With a pulsed wave form, the net effect appears to

B. Silicon in the (110) plane
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Va/C [%]

L 0 20 40 60
0 3037 60 90 t[ns]
0 [deg] 1 T T
FIG. 7. Dependence of nonlinearity matrix elements on direc- (b)
tion of propagation in the (110) plane in Si. The solid, long dashed, 05 .

and short dashed lines correspond3g, S;,, and S5, respec-
tively. Due to the symmetries of this cut, the matrix elements are
symmetric about 90° and periodic every 180°. The circles indicate
the directions of propagation considered in Figs. 8, 9, and 10.

v4/c [%]

be little distortion at all. Note that the nonlinearity matrix
elements are typically an order of magnitude smaller in this
direction than in the9=37° direction.

Figure 9 shows a comparison of experiment and theory
for 6=37°. In this direction, the nonlinearity matrix ele-
ments are positive, and so the distortion is qualitatively very FIG. 8. Comparison of measured and simulated data for surface
similar to Fig. 4. The similarity between these figures showsvaves propagating in the directidi®01] (6=0°) in the (110)
that the physical mechanism for the wave form distortion isplane of crystalline silicon, fromx=5 mm (dashed lingto x=21
the same in these directions despite being in different cuts.mm (solid line, measured; dotted line, simulated

Figure 010 shows a comparison of experiment anq theor¥nents as a function of the angiebetween the propagation
for 6=90°. In contrast, here the nonlinearity matrix ele-

ments are negative, and the distortion is qualitatively similatd're‘?t'On _anql[llZ]. .Flgure _11a) showso that the ef;fect of

to Fig. 3. Note that the amplitude of the wave in this direc_nonlmearlty IS noear 'tS_ maximum @:o and 0= 60 . and_
tion is less than th@=0° direction of this plane and yet the weakest ap=30°. While thg magnitudes of the nqnllneanty
wave form exhibits more distortion. This result is consistent 121X elements have a sixfold symmetry in this cut, the
with the magnitudes of the nonlinearity matrix elementsphases have only a threefold symmetry. This property is gen-

shown in Fig. 7 for the two different directions. eral for SAW’s propagating in this cutSee Appendix B for
a detailed discussion of the symmetry properties of linear

and nonlinear parameterdNote also that the magnitudes of
the nonlinearity matrix elememﬁll| (and hence nonlinearity
coefficient| 8|) are several times larger than those in the 0°
“and 26° directions of th€001) plane. Figure 1(b) shows
that atfd=0° the phases of the first few nonlinearity matrix
elements are in the vicinity of Of6and are relatively close
together. At §=30° the nonlinearity matrix elements are

40
t [ns]

60

C. Silicon in the (111) plane

Finally consider propagation in tH&11) plane of Si. Fig-
ure 11 shows the complex-valued nonlinearity matrix ele

TABLE Il. Parameters for SAW pulses in thd@10 plane of
crystalline silicon.

Parameter Direction frorf001] negative real valued, but a—60° the matrix elements ap-

P 0° 370 90° proach 1.4r=-0.67 (mod 27_7_). As demonstrated for
monofrequency source conditiohs?® the complex-valued

¢ 5015 m/s 4784 mis 4458 mis  honlinearity results in an asymmetric distortion of the wave

|B4/B| 0.638 0.546 0.497 forms. For example, fop=0°, the regions of they wave

B, /B| 0.000 0.024 0.000 form from troughs to peaks steepen into a sharply cusped

|B3/B| 0.770 0.838 0.867 peak, while regions from peaks to troughs flatten, resulting in

D 0.064 0.053 0.15 an N-shaped distortion. Far,;, the peaks rise into cusped

Su 0.0043 0.067 —0.025 spikes while the troughs become flatter and shallower, result-

B 0.023 0.40 -0.17 ing in a U-shaped distortion. This combination of heightened

€ 0.0047 0.0085 0.0021 nonlinearity and asymmetric distortion results in signifi-

f peak 32.5 MHz 37.5 MHz 12.5 MHz cantly different wave forms than observed in {8821 plane.

Xo 220 mm 6.0 mm 160 mm Table Ill summarizes the relevant parameters for the SAW

data in this cut.
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FIG. 9. Comparison of measured and simulated data for surface FIG. 10. Comparigon (_Jf meaSL_lred.ang simulated dgta for sur-
waves propagating in the directigh=37° from[001] in the (110) ~ face waves propagating in the directip10] (¢=90°) in the
plane of crystalline silicon, from=5 mm (dashed lingto x=21  (110) plane of crystalline silicon, from=5 mm (dashed lingto

about 10 dB greater than the lowest-frequency components,
and hence diffraction effects from these components are ex-
pected to be negligible.

In contrast to Fig. 12, Fig. 14 shows measured and com-
ted results fow=30°, where the nonlinearity matrix ele-
ments are negative real valued, likE00] in the (001 plane

and[lTO] in the (110 plane. In this case, the peak of the
wave form nearly doubles in size and the trough decreases

Figure 12 provides a comparison of experiment with
theory for #=0°. In this particular direction, the wave has
no transverse velocity componer4=0), and hence only
the vertical and longitudinal components are shown in thepu
Figs. 12a) and 1Zb). The nonlinear evolutior(from the
dashed line to the solid lings predicted accurately by the
theory (dotted ling, including the increase in pulse duration

between the close and remote Iogations. In Figukalearly slightly, while a rarefaction shock forms in the, wave
has an N-shaped wave form whiig has a U-shaped wave ¢, ‘The velocity component, is smaller than 5 because
form, as de.scnbed. previously. Figure 13 shows the spectrg, this case the wave also has a transverse compdnent
corresponding to Fig. 12. The top graph shows the measured,o\vy. Note also that the type of distortion in this direction
spectrum at the first probe location, while the bottom grapils consistent with the other cases of negative real-valued
shows the measured and simulated spectra at the secORgnlinear matrix elements seen in Figs. 3 and 10. The
probe location in good agreement. Observe that the pulsgmount of overall distortion is somewhat less than in the
lengthening seen in Fig. 12 is manifest in the shift of the=(Q° direction, as consistent with the lower magnitude of the
spectral peak to a lower value between the first and secongonlinearity matrix elements of Fig. 11.
probe locations. In addition, the strongly nonlinear nature of  Finally, Fig. 15 shows measured and computed results for
the propagation is seen in the substantial increase in the ang=60°. Here the initial amplitude of the wave is less than in
plitudes of harmonics. previous cases, so the distortion is not as strong. The magni-
Figure 13 also shows some features that are typical for aliudes of the nonlinearity matrix elements in this direction are
the measured spectra. First, it demonstrates that the limit dhe same as witl=0° in this plane, but the phases are
detector sensitivity occurs around 500 MHz and justifies theopposite in sign. The opposite phasing causes the regions of
use of this value as the upper limit for reconstructing thethe v5 wave form from troughs to peaks to flatten, while
simulated wave forms. Second, it shows that the bandwidtihegions from peaks to troughs steepen into sharply cusped
of the starting wave form is essentially narrower than thepeaks, resulting in an inverted N-shaped distortion. &gr
detector bandwidth, and so no higher harmonics are lost behe peaks become rounder and shallower, while the troughs
tween the generation region and the first probe location. Fideepen into cusped spikes, resulting in an inverted U-shaped
nally, the spectra also indicate that the amplitudé gt is  distortion. Unlike the wave forms in Fig. 14 fér=30°, the
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FIG. 11. Dependence of nonlinearity matrix elements on direc- _ _

tion of propagation in the (111) plane in Si. The solid, long dashed, FIG. 12. Comparison of measured and simulated data for sur-
and short dashed lines correspond3g, S;,, and S5, respec- face waves propagating in the directidhl2] (6=0°) in the (111)
tively. The top plot shows the magnitudey,|, and the bottom plot ~ plane of crystalline silicon, fronx=5 mm (dashed lingto x=21
shows the corresponding phagg, . Due to the symmetries of this mm (solid line, measured; dotted line, simulated
cut, the matrix elements are symmetric about 60° and periodic ev- . . . .
ery 120°. The circles indicate the directions of propagation considf”‘nd self-intersecting Observe the Very large vertical dis-

g placement caused by the watepproximately 160 nm In
ered in Figs. 12, 14, and 15. - . :

addition, the figure shows that the primary effect on the wave

. . . with increasing depth is the reduction in longitudinal motion.
v3 wave form shows an increase in the the magnitude on

both sides of the rarefaction shock and the trough ofuthe
wave form shows a substantial increase in magnitude. These ) o _
results are consistent with those expected from simulations N the linear approximation, the energy carried by the sur-
with initially monofrequency wave¥. face wave consists of two parts: the potential energy of the
The particle trajectory corresponding to the wave forms Oplgstlc strain of the crystal and the 'klnetlc energy associated
the surfacemiddle), and 60xm below the surfacésmallest chanical power per unit area in thedirection can be ex-

D. Power flux

pressed as
TABLE lll. Parameters for SAW pulses in thd11) plane of 1 p du; du;
crystalline silicon. E=c|=c &6+ — —]|, 6
4 2 ijkl©ij kKl 2 ot ot ()
Parameter Direction from[112] where u; are the displacement components ag

=%(<9ui/(?xj+(?uj/<9xi) is the linearized strain tensor. Cor-

0 0° 30 60° rections to the power flow due to the elastic nonlinearity of
¢ 4720 mjs 4522 mjs 4720m/s - the medium are cubic in the strain terms, which are limited
B4/B| 0.536 0.470 0.536 to the order 102 by the mechanical strength of the solid.

B, /B| 0.000 0.340 0.000 Figure 17 show€k(t) at the surface together with(t),
|B3/B| 0.844 0.814 0.844 the total power flow per unit length found by integrating
D 0.071 0.075 0.098 E(t) over depth. The two narrow peaks HE{t) correspond

Su 0.11¢'%5%" —0.0081 0.1& 105 to the shock fronts in the; wave form of Fig. 12. Because

B 0.65'0-597 —0.054 0.6% 105" higher-frequency components of the wave penetrate less
€ 0.0041 0.0028 0.0020 deeply into the solid and because the shock fronts correspond
f peak 27.5 MHz 25 MHz 19 MHz to the high-frequency components, the acoustic energy of the
Xo 9.7 mm 190 mm 30 mm pulse is more strongly confined near the surface at the shock

fronts.
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FIG. 14. Comparison of measured and simulated data for sur-
50 - T face waves propagating in the directipa10] (6=30°) in the
(111) plane of crystalline silicon, from=5 mm (dashed lingto
-60 L L L L L L x=21 mm(solid line, measured; dotted line, simulated
0 200 400 600 800 1000 1200

f [MH N . . . .
Mzl power flow in Fig. 17 with those given in the previous

FIG. 13. Spectra for wave forms in Si in the directipniz) ~ Publications’ > In all these papers, the nonlinear effects
(6=0°) in the (111) plane. The top graph shows the measuredWere observed for an initially sinusoidal SAW which was
spectra at the first probe location, while the bottom graph shows thgenerated by means of interdigital transducers on piezoelec-
measuredsolid) and simulatedshort dashexdspectra at the second tric materials.(Note that the effective acoustic power is half
probe location. the peak value for a sinusoidal soujckr comparison, the

laser technique of SAW excitation provides substantially
Integration over depth deemphasizes this confinement effedhjgher peak power density, a necessary condition for strong
so the peaks are considerably broadef {h). The minimum  harmonic generation and shock formation to occur.
in F(t) corresponds to the instant when the profile has
zero value.

Additional interpretation of Fig. 17 can be obtained by
examining the surface trajectory of Fig. 16. Because the mo- This article investigates the propagation of nonlinear
tion of the wave is confined to the sagittal plaigf) will ~ SAW pulses in crystalline silicon. Measurements are ob-
have the quadratic fornklvar Kovqvz+ kgug. Figure 16 tained for the directions 0° and 28° fro0Q] in the (001)
shows that the trajectory can be approximated by an ellipsplane, 37° and 90° from001] in the (110 plane, and
with major axis nearly perpendicular to the surface, therebyye 30° and 180=60° (mod 120°) from[llf] in the
making the cross terrkyv v3 small. The magnitudes of the (111) plane. The absorption-layer technique for the genera-
velocity componentgv,| and [vs| are maximal where the tion of nonlinear SAW’s and the method used to numerically
longest horizontal and vertical components of the trajectonsimulate the pulse propagation are described. In all cases,
segments occur, respectively. Hence the maxime&EQ@)  favorable agreement is achieved between experiment and
~kyvi+ksv3 will coincide with the maxima ofiv;| and  theory. In the(001) and (110 planes, the pulses corroborate
lv]. In this particular case, the first peak in Fig. 17 is formedthe predictions that there exist regions of directions with
almost solely by 3 (17 — 19 n$. The second peak starts with positive and negative nonlinearity. In ti{@11) plane, the
its major contribution fromv; (38 — 40 n$ but laterv;  wave form distortion is consistent with the phase changes
dominateg40 — 42 n$. This transition fronmvz to v, in the  associated with the complex-valued nonlinearity matrix ele-
second peak is more apparent in the plot=¢f), where it ments. Unlike bulk waves, finite-amplitude SAW'’s in crys-
appears as a local minimum between two maxima. talline silicon are shown to often achieve peak acoustic am-

Table IV compares the values for the power flux and totalplitudes larger than their initial amplitude during

V. CONCLUSION
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FIG. 15. Comparison of measured and simulated data for sur- -80 I -80 -40 I -20 I 0 I 20 I 40
face waves propagating in the directiph12] (6=180°=60°) in u, [nm]

the (111) plane of crystalline silicon, from=5 mm (dashed ling
to x=21 mm (solid line, measured; dotted line, simulatetiote FIG. 16. Particle trajectory at the surface corresponding to the
that the time resolution in this data is 1 ns as compared to 0.4 nS i},ave forms given in Fig. 12. The wave is traveling in t[HELZ]
Figs. 12 and 14. direction of the(111) plane. Trajectories are shown at 0 rigolid
line), 24 nm(dashed ling and 60 nm(dotted ling below the sur-

propagation. This effect may be used to generate largeface. The boxed numbers along the surface trajectory indicate the
amplitude stresses near surfaces. retarded time in nanoseconds.

and {s and ,8(5) are associated with the eigenvalues and
_ eigenvectors of the linearized SAW problémNote that
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APPENDIX A: STRAIN AND STRESS COMPONENTS

The velocity components of a nonlinear SAW &ref.

12, Eq.(74)]

Power flow per unit length [W/c

15.0x10

Power flow per unlt area [W/cm

in(kx—wt
vi(x,2,)= 2 Anupi(z)en®eVice, (A1) " - - -
Retarded time [ns]
where[Ref. 12, Eq.(27)]

FIG. 17. Power flow per unit arda(t) at the surface and power

3 per unit lengthF(t) normal to the direction of wave propagation.
Unj(2)= El ﬂjgs)einkgsz, (A2) This measurement was taken at the remote location for the wave-
S=

form in the[ll?] direction in the(111) plane in Fig. 12.
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TABLE IV. Comparison of power flow measurements in various Can= —./C (A8C)
SAW studies. When available, values are given for both power per 33 e
unit area at the surface and power per unit length normal to the

direction of wave propagation. €23= —U,/2c, (A8d)
Frequency e13= — (v +v,)/2C, (A8e)

Authors Material  W/cmd  W/cm  [MHz]

Nakagaweet al? LiNbO; 8x1C° 10 300 €12= —vyl2c. (A8f)

Gibson and Mesijét Sio, N/A 2 281 Observe thae,; and e, are always proportional the longi-

NayanoV LiNbO;  3Xx10'  N/A 114 tudinal and transverse velocity components scaled by the lin-

Cho and MiyagaV\fé LiINbO, 104 70 60 ear wave speed.

Kavalerov LiNbO 4 N/A 30 200 The stress components are

KavaleroV LiNbO 4 10° 54 200

Current work Si 1.%10° 2200 5 to 500 i = Cijki €I » (A9)

aReference 26. wherec;;, are the second-order elastic constagéined in

breference 27. terms of the coordinate system associated with the free sur-

‘Reference 28. face and direction of propagatioypically, the elastic con-

dReference 29. stants are listed in reference books with respect to the crys-

eReference 30. talline axes, and hence to use EA9) a transformation of

fReference 31. the stiffness matriX is required for most propagation direc-

tions. Only the linear terms are included in E§9), for the

integration of Eq(A1) with respect to time, it follows that ~same reasons as before with the strain. At the surface (
=0), the stress-free boundary conditions

S 1 in(kx— wt)
uj(x,z,t)=n§1 — ——Aglp(2)e +c.c. (A3) 0 15= 0p5= 033=0 (A10)
) must hold. Substituting Eq$A8) and Eqs.(A10) into Egs.
The strain components are (A9) yields
o = M, M) (Ad) U(z=0)=M1 MV, (AL1)
2 07)(J &Xi

. . . . . . N/ (5 TNT _ T
The nonlinear contributions to the strain are not included invhereV=(vy vy v3)', V=(vy va v3) ',
Eq. (A4) because, while they have a cumulative effect on the

wave form evolution, they make only a small contribution at C3s Csa Ca3
any individual location. Differentiating EA3) with respect M;=| Css Cas Caal, (A123)
each spatial variable yields
Cs5 C45 Cgs
(9Uj/(9X:_Uj/C, (A5a)
—Ci3 —Cg —Cgs
du;j1dy=0, (ASD) Myo=| —Cis —Cs4s —Css5]. (Al12b)
aujlaz=—v;lc, (A50) ~Cis —Cse T Css
where Hence at the surface, we find tl"éa]-t, &, andgj; can be

written as a linear combination of the velocity components
v, provided thatM; *M is nonsingular.

As an example of this procedure, consider the special case
of propagation in th€001) plane of a cubic crystal. In the

3 crystalline frame, the only nonzero second-order elastic con-
Unj(2)= >, Zsﬁj(s)emkgszy (A7)  stants ar€ c;;=Cp=C3, C1p=C13=Cp3, and Cs=Css
s=1 =Cgs. In a frame rotated so that thg axis is inclined at

andfjm: ﬁ?— m; - The derivativedA, /dx does not appear in angle to thex, axis, the only constants which are changed
Eq. (A5) because the relatiofdA, /dx|<nk|A,| is consis- DY the rotation aré
tent with the nonlinear evolution equati¢?). The individual
strain components can then be computed using &S

©

0i(x,2,0)= 2, Alp(2)eMVtce,  (AB)
n=1

C11= Chy=C11(COS O+ Sin' §) + 2(Cyp+ 2C44) SiF HCOS 0

(A13a
e11= —vy/c, (A8a)
C1o=2(C11— 2C44)SIMF HCOS O+ C1 o sin* 6+ cog' 6)
€= 0, (A8b) (A13b)
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Ci= — C26=(C11— C1p— 2C44) SINGCOH(SIN* 6 — cOS ) However, the measurements of Sec. IV C have demonstrated

(A13c) that the same periodicity does not hold for the nonlinear
distortion. Calculations have indicated that complex-valued

Cg=4(C11— C12)SIPHCOS 6+ Caq( 1 - 8sirf fcoS 6). nonlinearity matrix elements as well as the complex-valued
(A13d)  eigenvalues and eigenvectors of the linearized equations

(physically corresponding to the depth decay coefficients and

nc'omponent amplitudes, respectivehave sixfold symmetry

in magnitude but only threefold symmetry in phd8¢°It is

shown here that such properties can be proved analytically to

Note, however, that none of the second-order elastic co
stants in the matricelgl; andM, of Eq. (A12) is affected by
Egs. (A13). Hence for all propagation directions it follows

that hold generally for SAW’s in anisotropic media.
0 0 -1 Consider first the linearized equation of motion for a sur-
. face acoustic wave. We assume a solution of the form
M; "Mp= 0 0 0. (Al4)  exdik(l-x—ct)], wherel=(1,,0)3). The secular equation is
—cplcy; 00 then
It immediately follows from Eq(All) that de‘lCijk||j||—PCZ5ik| =0. (B1)
02 0=—p,, (Al53  Equation(B1) can be split into four parts as follows:
~z=0_ o Lo oo
vy =0, (A15D) > aylilh+ > bylilb+ X lilh—p3ct=0,
i+j=6 i+j=4 i+j=2
02 %= —(cpolcivy. (A150) (B2)
After substituting Eqs(A15) into Egs.(A8), the only non-  Wherei,j=0, ... ,6. Wesolve forl; and, in general, obtain
zero strains are three pairs of complex conjugate roots. lcgtand g, be a
pair of such roots—i.eq,=q7 . The sextic secular equation
i1 ’=—uv,lc, (Al6a)  can also be written in the general form
€33 %=(cpolcipvy/c, (A16b) &
> Kqa"=0, (B3)
e, %= —v,/2c. (A160) n-0

Substitution of Eqs(A16) into Eqs.(A9) shows that the only Whereg represents the roots fog. If we consider now the
nonzero stresses are wave which travels in the opposite direction, then the

component is replaced with-1,. Analyzing Eg.(B2), we

Ciz Uy vy find that the terms with even powerslafdo not change their
oi;’= ut c ?—Cisg, (A178)  sign since they also contain even powerd gfwhereas the
terms with odd powers df; do change their sign. So for the
2 wave which is traveling in the opposite direction, E§3)
z 22| U o Uy Al7b  transforms into the form
022 =| ~Cpot c TCwee ( )
6
_ , , U -1)"K,q"=0. B4
0—?50: - ClBFX - C66?y . (A17C) nZO ( ) nq ( )

Therefore, for propagation in th@01) plane it is sufficient  Thus, ifd,=q7 satisfies Eq(B3), then—q,= —q satisfies -
to know the longitudinal and transverse velocity component§d. (B4). Because only the solutions with negative imagi-
to compute all the strains and stresses of the SAW at thBary parts correspond to physical solutidissirface waves
surface. See Figs. 5 and 6 for graphs of the strains an@ith amplitudes that decrease exponentially with dgptH 5
stresses, respectively, for the casegef28°. In the case of IS the solution for propagation in the directia, then—I5
propagation along the crystalline aﬁf’svy=0, e;,=0, 0, Must be the corresponding solution for propagation in the

=0, and only the longitudinal velocity component is neces-OPposite direction. Hence, if; contains a real part, the
sary. propagation becomes asymmetric about the origin in the

plane. For the(111) plane of cubic crystals, this situation
results in threefold directional symmetry instead of sixfold
symmetry in the plane. Figures with calculated results for
KCI have been given previously in Ref. 15.

Previous numerical and experimental studies of surface The nonlinearity matrix elements can also be shown to
acoustic waves in thélll) plane of cubic crystals have have a similar asymmetry. Consider two wavgsand v,
shown that linear properties, including the wave speed anttaveling in opposite directions—e.g., along tke axis in
the direction of power flow, exhibit sixfold symmeffy. positive and negative directions:

APPENDIX B: ASYMMETRY PROPERTIES OF SAWS IN
CRYSTALS
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vID=[Vv{@7* Suppose the coefficientd ! satisfy the evo-
lution equation with nonlinearity matriss{). The coeffi-
cientsV{? then satisfy the evolution equation with nonlin-
earity matrix S2)=[SH1*. Therefore, if the nonlinearity
v@=" V@exp —inkx). (B6) ~ Matrix elements contain an imaginary part, then the propa-
n gation will not be the same in opposite directions. This effect

is exhibited in the(111) plane of silicon as can be seen by
If the waves have the same source condition, thertomparing Figs. 12 and 15.

v W= vexp(inkx), (B5)
n
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