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Assisted hopping in the Anderson impurity model: A flow equation study
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We investigate the effect of assisted hopping in the Anderson impurity model. We use the flow equation
method, which, by means of unitary transformations, generates a sequence of Hamiltonians in order to elimi-
nate the assisted hopping terms. This approach yields a renormalized on-site &hergyrenormalized
correlation energyJ*, and other terms, which include pair hopping. For some parameter values, the initial
Hamiltonian flows towards an attractive Anderson model. We argue that this result implies a tendency towards
local pairing fluctuations.
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I. INTRODUCTION method is used to obtain the information not available by
other techniques.

The properties of magnetic impurities in metals, and of The following section presents the model, and describes
small dots attached to metallic leads share many characterifow the flow equation method is applied. The results are
tics, due to the similar role played by electron-electron interdiscussed in Sec. Ill. Finally, Sec. IV analyzes the main
actions. The electrostatic repulsion leads to the formation oProperties of the model, as derived by this method.
local momentg;? which are quenched at sufficiently low
temperatures. Quantum dots are more complicated Il. THE MODEL AND FLOW EQUATIONS
structured*and an effective Kondo Hamiltonian can only be
defined in the limit of large spacing between the electronic A. The model
levels within the dot. Then, the main physical processes at We will study the Hamiltonian
low temperatures are due to the changes of the occupancy of
the level closest to the Fermi energy of the leads. Even if we H=Hk+ Himpt Hnybt Hassistes
assume this restriction, terms beyond the Kondo Hamiltonian
can arise due to the finite extension and inhomogeneities of
the electron states inside a mesoscopic quantum dot. The He=2, EECE,ka,s,

. - . . . . k,s
simplest of these additional interactions is an assisted hop-

ping term, extensively studied in relation to bulk correlated 0 0
systems:® It can be shown that, within a systematic expan- Himp=€gNa+ U Ny 1Ny,
sion in the intradot conductance, the leading correction to the

intradot capacitance, or averaged Coulomb interaction, has _ 0, .t +
such a forr?f. The inhomogene%us screening and effective thb_kz; Vi(C s +dsCi,s),
“orthogonality catastrophe” which give rise to this term also

lead to interesting nonequilibrium effects in the metallic

limit, when the level spacing is much less than the Hassistedtz V\/End,s(cﬁv,sd,;r discky,s), (D)
temperaturé:® ks

The present work analyzes the model of a correlated im\'/vhereHA=HK+Himp+thb is the Anderson Hamiltonian,

purity, -or quantu_m dot, n the _limit wh(_are the IOV.V' and the assisted hopping terms are include®igsiste¢ We
temperature physical properties are determined by a S'nglﬁave also defined. .=d’d. andn.=n. . +n
electronic state within the dot, using the flow equations first dis™ HsTs d— d T e

proposed in Refs. 10 and 11. The method transforms the

initial Hamiltonian into a family of related Hamiltonians by B. The flow equation method

means of a sequence of unitary transformations. If ad- e now perform a sequence of infinitesimal unitary trans-
equately chosen, these transformations lead to simplifieghrmations:

models, in a similar way to a renormalization-group transfor-

mation. The method has proven useful for a variety of deH=[n,H]. 2)
problemst?*3and it has also been used to obtain the Kondo
Hamiltonian from the Anderson mod#. These transformations are characterized by the anti-

In the following, we will apply the flow equation tech- Hermitian generatom=— 5'. The parameters of the initial
nique to the Anderson Hamiltonian with assisted hoppingHamiltonians become functions of the flow parametend,
This problem has been analyzed in Ref. 7 using mean-field there are no upper indices on the parameters, it will be
techniques, but there are no more accurate studies in thmplied that they depend o6.
literature. Thus, besides the intrinsic interest of the model, Our main goal is to reduce the initial Hamiltonian, Eq.
this work provides a test case where the flow equatior{1), to another whose physical properties are well under-
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stood. We assume that this is achieved if the assisted hoppirigserting this expression in Eq&6) and (7) we obtain
term is made to flow to zero. Hence, we impose the require-

ment (V2+W,) W
&(Ed:_ZZ —ko K kn(k), (10)
lim Hassisted €)— 0. 3 k ex—€eg— U
{—o
This condition is satisfied ify=[Hy , Hassisted- MOre gen- (Vi+Wi) d Wi
: : _ duU=4y, ——— (11)
erally, we will employ the following generator: . 68— €g—U
n:kEs ﬂknd,s(CI,_sd—s—dT_ka,—s)- (4) Note that the above equations imply that
_ _ ' . x_ _0_ 0, yo
This expression differs from the generator used to cancel the €4~ €a=Fleat U0, (12
hybridization with the bandy, in Eqg. (1), in that it contains U* — 0= G(eg+ uo), (13)

an additional operator related to the localized orlitgl. It
is interesti_ng to note t_hgt for the_analytic treatment Qf thewhereed = e4(f =) andU*=U({ =), andF andG de-
flow equations the explicit expression of the parametgrs  ote universal functions. These functions only depend on the
not needed. We only require that E&) holds. coupling constanty’® andWP.
The physical properties of the impurity are determined by, ahove flow equations can also be treated semianalyti-
the flow of the on-site energyg and the correlation energy cally by substituting thé-dependent parametesg andU in
U as¢—o. Notice that the one particle hybridization in the the denominator by their fixed-point value$ andU* . This
Hamiltonian, Eq(1), is not changed during the flow, i.e., strategy has proven to be successful in several related
3 Hipy5=0. ) models'?!® We can then integrate the Eq&0) and (11)
from €=0 to €=, using the constraint that lim,,, W,
This is a consequence of our choice of the generator given in, Q.
Eq. (4). We define
The commutatof »,H] generates new interactions which
have to be included in the Hamiltoni&f(€), which, in turn,
will lead to other interactions. This ?rf;‘(ini)te hierarchy needs J(G)Eg (2|VEW(|<)|_WEWE) 5(6_62)a (14)
to be decoupled in order for the method to be useful. This
point is carefully discussed in Ref. 12, and we will follow the where we assume that the hybridizatMEi and the assisted
same procedure. We do not include the new operators in thgopping amplitudany differ in sign® The spectral function
flow, although they will appear in the fixed-point Hamil- js positive for the physically relevant parameter regime,
tonian. The role of these “marginal” operators will be dis- yhere the hybridization amplitude is larger or comparable to

cussed in Sec. Il C. _ ~ the assisted hopping amplitude. With the above definition we
The resulting flow equations thus take on the following gptain the final result:
simple forms:
0 0 e*—eoz—f deif(e) (15
Teea=220 Vit Wioni, (6) d € ey
0 . Je)
I U=~ p(Ve+Wy), (7 U*—U=2| de——, (16)
K €e—eg—U*
A Wy=— (€2 — eg—U) 7, (8) where we have defined the Fermi functidife)=(e’*
. . +1) .14
where we have introduced the occupation numimgr )
0

=(ef«+1)" 1, which arises from normal ordering of the IIl. RESULTS
neglected operatoré. The procedure used here explicitly '
breaks particle-hole symmetry. Note that there is no renor- A. Effective parameters
malization of the energies of the conduction electrasfs, In order to make the analysis more quantitative, we need
which is a typical feature of impurity problenis. to specify the density of states in the surrounding medium,

From Eq.(8), we obtain the general relation between theyescriped by the functiod(e), Eq. (14). The width of the

flow of the assisted hopping amplitudes and the generator Qfpnguction band in the leads i©2 and the Fermi energy is
the infinitesimal transformations, e-=0. We also define

/W,
= — Of—k_ (9) Ve /E (V9)2
Ek_fd_U . k)
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FIG. 1. The relative fixed point values

=) Q — €9 (left-hand sidg and U*—U° (right-hand

i} °:I) side as a function of the scaling variable]

. N +U0 for V/D=0.23, W/D=0.17 atT=0. The

« = solid lines follow from the numerically exact so-
lution and the dashed lines from the semianalyti-
cal approach.
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/ 2r
W= EK) (W))?, —F(ejﬁu*). (21

I=mp(er)(2[VE WY | = (W) =md(ep).  (17)

C
*
|

c
0

For |e} +U*|>D, we obtain
We further assume that both coupling functions and W2

are semielliptic. This choice resembles a realistic environ- 2
ment and facilitates the computation. € —eS=z—|(es+U*)— —D—sgr e} +U*)
To obtain the universal functiorfs and G from Egs.(12) 2D m
and(13), we numerically integrate the flow equatioits—(8
1d(13) y integ quatioits—(8) < (@ 10" P-D?
with d
2 D
= (eh—eg—U)W,. (18) X ( 1- —arcsin————1 |, (22)
ey +U*
This choice guarantees th#¥, vanishes exponentially for (€d )
ev+ €5 +U* and algebraically fore)= e +U*.*? By this,
we introduce an energy-scale dependent decoupling scheme T
with respect to the renormalized energy of the double occu- U*—U°=-— F[(Eéc +U*)—sgn(eg +U*)
pancy of the dotgj +U*.
We now turn to the semianalytical solution. The spectral X +/(ek+U*)2—D?], (23

function of Eq.(14) reads

r In Fig. 1, the numerically exact universal functiorgnd
— 2 2 2 2 !
J(e)=0(D"—e )EVD I 19 Gof Egs.(12) and(13) are shown as functions of the scaling
. ) . variable eg+ U° (solid line). The coupling strengths were
with the resonancd’=2(2VW—-W-)/D. Evaluating Eds. chosen to b&/D=0.23 andW/D=0.172" The semianalyti-

(15 and(16) we have to distinguish two cases. cal solution(dashed ling given in Egs.(20—(23) qualita-
For |ej+U*[<D, we obtain the following self- tively agrees with the exact solution. The main difference is
consistent equations: that the kink inU* — U° neare$+ U°~0 which is present in
the numerical solution is not adequately reproduced by our
0 e e 2 2 analytical approach, Eq20). This is due to the cruder de-
€1~ €~ 5p| (€a +UT) = —D+ —yD = (g +U") coupling scheme which does not incorporate energy-scale

separation. It is interesting to note that at this point, the nu-
merical solution yieldse] +U*=0. It will lead to signifi-

, (20 cant differences for the phase diagram which will be dis-
cussed in the following subsection.

leg +U*|
Xln 2 * *\2
D—\D?— (&% +U*)
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B. Critical correlation energy

Equation(21) yields

U%—2€4T/D

*:—
v 1+2I'/D

(24

Hence, fore} >0, the renormalized interaction can become
negative.

We thus define the critical initial correlation enert)f
such that the renormalized correlation eneldyy becomes
zero, i.e.,

|
U* (Ugleq)=0. (25
U? depends on the initial on-site energf and we further
restrictU? to be positive.

The critical correlation energy? is enhanced for positive
on-site energiex{=0. This property can most clearly be
seen from the analysis of Eqél5) and (16) for T=.18
Then, the Fermi function is constant, i.&(¢) = 1/2, and the
integrals yield simple expressions. For the semielliptical cou
pling function, we obtain foeS<D +T'/2

_oor
“D-r/2%"

Ue (26)

C. Pairing correlations

It is now interesting to consider the possibility of local
pairing correlations. Pair formation does not rely on particle-
hole symmetry, in fact, asymmetries can actually enhance
this phenomenof? But local pairing can only occur if—in
addition to an effective negative correlation energy
U* <0—the renormalized on-site energy lies sufficiently
close to the chemical potential=0.2° The local pairing
regime is thus determined by the trade-off between a high
critical correlation energyJS and an effective on-site energy
e;; sufficiently close to the chemical potential.

To discuss the phase diagram of this local pairing regime
we will only consider the numerical solution. This approach
is more reliable since it incorporates a systematic decoupling
of the assisted hopping term, starting with large and ending
with small energy differences with respectdp+U*. The
results are presented on the right-hand side of Fig. 2, where
the critical correlation energylg is shown as a function of
€} in the regime wheréeZ/D|<0.05. Furthermore, we dis-
tinguish between positive«) and negative £) renormal-
ized on-site energy; .

Our analysis predicts local pairing for valuesaifwhich

Tavor double occupancy, arlmgs 0.1. The mean-field analy-

sis in Ref. 7 gives local pairing ferSS0.0S and a similar
range of values ofsg (note that we are using here compa-
rable hybridization with the band

It is interesting to note that the strong renormalization of
U* for e3+U%~0 only occurs at large values é&1/D2.

On the left-hand side of Fig. 2, the critical correlation Therefore, it is not present in the semianalytical solution
energyU? is shown as a function of the initial on-site energy which does not incorporate energy-scale separation. Further-
€ as it follows from the numericasolid line) and semiana- more, there are fixed points for whictf ~U*=~0, i.e., a
lytical (dashed ling solutions. The coupling strengths were degeneracy between the zero-charge and two-charge state of

again chosen to b®/D=0.23 andW/D=0.17. The main

the impurity. Since the marginal interactions also include

difference between the two curves stems from the spike opseudospin-pseudospin couplings, this might give rise to the
G(e3+U° aroundel+U%~0, seen on the right-hand side Kondo effect in the charge channel, i.e., in the mixed-valence

of Fig. 1.

regime.
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D. Marginal interactions =0. Note that, provided that the flow equations are un-

We now analyze the marginal terms, which have beerq:hgnged, t.he presence of these margiqal terms ih the fixed-
neglected so far. One term will be interpreted as a renorma0int Hamiltonian does not alter the main conclusions of the
ization of the hybridization ternvy. This identification is  Paper. _ _
crucial since the assisted hopping tef] contains an effec- e now approximate the magnitude of these terms at the
tive hybridization term which must be present in the fixegfixed point, neglecting their influence on the flow equations.
point Hamiltonian. Another term will explicitly favor local \We obtain
pairing.

As in the Anderson model, the flow generates spin-spin
and pseudospin-pseudospin couplings:

2|WRVp, [ —Wowe,

Ekr_Eg_U*

Viw =2 fo A€ (Vi + W)~ —

Hew=— 2 Vi [CUkzave i+ H.C)(Wiz o) (30)
K.k’
~ (3o 1+ H.C) (Wi oa)]. 27
s} WEWE,
In addition to this interaction, the following term is also \N:,k’: 0 démWie~ 5 e —e* —U* (31)
generated: ko
H —12v* W T+ H.C)+ e (ng—1). (28 A ioned earli ises in th lysis of th
m—zkk, ki Gt C)+ej(ng—1). (29 s mentioned earlierHgy arises in the analysis of the

Anderson Hamiltonian, due to the effects of the hybridiza-

The existence of these terms is independent of the assist |8ndbetwdeen thﬁ Stjlte. atdtT)e Impurity ?nd ;hi po;du\;:\;l?;
hopping interaction and has been discussed in detail in rel 2and, and can be derived by means of a Schriefier-ivo

. l . . .
tion with the Anderson modé? There, Hqy gives rise to the transformatiorf' Hence, we can interpret these fixed-point

well-known Kondo behavior in the spin and charge SectorsEnteractions as arising from an effective hopping term in the

respectively. initial Hamiltonian, which, indeed, can be obtained from a

H,,, is usually neglected in the fixed point Hamiltonian Mean-field decoupling of the assisted hopping tetfgq;,
since the first term of E¢28) represents potential scattering Will enhance the tendency towards pair formation.
of the conduction electrons and will be irrelevant for our
discussion. The last term renormalizes the on-site energy by

EZ;EEKVE,k/Z. For the semielliptical coupling functiofi9),

we obtaine’/es~T'/2D according to Eq.(30) within the We have studied a model of an impurity, or a quantum
semianalytical treatment. Our approximation—not to includedot, with a single electronic level, an on-site repulsion term,
newly generated coupling terms into the flow of thehybridization, and assisted hopping. The flow equation
Hamiltonian—is thus consistent fét/D<1. As in Ref. 12, method allows us to map the model onto an effective Ander-
we will ignore all terms of Eq(28) in the fixed-point Hamil-  son model without assisted hopping, and with additional
tonian and assume that they can be taken into account iondo couplings and pair hopping terms.

IV. CONCLUSIONS

redefining the initial parameters. The most interesting outcome of our calculation is that the
Finally, the commutatof 7, H,ssisted @lSO gives rise to  value of the on-site electron-electron interaction can become
the following pairing term: attractive, because of the effect on the flow of the initial

assisted hopping term. Although the Anderson model with
attractive interactions has not been as extensively sttithed
as the repulsive Anderson model, we think that our mapping
suffices to give a qualitative description of the physical prop-
which has the same shape as some of the contributions ties of the model for the interesting case of a relatively
Hsw, EQ.(27). strong assisted hopping term. Note that, in addition to a
The additional contributions of Eq&27)—(29) need to be renormalized on-site interaction term, terms which describe
included in the flow equation scheme. As these terms contaipair hopping between the impurity and the conduction band
an even number of operators associated with the localizedre generated. We expect that significant local pairing corre-
level, but the generator, Eq4), contains an odd number, lations will develop in this regime.
these terms cannot directly change the flow equations of the This result is in agreement with general arguments which
parameterd) and €4, Egs.(6) and (7). They can, however, suggest that assisted hopping interactions tend to favor su-
change the flow of the assisted hopping term, @j.which  perconducting ground statésnd with mean-field studies of
will eventually modify Eqs(6) and(7). We will neglect this  the same impurity modé€IA related tendency towards phase
second-order modification of the flow equations fdrand  rigidity can be found in the limit where the level spacing
€q. This approximation was initially introduced in Ref. 12 within the impurity is negligible with respect to the other
and is based on the fact théf ,, =0 andW,,,=0 for ¢  parameter§?’

Hpair= > Wi [chcl _(d_ds+Hel, (29
k.k',s
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