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Persistent spin currents in mesoscopic Haldane-gap spin rings

Florian Schu¨tz, Marcus Kollar, and Peter Kopietz
Institut für Theoretische Physik, Universita¨t Frankfurt, Robert-Mayer-Strasse 8, 60054 Frankfurt, Germany

~Received 13 August 2003; published 21 January 2004!

Using a modified spin-wave approach, we show that in the presence of an inhomogeneous magnetic field or
an in-plane inhomogeneous electric field a mesoscopic antiferromagnetic Heisenberg ring with integer spin
~i.e., a Haldane-gap system! exhibits a persistent circulating spin current. Due to quantum fluctuations the
current has a finite limit on the order of (2gmB)c/L at zero temperature, provided the staggered correlation
lengthj exceeds the circumferenceL of the ring, in close analogy to ballistic charge currents in mesoscopic
normal-metal rings. Herec is the spin-wave velocity,g is the gyromagnetic ratio, andmB is the Bohr magneton.
For j!L the current is exponentially suppressed.

DOI: 10.1103/PhysRevB.69.035313 PACS number~s!: 75.10.Jm, 75.10.Pq, 75.30.Ds, 73.23.Ra
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I. INTRODUCTION

In a recent paper,1 henceforth referred to as I, we hav
shown that the mesoscopic persistent current in a norm
metal ring threaded by an Aharonov-Bohm flux has an a
log in spin rings: specifically, we have calculated the pers
tent spin currentI s in thermal equilibrium that circulates
ferromagnetic Heisenberg ring subject to a crown-sha
magnetic field with magnitudeuBu. Within linear spin-wave
theory we have shown that the associated magnetization
rent I m5(gmB /\)I s ~whereg is the gyromagnetic ratio an
mB is the Bohr magneton! is of the form2

I m52
gmB

L (
k

vk

e(ek1uhu)/T21
, ~1!

whereL is the circumference of the ring,ek is the energy
dispersion, andvk5\21]ek /]k is the velocity of the mag-
nons,uhu5gmBuBu, andT is the temperature. In the presen
of a crown-shaped inhomogeneous magnetic field the di
tion of the magnetization in the classical ground state cov
a finite solid angleVm on the unit sphere as we move on
around the ring. Then the Bloch wave vectors are quanti
as kn5(2p/L)(n1Vm/2p), where in the continuum ap
proximation the allowed values ofn aren50,61,62, . . . .

The magnetization current~1! vanishes forT→0. Physi-
cally, this is due to the fact that no quantum fluctuations
present in a ferromagnet, so that atT50 there are no mag
nons to carry the spin current. It is thus tempting to specu
that the analogous current for an antiferromagnetic Heis
berg ring will be finite even atT50 due to quantum fluctua
tions. In this work we shall show that this is indeed the ca
and present a quantitative calculation of the current
Haldane-gap antiferromagnets~i.e., antiferromagnetic
Heisenberg rings with integer spinS) using a modified spin-
wave theory.3–5 Our main result is that the ground state of
Haldane-gap spin ring subject to an inhomogeneous m
netic field supports a finite magnetization current, which
the limit where the staggered correlation lengthj is large
compared withL has a sawtooth shape as a function of
geometric fluxV,
0163-1829/2004/69~3!/035313~7!/$22.50 69 0353
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I m5~2gmB!
c

L S 12
V

p D , 0,
V

2p
,1, ~2!

wherec is the spin-wave velocity. HereV is the solid angle
on the unit sphere traced out be the local Ne´el vector as one
moves once around the ring. Such a state can be produce
an inhomogeneous magnetic field, as depicted in Fig
Similar to the case of a ferromagnet discussed in I, the m
netization current is carried by magnons which are subjec
mesoscopic interference due to the geometric phase as
ated with the inhomogeneous nature of the classical gro
state. Due to quantum fluctuations, the ring is endowed w
an electric dipole moment even in the ground state. The
sence of true long-range order in one-dimensional Heis
berg antiferromagnets leads for integer spinS to a finite spin-
correlation lengthj and a Haldane gap of the order of\c/j
between the ground-state energy and the lowest triplet e
tation. These features are correctly captured by a modi
spin-wave theory3,5 which we use here to calculate the sp
current in Haldane-gap systems. Note that this approac
only appropriate for integerS, where the low-energy excita
tions can be viewed as renormalized spin waves. In contr
for half integerS the spectrum is gapless and spin corre
tions decay algebraically.6 The elementary excitations ar
then spinons, so that the modified spin-wave theory does
correctly reproduce the low-energy physics. In this case
effective low-energy theory is a Tomonaga-Luttinger mod
Recently Meier and Loss7 used such a model to discuss th
spin current inS51/2 antiferromagnetic spin chains for
two-terminal geometry.

While Eq. ~1! is the bosonic analog of the persiste
charge current8,9 in a normal one-dimensional metal rin
threaded by an Aharonov-Bohm fluxf, Eq. ~2! is formally
identical with the persistent charge current in a ballis
metal ring at zero temperature. Recall that for spinless
mions at constant chemical potentialm the charge current in
the ballistic regime can be written as10

I c5
2e

L (
k

vk

e(ek2m)/T11
. ~3!

Hereek is the energy dispersion andvk is the corresponding
velocity of an electron in the state with wave numberk. Due
©2004 The American Physical Society13-1
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to the Aharonov-Bohm flux the wave vectors are quantiz
as kn5(2p/L)(n2f/f0), where f05hc/e is the flux
quantum. For free fermions at zero temperature Eq.~3! re-
duces to a sawtooth function. For an even number of e
trons atT50 one obtains

I c5~2e!
vF

L S 12
2f

f0
D , 0,

f

f0
,1, ~4!

where vF is the Fermi velocity. With the replacementse
→gmB , vF→c, and f/f0→V/2p the zero-temperature
charge current~4! is formally identical with the zero-
temperature magnetization current~2! in a Haldane-gap spin
ring. Finite temperature, disorder, and phase-breaking s
tering all have a similar effect on the persistent cha
current in one dimension.10 For a weak perturbation
they smooth the discontinuity aroundf50 and with increas-
ing strength higher harmonics are exponentially suppres
such that a sinusoidal shape is approached. In the limit
very strong perturbation the current is exponentially s
pressed with the relevant length or energy scale, i.e.,
current becomes proportional to exp(2T/T* ), exp(2L/Lj), or
exp(2L/Lf) under the influence of a nonzero temperatu
strong disorder, or strong inelastic scattering, respectiv
HereT* is the temperature scale associated with the disc
level spacing,Lj is the localization length, andLf is the
phase-coherence length. Below we show that in the cas
spin currents in Haldane-gap systems the correlation lengj
plays a similar role: forj!L the magnetization current i
exponentially suppressed and becomes sinusoidal.

The rest of the paper is organized as follows. In Sec. II
apply linear spin-wave theory to an antiferromagnet sub
to an inhomogeneous magnetic field. After calculating
spectrum of magnon excitations, we obtain the spin curr
as a gauge-invariant derivative of the flux-dependent par
the free energy and discuss the result forT50 in naı̈ve spin-
wave theory. To justify and generalize the spin-wave
proach, we then apply a modified spin-wave theory, wh
the absence of long-range order in a one-dimensional ant
romagnet is taken into account. In Sec. III an antiferrom
net in an inhomogeneouselectric field is considered. In Ap-
pendix A, the classical ground state is obtained explicitly
the simple geometry of a crown-shaped field, and Appen
B contains some mathematical details of the calculation
the magnetization current.

FIG. 1. Classical ground state of an antiferromagnetic Heis
berg ring in a crown-shaped magnetic field;mi

A and mi
B are the

directions of the spins on sublatticesA andB.
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d

c-

at-
e

ed
a
-
e

,
y.
te

of

e
ct
e
nt
of

-
e
r-
-

r
ix
f

II. SPIN-WAVE THEORY

A. Spectrum

We start with a nearest-neighbor antiferromagneticJ
.0) Heisenberg ring in an inhomogeneous magnetic fie

H5(
i 51

N

@JSi•Si 112hi•Si #, ~5!

where Si are localized spin operators at sitesl i of a one-
dimensional lattice with lattice spacinga5L/N, and Si

2

5S(S11). Periodic boundary conditionsSN115S1 are
used,hi5gmBBi , andN is assumed to be even. For a spi
wave expansion the classical ground state has to be d
mined by minimizing the energy in Eq.~5! with Si replaced
by Sm̂i , wherem̂i is a unit vector. To consider fluctuation
the spin operators are then represented by bosonic cre
and annihilation operators in the standard way,

Si•mi5S2bi
†bi , Si•ei

15A2Sbi@11O~S21!#, ~6!

whereei
15ei

11 iei
2 , andei

1 andei
2 are two unit vectors in the

plane perpendicular tomi , such that$ei
1 ,ei

2 ,mi% is a right-
handed local basis in spin space. There is a local gauge
dom in the choice of the transverse basis vectorsei

1 and ei
2

which can be arbitrarily rotated aroundmi . With the notation
of I the spin-wave Hamiltonian then reads

Hsw5
JS

2 (
i

$@~11mi•mi 11!ei (v i→ i 112v i 11→ i )bi
†bi 11

2~12mi•mi 11!ei (v i→ i 111v i 11→ i )bi
†bi 11

† 1H.c.#

22mi•mi 11~bi
†bi1bi 11

† bi 11!1hi•mibi
†bi%, ~7!

wherev i→ j is the angle of rotation aroundmi that takesmi

3mj into ei
1 . The transformation to another local righ

handed triad, associated with sitei and the bond (i j ) accord-
ing to $ẽi

1 ,ẽi
25mi3mj ,mi%, then reads

ei
65e6 iv i→ j ẽi

6 . ~8!

Equation ~7! is manifestly invariant under the U~1! gauge
transformationv i→ j→v i→ j1a i , bi→eia ibi . We will now
assume a sufficiently large ring so that the direction of
magnetic field varies only slightly on the scale of the latti
spacinga. The classical ground state then locally resemble
Néel state and the local Ne´el vectorni5(21)i 11mi varies
smoothly as a function of position on the lattice and is o
ented almost orthogonal to the local direction of the ma
netic field. We thus havemi•mi 115211O(1/N) and the
terms involving the combinationbi

†bi 11 in Eq. ~7! can be
neglected to leading order in 1/N. In this approximation a
local spin deviation follows the direction of the classic
ground state as it moves around the ring. It picks up a g
metrical phase leading to interference of its wave function
close analogy to Aharonov-Bohm interference in cha
transport. The effect of the inhomogeneous field can be
corporated via the gauge transformation

-

3-2
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a j5(
i 51

j 21

~21! j 1 i~v i→ i 111v i 11→ i !. ~9!

The new boundary conditions then become in the boso
language

bi 1N5e6 iVbi , V5aN11 , ~10!

where the upper/lower sign is valid for sublatticeA/B ~odd/
eveni ). The resulting quadratic bosonic Hamiltonian is sta
dard for an antiferromagnetic ring with nearest-neighb
interactions

HAFM5(
i

@2JS~bibi 111bi
†bi 11

† !1~2JS1hs!bi
†bi #,

~11!

except for the twisted boundary condition~10!. An additional
staggered fieldhs in the direction of the classical ground
state vectors has been introduced as a technical tool fo
discussion in Sec. II C.HAFM is diagonalized as usual by firs
performing Fourier transformations with different signs
the two sublattices:

ak5A2

N(
i PA

e2 ikl ibi , bk5A2

N(
i PB

e1 ikl ibi , ~12!

where the allowed wave vectors are given by

kn5
2p

L S n1
V

2p D , n50, . . . ,
N

2
21. ~13!

The diagonal form ofHAFM is then achieved by the Bogo
liubov transformation

S ak

bk
†D 5S coshuk sinhuk

sinhuk coshuk
D S ak

bk
†D , ~14!

with

tanh~2uk!5
cos~ka!

11h̃s

, h̃s5hs/2JS. ~15!

The diagonal Hamiltonian contains constant terms due
quantum fluctuations,

HAFM5(
k

ek~ak
†ak1bk

†bk11!2NJS~11h̃s!, ~16!

where the quasiparticle energies are given by

ek52JSAD21sin2~ka!, D25h̃s~ h̃s12!, ~17!

and the free energy is obtained from

Fsw~V!52T(
k

lnF2 sinh
ek

2TG2NJS~11h̃s!. ~18!

Thus we have shown that to leading order in 1/N thermody-
namic quantities depend on the inhomogeneity of the fi
only via the single phaseV. GeometricallyV is the an-
holonomy associated with the parallel transport of a vec
03531
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orthogonal to the local Ne´el vector,11 in analogy to the fer-
romagnetic case. To see this more clearly, we consider
each bond (i j ) two additional sets of local right-handed tr
ads containing the Ne´el vectorni instead ofmi . These triads

are given by $ēi
15ei

1 ,ēi
25(21)i 11ei

2 ,ni% and $ ẽ̄i
1 ,ẽ̄i

25ni

3nj ,ni%, and are related by a rotation aroundni . For the
associated spherical vectors this reads

ēi
65e6 i v̄ i→ j ẽ̄i

6 , ~19!

where the rotation anglesv̄ i→ j are given by

v̄ i→ j5 ip1~21! i 11v i→ j for j 5 i 61. ~20!

We can now expressV as

V5(
i 51

N

~v̄ i→ i 112v̄ i 11→ i ! mod 2p, ~21!

which is of the form obtained in I for the ferromagnet.V is
thus the anholonomy of a vector orthogonal to the local N´el
vector that is transported around the ring by discrete ro
tions aroundni3ni 11. Alternatively, a continuous paralle
transport can be used around a path of geodesics conne
the unit vectorsni on the unit sphere.V is therefore equal to
the solid angle subtended by this closed path of geodesi

B. Magnetization current

In I we have shown that the U~1! gauge symmetry asso
ciated with the choice of the local transverse basis is c
nected with a conserved current that was identified with
longitudinal component of the spin current. For an antifer
magnet the longitudinal spin current is conveniently defin
in the direction of the local Ne´el vector and can be written a
a gauge-invariant derivative of the free energy

I s5^ni•I i→ i 11&52~21! i 11K ]Hsw

]v i→ i 11
L 52

]Fsw

]V
,

~22!

where I i→ i 115JSi3Si 11 is the spin current from sitei to
i 11. Similar to the ferromagnetic case, the presence o
longitudinal spin current can be understood semiclassic
as follows. The local spin deviation from the classical grou
state is essentially perpendicular toni and varies slightly
from i to i 11. The spin deviations on neighboring sites a
therefore in a plane that does not containni , so that their
cross product appearing inI i→ i 11 has a nonvanishing com
ponentI s in the direction ofni . This spin currentI s corre-
sponds to a current of magnetic dipoles that are locally
ented in the direction of the Ne´el vector ni , which varies
smoothly as we move along the ring. The spin current g
erates an electric dipole field which has the same form
discussed in I. For the magnetization current we obtain

I m5
gmB

\
I s52

2gmB

L (
k

ckFnk1
1

2G , ~23!

where ck5\21]ek /]k is the velocity of a magnon with
wave vectork andnk51/@exp(ek /T)21# is the Bose occupa
3-3
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tion factor. The extra factor of 2 is due to the two degener
spin-wave modes. Equation~23! is the antiferromagnetic
spin analog of Eq.~3!. It clearly shows that the magnetiza
tion current is carried by antiferromagnetic magnons, wh
at this level of approximation are the only quasipartic
available for transport. The current has a finite limit, even
vanishing Bose occupation factors, due to quantum fluc
tions. From Eq.~23! the current is clearly seen to be a pe
odic function ofV, so that the finite momentum sum can
further evaluated using the Poisson summation formul10

Some details of the calculation are given in Appendix B. F
a vanishing staggered field in the zero-temperature limit
obtain the simple result announced in the Introduction,

I m5I m
0 S 12

V

p D , 0,
V

2p
,1. ~24!

Here I m
0 52gmBc/L is the magnetization current carried b

a single magnon with the spin-wave velocityc5ck→01 at
the center of the Brillouin zone. The sawtooth shape~see the
solid line in Fig. 2! of the current in Eq.~24! is reminiscent
of Eq. ~4! for charge transport. Indeed, forT50 Eq. ~23! is
formally equivalent to Eq.~3! for charge transport when th
Fermi edge is replaced by the lower edge of the mag
band.

C. Modified spin-wave theory

The usual spin-wave theory employed so far is incon
tent when zero modes appear. Although the spin curren
mains finite, the sublattice magnetization diverges in
limit V→0. This failure is related to the absence of lon
range order in one-dimensional systems. It can be reso
by a modified spin-wave theory which was first used by T
kahashi for a one-dimensional ferromagnet3 and then ex-
tended to various spin systems without long-range order
cluding antiferromagnets.4 The constraint that is introduce
in these theories was recently shown to follow naturally fro

FIG. 2. Magnetization current in a ring with 100 spins for d
ferent values of the energy-gap parameterD. The plots are pro-
duced by numerically evaluating Eq.~23!. ForD51023 the curve is
indistinguishable from the approximate expression in Eq.~28!, and
Eq. ~29! provides a good approximation forD5231022.
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a calculation at constant order parameter.5 In the present con-
text, we introduce the additional constraint

(
i

^Si•mi&50, ~25!

which suppresses Ne´el order on average. This constraint
enforced via the staggered fieldhs in Eq. ~11! which acts as
a Lagrange multiplier. The expectation value in Eq.~25! can
be evaluated from]Fsw/]hs , yielding the self-consistency
condition

2

N (
k

]ek

]hs
Fnk1

1

2G5S1
1

2
. ~26!

Although the self-consistently determinedhs is itself a peri-
odic function of the geometric fluxV, the leading order for
largeN is a constant and can be determined by replacing
sum in Eq.~26! by an integral. ForT50 the solution of Eq.
~26! yields the Haldane gap 2JSD, which is inversely pro-
portional to the staggered correlation lengthj,6

D54 e2p(S11/2)5
a

A2j
. ~27!

The functional form of the magnetization current shows
crossover between the two qualitatively different regimej
@L andj!L ~see Fig. 2!. In the former caseD!2p/N and
at most one wave vector can be in the region2D,k,D
where the dispersion relation deviates strongly from the d
persion in the limitD50. When the contribution from this
single wave vector is taken into account separately,
obtain

I m

I m
0

5
sin~2V/N!

2AD21sin2~V/N!
2

V

p
, 2p,V,p. ~28!

In the caseD50 this reduces to Eq.~24!, providedN@1.
Thus, the effect of a finiteD is to remove the discontinuity a
V50,2p. On the other hand, in the limitj!L manyk val-
ues are affected by the energy gap. An analytic result for
spin current can nevertheless be derived as described in
pendix B. We obtain the scaling form

I m

I m
0

5A2

pS L

A2j
D 1/2

expS 2
L

A2j
D sin~V!, ~29!

implying that the sinusoidal magnetization current is exp
nentially suppressed in the bulk limit,L@j.

III. ELECTRIC FIELD

Moving magnetic dipoles represent an electric dipo
moment12 and are therefore affected by electric fields. Due
this relativistic effect, which is essentially equivalent to sp
orbit coupling, the magnetic moments acquire an Aharon
Casher phase.13 For localized spin systems described by
Heisenberg Hamiltonian, the electric field can be taken i
account phenomenologically by a substitution in the inter
tion term,
3-4
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Si•Sj→Si•eui j 3Sj , ~30!

as long as the electric field varies only weakly on the scale
the lattice spacing. Here,

ui j 5
gmB

\c2 El i

l j
dl3E~ l!, ~31!

andeu3 denotes the SO~3! rotation matrix acting on a vecto
m according to14

eu3m5û~ û•m!1~ û3m!sinu2û3~ û3m!cosu, ~32!

with u5uû. For ferromagnetic coupling, inhomogeneo
electric fields can lead to persistent magnetization curren15

and a spin analog of the Hall effect was also shown to e
in electric fields.7

We now consider the antiferromagnetic ring in an elec
field in thex-y plane, e.g., produced by a charged line in t
z direction ~see Fig. 3!. The rotation vectorsui ,i 11
5u i ,i 11ez are then all parallel to thez axis and the Hamil-
tonian for vanishing magnetic field becomes

H5J(
i

F1

2
~eiu i ,i 11Si

1Si 11
2 1H.c.!1Si

zSi 11
z G . ~33!

The classical ground state is easily shown to be a dou
degenerate Ne´el state withmi56ez. The spin-wave expan
sion is thus straightforward. If a gauge transformation is u
to eliminate the phase factors, we again obtain the stan
bosonic HamiltonianHAFM of Eq. ~11! with the boundary
condition ~10!, whereV is replaced by the total Aharonov
Casher phase

VAC5(
i

u i ,i 115
gmB

\c2 R dl•@ez3E~ l!#. ~34!

The spin current then only has az component which can be
written as a gauge-invariant derivative of the free energy

I m52
]FAFM

]VAC
. ~35!

This leads again to Eq.~23! with V replaced byVAC and all
the results derived in the previous sections are also ap
cable in this context.

FIG. 3. Antiferromagnetic Heisenberg ring in the electric fie
produced by a line charge.
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It is also interesting to note that the situation of a rad
electric field withu i ,i 1152p/N and an additional homoge
neous magnetic field tilted with respect to thez axis can be
formally mapped onto a crown-shaped magnetic field alo
via the transformation

Si85e(2p/N)ez3Si . ~36!

It would therefore be interesting to further investigate t
combined effect of arbitrary inhomogeneous magnetic a
electric fields on the produced spin currents to find situati
that could be realized more easily in the laboratory for
possible experimental detection of the effect.

IV. SUMMARY AND OUTLOOK

In the last two decades, a lot of theoretical work focus
on persistent equilibrium currents in mesoscopic norm
metal rings.8,9,16 In the 1990s, the experimental difficultie
for the detection of the currents were overcome and an
cillating magnetization as a function of the magnetic fl
was observed under various conditions.17–22 In the ballistic
regime, the main features of the experiment19 can be under-
stood within a simple model of free fermions,10 but in the
diffusive regime a generally accepted explanation of
experiments17,18 is still lacking.

In this work, we have shown that persistent magnetizat
currents are present in antiferromagnetic Heisenberg ring
inhomogeneous magnetic fields as well as in a radial elec
field. Quantum fluctuations lead to ground-state currents,
fluctuations in low dimensions also produce exponen
damping when the circumferenceL of the ring becomes
larger than the staggered correlation length. We have
tained explicit expressions for the current atT50 in the two
limits L!j andL@j within a modified spin-wave approac
valid for integer spins, i.e., for Haldane-gap systems. T
determination of the current for half-integer spin rings r
mains an interesting open problem. Also, we have only c
sidered clean systems in this work, i.e., we have focused
the ballistic regime. Since for persistent charge current d
order is known to be important, it would also be very inte
esting to consider persistent magnetization currents in
diffusive regime of disordered magnets.

In the past few years a new field of research~‘‘spintron-
ics’’ ! has emerged, where the spin degree of freedom is u
as a medium to transport information.23 For technical appli-
cations~such as quantum computation! it is important to con-
trol the quantum coherence in mesoscopic spin systems.
persistent spin current discussed in this work can be view
as a quantitative measure for the degree of quantum co
ence in the ground state of the system. Similar to the fe
magnetic case discussed in I, the magnetization current
culating a Heisenberg antiferromagnet generates an ele
dipole field. Due to screening effects, the corresponding v
age drop may be rather difficult to detect experimenta
However, in view of the rapid development of the field
spintronics, it does not seem unreasonable to expect tha
fore the end of this decade new experimental techniques
be available to detect persistent spin currents in Heisenb
rings.
3-5
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APPENDIX A: CROWN-SHAPED MAGNETIC FIELD

Here we determine the classical ground state of an a
ferromagnetic ring in the crown-shaped magnetic field
picted in Fig. 1, i.e., a field with

hi5h@sin~q!cos~2p l i /L !,sin~q!sin~2p l i /L !,cos~q!#.
~A1!

For very strong magnetic fields the classical unit vectorsmi
will be aligned parallel to the field and the ground state w
have the full rotational symmetry of the applied field. Belo
a critical spin-flip fieldhc(q) it will be energetically favor-
able to form two sublattices with different anglesqm

A/B to the
z axis ~see Fig. 4!. Introducing the relative and averag
angles

d5 1
2 ~qm

A2qm
B !, q̄5 1

2 ~qm
A1qm

B !, ~A2!

a minimum of the classical energy is reached for

sin~q2q̄ !cos~d!52
JS

h
e2sin~2q̄ !, ~A3!

cos~q2q̄ !sin~d!51
JS

h
e1sin~2d!, ~A4!

where we have definede6516cos(2p/N). For very strong
magnetic fieldsh.hc , we haved50 and Eq.~A3! reduces
to its ferromagnetic analog@see Eq.~14! in I#. For dÞ0 the
two equations can be combined to give

sin@2~q2q̄ !#52S 2JS

h D 2

sin2~2p/N!sin~2q̄ !. ~A5!

Thus for large rings the magnetic fieldh;JS/N necessary to
produce an inhomogeneous classical ground state is wel
low the spin-flip fieldhc;JS. For h;JS/N!JS we have
d;p/2 and the classical ground state locally resemble
Néel state as assumed in Sec. II.

APPENDIX B: CALCULATION OF SPIN CURRENT

In this appendix we present some details of the calcu
tion of the functional form of the spin current at zero tem
perature. Equation~23! can be written in the form

I m

I m
0

5 (
n50

N/221

f S 2p

N S n1
V

2p D D , ~B1!
03531
.
e

ti-
-

l

e-

a

-

where f (k)5d/d(ka)(ek/2JS) is a periodic function of its
argument withf (x1p)5 f (x)52 f (2x). ConsequentlyI m
is a periodic function ofV and we can proceed by calcula
ing its Fourier coefficientsCn in

I m

I m
0

5 (
n52`

`

CneinV. ~B2!

By appropriate substitution in the corresponding integral o
eliminates the finite momentum sum and obtains

Cn52
nN2D

2i
gnN~2D22!, ~B3!

whereg2l 11 is zero andg2l is given by

g2l~z!5E
0

2pdv

2p
A12zsin2ve2 i2lv

5S 1
2

l
D S z

4D l

2F1S l 2
1

2
,l 1

1

2
;2l 11;zD

5~21! lA12z g2l S z

z21D . ~B4!

Using an asymptotic expansion of the hypergeome
function24 for large l, we derive an expression for the sp
current for large system sizes. In particular, the condition t
the leading term in the expansion be sufficient can be sho
to be equivalent toL/j@O(1). After some algebra we ob
tain Eq.~29!.

FIG. 4. Definition of angles for the description of the classic
ground state of an antiferromagnetic Heisenberg ring in a cro
shaped magnetic field.
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or

-

ev
l,

at-

mp.

v.

.J.

v.

oı

b,

m
a-
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