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Laser-generated nonlinear surface wave pulses in silicon crystals
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The absorption-layer method for inducing pressure shocks is employed to generate finite-amplitude, broad-
band surface wave pulses in crystalline silicon. Spectral evolution equations are used to compute the wave
form distortion from the first to the second measurement location, and the results are shown to be in quanti-
tative agreement with the measured data. The measurements also confirm that a nonlinearity matrix which
describes the coupling of harmonics provides a useful tool for characterizing wave form distortion. In the~001!
plane, the measurements show that the longitudinal velocity wave forms develop rarefaction shocks along
@100# and compression shocks along 26° from@100#. In the ~110! plane, compression shocks are observed in
the longitudinal velocity wave forms in the direction 37° from@100#, whereas rarefaction shocks are seen

along @11̄0#. The results in the~001! and ~110! planes are consistent with sign changes in the nonlinearity
matrix elements. In the~111! plane, the measured wave form distortion is consistent with the phase changes
associated with the computed complex-valued matrix elements. In particular, the characteristics of propagation

in the @112̄# and @ 1̄1̄2# directions are shown to differ. This specific case is proved to follow from a more
general result based on the symmetry properties of surface acoustic waves in this plane. In all the planes, it is
demonstrated that, unlike bulk waves, the peak acoustic amplitude of surface waves can increase as they
propagate, thereby allowing large stresses to be generated at surfaces. Finally, the power flux and total power
of the pulses are shown to be substantially higher than in previous reports.

DOI: 10.1103/PhysRevB.69.035314 PACS number~s!: 68.35.Iv, 62.65.1k, 43.25.1y, 43.35.1d
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I. INTRODUCTION

Understanding the nonlinear properties of surface wa
in crystalline materials is important for many application
Piezoelectric surface acoustic wave~SAW! devices like con-
volvers, correlators, and amplifiers use nonlinear effe
to perform signal processing functions. Many of these co
ponents are used in mobile and wireless communica
devices for personal communication services~e.g., pagers,
cellular phones!, wide-area networks, and wireless loc
area networks.1 SAW’s have also been used to perfor
nondestructive evaluation~NDE!. Defects, material proper
ties ~density, elastic constants!, applied and residual stresse
adhesive bonding, surface roughness, and plate
layer thickness may all be measured using linear SAW2

and the use of nonlinear SAW’s to characterize materials
e.g., their fracture behavior — is a subject of curre
research.

Until the mid-1990s, much of the experimental work o
nonlinear SAW’s in crystals was limited to measurements
the first few harmonics. In 1996, Lomonosov and Hess3 pre-
sented results of pulsed SAW’s generated using
absorption-layer technique. Unlike previous experimen
this technique generates extremely high-amplitude pu
~peak strains approaching 0.01! with broadband spectra an
allows the same pulse to be measured at multiple locati
Their original article showed wave forms in fused quartz t
clearly exhibit shock formation. Additional wave forms
fused quartz were subsequently presented.4,5 Comparison of
those wave forms to the theory of Zabolotskaya a
co-workers6,7 for isotropic materials exhibited excellen
quantitative agreement. Nonlinear surface wave pulses h
0163-1829/2004/69~3!/035314~13!/$22.50 69 0353
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also been excited in isotropic~polycrystalline! aluminum,
copper, and stainless steel samples.8–10

Experiments have also been performed by Lomono

and Hess in crystalline silicon. In the@112̄# direction of the
~111! plane, the measured pulse data11 and the theory for
anisotropic media12 agreed well. Strikingly, it was found13 in
the ~001! plane that the pulses distort in opposite ways, w
longitudinal velocity wave forms forming rarefaction shoc
in the @100# direction and compression shocks in the dire
tion 26° from @100#. ~A compression shock is defined suc
that the longitudinal particle velocity is negative ahead of
shock and positive behind the shock; a rarefaction shoc
the opposite case.! The same effects are predicted b
theory,12 which reproduces the wave form evolution in bo
directions. For a couple of the propagation directions
scribed in Refs. 11 and 13, some additional measureme3

have been presented, but a simplified, approximate the
was used to model those results.

The present article provides measured data in more
and directions than previous articles, with higher time re
lution and more detailed analysis. The results corrobor
previous theoretical investigations14,15 of nonlinear surface
waves in cubic crystals.

Finally, we note that measurements have also been m
of finite-amplitude SAW’s in systems of fused quartz su
strates covered with titanium nitride films, and good agr
ment has been obtained with simulations.16,17 However, be-
cause SAW’s in these systems are dispersive, the resu
wave form evolution is qualitatively different than that pr
sented here~e.g., shocks do not form!. In addition, finite-
©2004 The American Physical Society14-1
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LOMONOSOV et al. PHYSICAL REVIEW B 69, 035314 ~2004!
amplitude wave forms in silicon18 have been published in
which the excitation has been so large that fracture has
curred. These results extend beyond the range of the the12

for elastic waves used in this article.

II. EXPERIMENT

A schematic diagram of the experimental setup is sho
in Fig. 1. Excitation of the SAW’s is accomplished using
Nd:YAG laser of wavelength 1064 nm, pulse duration 8
and energy up to 60 mJ, which is focused into a strip
length 7 mm and width 50mm on the surface of the solid
This geometry creates a SAW beam which propagates
ward from the the excitation region. A strongly absorbi
layer in the form of an aqueous suspension of carbon
ticles is placed in the strip area. By explosive evaporation
this layer strong forces are exerted onto the surface, the
intensifying the SAW excitation process. The nearly co
plete absorption of the laser pulse by the layer protects
surface from melting and ablation. To measure the trans
SAW wave forms, a laser probe beam deflection setup u
stabilized cw Nd:YAG laser probes of wavelength 532 n
and power 100 mW is employed. Two probe beams are
cused into spots approximately 4mm in diameter located 16
mm apart, with the closest probe between 0 and 5 mm fr
the excitation region. As the SAW pulse passes through
area covered by the probe beams, the deflection of the l
beams is detected by two position-sensitive detectors.
cause the deflection of the beam is proportional to the sl
of the surface, it follows that the detector output is prop
tional to the vertical velocity component of the travelin
wave. The bandwidth of the whole detection system is li
ited to about 500 MHz.

III. SIMULATIONS

Numerical simulations are performed to compare the
and experiment for the three different data sets taken in c
talline silicon. In the theoretical description12 of the wave
forms on the surface, the particle velocity components

FIG. 1. Schematic diagram of the experimental apparatus u
the absorption-layer method for finite-amplitude SAW generat
and dual laser-probe SAW detection.
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assumed to be plane waves expanded as follows:

v j~x,t!5 (
n51

`

An~x!Bje
2 invt1c.c., ~1!

where j 51,2,35x,y,z with x5x1 the coordinate along the
direction of propagation andz5x3 the coordinate normal to
the surface and directed outwards~see Fig. 1!, t5t2x/c is
the retarded time,c is the linear wave speed in the propag
tion direction,Bj are derived from the eigenvectors of th
linear problem,14 and v is the fundamental angular fre
quency. This assumption has two implications. First, the s
nal must be periodic. In order to model pulses, they are
sumed to repeat with a frequencyf rep52.5 MHz in all cases
considered. Second, the signal must have planar wave fro
Hence the theory is applicable only if diffraction effects a
negligible; i.e., the total propagation distancex is less than
the characteristic Rayleigh distancexR of the beam. The ratio
of these two lengths is given by the dimensionless diffract
parameterD5x/xR54xc/p f peakd

2, where d is the beam
width at the source andf peak is the frequency of the pea
spectral amplitude. In all casesD!1, and therefore the wave
fronts are essentially planar in the regions of interest.

To perform the simulations, the frequency spectrum of
measured wave form at the probe beam location closes
the excitation region is computed from the time wave for
appropriately scaled, and used as the source condition fo
spectral evolution equations12

dAn

dx
1anAn52

n2vc44

2rc4 (
l 1m5n

sgn~ lm!Ŝlm(2n)AlAm ,

~2!

whereAn and an are the spectral amplitude and absorpti
coefficient of thenth harmonic andŜlm is the nonlinearity
matrix. ~Note thatŜlm52Slm /c44, whereSlm is defined in
Ref. 12. This new matrix14 is introduced so that sign an
dimensions ofŜlm are consistent with the nonlinearity matr
previously introduced for isotropic media.6! Physically, the
matrix elementŜlm describes the coupling between thel th
andmth harmonics to generate thenth harmonic. This matrix
has the property12 that

Ŝpl,pm5Ŝlm /p ~3!

for any nonzero integerp, and hence the character of nonlin
ear distortions for a wave withf peak5p f rep usually can be
qualitatively characterized by the first few elements.14,15The
absorption terms are introducedad hocto maintain numeri-
cal stability as shocks develop in the wave forms. Assum
classical absorption due to viscosity and heat conductio19

yields the quadratic frequency dependencean5n2a1. The
absorption coefficienta150.00025/x0 is selected so that the
absorption length is substantially larger than the characte
tic length scalex0 ~defined below! for nonlinear effects. Pro-
vided that this condition was satified, we found that var
tions in the absorption coefficient primarily affected th
magnitude of the sharp cusped peaks near the shock fr
and had relatively little effect on the rest of the wave for

g
n
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LASER-GENERATED NONLINEAR SURFACE WAVE . . . PHYSICAL REVIEW B 69, 035314 ~2004!
Moreover, this selection is reasonable given that meas
ments of longitudinal and transverse elastic waves in crys
line silicon indicate that the absorption is low, typically 0.5
1.5 dB/cm in the frequency range 200–500 MHz.20 All the
remaining coefficients including the nonlinearity matrix e
ments are computed from fundamental material consta
density (r52331 kg/m3), second-order elastic constan
from Hearmon21 (c115165 GPa,c12564 GPa,c44579.2
GPa!, and third-order elastic constants from McSkimin a
Andreatch22 (d11152825 GPa, d11252451 GPa, d123
5264 GPa,d144512 GPa,d15552310 GPa,d4565264
GPa!. Nonlinear coupling to bulk wave modes has be
shown to be negligible in all cases considered here.23 The
evolution equations are then integrated numerically usin
fixed-step-size, fourth-order Runge-Kutta routine over
distance between the probe beams.

The resulting frequency spectra are reconstructed
time wave forms using Eq.~1! and compared with the mea
sured wave form at the second probe beam location.
longitudinal velocity wave forms are computed from the v
tical velocity wave forms using the linear transformation14

v1~x,t!5Re~B1 /B3!v3~x,t!2Im~B1 /B3!H@v3~x,t!#,
~4!

where

H@ f ~t!#5
1

p
PrE

2`

` f ~t8!

t82t
dt8 ~5!

defines the Hilbert transform. The computations are p
formed with N51200 harmonics~i.e., 1<n<N, with A2n

5An* ), although the wave forms are reconstructed by us
only enough harmonics (N5200–500) to match the time
resolution of the measured data.

In each case a characteristic nonlinear length scale12 x0
51/ubuek is computed to determine the effect of the nonl
earity over the distance between the probe beams, wherek is
a characteristic wave number associated with the peak s
tral component ande is the characteristic acoustic stra
~acoustic Mach number!. In cases where shocks form,x0 is
an estimate of the shock formation distance.14 The estimated
nonlinearity coefficient14 is given byb54Ŝ11c44/rc2 . Note
that becauseŜ11 can be complex valued,b can also be com-
plex valued. Physically, complex-valued matrix elementsŜlm
mean that both the magnitude and phase of the harmonic
changed as the wave propagates.15

IV. RESULTS

A. Silicon in the „001… plane

Figure 2 shows that the nonlinearity matrix elements
SAW’s in the ~001! plane of Si divide into three distinc
regions14 based upon the angleu between the propagatio
direction and@100#. The matrix elements are all real value
as a result of the mirror symmetry of this plane. In regio
(0°<u,21°), the nonlinearity matrix elements are neg
tive. In simulations with initially monofrequency waves,14

this condition results in thev3 wave forms forming sharply
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cusped peaks and thev1 wave forms developing rarefactio
shocks. In region II (21°,u,32°), the nonlinearity matrix
elements are positive. Correspondingly, thev3 wave forms
form sharply cusped troughs and thev1 wave forms develop
compression shocks. In region III (32°,u<45°), the non-
linearity matrix elements are negative like region I, but s
nificantly weaker. Surface wave pulses are measured in
pure mode directionsu50° andu528° ~marked by circles
in Fig. 2!. Table I presents parameters associated with
data in these directions.

Figure 3 shows a comparison of experiment and the
for u50°. Figure 3~a! gives the directly measured vertica
velocity componentv3 while Fig. 3~b! gives the longitudinal
velocity wave formv1, calculated from the measuredv3
wave form via Eq.~4!. The velocity components are scale

FIG. 2. Dependence of nonlinearity matrix elements on dir
tion of propagation in the (001) plane in Si. The solid, long dash

and short dashed lines correspond toŜ11, Ŝ12, and Ŝ13, respec-
tively. Due to the symmetries of this cut, the matrix elements
symmetric about 45° and periodic every 90°. The circles indic
the directions of propagation considered in Figs. 3 and 4.

TABLE I. Parameters for SAW pulses in the~001! plane of
crystalline silicon.

Parameter Direction from@100#

u 0° 28°
c 4902 m/s 4954 m/s
uB1 /Bu 0.632 0.534
uB2 /Bu 0.000 0.339
uB3 /Bu 0.774 0.775
D 0.081 0.12

Ŝ11
20.022 0.052

b 20.12 0.29
e 0.0016 0.0082
f peak 25 MHz 17.5 MHz
x0 150 mm 19 mm
4-3
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LOMONOSOV et al. PHYSICAL REVIEW B 69, 035314 ~2004!
by the linear wave speedc in the direction of propagation
because, as shown in Appendix A, the strain and stress c
ponents of the surface wave at the surface of the crysta
proportional to linear combinations ofv i /c. The dashed and
solid lines give the experimental data for the close and
mote probe beam locations from the source, and the do
line gives the simulated result at the remote location. T
wave has no transverse displacement component (B250) in
this direction. Because the propagation distance is much
than the estimated shock formation distance, the pulse
exhibits mild distortion. As seen in Fig. 2, the nonlinear
matrix elements are negative in this direction. As a result,
peaks ofv3 are expected to rise, and the troughs are expe
to become flatter and shallower. In addition, the peaks ofv1
are expected to travel slower than the linear wave speed,
the troughs are expected to travel faster, with the result
rarefaction shocks form. Unfortunately, the weak distort
of the wave forms makes it difficult to determine if the pr
dicted features are consistent with the observed evolut
However, this weakness itself is in agreement with the l
magnitude of the nonlinearity matrix elements in this dire
tion. In particular, the estimated shock formation distance
nearly an order of magnitude greater than the propaga
distance.

In contrast, the magnitudes of the nonlinearity matrix
ements are significantly larger in the directionu528°. Fig-
ure 4 shows a comparison of the experiment with theory
this case. Unlike theu50° direction, the particle motion is
tilted out of the sagittal plane. The resulting transverse
locity ~shear horizontal! component is not qualitatively dif
ferent fromv1, and while included in the full computations

FIG. 3. Comparison of measured and simulated data for sur
waves propagating in the direction@100# (u50°) in the (001)
plane of crystalline silicon, fromx55 mm ~dashed line! to x521
mm ~solid line, measured; dotted line, simulated!.
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its graph is omitted here. In this direction, the nonlinear
matrix elements are positive. Hence the peaks inv1 travel
faster than the linear wave speed, the troughs travel slo
and compression shocks form. The troughs ofv3 deepen and
the peaks become flatter and shallower. Both of these
tures are clearly seen in the wave forms of Figs. 4~a! and
4~b!. Note that while the wave forms measured at the clo
locations in the 0° and 28° directions are initially similar
form, they evolve to wave forms that are different. The
sulting distortion in both cases is consistent with the regio
of negative and positive nonlinearity delineated in Fig. 2.

Figure 5 shows the strain wave forms corresponding
the velocity wave forms in Fig. 4.~See Appendix A for ana-
lytical formulas for the strains and stresses.! Only the
e11, e33, ande12 components are nonzero in this directio
The shape of the wave forms is similar tov1 in all cases,
although thee11 ande12 wave forms are inverted. As migh
be expected, the shear horizontal straine12 arises mainly
from the transverse velocity component, and waves with
transverse components~e.g., the previous case along@100#!
have no shear strain component. Note that the peak str
are a few percent, but only act over a period of aroun
nanosecond. Figure 6 shows the corresponding stress w
forms at the surface. Because of the stress-free boun
conditions, only thes11, s22, ands12 components are non
zero. The primary effect of the wave is a rapid longitudin
compressional stress followed by a smaller~but still very
large! tensile stress. The peak stress is several gigapasca
value typical for the strongest excitations reported here

ce

FIG. 4. Comparison of measured and simulated data for sur
waves propagating in the directionu528° from @100# in the (001)
plane of crystalline silicon, fromx55 mm ~dashed line! to x521
mm ~solid line, measured; dotted line, simulated!.
4-4
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LASER-GENERATED NONLINEAR SURFACE WAVE . . . PHYSICAL REVIEW B 69, 035314 ~2004!
sizable shear horizontal stress exists because of the sig
cant transverse velocity component in this case. In both
strain and stress wave forms it is clear that the peak am
tude increases as the wave propagates, an effect that i
seen in nonlinear bulk waves. Because it is relativ
straightforward to compute the strains and stresses from
velocity components, we omit these graphs for the other c
and directions that follow.

B. Silicon in the „110… plane

Next consider propagation in the~110! plane of Si. Sur-
face wave pulses are measured in the pure mode direc
u50°, 37°, and 90°, where in this sectionu is defined as

FIG. 5. Comparison of measured and simulated strain w
forms for surface waves propagating in the directionu528° from
@100# in the (001) plane of crystalline silicon, fromx55 mm
~dashed line! to x521 mm~solid line, measured; dotted line, simu
lated!. Positive values of strain are compressive, while nega
values are tensile. Only the nonzero components of strain
shown.
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the angle between the propagation direction and@001#. The
nonlinearity matrix elements for this cut are shown in Fig.
and the propagation directions are marked by circles. T
nonlinearity matrix divides into regions of mixed sign, pos
tive, and negative real-valued elements. Table II presents
rameters associated with the data in these directions.

Figure 8 shows a comparison of experiment and the
for u50°. The wave has no transverse displacement com
nent (B250) in this direction. The nonlinearity matrix ele
ments have mixed sign in this direction withŜ11.0, Ŝ12

.0, and Ŝ13,0. In simulations with initially monofre-
quency waves,24 distortion occurs but shocks do not form
because the various harmonic components change in o
site ways. With a pulsed wave form, the net effect appear

e

e
re

FIG. 6. Comparison of measured and simulated stress w
forms for surface waves propagating in the directionu528° from
@100# in the (001) plane of crystalline silicon, fromx55 mm
~dashed line! to x521 mm~solid line, measured; dotted line, simu
lated!. Positive values of stress are compressive, while nega
values are tensile. The remaining stress components are identi
zero by the surface boundary conditions.
4-5
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LOMONOSOV et al. PHYSICAL REVIEW B 69, 035314 ~2004!
be little distortion at all. Note that the nonlinearity matr
elements are typically an order of magnitude smaller in t
direction than in theu537° direction.

Figure 9 shows a comparison of experiment and the
for u537°. In this direction, the nonlinearity matrix ele
ments are positive, and so the distortion is qualitatively v
similar to Fig. 4. The similarity between these figures sho
that the physical mechanism for the wave form distortion
the same in these directions despite being in different cu

Figure 10 shows a comparison of experiment and the
for u590°. In contrast, here the nonlinearity matrix el
ments are negative, and the distortion is qualitatively sim
to Fig. 3. Note that the amplitude of the wave in this dire
tion is less than theu50° direction of this plane and yet th
wave form exhibits more distortion. This result is consiste
with the magnitudes of the nonlinearity matrix elemen
shown in Fig. 7 for the two different directions.

C. Silicon in the „111… plane

Finally consider propagation in the~111! plane of Si. Fig-
ure 11 shows the complex-valued nonlinearity matrix e

FIG. 7. Dependence of nonlinearity matrix elements on dir
tion of propagation in the (110) plane in Si. The solid, long dash

and short dashed lines correspond toŜ11, Ŝ12, and Ŝ13, respec-
tively. Due to the symmetries of this cut, the matrix elements
symmetric about 90° and periodic every 180°. The circles indic
the directions of propagation considered in Figs. 8, 9, and 10.

TABLE II. Parameters for SAW pulses in the~110! plane of
crystalline silicon.

Parameter Direction from@001#

u 0° 37° 90°
c 5015 m/s 4784 m/s 4458 m/s
uB1 /Bu 0.638 0.546 0.497
uB2 /Bu 0.000 0.024 0.000
uB3 /Bu 0.770 0.838 0.867
D 0.064 0.053 0.15

Ŝ11
0.0043 0.067 20.025

b 0.023 0.40 20.17
e 0.0047 0.0085 0.0021
f peak 32.5 MHz 37.5 MHz 12.5 MHz
x0 220 mm 6.0 mm 160 mm
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ments as a function of the angleu between the propagatio
direction and@112̄#. Figure 11~a! shows that the effect o
nonlinearity is near its maximum atu50° andu560° and
weakest atu530°. While the magnitudes of the nonlineari
matrix elements have a sixfold symmetry in this cut, t
phases have only a threefold symmetry. This property is g
eral for SAW’s propagating in this cut.~See Appendix B for
a detailed discussion of the symmetry properties of lin
and nonlinear parameters.! Note also that the magnitudes o
the nonlinearity matrix elementuŜ11u ~and hence nonlinearity
coefficientubu) are several times larger than those in the
and 26° directions of the~001! plane. Figure 11~b! shows
that atu50° the phases of the first few nonlinearity matr
elements are in the vicinity of 0.6p and are relatively close
together. At u530° the nonlinearity matrix elements ar
negative real valued, but asu→60° the matrix elements ap
proach 1.4p[20.6p (mod 2p). As demonstrated for
monofrequency source conditions,15,25 the complex-valued
nonlinearity results in an asymmetric distortion of the wa
forms. For example, foru50°, the regions of thev3 wave
form from troughs to peaks steepen into a sharply cus
peak, while regions from peaks to troughs flatten, resulting
an N-shaped distortion. Forv1, the peaks rise into cuspe
spikes while the troughs become flatter and shallower, res
ing in a U-shaped distortion. This combination of heighten
nonlinearity and asymmetric distortion results in signi
cantly different wave forms than observed in the~001! plane.
Table III summarizes the relevant parameters for the S
data in this cut.

-
,

e
e

FIG. 8. Comparison of measured and simulated data for sur
waves propagating in the direction@001# (u50°) in the (110)
plane of crystalline silicon, fromx55 mm ~dashed line! to x521
mm ~solid line, measured; dotted line, simulated!.
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LASER-GENERATED NONLINEAR SURFACE WAVE . . . PHYSICAL REVIEW B 69, 035314 ~2004!
Figure 12 provides a comparison of experiment w
theory for u50°. In this particular direction, the wave ha
no transverse velocity component (B250), and hence only
the vertical and longitudinal components are shown in
Figs. 12~a! and 12~b!. The nonlinear evolution~from the
dashed line to the solid line! is predicted accurately by th
theory ~dotted line!, including the increase in pulse duratio
between the close and remote locations. In Fig. 12,v3 clearly
has an N-shaped wave form whilev1 has a U-shaped wav
form, as described previously. Figure 13 shows the spe
corresponding to Fig. 12. The top graph shows the meas
spectrum at the first probe location, while the bottom gra
shows the measured and simulated spectra at the se
probe location in good agreement. Observe that the p
lengthening seen in Fig. 12 is manifest in the shift of t
spectral peak to a lower value between the first and sec
probe locations. In addition, the strongly nonlinear nature
the propagation is seen in the substantial increase in the
plitudes of harmonics.

Figure 13 also shows some features that are typical fo
the measured spectra. First, it demonstrates that the lim
detector sensitivity occurs around 500 MHz and justifies
use of this value as the upper limit for reconstructing
simulated wave forms. Second, it shows that the bandw
of the starting wave form is essentially narrower than
detector bandwidth, and so no higher harmonics are lost
tween the generation region and the first probe location.
nally, the spectra also indicate that the amplitude atf peak is

FIG. 9. Comparison of measured and simulated data for sur
waves propagating in the directionu537° from @001# in the (110)
plane of crystalline silicon, fromx55 mm ~dashed line! to x521
mm ~solid line, measured; dotted line, simulated!.
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about 10 dB greater than the lowest-frequency compone
and hence diffraction effects from these components are
pected to be negligible.

In contrast to Fig. 12, Fig. 14 shows measured and co
puted results foru530°, where the nonlinearity matrix ele
ments are negative real valued, like@100# in the ~001! plane
and@11̄0# in the ~110! plane. In this case, the peak of thev3
wave form nearly doubles in size and the trough decrea
slightly, while a rarefaction shock forms in thev1 wave
form. The velocity componentv1 is smaller thanv3 because
in this case the wave also has a transverse component~not
shown!. Note also that the type of distortion in this directio
is consistent with the other cases of negative real-val
nonlinear matrix elements seen in Figs. 3 and 10. T
amount of overall distortion is somewhat less than in theu
50° direction, as consistent with the lower magnitude of t
nonlinearity matrix elements of Fig. 11.

Finally, Fig. 15 shows measured and computed results
u560°. Here the initial amplitude of the wave is less than
previous cases, so the distortion is not as strong. The ma
tudes of the nonlinearity matrix elements in this direction a
the same as withu50° in this plane, but the phases a
opposite in sign. The opposite phasing causes the region
the v3 wave form from troughs to peaks to flatten, whi
regions from peaks to troughs steepen into sharply cus
peaks, resulting in an inverted N-shaped distortion. Forv1,
the peaks become rounder and shallower, while the trou
deepen into cusped spikes, resulting in an inverted U-sha
distortion. Unlike the wave forms in Fig. 14 foru530°, the

FIG. 10. Comparison of measured and simulated data for

face waves propagating in the direction@11̄0# (u590°) in the
(110) plane of crystalline silicon, fromx55 mm ~dashed line! to
x521 mm ~solid line, measured; dotted line, simulated!.
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v3 wave form shows an increase in the the magnitude
both sides of the rarefaction shock and the trough of thev1
wave form shows a substantial increase in magnitude. Th
results are consistent with those expected from simulat
with initially monofrequency waves.15

The particle trajectory corresponding to the wave forms
Fig. 12 is shown in Fig. 16 at surface~largest!, 24 mm below
the surface~middle!, and 60mm below the surface~smallest

FIG. 11. Dependence of nonlinearity matrix elements on dir
tion of propagation in the (111) plane in Si. The solid, long dash

and short dashed lines correspond toŜ11, Ŝ12, and Ŝ13, respec-
tively. The top plot shows the magnitudesuSlmu, and the bottom plot
shows the corresponding phasec lm . Due to the symmetries of this
cut, the matrix elements are symmetric about 60° and periodic
ery 120°. The circles indicate the directions of propagation con
ered in Figs. 12, 14, and 15.

TABLE III. Parameters for SAW pulses in the~111! plane of
crystalline silicon.

Parameter Direction from @112̄#

u 0° 30° 60°
c 4720 m/s 4522 m/s 4720 m/s
uB1 /Bu 0.536 0.470 0.536
uB2 /Bu 0.000 0.340 0.000
uB3 /Bu 0.844 0.814 0.844
D 0.071 0.075 0.098

Ŝ11
0.11ei0.59p 20.0081 0.11e2 i0.59p

b 0.65ei0.59p 20.054 0.65e2 i0.59p

e 0.0041 0.0028 0.0020
f peak 27.5 MHz 25 MHz 19 MHz
x0 9.7 mm 190 mm 30 mm
03531
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and self-intersecting!. Observe the very large vertical dis
placement caused by the wave~approximately 160 nm!. In
addition, the figure shows that the primary effect on the wa
with increasing depth is the reduction in longitudinal motio

D. Power flux

In the linear approximation, the energy carried by the s
face wave consists of two parts: the potential energy of
elastic strain of the crystal and the kinetic energy associa
with the motion of the material particles. Thus the total m
chanical power per unit area in thex direction can be ex-
pressed as

E5cS 1

2
ci jkl ei j ekl1

r

2

]ui

]t

]ui

]t D , ~6!

where ui are the displacement components andei j
5 1

2 (]ui /]xj1]uj /]xi) is the linearized strain tensor. Co
rections to the power flow due to the elastic nonlinearity
the medium are cubic in the strain terms, which are limit
to the order 1022 by the mechanical strength of the solid.

Figure 17 showsE(t) at the surface together withF(t),
the total power flow per unit length found by integratin
E(t) over depth. The two narrow peaks inE(t) correspond
to the shock fronts in thev3 wave form of Fig. 12. Because
higher-frequency components of the wave penetrate
deeply into the solid and because the shock fronts corresp
to the high-frequency components, the acoustic energy of
pulse is more strongly confined near the surface at the sh
fronts.

-
,

v-
-

FIG. 12. Comparison of measured and simulated data for

face waves propagating in the direction@112̄# (u50°) in the (111)
plane of crystalline silicon, fromx55 mm ~dashed line! to x521
mm ~solid line, measured; dotted line, simulated!.
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Integration over depth deemphasizes this confinement ef
so the peaks are considerably broader inF(t). The minimum
in F(t) corresponds to the instant when thev3 profile has
zero value.

Additional interpretation of Fig. 17 can be obtained
examining the surface trajectory of Fig. 16. Because the
tion of the wave is confined to the sagittal plane,E(t) will
have the quadratic formk1v1

21k2v1v31k3v3
2. Figure 16

shows that the trajectory can be approximated by an ell
with major axis nearly perpendicular to the surface, there
making the cross termk2v1v3 small. The magnitudes of th
velocity componentsuv1u and uv3u are maximal where the
longest horizontal and vertical components of the traject
segments occur, respectively. Hence the maxima ofE(t)
'k1v1

21k3v3
2 will coincide with the maxima ofuv1u and

uv3u. In this particular case, the first peak in Fig. 17 is form
almost solely byv3 ~17 – 19 ns!. The second peak starts wit
its major contribution fromv3 ~38 – 40 ns! but later v1
dominates~40 – 42 ns!. This transition fromv3 to v1 in the
second peak is more apparent in the plot ofF(t), where it
appears as a local minimum between two maxima.

Table IV compares the values for the power flux and to

FIG. 13. Spectra for wave forms in Si in the direction@112̄#
(u50°) in the ~111! plane. The top graph shows the measur
spectra at the first probe location, while the bottom graph shows
measured~solid! and simulated~short dashed! spectra at the secon
probe location.
03531
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power flow in Fig. 17 with those given in the previou
publications.26–31 In all these papers, the nonlinear effec
were observed for an initially sinusoidal SAW which wa
generated by means of interdigital transducers on piezoe
tric materials.~Note that the effective acoustic power is ha
the peak value for a sinusoidal source.! In comparison, the
laser technique of SAW excitation provides substantia
higher peak power density, a necessary condition for str
harmonic generation and shock formation to occur.

V. CONCLUSION

This article investigates the propagation of nonline
SAW pulses in crystalline silicon. Measurements are o
tained for the directions 0° and 28° from@100# in the ~001!
plane, 37° and 90° from@001# in the ~110! plane, and
0°, 30°, and 180°[60° (mod 120°) from @112̄# in the
~111! plane. The absorption-layer technique for the gene
tion of nonlinear SAW’s and the method used to numerica
simulate the pulse propagation are described. In all ca
favorable agreement is achieved between experiment
theory. In the~001! and ~110! planes, the pulses corrobora
the predictions that there exist regions of directions w
positive and negative nonlinearity. In the~111! plane, the
wave form distortion is consistent with the phase chan
associated with the complex-valued nonlinearity matrix e
ments. Unlike bulk waves, finite-amplitude SAW’s in cry
talline silicon are shown to often achieve peak acoustic a
plitudes larger than their initial amplitude durin

e

FIG. 14. Comparison of measured and simulated data for
face waves propagating in the direction@110# (u530°) in the
(111) plane of crystalline silicon, fromx55 mm ~dashed line! to
x521 mm ~solid line, measured; dotted line, simulated!.
4-9



rg

g
a
up
ti
o
s
-

nd

with

su

s
the

the

r
.

ave-

LOMONOSOV et al. PHYSICAL REVIEW B 69, 035314 ~2004!
propagation. This effect may be used to generate la
amplitude stresses near surfaces.
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APPENDIX A: STRAIN AND STRESS COMPONENTS

The velocity components of a nonlinear SAW are@Ref.
12, Eq.~74!#

v j~x,z,t !5 (
n51

`

Anun j~z!ein(kx2vt)1c.c., ~A1!

where@Ref. 12, Eq.~27!#

un j~z!5(
s51

3

b j
(s)einkzsz, ~A2!

FIG. 15. Comparison of measured and simulated data for

face waves propagating in the direction@ 1̄1̄2# (u5180°[60°) in
the (111) plane of crystalline silicon, fromx55 mm ~dashed line!
to x521 mm ~solid line, measured; dotted line, simulated!. Note
that the time resolution in this data is 1 ns as compared to 0.4 n
Figs. 12 and 14.
03531
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and zs and b j
(s) are associated with the eigenvalues a

eigenvectors of the linearized SAW problem.32 Note that
these components are in the reference frame associated
the free surface and direction of propagation (x axis!. By

r-

in
FIG. 16. Particle trajectory at the surface corresponding to

wave forms given in Fig. 12. The wave is traveling in the@112̄#
direction of the~111! plane. Trajectories are shown at 0 nm~solid
line!, 24 nm~dashed line!, and 60 nm~dotted line! below the sur-
face. The boxed numbers along the surface trajectory indicate
retarded time in nanoseconds.

FIG. 17. Power flow per unit areaE(t) at the surface and powe
per unit lengthF(t) normal to the direction of wave propagation
This measurement was taken at the remote location for the w

form in the @112̄# direction in the~111! plane in Fig. 12.
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integration of Eq.~A1! with respect to time, it follows that

uj~x,z,t !5 (
n51

`

2
1

inv
Anun j~z!ein(kx2vt)1c.c. ~A3!

The strain components are

ei j 5
1

2 S ]ui

]xj
1

]uj

]xi
D . ~A4!

The nonlinear contributions to the strain are not included
Eq. ~A4! because, while they have a cumulative effect on
wave form evolution, they make only a small contribution
any individual location. Differentiating Eq.~A3! with respect
each spatial variable yields

]uj /]x52v j /c, ~A5a!

]uj /]y50, ~A5b!

]uj /]z52 v̂ j /c, ~A5c!

where

v̂ j~x,z,t !5 (
n51

`

Anûn j~z!ein(kx2vt)1c.c., ~A6!

ûn j~z!5(
s51

3

zsb j
(s)einkzsz, ~A7!

and ûn j5û(2n) j* . The derivativedAn /dx does not appear in
Eq. ~A5! because the relationudAn /dxu!nkuAnu is consis-
tent with the nonlinear evolution equation~2!. The individual
strain components can then be computed using Eqs.~A5!:

e1152vx /c, ~A8a!

e2250 , ~A8b!

TABLE IV. Comparison of power flow measurements in vario
SAW studies. When available, values are given for both power
unit area at the surface and power per unit length normal to
direction of wave propagation.

Authors Material W/cm2 W/cm
Frequency

@MHz#

Nakagawaet al.a LiNbO3 83103 10 300
Gibson and Meijerb SiO2 N/A 2 281
Nayanovc LiNbO3 33104 N/A 114
Cho and Miyagawad LiNbO3 104 70 60
Kavalerove LiNbO3 N/A 30 200
Kavalerovf LiNbO3 105 54 200
Current work Si 1.53106 2200 5 to 500

aReference 26.
bReference 27.
cReference 28.
dReference 29.
eReference 30.
fReference 31.
03531
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e3352 v̂z /c, ~A8c!

e2352 v̂y/2c, ~A8d!

e1352~ v̂x1vz!/2c, ~A8e!

e1252vy/2c. ~A8f!

Observe thate11 and e12 are always proportional the longi
tudinal and transverse velocity components scaled by the
ear wave speed.

The stress components are

s i j 5ci jkl ekl , ~A9!

whereci jkl are the second-order elastic constantsdefined in
terms of the coordinate system associated with the free
face and direction of propagation. Typically, the elastic con-
stants are listed in reference books with respect to the c
talline axes, and hence to use Eq.~A9! a transformation of
the stiffness matrix33 is required for most propagation direc
tions. Only the linear terms are included in Eq.~A9!, for the
same reasons as before with the strain. At the surfacez
50), the stress-free boundary conditions

s135s235s3350 ~A10!

must hold. Substituting Eqs.~A8! and Eqs.~A10! into Eqs.
~A9! yields

V̂~z50!5M1
21M2V, ~A11!

whereV̂5( v̂1 v̂2 v̂3)T, V5(v1 v2 v3)T,

M15S c35 c34 c33

c45 c44 c34

c55 c45 c35

D , ~A12a!

M25S 2c13 2c36 2c35

2c14 2c46 2c45

2c15 2c56 2c55

D . ~A12b!

Hence at the surface, we find thatv̂ j , ei j , and s i j can be
written as a linear combination of the velocity compone
v j , provided thatM1

21M2 is nonsingular.
As an example of this procedure, consider the special c

of propagation in the~001! plane of a cubic crystal. In the
crystalline frame, the only nonzero second-order elastic c
stants are21 c115c225c33, c125c135c23, and c445c55

5c66. In a frame rotated so that thex18 axis is inclined at
angleu to thex1 axis, the only constants which are chang
by the rotation are34

c118 5c228 5c11~cos4u1sin4u!12~c1212c44!sin2ucos2u
~A13a!

c128 52~c1122c44!sin2ucos2u1c12~sin4u1cos4u!
~A13b!

er
e
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c168 52c268 5~c112c1222c44!sinucosu~sin2u2cos2u!
~A13c!

c668 54~c112c12!sin2ucos2u1c44~128sin2ucos2u!.
~A13d!

Note, however, that none of the second-order elastic c
stants in the matricesM1 andM2 of Eq. ~A12! is affected by
Eqs. ~A13!. Hence for all propagation directions it follow
that

M1
21M25S 0 0 21

0 0 0

2c12/c11 0 0
D . ~A14!

It immediately follows from Eq.~A11! that

v̂x
z5052vz , ~A15a!

v̂y
z5050, ~A15b!

v̂z
z5052~c12/c11!vx . ~A15c!

After substituting Eqs.~A15! into Eqs.~A8!, the only non-
zero strains are

e11
z5052vx /c, ~A16a!

e33
z505~c12/c11!vx /c, ~A16b!

e12
z5052vy/2c. ~A16c!

Substitution of Eqs.~A16! into Eqs.~A9! shows that the only
nonzero stresses are

s11
z505S 2c118 1

c12
2

c11
D vx

c
2c168

vy

c
, ~A17a!

s22
z505S 2c128 1

c12
2

c11
D vx

c
1c168

vy

c
, ~A17b!

s12
z5052c168

vx

c
2c668

vy

c
. ~A17c!

Therefore, for propagation in the~001! plane it is sufficient
to know the longitudinal and transverse velocity compone
to compute all the strains and stresses of the SAW at
surface. See Figs. 5 and 6 for graphs of the strains
stresses, respectively, for the case ofu528°. In the case of
propagation along the crystalline axis,35 vy50, e1250, s12
50, and only the longitudinal velocity component is nece
sary.

APPENDIX B: ASYMMETRY PROPERTIES OF SAWS IN
CRYSTALS

Previous numerical and experimental studies of surf
acoustic waves in the~111! plane of cubic crystals hav
shown that linear properties, including the wave speed
the direction of power flow, exhibit sixfold symmetry.32
03531
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However, the measurements of Sec. IV C have demonstr
that the same periodicity does not hold for the nonline
distortion. Calculations have indicated that complex-valu
nonlinearity matrix elements as well as the complex-valu
eigenvalues and eigenvectors of the linearized equat
~physically corresponding to the depth decay coefficients
component amplitudes, respectively! have sixfold symmetry
in magnitude but only threefold symmetry in phase.36,15 It is
shown here that such properties can be proved analytical
hold generally for SAW’s in anisotropic media.

Consider first the linearized equation of motion for a s
face acoustic wave. We assume a solution of the fo
exp@ik(l•x2ct)#, wherel5( l 1,0,l 3). The secular equation is
then

detuci jkl l j l l2rc2d iku50. ~B1!

Equation~B1! can be split into four parts as follows:

(
i 1 j 56

ai j l 1
i l 3

j 1 (
i 1 j 54

bi j l 1
i l 3

j 1 (
i 1 j 52

ci j l 1
i l 3

j 2r3c650,

~B2!

wherei , j 50, . . . ,6. Wesolve for l 3 and, in general, obtain
three pairs of complex conjugate roots. Letq1 and q2 be a
pair of such roots—i.e.,q25q1* . The sextic secular equatio
can also be written in the general form

(
n50

6

Knqn50, ~B3!

whereq represents the roots forl 3. If we consider now the
wave which travels in the opposite direction, then thel 1
component is replaced with2 l 1. Analyzing Eq. ~B2!, we
find that the terms with even powers ofl 3 do not change their
sign since they also contain even powers ofl 1, whereas the
terms with odd powers ofl 3 do change their sign. So for th
wave which is traveling in the opposite direction, Eq.~B3!
transforms into the form

(
n50

6

~21!nKnqn50. ~B4!

Thus, if q25q1* satisfies Eq.~B3!, then2q252q1* satisfies
Eq. ~B4!. Because only the solutions with negative imag
nary parts correspond to physical solutions~surface waves
with amplitudes that decrease exponentially with depth!, if l 3
is the solution for propagation in the directionx3, then2 l 3
must be the corresponding solution for propagation in
opposite direction. Hence, ifl 3 contains a real part, the
propagation becomes asymmetric about the origin in
plane. For the~111! plane of cubic crystals, this situatio
results in threefold directional symmetry instead of sixfo
symmetry in the plane. Figures with calculated results
KCl have been given previously in Ref. 15.

The nonlinearity matrix elements can also be shown
have a similar asymmetry. Consider two wavesv1 and v2
traveling in opposite directions—e.g., along thex1 axis in
positive and negative directions:
4-12
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v (1)5(
n

Vn
(1)exp~ inkx!, ~B5!

v (2)5(
n

Vn
(2)exp~2 inkx!. ~B6!

If the waves have the same source condition, th
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