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Spin transport of electrons through quantum wires with a spatially modulated
Rashba spin-orbit interaction

X. F. Wang*
Department of Physics, Concordia University, 1455 de Maisonneuve Ouest, Montre´al, Québec, Canada H3G 1M8
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We study ballistic transport of spin-polarized electrons through quantum wires in which the Rashba spin-
orbit interaction~SOI! is spatially modulated. Subband mixing, due to SOI, between the two lowest subbands
is taken into account. Simplified approximate expressions for the transmission are obtained for electron ener-
gies close to the bottom of the first subband and near the value for which anticrossing of the two lowest
subbands occurs. In structures with periodically varied SOI strength,square-wavemodulation on the spin
transmission is found when only one subband is occupied and its possible application to the spin transistor is
discussed. When two subbands are occupied the transmission is strongly affected by the existence of SOI
interfaces as well as by the subband mixing.
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I. INTRODUCTION

With the development of nanotechnology, manipulati
and measurement of spin-orbit interaction~SOI! in semicon-
ductor nanostructures1–7 have been realized as well as inje
tion and detection of spin-polarized current.8–17 As a result,
in the past years increasing attention has been drawn to
spin-related behavior of quasi-one-dimensional~Q1D! elec-
tron systems in the presence of SOI, especially the Ras
SOI term, of strengtha, which results from asymmetric
electric confinement in nanostructures.18 This has been also
greatly stimulated by the proposal19 of establishing a spin
transistor, among other spintronic devices, and its poten
application to the promising quantum computing. The S
theory developed earlier for bulk materials18 and two-
dimensional electron systems20 has been applied to the ele
tronic band structure and spectral properties of realistic qu
tum wires.24,21–23 Intriguing transport properties throug
quantum wires have been predicted as a result of pec
features in their band structures introduced by the SOI, s
as additional subband extrema and anticrossings. It has
found that the spatial distribution of the spin orientation
quantum wires can be greatly influenced by the subb
mixing and the existence of interfaces between different S
strengths.23 Furthermore, the Rashba SOI has interesting
fects on the shot noise for spin-polarized and entang
electrons,25 and on the spectral properties of interacti
quantum wires.24 The former may lead to another way o
measuring the SOI strength in quantum wires.

To run a spin transistor based on the SOI in a Q1D s
tem, a spin filter is required to provide the initial spi
polarized current. One of the realistic options is to injec
spin current from ferromagnetic semiconductors
metals.8–17 The spin-polarization of the injected current
independent of the existence of the SOI in the Q1D syste26

and this makes it possible to separate the study of the
transistor from that of the spin filter. Recently, several effo
have been made to describe in more detail the behavio
spin polarized electrons in Q1D systems in the presenc
the Rashba SOI. A numerical tight-binding simulation h
0163-1829/2004/69~3!/035302~9!/$22.50 69 0353
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been carried out to study ballistic transport27 through a quan-
tum wire in which one SOI segment is adiabatically co
nected to two segments without SOI. The results illustr
that a uniform spin precession along the wire should be
served provided the Rashba SOI strength is weak and
band mixing is negligible. For strong SOI, however, sp
modulation becomes energy dependent and can be stro
suppressed at finite temperatures. Lately, a square-w
modulation of spin polarization and a good spin transis
behavior have been predicted in transport through perio
cally stubbed waveguides for weak SOI and subband mix
due to it occurring only in the stubs.28 Although, in general,
subband mixing results in disagreeable effects on spin
cession in quantum wires, it can offer further control of sp
polarization at low temperatures in some situations.27–30

In this paper we study ballistic transport of Q1D spi
polarized electron gases in the presence of a spatially mo
lated Rashba SOI strengtha and taken into account the sub
band mixing between the first and second subbands. T
modulation can be achieved experimentally by exter
gates3 and may result in further modulation of spin curren
as pointed out in Refs. 27 and 23, and reported in Ref.
when subband mixing is neglected. Different from the pe
odically stubbed waveguides, with the same strengtha ev-
erywhere, studied previously,28,29 here we consider
waveguides without stubs but with spatially modulateda,
which, from an experimental point of view, are easier
realize and control. We assume that the electric confinem
that gives rise to the SOI, is strong enough that excited st
due to this confinement, as observed in Ref. 7, are not oc
pied.

The paper is organized in the following way. In Sec. II w
propose a model Hamiltonian with the Rashba SOI term
obtain the band structure and wave function. In Sec. III
formulate the transfer-matrix description of the transmiss
process and in Sec. IV we present and discuss the resul
spin transport. Conclusions follow in Sec. V.

II. MODEL

We consider a Q1D electron system, an InGaAs/InAl
quantum wire fabricated by confining a two-dimension
©2004 The American Physical Society02-1
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~2D! electron system in thex-y plane by an infinitely high,
square-well potentialV(x). The wire has widthw along thex
direction, as shown in Fig. 1~a!. In the presence of the
Rashba SOI the Q1D one-electron Hamiltonian reads

FIG. 1. ~a! A quantum wire along they direction composed of a
series of segmentsi 51,2,3, . . . of SOIstrengtha i and lengthl i .
~b! Energy dispersion of the lowest two subbands in a InGa
quantum wire 600 Å wide. The thick~thin! solid, dashed, dotted
dash-dotted curves present branches«1

2 (E1
2), «1

1 (E1
1), «2

2 (E2
2),

and«2
1 (E2

1) respectively.
-
-
e
a
-
t

o

e
3
t
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03530
Ĥ52l“22 ia~s3“ !z1V~x!, ~1!

wherel5\2/2m* . “5(]/]x,]/]y,0) is the Laplace opera
tor, a is the strength of the SOI, ands5(sx ,sy ,sz) denotes
the spin Pauli matrices. In thesz representation and with th
use of the eigenfunction of the Q1D Hamiltonianh(x)5
2l¹x

21V(x) without the Rashba term, the eigenfunctio
is fm(x)5A2/wsin(mpx/w) for 0<x<w and m
51,2,3, . . . . Then the wave function of Eq.~1! can be
expressed asC(k,r )5eiky(msfm(x)Cm

s us& with us&
5(1,0)T for spin up and (0,1)T for spin down, withX T

denoting the transpose of the column matrixX.
For the sake of simplicity, while retaining the subba

mixing effects, we assume that only the lowest two subba
(m51 and 2! are involved in the transport. This can be co
sidered as the actual case when the temperature and the
tron density are not too high. Then the secular equat
ĤC5EC takes the form

F E12E ak 0 2d

ak E12E d 0

0 d E22E ak

2d 0 ak E22E

G S C1
1

C1
2

C2
1

C2
2

D 50, ~2!

whereEm5Em
0 1lk2 andEm

0 is themth subband bottom in
the absence of SOI;d5a*dxf2(x)f18(x)58a/3w is the
mixing term due to SOI between the first and the seco
subband. The resulting eigenvalues«n

s(k) and eigenvectors
Cn

s(k) are

s

5 «1
6~k!5~E11E22DE7!/2, C1

6~k!5
1

F6k
S f172df2 /B6k

6f112df2 /B6k
D

«2
6~k!5~E11E21DE6!/2, C2

6~k!5
1

F7k
S f272df1 /B7k

6f212df1 /B7k
D .

~3!
gat-

c-
-
d re-
ce
ce.
e

usly
h-
. At
ens
Here DE65@(DE1262ak)214d2#1/2, DE125E2
02E1

0,
B6k5DE1272ak1DE2 , andF6k5@218d2/B6k

2 #1/2. Set-
ting d50 in Eq. ~2! gives the eigenfunctions without sub
band mixingun,6&5fn(1,61)T/A2 with corresponding en
ergy En

65En6ak. The resulting wave vector differenc
between the two spin branches of each subband for the s
energyE5En

1(k1)5En
2(k2), which we denote as the intra

subband SOI splitting, is constant for any energy and has
value

ka5k22k152m* a/\2. ~4!

In Fig. 1~b! we plot the energy spectrum of the lowest tw
subbands with~thick curves! and without~thin curves! the
mixing term taken into account. This energy spectrum is
sentially the same as that shown in Fig. 2 of Refs. 29 and
The intersections of the Fermi energy, here taken equal to
anticrossing energyEc as shown by the horizontal bar, wit
me

he

s-
0.
he

the energy spectrum define the wave vectors of the propa
ing modes.Ec is given by Ec5E1

1(kc)5E2
2(kc)55E1/2

19\2E1
2/(8m* a2), where the branches without mixingE1

1

andE2
2 (E1

2 andE2
1) anticross each other at the wave ve

tors kc (2kc). Without mixing, the Fermi wave vector dif
ference between the two spin branches of each subban
mains constant. With mixing, however, the differen
between«n

2 and«n
1 branches shows an energy dependen

Furthermore, in the branchesEn
6 electrons have the sam

spin orientation, but in the branches«n
6 , which are not pure

spin states, the average electronic spins rotate continuo
from their low-energy orientation to their opposite hig
energy orientation, as also discussed recently in Ref. 23
the anticrossing energy, the maximum mixing effect happ
between forward propagating electrons in the«1

1 and «2
2

branches@corresponding toBk52d in Eq. ~3!# and between
backward ones in the«1

2 and«2
1 branches (B2k52d). We

denote the wave-vector difference between the«1
6 and «2

7
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branches at this energy as the intersubband SOI splittingkd
related tokc . For a,2\2/m* w, we have

kd'
m* d

\2kc

5
8ka

2

9p2
w. ~5!

III. TRANSFER MATRIX

We consider a quantum wire with a variable strength
SOI. It may be composed of a series of SOI segments s
rated by SOI interfaces. In each SOI segment, the S
strength is approximately uniform and the Hamiltonian d
scribed in the preceding section applies. To describe the e
tronic behavior propagating through the quantum wire,
begin considering the transmission process of an elec
with energyE through one SOI interface. The electron
incident from the left to the interface joining two segmen
~labeledi and i 11) with different SOI strengtha i anda i 11
as shown in Fig. 1~a!. Taking into account only the lowes
two subbands, we write the wave function in segmenti, in
terms of of the eigenfunctionCni

6 given by Eq.~3! as

w i~x,y!5(
6

@c1i
6C1i

6~k1i
6!eik1i

6y1 c̄1i
6C1i

6~2k1i
7!e2 ik1i

7y

1c2i
6C2i

6~k2i
6!eik2i

6y1 c̄2i
6C2i

6~2k2i
7!e2 ik2i

7y#.

~6!

To obtain proceed we follow the approach of Ref. 26:
match the wave function and its flux at the interfaces
tween the i and i 11 segments. The velocity operator
given by

v̂y5
]H

]py
5F 2 i

\

m*

]

]y

a

\

a

\
2 i

\

m*

]

]y

G . ~7!

The continuity of the wave function at the interfacey
5yi ,i 11, between the i and i 11 segments, gives
03530
f
a-
I

-
c-

e
n

-

w i(x,yi ,i 11)5w i 11(x,yi ,i 11) and that of the flux
v̂yw i(x,y)uyi ,i 11

5 v̂yw i 11(x,y)uyi ,i 11
. Multiplying the two

equations byC1i*
6(k) andC2i*

6(k), respectively, then inte-
grating overx we obtain eight linear equations for the eig
coefficients of the wave functions. Here we drop the su
script and superscript pertaining tok since they are the sam
as those forC as shown in Eq.~6!. Because electrons in
branches C1i

1 and C2i
2 are decoupled from electron

in branchesC1i
2 and C2i

1 , a result of the symmetric prop
erty of the wave function, these equations are group
into two similar but independent equation groups w
each composed of four equations. The group correspo
ing to modes C1i

1 and C2i
2 connects the column

matrix R̂i5(c1i
1 ,c̄1i

1 ,c2i
2 ,c̄2i

2)T and column matrix L̂ i 11

5(c1i 11
1 ,c̄1i 11

1 ,c2i 11
2 ,c̄2i 11

2 )T and reads:

Ŝi R̂i5Q̂i 11L̂ i 11 . ~8!

Denoting the scalar product^CuC8& in all matrix prod-
ucts by the integral*C* T(x,y)C8(x,y)dx and the direct
product of the column matrixX with the row matrix Y
by X^ Y, the upper (234) part of the 434 matrix
Ŝi is given by Ai ^ Bi and the lower part byAi ^ Ci ,
while the upper (234) part of the 434 matrix Q̂i 11
is given by Ai ^ Bi 11 and the lower part by
Ai ^ Ci 11. Here Ai5@^C1i

1(k)u,^C2i
2(k)u#T, Bi

5@ uC1i
1(k)&,uC1i

1(2k)&,uC2i
2(k)&,uC2i

2(2k)&] and Ci

5@ uj1i
1(k)&,uj1i

1(2k)&,uj2i
2(k)&,uj2i

2(2k)&] with uj&
5 v̂yuC&.

If the SOI exists only in segmenti 11 (a i50 anda i 11

5a), we discard all the subscriptsi 11 in the matricesŜi

andQ̂i 11 and explicitly express them as

Ŝi5F 1 1 0 0

0 0 1 1

k1
0/m* 2k1

0/m* 0 0

0 0 k2
0/m* 2k2

0/m*
G ~9!

and
Q̂i 115A23
1

Q1

1

Q̄1

2d

Q2L2

2d

Q̄2L̄2

2
2d

Q1L1
2

2d

Q̄1L̄1

1

Q1

1

Q̄2

1

Q1
S a

\2
1

k1
1

m*
D 1

Q̄1
S a

\2
2

k1
2

m*
D 2d

Q2L2
S a

\2
1

k2
2

m*
D 2d

Q̄2L̄2
S a

\2
2

k2
1

m*
D

2d

Q1L1
S a

\2
2

k1
1

m*
D 2d

Q̄1L̄1
S a

\2
1

k1
2

m*
D 1

Q2
S a

\2
2

k2
2

m*
D 1

Q̄2
S a

\2
1

k2
1

m*
D

4 . ~10!
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Herek1
05@2m* (E2E1

0)#1/2/\ (k2
05@2m* (E2E2

0)#1/2/\) is
the wave vector of the electrons in the first~second! subband
in the segment without SOI andL15Bk

1
1, L̄15B2k

1
1, L2

5Bk
2
2, L̄25B2k

2
2, Q15Fk

1
1, Q̄15F2k

1
1, Q25Fk

2
2, and

Q̄25F2k
2
2 are defined in the segment with SOI of streng

a.
The above complex matrix can be simplified appro

mately in the low-energy limit (E*E1
0) and the anticrossing

energy limit (E'Ec). If the electron density is sufficiently
low that the Fermi energy is close to the bottom of the fi
subbandE1

0 in segmenti, the correction to the wave functio

caused by subband mixing is negligible or we haveQ5Q̄
5A2 and d50 in Eqs. ~9! and ~10!. We find all the spin
modes in the quantum wire are decoupled from each o
and the transfer equations for all modes have similar for
The transfer equation for the modeC1

1 has the form

F 1 1

k1
0 2k1

0G S c1i
1

c̄1i
1 D 5F 1 1

K2 2K2
G S c1i 11

1

c̄1i 11
1 D , ~11!

with K25(1/\)@2m* (E2E1
01«01V0)1(m* a/\)2#1/2 and

«0'd2/DE12 the energy correction to the first subband a
result of the SOI subband mixing.V0 denotes the
conduction-band offset in the segmenti 11 reckoned from
the conduction-band bottom in segmenti, which may be in-
troduced by material mismatch at the interface or by an
ternal gate bias.

When the SOI strength is in the range\2/m* w,a
,2\2/m* w, the anticrossing energy is higher then the s
ond subband bottom but lower than the third subband bot
and the intersubband SOI splitting is much smaller than
intrasubband SOI splitting, i.e.,kd!ka . Equation ~9! and
~10! can be greatly simplified if the electron energy is near
the anticrossing energy, i.e.,E.Ec . In this case, we use th
approximation V050, L1'2dAk2

2/k1
1, L2'2dAk1

1/k2
2,

L̄1'8ak1
0, L̄2'8ak2

0, Q1'2Ak1
1/k1

0, Q2'2Ak2
1/k2

0, Q̄1

'Q̄2'A2, k1
1'kc1kd , k2

2'kc2kd , k1
2'kc1ka , k2

1

'kc2ka , k1
0'kc1ka/2, k2

0'kc2ka/2, d/L̄'0. Equation
~8! reduces to

S c1i
1

c̄1i
1

c2i
2

c̄2i
2

D 5F Ak1
1/2k1

0 0 Ak2
2/2k1

0 0

0 1 0 0

2Ak1
1/2k2

0 0 Ak2
2/2k2

0 0

0 0 0 1

G S c1i 11
1

c̄1i 11
1

c2i 11
2

c̄2i 11
2

D .

~12!

We see that, in the anticrossing energy limit, the mixi
happens mainly between the two modes involved in the
ticrossing (c1

1 andc2
2) and the modes corresponding to t

coefficientsc̄1
1 and c̄2

2 remain almost intact when transmi
ting from segmenti to segmenti 11 though there is a wave
vector mismatch between the two segments.

Once the matricesŜi
21 andQ̂i 11 in Eq. ~8! are known, the

transfer matrix for the interface joining segmenti andi 11 is
03530
-

t

er
s.

a

-

-
m
e

o
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obtained simply,Mi ,i 115Ŝi
21Q̂i 11. For a quantum wire

with n segments, the total transfer matrix then reads

M̂5 P̂1 )
i 51,n21

M̂ i ,i 11P̂i 11 , ~13!

where the transfer matrix for thei th segment of lengthl is
expressed as

P̂i5F e2 ik1i
1 l 0 0 0

0 eik1i
2 l 0 0

0 0 eik2i
2 l 0

0 0 0 e2 ik2i
1 l

G . ~14!

A transfer matrix similar toM̂ given by Eq.~13! is ob-
tained for the modesC1i

2 and C2i
1 by applying the same

process as above and will not be shown here. Finally
38 transfer matrixT̂ is obtained connecting the wave
function coefficients of the electron with energyE at the left
inlet end,Î 5(c1I

6 ,c̄1I
6 ,c2I

6 ,c̄2I
6 )T, and at the right outlet end

Ô5(c1O
6 ,c̄1O

6 ,c2O
6 ,c̄2O

6 )T, in the form Î 5T̂Ô.

IV. RESULTS AND DISCUSSION

In the following we present results for ballistic transpo
of electrons, incident with spin up~along thez direction!,
through a quantum wire in which segments with and witho
SOI alternate periodically. If not otherwise specified, ze
temperature and parametersw5600 Å, l 52500 Å, a
53.45310211 eVm,m* 50.05, andV050 will be assumed.
The strength of SOI can be adjusted experimentally3–6 and
here we use the same value ofa as used in Ref. 30 for the
sake of comparison. At zero temperature, only electrons
the Fermi energy contribute to the transport. In the inlet a
outlet segments of the quantum wire, we assume that the
no SOI and the group velocity of the electrons is prop
tional to the wave vector (kn

05@2m* (E2En
0)#1/2/\, n

51,2) and the density of states to its inverse. When using
normalized coefficients for the input wave function (c1I

6

51/A2k1
0,c2I

6 51/A2k2
0), we express the zero-temperatu

spin-up ~spin-down! partial conductanceGn
1(Gn

2) and the
partial transmissionTn

1(Tn
2) at the outlet end via the sub

bandn and the reflectionRn
1 (Rn

2) from the inlet end as

Gn
65

e2

h
Tn

65
e2

h

kn

2
ucnO

1 6cnO
2 u2, Rn

65
kn

2
uc̄nI

1 6 c̄nI
2 u2.

~15!

The finite-temperature conductanceGn
6(T) is obtained by

integrating over energy the above zero-temperature con
tance multiplied by the Fermi distribution functionf n ,

Gn
6~T!52E dEGn

6~E,T50!
d fn~E,T!

dE
. ~16!
2-4
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A. The low-energy limit

If only the first subband is occupied andEc and E2
0 are

much above the Fermi energy, Eq.~11! can be used to esti
mate the transmission through the quantum wire. In a qu
tum wire with only one SOI segment, of strengtha25a and
lengthl 25 l , sandwiched between two segments without S
as the partA-B-C-D shown in Fig. 1~a!, the total transmis-
sion takes the form

T5
t

t cos2~K2l !1sin2~K2l !
, ~17!

where t54(k1
0)2K2

2/@(k1
0)21K2

2#2. This is a sinusoidal de
pendence with a maximumTmax51 for sin(K2l)50 and a
minimum Tmin5t. For a quantum wire of fixed width, th
stronger is the SOI strength and the less is the energy o
incident electrons, the more efficient is the modulation of
transmission. Another feature of this interface-induced tra
mission modulation is that it does not affect the spin pol
ization. The output percentage of spin-up and spin-do
electrons remains the same as predicted neglecting the i
face effect, T15T cos2(u/2) and T25T sin2(u/2) with u
5kal . These features offer the possibility of independe
control of the total transmission and of the spin polarizat
and will be advantageous when designing a spin transi
employing this system.

In Fig. 2, we plotT1 ~thick solid curves!, T2 ~thin solid!,
andR1 ~dotted! as a function of the main parameters of t
quantum wire. Since only spin-up electrons are incident
there is no spin-flip mechanism, spin-down reflection is
observed. The spin-up and spin-down electrons output
show, in Fig. 2~a!, a modulated sinusoidal dependence on
length l of the SOI segment instead of the simple one as
interface effect is neglected.19 For electrons near the bottom
of the first subband, a strongly energy-dependent reflec
happens@Fig. 1~b!# due to the wave-vector mismatch b
tween electrons in segments with and without SOI. A sim
energy dependence of the conductance~transmission! has

FIG. 2. TransmissionT1 ~thick solid curves! andT2 ~thin solid
curves!, and reflectionR1 ~dotted curves! of a quantum wire with
one SOI segment as a function of~a! l, ~b! E, ~c! V0 of the SOI
segment of length l 52800 Å, and ~d! a when E5«1(0)
10.1 meV. The result in~a! and~c! corresponds to the electrons o
energyE5«1(0)10.2 meV with«1(0)52.09 meV.
03530
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also been found in Ref. 27. In some cases, e.g., when
extra gate bias is applied, an offsetV0 exists between the
conduction bands of the material in the segment with S
and the one without SOI and can be adjusted. This m
introduce further modulation to the spin transmission. Fig
2~c! illustrates the oscillatory dependence of the transmiss
and the reflection on this offset. An increasing amplitude
the oscillation is found for a lower conduction-band botto
of the SOI segment. Herel 52800 Å is chosen so that n
spin-down transmission is observed. An oscillatory dep
dence of the transmission and reflection is also found a
function of the SOI strength as shown in Fig. 2~d!. For a
.1.5310211 eVm the reflection of low-energy electron
may become significant.

Now we introduce a periodic structure consisting of ide
tical units that are repeated along the wire. Each unit is co
posed of one non-SOI segment of lengthl 1 and one SOI
segment of strengtha and lengthl 2 as shown in Fig. 1~a!.
Electrons are incident at the left end and exiting at the oth
both ends are segments without SOI. Because the Fa
Perot-like interference of electron waves happens betw
interfaces connecting regions with different SOI streng
and then different energy-momentum dispersion relatio
the transmission minima of one SOI segment described
Eq. ~17! deepen with the increase of the number of units a
transform into transmission gaps when the number is
enough. This happens in a similar way as in the Kron
Penney model of solids. As shown in Fig. 3~a!, where each
curve corresponds to a fixedl 1, almost square wave curve
~solid and dotted curves! as functions ofl 2 are observed in
structures of eight units, comparing with the sinusoidal to
transmissionT ~dash-dotted curves! for one unit. For struc-
tures with more units, increased frequency and amplitude
the oscillations between the gaps are observed. The pos
and width of the conductance gaps shift when varyingl 1. If
we fix the total lengthl 11 l 2 of each unit, similar square
wave transmission is obtained as shown in Fig. 3~b! but with
different gap width. The percentage of the spin-up and sp

FIG. 3. ~a! Total conductance of a periodic structure of 8 ide
tical units as functions of the lengthl 2 of the SOI segment when
fixing the length l 1 of the segment without SOI atl 152375 Å
~solid curve! and l 152000 Å ~dotted curve!. ~b! The same as~a!
when the total length of each unit is fixed tol 11 l 252100 Å. The
dash-dotted curves in~a! and ~b! are results for one-unit cases.~c!
Conductance in a periodic structure ofN identical units as functions
of the electron energy whenl 151350 Å andl 251100 Å. The num-
bers beside the curves labelN.
2-5
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down conductances here depends only on the total lengt
the SOI segment andka and can be easily figured out in th
same way as that for one-unit quantum wires.

A similar square-wave conductance can also be found
function of the electron energy. For a quantum wire w
only one SOI segment, the transmission increases mono
cally as a function of the energy and approaches unity w
the electron wave vector is much larger thanka as shown by
the thick curve in Fig. 3~c!. A simple oscillating conductanc
~the dotted curve! appears in a quantum wire with two SO
segments; square conductance gap can be observed in a
with ten ~thin solid curve! or more units and miniband de
velops in a SOI superlattice as appears generally in peri
structures.

B. Two-subband transmission

Electrons can propagate via the second subband w
their energy is high enough. In the trivial case of weak S
strength that subband mixing is negligible, each mode pro
gates through the quantum wire almost independently,
spin transmission of electrons in the second subband ca
estimated in a similar way as in the first subband by Eq.~11!.
Results similar to those obtained in the low-energy limit
the first subband are also obtained for the second subb
and will not be shown here in detail. In the following we w
concentrate on the SOI-interface effect on the two-subb
transmission when the subband mixing is important.

In Fig. 4 we show the energy dependence of the to
transmissionT ~dash-dotted curve!, spin transmissionT6

~thick solid and dotted curves!, and transmission from the
first T15T1

11T1
2 and the secondT25T2

11T2
2 subband

~thin curves!. The reflection becomes significant mainly f
those electrons propagating via the second subband whe
electron energy is close to the second subband bott
«2(0), and is not asstrong as observed for electrons of e
ergy near the first-subband bottom. At higher values of
ergy, the reflection becomes negligible and more electr
come out from the second subband. As a result of the s
band mixing and corresponding energy-band modificati
the percentage of spin-up and spin-down electrons

FIG. 4. Transmission vs electron energy when two subbands
occupied in a quantum wire with one SOI segment of lengtl
52000 Å. The total transmissionT ~dash-dotted curve! and partial
transmissions corresponding to different spin orientationsT6 ~thick
solid for 1 and thick dotted for2) and different subbandsTn ~thin
solid and dotted forn51 and 2, respectively! are shown separately
The bottom of the second subband in the SOI segment is abou
meV.
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strongly dependent on the electron energy as also reporte
Ref. 27. In quantum wires with multiple SOI segments, t
transmission is further modulated for the same reason as
cussed in the one subband case but the modulation is m
more complex and irregular as a result of the coupling
tween different modes at interfaces.

In a Q1D electron system formed from an ideal 2D sy
tem, where the SOI strength is independent of the elec
density as studied in this paper, the carrier density dep
dence of the ballistic conductance~transmission! can easily
be figured out from their energy dependence plotted in F
4. However, in a realistic semiconductor system3 the SOI
strength and the quantum wire width may vary as the car
density changes. The density dependence of the conduct
should be estimated using a more realistic model taking th
effects into account. Another point concerning realistic s
tems is the effect of excited states due to the confinem
along z direction, which introduces the SOI and forms
quasi-2D system rather than an ideal 2D system in thex-y
plane. As observed in Ref. 7, the excited states of
quasi-2D system can be occupied when the carrier densi
high. In a simple approximation, this case can be treated
two-carrier system where the electrons in the ground s
and the excited state transport independently if the confi
ment alongx direction is symmetric. As a result, the condu
tance will be enhanced because more channels are open
transport electrons.

In Fig. 5 we calculate the total conductanceG ~thick
curves! and the spin-up conductanceG1 ~thin curves! as
functions of the SOI-segment lengthl 2 through periodic
structures consisting of~a! N51, ~b! N52, and~c! N55
units for a Fermi energyEF5E59 meV close to the bottom
of the second subband, where strong mismatch of the w
functions of the second subband is expected at the interfa
For N51 the transmission shows a periodic pattern and
reflection is limited. In contrast to the low-energy transm
sion discussed in the preceding subsection, the spin-up

re

.8

FIG. 5. The total~thick curves! and the spin-up~thin curves!
conductance are illustrated as functions of the SOI-segment’s le
l 2 for electrons incident with energyE59 meV. The solid curves in
~a!, ~b! , and ~c! are the results for a structure of 1, 2, and 5 S
segments, respectively, withl 151250 Å. The dotted curves in~b!
constitute the two-segment result withl 151000 Å. The dotted
curves in~a! is the double of the conductance obtained by assum
electrons are incident from only the first subband.
2-6
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ductance here does not vanish, i.e., the spin cannot be
verted completely by the structure, because the spin
electrons in the first-subband precesses with a freque
twice that in the second subband at this energy. Even if
assume that the electrons are incident only from the low
subband, i.e., by lettingc2I

6 50 when carrying out the calcu
lation, a similar result is obtained as shown by the thick a
thin dotted curves~doubled! in Fig. 5~a!. It is worthy of
noting that the transmission estimation by assuming o
mode incidence as used in Ref. 30 is a good approxima
for one-SOI-segment systems though not for multiple-S
segment ones. In the above structure if we put two ident
SOI segments and separate them by a segment without
of length l 1, a similar pattern of the spin-up conductance
above appears but the oscillation frequency is alm
doubled as shown in Fig. 5~b!, where the results correspond
ing to l 151250 Å ~solid curves! and l 151000 Å ~dotted
curves! are plotted. The segment without SOI can change
relative phase of electrons between interfaces and then
relative spin orientation between electrons in the first a
second subbands, therefore, the initial spin-up electrons
be totally spin-flipped by the structure withl 151250 Å but
not by that with l 151000 Å as the thin curves indicate i
Fig. 5~b!. With increasing number of SOI segments or S
interfaces, the modulation of the conductance becomes c
plex and develops into conductance fluctuation. As an
ample, we plot the results for a five-SOI-segment structur
Fig. 5~c!. The total conductance oscillates or fluctuates a
function of l 2 and the corresponding amplitude increas
with increasing number of units. Strong reflection happe
when the number of the units is large enough and the m
SOI-segment structures can be used as electron filters ev
two modes exist.

C. The anticrossing-energy limit

At the anticrossing energyEc , opposite spin states from
the first and second subbands mix strongly with each ot
Nevertheless, simple transmission patterns can be fo
even in structures with multiple SOI segments. In a quant
wire with one-SOI segment of lengthl 25 l sandwiched be-
tween two segments~ends! without SOI, the coefficient of
the output wave function in the anticrossing-energy limit
obtained approximately with the help of Eqs.~12! and ~13!,

S c1O
1

c1O
2

c2O
1

c2O
2

D 5eikclS c1I
1cos~kdl !2 ic2I

2Ak2
0/k1

0sin~kdl !

c1I
2exp~ ikal !

c2I
1exp~2 ikal !

2 ic1I
1Ak2

0/k1
0sin~kdl !1c2I

2cos~kdl !

D
5

eikcl

A2 S e2 ikd l /Ak1
0

eika l /Ak1
0

e2 ika l /Ak2
0

e2 ikd l /Ak2
0

D . ~18!

Here the normalized coefficients (c1I
6 51/A2k1

0,c2I
6

51/A2k2
0) of the incident waves are used to get the rig
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hand side~rhs! of the above equation. The spin-up~spin-
down! transmission then reads

T6516cos~kal !cos~kdl ! ~19!

with T1
651/261/2 cos(ka1kd)l the transmission out of the

first subband andT2
651/261/2 cos(ka2kd)l out of the sec-

ond subband. For a rational ratio ofka /kd
'9p2\2/(16m* aw) the transmission is approximately
periodic function of the length of the SOI segment.

Assuming electrons are incident only from the first su
band (c2I

6 50), we get the same approximate transmission
Eq. ~19! but divided by two. This result is also the same
that found in Ref. 30 where the interface effect is neglect
In Fig. 6~a! we show the conductance versusl and in Fig.
6~b! versusa. The Fermi energy of the electron gas is equ
to the anticrossing energyEc(a) and the electrons are as
sumed incident from only the first subband. The dash-do
and the thick solid curves represent the spin-up conducta
given, respectively, by the simplified expression Eq.~19! and
by the numerical solution of Eqs.~8!–~10!. When the anti-
crossing energy locates well between the minima of the s
ond and the third subbands, corresponding to 2.5,a,3.5
310211 eVm here, the total transmission, shown by the d
ted curves, is almost unity and Eq.~19! can be used to esti
mate the spin transmission through a quantum wire wit
SOI segment of length up to several thousands of angstro
Nevertheless, whenkdl;np/2 for odd numbern almost half
of the electrons transit from the first subband to the sec
subband~corresponding toG2;0.5e2/h shown by the thin
solid curves in Fig. 6! and Eq.~19! is in poorer agreemen
with the numerical result. For a lower anticrossing energy
a.4310211 eVm the reflection due to SOI interface b
comes important and Eq.~19! becomes less reliable. Fora
,2.5310211 eVm, the corresponding anticrossing energy
higher than the third subband and the result given in F
6~b! should be corrected by considering the effect of the th
subband.

Actually, electrons should be incident simultaneous
from both the first and the second subbands if the quan
wire is connected to a Fermi electron reservoir with Fer

FIG. 6. The conductance is plotted as a function of the length
the SOI segment~a! and of the SOI strengtha ~b! when electrons of
the anticrossing energy of the SOI segment are assumed inc
from only the first subband. The thick solid, thin solid, and dott
curves present the spin-up, second-subband, and total conducta
respectively, obtained numerically. As a comparison, the da
dotted curves show the spin-up conductance obtained from
~19!.
2-7
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energy higher then the second-subbands bottom. At the
crossing energy, the wave functions of the first and the s
ond subband mix equally with each other and electr
propagate almost equally through each subband. The spi
and total conductances have quite similar dependence ol 2
anda as those plotted in Fig. 6 with doubled values. In fa
even when the Fermi energy is far away from the anticro
ing energy but in the second subband, the spin-up and s
down conductancesG6 of a Fermi gas can be well estimate
by doubling the one obtained by assuming incidence fr
one subband as illustrated in Fig. 5~a!, where the Fermi en-
ergy is close to«2(0). Comparing the conductance pattern
Fig. 5~a! with that in Fig. 6~a!, we see mainly two differen
features. At first, the reflection of electrons atEc is much
lower because the mismatch of wave function is less. S
ond, both the spin-up and the spin-down conductances aEc
can vanish but only the spin-down one vanishes at ene
near«2(0). This is a result of the fact that the ratio betwe
the precession frequencies of electrons in the first and
second subbands changes with the electron energy. The
is 5/3 in Fig. 6~a! comparing to 2 in Fig. 5~a!.

In quantum wires with two SOI segments, the spin tra
mission at zero temperature is approximately expressed

T6'16cosk0l 1cos~2kdl 2!cos~k0l 112kal 2!

6sink0l 1sin~k0l 112kal 2!. ~20!

Herek05(k1
02k2

0)/2, with k1
0 andk2

0 the wave vectors of the
first and second subbands in the segment without SOI.
conductance as a function ofl 2 shows a periodic pattern i
the ratioka /kd is rational. In Fig. 7, we show the conduc
tance as a function of the length of the SOI segmentl 2 at
zero-temperature~upper panel! and at temperatureT52 K
~lower panel!. We choose the wire width asw5609 Å so
that ka52k054kd , the electron Fermi energyEF5Ec
511 meV, and the length of the segment without SOI b
tween the two SOI segmentsl 152676 Å to satisfyk0l 1
52p. In the zero temperature panel, we see a periodic b
ing pattern similar to that of the one-segment wire plotted
Fig. 6~a!, but with a periodl 152676 Å half of the one-
segment one. The origin of the beating pattern is the dif
ence of the spin-precession frequencies in different s
bands. Becausek0l 152p, Eq. ~20! reduces to Eq.~19! and

FIG. 7. Conductance through a two-SOI-segment quantum w
as a function ofl 2 at zero temperature~upper plot! and at tempera-
ture T52 K ~lower plot!. G ~thick solid curves!, G1 ~thin solid!,
and G2 ~dotted! are shown. The parameters are chosen such
kal 254kdl 254k0l 158p for l 255352 Å.
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the partial conductanceG1
6;11cos(10kdl 2) and G2

6;1
1cos(6kd l2). We note that the conductance pattern show
sensitive dependence on the length of segment without S
If l 152000 Å is chosen, for example, the numerical res
shows that bothG1

6 and G2
6 have a dependence close to

1cos(8kdl2) and the conductance pattern becomes co
pletely different. At finite temperature, as shown in the low
panel whereT52K, the output polarization of the electro
current and the amplitude of the beating pattern decre
with the length of the structure as pointed out also in Ref.
The oscillation amplitude becomes half of the initial value
l 258000 Å so we can estimate that the depolarization len
due to the subband mixing in this structure is of the order
micrometer atT52 K.

V. CONCLUSION

We have studied the SOI-interface effect on the ballis
spin transport through quantum wires composed of a se
of segments with and without SOI. At low electron densi
when the Fermi energy of the electron gas is much low
than the second subband, the total conductance is modu
sinusoidally but the outgoing spin orientation remains
same as that without SOI interfaces. In periodic structu
the modulation of the total transmission develops into squ
gaps when the length of the SOI segments or the elec
energy are varied. This feature is similar to that obtain
previously in stubbed waveguides28,29 with constant strength
a everywhere and has potential applications in establishin
spin transistor.

At higher density, when two subbands are occupied,
outgoing spin orientation is further modulated due to t
SOI-induced subband mixing. For electrons with ene
close to the anticrossing one the transmission pattern is
proximately periodic as function of the length of the SO
segments if the intrasubband SOI splittingka is a rational
multiple of the intersubband onekd , though generally the
two-subband transmission patterns are complex. The re
tion resulting from the SOI interfaces can be very significa
when several SOI segments exist along the quantum w
separated by non-SOI segments. In this case the transmis
and outgoing spin orientation can be sensitive to the len
of the non-SOI segments as well as to that of the SOI s
ments.

Finally, the theoretical treatment presented here can
be used to study quantum spin transport in quantum wire
which the SOI strength varies continuously. To do so o
simply has to divide the wire into a series of segments, ins
which the SOI strength can be treated approximately as c
stant, with a different value from segment to segment.
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