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Assisted hopping in the Anderson impurity model: A flow equation study
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We investigate the effect of assisted hopping in the Anderson impurity model. We use the flow equation
method, which, by means of unitary transformations, generates a sequence of Hamiltonians in order to elimi-
nate the assisted hopping terms. This approach yields a renormalized on-site energyed* , a renormalized
correlation energyU* , and other terms, which include pair hopping. For some parameter values, the initial
Hamiltonian flows towards an attractive Anderson model. We argue that this result implies a tendency towards
local pairing fluctuations.
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I. INTRODUCTION

The properties of magnetic impurities in metals, and
small dots attached to metallic leads share many charact
tics, due to the similar role played by electron-electron int
actions. The electrostatic repulsion leads to the formation
local moments,1,2 which are quenched at sufficiently low
temperatures. Quantum dots are more complica
structures3,4 and an effective Kondo Hamiltonian can only b
defined in the limit of large spacing between the electro
levels within the dot. Then, the main physical processe
low temperatures are due to the changes of the occupan
the level closest to the Fermi energy of the leads. Even if
assume this restriction, terms beyond the Kondo Hamilton
can arise due to the finite extension and inhomogeneitie
the electron states inside a mesoscopic quantum dot.
simplest of these additional interactions is an assisted h
ping term, extensively studied in relation to bulk correlat
systems.5,6 It can be shown that, within a systematic expa
sion in the intradot conductance, the leading correction to
intradot capacitance, or averaged Coulomb interaction,
such a form.7 The inhomogeneous screening and effect
‘‘orthogonality catastrophe’’ which give rise to this term als
lead to interesting nonequilibrium effects in the metal
limit, when the level spacing is much less than t
temperature.8,9

The present work analyzes the model of a correlated
purity, or quantum dot, in the limit where the low
temperature physical properties are determined by a si
electronic state within the dot, using the flow equations fi
proposed in Refs. 10 and 11. The method transforms
initial Hamiltonian into a family of related Hamiltonians b
means of a sequence of unitary transformations. If
equately chosen, these transformations lead to simpli
models, in a similar way to a renormalization-group transf
mation. The method has proven useful for a variety
problems,12,13 and it has also been used to obtain the Kon
Hamiltonian from the Anderson model.12

In the following, we will apply the flow equation tech
nique to the Anderson Hamiltonian with assisted hoppi
This problem has been analyzed in Ref. 7 using mean-fi
techniques, but there are no more accurate studies in
literature. Thus, besides the intrinsic interest of the mod
this work provides a test case where the flow equat
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method is used to obtain the information not available
other techniques.

The following section presents the model, and descri
how the flow equation method is applied. The results
discussed in Sec. III. Finally, Sec. IV analyzes the m
properties of the model, as derived by this method.

II. THE MODEL AND FLOW EQUATIONS

A. The model

We will study the Hamiltonian

H5HK1Himp1Hhyb1Hassisted,

HK5(
k,s

ek
0ck,s

† ck,s ,

Himp5ed
0nd1U0nd,1nd,2 ,

Hhyb5(
k,s

Vk
0~ck,s

† ds1ds
†ck,s!,

Hassisted5(
k,s

Wk
0nd,s~ck,2s

† d2s1d2s
† ck,2s!, ~1!

whereHA5HK1Himp1Hhyb is the Anderson Hamiltonian
and the assisted hopping terms are included inHassisted. We
have also definednd,s5ds

†ds andnd5nd,11nd,2 .

B. The flow equation method

We now perform a sequence of infinitesimal unitary tran
formations:

],H5@h,H#. ~2!

These transformations are characterized by the a
Hermitian generatorh52h†. The parameters of the initia
Hamiltonians become functions of the flow parameter, and,
if there are no upper indices on the parameters, it will
implied that they depend on,.

Our main goal is to reduce the initial Hamiltonian, E
~1!, to another whose physical properties are well und
©2004 The American Physical Society01-1
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stood. We assume that this is achieved if the assisted hop
term is made to flow to zero. Hence, we impose the requ
ment

lim
,→`

Hassisted~, !→0. ~3!

This condition is satisfied ifh5@HK ,Hassisted#. More gen-
erally, we will employ the following generator:

h5(
k,s

hknd,s~ck,2s
† d2s2d2s

† ck,2s!. ~4!

This expression differs from the generator used to cance
hybridization with the band,Vk

0 in Eq. ~1!, in that it contains
an additional operator related to the localized orbitalnd,s . It
is interesting to note that for the analytic treatment of
flow equations the explicit expression of the parametershk is
not needed. We only require that Eq.~3! holds.

The physical properties of the impurity are determined
the flow of the on-site energyed

0 and the correlation energ
U0 as,→`. Notice that the one particle hybridization in th
Hamiltonian, Eq.~1!, is not changed during the flow, i.e.,

],Hhyb50. ~5!

This is a consequence of our choice of the generator give
Eq. ~4!.

The commutator@h,H# generates new interactions whic
have to be included in the HamiltonianH(,), which, in turn,
will lead to other interactions. This infinite hierarchy nee
to be decoupled in order for the method to be useful. T
point is carefully discussed in Ref. 12, and we will follow th
same procedure. We do not include the new operators in
flow, although they will appear in the fixed-point Hami
tonian. The role of these ‘‘marginal’’ operators will be di
cussed in Sec. III C.

The resulting flow equations thus take on the followi
simple forms:

],ed52(
k

hk~Vk
01Wk!nk

0 , ~6!

],U524(
k

hk~Vk
01Wk!, ~7!

],Wk52~ek
02ed2U !hk , ~8!

where we have introduced the occupation numbernk
0

5(ebek
0
11)21, which arises from normal ordering of th

neglected operators.14 The procedure used here explicit
breaks particle-hole symmetry. Note that there is no ren
malization of the energies of the conduction electrons,ek

0 ,
which is a typical feature of impurity problems.15

From Eq.~8!, we obtain the general relation between t
flow of the assisted hopping amplitudes and the generato
the infinitesimal transformations,

hk52
],Wk

ek
02ed2U

. ~9!
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Inserting this expression in Eqs.~6! and ~7! we obtain

],ed522(
k

~Vk
01Wk!],Wk

ek
02ed2U

nk
0 , ~10!

],U54(
k

~Vk
01Wk!],Wk

ek
02ed2U

. ~11!

Note that the above equations imply that

ed* 2ed
05F~ed

01U0!, ~12!

U* 2U05G~ed
01U0!, ~13!

whereed* [ed(,5`) andU* [U(,5`), andF andG de-
note universal functions. These functions only depend on
coupling constantsVk

0 andWk
0 .

The above flow equations can also be treated semiana
cally by substituting the,-dependent parametersed andU in
the denominator by their fixed-point valuesed* andU* . This
strategy has proven to be successful in several rela
models.12,16 We can then integrate the Eqs.~10! and ~11!
from ,50 to ,5`, using the constraint that lim,→`Wk
→0.

We define

J~e![(
k

~2uVk
0Wk

0u2Wk
0Wk

0!d~e2ek
0!, ~14!

where we assume that the hybridizationVk
0 and the assisted

hopping amplitudeWk
0 differ in sign.5 The spectral function

is positive for the physically relevant parameter regim
where the hybridization amplitude is larger or comparable
the assisted hopping amplitude. With the above definition
obtain the final result:

ed* 2ed
052E de

J~e!

e2ed* 2U*
f ~e!, ~15!

U* 2U052E de
J~e!

e2ed* 2U*
, ~16!

where we have defined the Fermi functionf (e)[(ebe

11)21.14

III. RESULTS

A. Effective parameters

In order to make the analysis more quantitative, we ne
to specify the density of states in the surrounding mediu
described by the functionJ(e), Eq. ~14!. The width of the
conduction band in the leads is 2D, and the Fermi energy is
eF50. We also define

V[A(
k

~Vk
0!2,
1-2
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FIG. 1. The relative fixed point valuesed*
2ed

0 ~left-hand side! and U* 2U0 ~right-hand
side! as a function of the scaling variableed

0

1U0 for V/D50.23, W/D50.17 atT50. The
solid lines follow from the numerically exact so
lution and the dashed lines from the semianaly
cal approach.
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W[A(
k

~Wk
0!2,

G[pr~eF!~2uVkF

0 WkF

0 u2~WkF

0 !2!5pJ~eF!. ~17!

We further assume that both coupling functionsVk
0 andWk

0

are semielliptic. This choice resembles a realistic envir
ment and facilitates the computation.

To obtain the universal functionsF andG from Eqs.~12!
and~13!, we numerically integrate the flow equations~6!–~8!
with

hk5~ek
02ed2U !Wk . ~18!

This choice guarantees thatWk vanishes exponentially fo
ek

0Þed* 1U* and algebraically forek
05ed* 1U* .12 By this,

we introduce an energy-scale dependent decoupling sch
with respect to the renormalized energy of the double oc
pancy of the dot,ed* 1U* .

We now turn to the semianalytical solution. The spect
function of Eq.~14! reads

J~e![Q~D22e2!
G

pD
AD22e2, ~19!

with the resonanceG52(2VW2W2)/D. Evaluating Eqs.
~15! and ~16! we have to distinguish two cases.

For ued* 1U* u,D, we obtain the following self-
consistent equations:

ed* 2ed
05

G

2D F ~ed* 1U* !2
2

p
D1

2

p
AD22~ed* 1U* !2

3 ln
ued* 1U* u

D2AD22~ed* 1U* !2G , ~20!
03530
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U* 2U052
2G

D
~ed* 1U* !. ~21!

For ued* 1U* u.D, we obtain

ed* 2ed
05

G

2D F ~ed* 1U* !2
2

p
D2sgn~ed* 1U* !

3A~ed* 1U* !22D2

3S 12
2

p
arcsin

D

~ed* 1U* !
D G , ~22!

U* 2U052
2G

D
@~ed* 1U* !2sgn~ed* 1U* !

3A~ed* 1U* !22D2#. ~23!

In Fig. 1, the numerically exact universal functionsF and
G of Eqs.~12! and~13! are shown as functions of the scalin
variable ed

01U0 ~solid line!. The coupling strengths wer
chosen to beV/D50.23 andW/D50.17.17 The semianalyti-
cal solution ~dashed line! given in Eqs.~20!–~23! qualita-
tively agrees with the exact solution. The main difference
that the kink inU* 2U0 neared

01U0'0 which is present in
the numerical solution is not adequately reproduced by
analytical approach, Eq.~20!. This is due to the cruder de
coupling scheme which does not incorporate energy-s
separation. It is interesting to note that at this point, the
merical solution yieldsed* 1U* 50. It will lead to signifi-
cant differences for the phase diagram which will be d
cussed in the following subsection.
1-3
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FIG. 2. Left-hand side: The critical correla
tion energyUc

0 as a function ofed
0 following from

the numerical ~solid line! and semianalytical
~dashed line! solutions with V/D50.23 and
W/D50.17 atT50. Right-hand side: The criti-
cal correlation energyUc

0 as a function ofed
0 fol-

lowing from the numerical solution in the regim
whereued* /Du<0.05.
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B. Critical correlation energy

Equation~21! yields

U* 5
U022ed* G/D

112G/D
. ~24!

Hence, fored* .0, the renormalized interaction can becom
negative.

We thus define the critical initial correlation energyUc
0

such that the renormalized correlation energyU* becomes
zero, i.e.,

U* ~Uc
0ued

0!5
!

0. ~25!

Uc
0 depends on the initial on-site energyed

0 and we further
restrictUc

0 to be positive.
The critical correlation energyUc

0 is enhanced for positive
on-site energiesed

0>0. This property can most clearly b
seen from the analysis of Eqs.~15! and ~16! for T5`.18

Then, the Fermi function is constant, i.e.,f (e)51/2, and the
integrals yield simple expressions. For the semielliptical c
pling function, we obtain fored

0,D1G/2

Uc
05

2G

D2G/2
ed

0 . ~26!

On the left-hand side of Fig. 2, the critical correlatio
energyUc

0 is shown as a function of the initial on-site ener
ed

0 as it follows from the numerical~solid line! and semiana-
lytical ~dashed line! solutions. The coupling strengths we
again chosen to beV/D50.23 andW/D50.17. The main
difference between the two curves stems from the spike
G(ed

01U0) arounded
01U0'0, seen on the right-hand sid

of Fig. 1.
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C. Pairing correlations

It is now interesting to consider the possibility of loc
pairing correlations. Pair formation does not rely on partic
hole symmetry, in fact, asymmetries can actually enha
this phenomenon.19 But local pairing can only occur if—in
addition to an effective negative correlation ener
U* ,0—the renormalized on-site energyed* lies sufficiently
close to the chemical potentialm50.20 The local pairing
regime is thus determined by the trade-off between a h
critical correlation energyUc

0 and an effective on-site energ
ed* sufficiently close to the chemical potential.

To discuss the phase diagram of this local pairing regi
we will only consider the numerical solution. This approa
is more reliable since it incorporates a systematic decoup
of the assisted hopping term, starting with large and end
with small energy differences with respect toed* 1U* . The
results are presented on the right-hand side of Fig. 2, wh
the critical correlation energyUc

0 is shown as a function o
ed

0 in the regime whereued* /Du<0.05. Furthermore, we dis
tinguish between positive (1) and negative (n) renormal-
ized on-site energyed* .

Our analysis predicts local pairing for values ofed
0 which

favor double occupancy, andUc
0&0.1. The mean-field analy

sis in Ref. 7 gives local pairing forUc
0&0.05 and a similar

range of values ofed
0 ~note that we are using here comp

rable hybridization with the band!.
It is interesting to note that the strong renormalization

U* for ed
01U0'0 only occurs at large values of,@1/D2.

Therefore, it is not present in the semianalytical soluti
which does not incorporate energy-scale separation. Furt
more, there are fixed points for whiched* 'U* '0, i.e., a
degeneracy between the zero-charge and two-charge sta
the impurity. Since the marginal interactions also inclu
pseudospin-pseudospin couplings, this might give rise to
Kondo effect in the charge channel, i.e., in the mixed-vale
regime.
1-4



e
a

ed
l

pi

o

is
el

r

n
g
ur
y

d
he

t

s

ta
ize
r,
th

,

2

n-
xed-
the

the
ns.

e
a-
ion
olff
nt
the

a

m
m,
ion
er-
nal

the
me
ial
ith

ing
p-

ely
a

ibe
nd

rre-

ich
su-

f
e
g
r

ASSISTED HOPPING IN THE ANDERSON IMPURITY . . . PHYSICAL REVIEW B69, 035301 ~2004!
D. Marginal interactions

We now analyze the marginal terms, which have be
neglected so far. One term will be interpreted as a renorm
ization of the hybridization termVk

0 . This identification is
crucial since the assisted hopping termWk

0 contains an effec-
tive hybridization term which must be present in the fix
point Hamiltonian. Another term will explicitly favor loca
pairing.

As in the Anderson model, the flow generates spin-s
and pseudospin-pseudospin couplings:

HSW52(
k,k8

Vk,k8
* @~ :ck

† 1
2 sW ck8 :1H.c.!~cd

† 1
2 sW cd!

2~ :c̃k
† 1

2 sW c̃k8 :1H.c.!~ c̃d
† 1

2 sW c̃d!#. ~27!

In addition to this interaction, the following term is als
generated:

Hirr 5
1

2 (
k,k8

Vk,k8
* ~ :ck

†ck8 :1H.c.!1 ẽd* ~nd21!. ~28!

The existence of these terms is independent of the ass
hopping interaction and has been discussed in detail in r
tion with the Anderson model.12 There,HSW gives rise to the
well-known Kondo behavior in the spin and charge secto
respectively.

Hirr is usually neglected in the fixed point Hamiltonia
since the first term of Eq.~28! represents potential scatterin
of the conduction electrons and will be irrelevant for o
discussion. The last term renormalizes the on-site energ
ẽd* [(kVk,k* /2. For the semielliptical coupling function~19!,

we obtain ẽd* /ed* 'G/2D according to Eq.~30! within the
semianalytical treatment. Our approximation—not to inclu
newly generated coupling terms into the flow of t
Hamiltonian—is thus consistent forG/D!1. As in Ref. 12,
we will ignore all terms of Eq.~28! in the fixed-point Hamil-
tonian and assume that they can be taken into accoun
redefining the initial parameters.

Finally, the commutator@h,Hassisted# also gives rise to
the following pairing term:

Hpair5 (
k,k8,s

Wk,k8
* @ck,s

† ck8,2s
† d2sds1H.c.#, ~29!

which has the same shape as some of the contribution
HSW, Eq. ~27!.

The additional contributions of Eqs.~27!–~29! need to be
included in the flow equation scheme. As these terms con
an even number of operators associated with the local
level, but the generator, Eq.~4!, contains an odd numbe
these terms cannot directly change the flow equations of
parametersU anded , Eqs.~6! and ~7!. They can, however
change the flow of the assisted hopping term, Eq.~8!, which
will eventually modify Eqs.~6! and~7!. We will neglect this
second-order modification of the flow equations forU and
ed . This approximation was initially introduced in Ref. 1
and is based on the fact thatVk,k850 andWk,k850 for ,
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50. Note that, provided that the flow equations are u
changed, the presence of these marginal terms in the fi
point Hamiltonian does not alter the main conclusions of
paper.

We now approximate the magnitude of these terms at
fixed point, neglecting their influence on the flow equatio
We obtain

Vk,k8
* 52E

0

`

d,hk~Vk8
0

1Wk8!'2
2uWk

0Vk8
0 u2Wk

0Wk8
0

ek82ed* 2U*
,

~30!

Wk,k8
* 5E

0

`

d,hkWk8'
1

2

Wk
0Wk8

0

ek82ed* 2U*
. ~31!

As mentioned earlier,HSW arises in the analysis of th
Anderson Hamiltonian, due to the effects of the hybridiz
tion between the state at the impurity and the conduct
band, and can be derived by means of a Schrieffer-W
transformation.21 Hence, we can interpret these fixed-poi
interactions as arising from an effective hopping term in
initial Hamiltonian, which, indeed, can be obtained from
mean-field decoupling of the assisted hopping term.Hpair
will enhance the tendency towards pair formation.

IV. CONCLUSIONS

We have studied a model of an impurity, or a quantu
dot, with a single electronic level, an on-site repulsion ter
hybridization, and assisted hopping. The flow equat
method allows us to map the model onto an effective And
son model without assisted hopping, and with additio
Kondo couplings and pair hopping terms.

The most interesting outcome of our calculation is that
value of the on-site electron-electron interaction can beco
attractive, because of the effect on the flow of the init
assisted hopping term. Although the Anderson model w
attractive interactions has not been as extensively studied19,20

as the repulsive Anderson model, we think that our mapp
suffices to give a qualitative description of the physical pro
erties of the model for the interesting case of a relativ
strong assisted hopping term. Note that, in addition to
renormalized on-site interaction term, terms which descr
pair hopping between the impurity and the conduction ba
are generated. We expect that significant local pairing co
lations will develop in this regime.

This result is in agreement with general arguments wh
suggest that assisted hopping interactions tend to favor
perconducting ground states,5 and with mean-field studies o
the same impurity model.7 A related tendency towards phas
rigidity can be found in the limit where the level spacin
within the impurity is negligible with respect to the othe
parameters.8,9
1-5
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The model does not have electron-hole symmetry,
local pairing is mainly favored when the number of electro
at the impurity exceeds one~half filling!, and when the
direct hopping and the assisted hoping terms have oppo
signs, also in agreement with general properties of bulk s
tems.
03530
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