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Dielectric anomaly in coupled rotor systems
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The correlated dynamics of coupled quantum rotors carrying electric dipole moment is theoretically inves-
tigated. The energy spectra of coupled rotors as a function of dipolar interaction energy are analytically solved.
The calculated dielectric susceptibilities of the system show a peculiar temperature dependence different from
that of isolated rotors.
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I. INTRODUCTION

With the advent of nanotechnologies, quantum rotors h
attracted much attention in relevance to a fundamental
ment of molecular scale machinery.1–3 Arrays of surface
mounted quantum rotors with electric dipole moments are
particular interest because dipole-dipole interactions can
controlled and even designed to yield specific behavior, s
as ferroelectricity. Ordered two-dimensional arrays of dip
rotors yield either ferroelectric or antiferroelectric grou
states, depending on the lattice type, while disordered ar
are predicted to form a glass phase.4,5

Besides technological problems, the microscopic dyna
ics of quantum rotors have been extensively studied from
point of physical and chemical interest. The idea of quant
rotors is applicable to interstitial oxygen impurities in cry
talline germanium, where oxygen atoms are quantu
mechanically delocalized around the bond center positio6

The rotation of oxygen impurities around the Ge-Ge axis
been experimentally observed by phonon spectrosco7

While the rotation of oxygen impurities in Ge is weak
hindered by an azimuthal potential caused by the host lat
several materials are known to show a free rotation of m
ecules. An example is ammonia groups in certain Hofma
clathratesM (NH3)2M 8(CN)4-G,8–10 usually abbreviated a
M -M 8-G, whereM andM 8 are divalent metal ions andG is
a guest molecule. Nearly free uniaxial quantum rotation
NH3 has been observed for the first time in Ni-Ni-(C6D6)2
by inelastic neutron scattering.8 Recently, a surprising varia
tion of the linewidth has been observed for Ni-N
(C12H10)2,11 which has been interpreted by a novel lin
broadening mechanism based on rotor-rotor coupling.12 It is
also known that theb phase of solid methane13 as well as
methane hydrate14 shows almost free rotation of CH4 mol-
ecule. The linewidths of methane in clathrates show inhom
geneous broadening owing to the dipolar coupling with w
ter molecules.15 It is therefore expected that new interesti
phenomena will be found by investigating the influence
dipolar interaction between quantum rotors.

In the present paper, we study the correlated dynamic
coupled quantum rotors carrying electric dipole momen
We give the exact solution of eigenvalue problem of int
acting rotors with arbitrary configurations. It is revealed th
coupled rotors show a peculiar dielectric response at
temperatures, which can be interpreted by taking accoun
the selection rule of dipolar transition for coupled rotors.
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II. HAMILTONIAN

Suppose two dipole rotorsqr1 and qr2 are separated by
the vectorR. The Hamiltonian for the system is given b
H5HK1WD , where the kinetic term is

HK52
\2

2I S ]2

]Q1
2

1
]2

]Q2
2D ~1!

and the interaction term becomes

WD5
q2

4p« S 1

uRu
1

1

uR1r12r2u
2

1

uR1r1u
2

1

uR2r2u D .

~2!

Here I is the moment of inertia for dipole rotors and« the
dielectric constant. Figure 1 shows a configuration of t
dipoles rotors under consideration. We assume that rotor
not feel any potential variation along a ring of radiusr. In the
Jacobi coordinate, the vectorsr1 ,r2, andR are given by

r15r ~cosQ1 ,sinQ1cosa1 ,sinQ1sina1!,

r25r ~cosQ2cosb2sinQ2cosa2sinb,

FIG. 1. Schematic configuration of coupled rotors. Each ro
represented byr1 and r2 rotates along a ring of a radiusr, and
carries dipole momentqr1 (2) .
©2004 The American Physical Society02-1
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cosQ2sinb1sinQ2cosa2cosb,sinQ2sina2),

R5R~0,0,1!. ~3!

A spatial profile ofWD as a function of (Q1 ,Q2) is dis-
played in Fig. 2 by a contour plot, in which the angl
(a1 ,a2 ,b) are set as (p/4,2p/6,p/3). We should remark
that two minima~dark regions! and two maxima~white ones!
are located at the antiparallel or parallel dipolar configu
tion, indicating that the dipoles prefer an antiparallel co
figuration. The two minima ofWD(Q1 ,Q2) arise from the
dipole interaction between two rotors, i.e., the dipole int
action plays a key role for creating barriers and two poten
minima, which strongly affect the energy spectra and
dielectric response of the system.

Provided that the spacingR is large enough compare
with the radiusr, the interaction termWD can be expanded in
terms of 1/R. The lowest-order term has the form of a dip
lar interaction given by

WD
(3)5

q2

4p«R3 H r1•r22
3~r1•R!~r2•R!

R2 J . ~4!

The higher-order termWD
(4)[WD2WD

(3) is O(r 3/R4), which
can be negligible for the caseR@r . Actually we have con-
firmed that the calculated results presented in this pa
change very little by taking into account the termWD

(4) .

III. EIGENVALUES AND EIGENFUNCTIONS

The Schro¨dinger equation for the HamiltonianH05HK

1WD
(3) has analytic solutions as shown below. Transform

variables tou15(Q11Q2)/2 andu25(Q12Q2)/2, Eqs.~1!
and ~4! yield

HK52
\2

4I S ]2

]u1
2

1
]2

]u2
2D , ~5!

FIG. 2. Contour plot of the interaction termWD in the (Q1 ,Q2)
plane. Two maxima~white regions! and two minima~dark regions!
are realized at positions with differencesDQ1'p and DQ2'p.
Parameter values are given in the text.
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WD
(3)5

q2r 2

4p«R3 (
i 51

2

cicos 2~u i1g i !. ~6!

The parametersci and g i( i 51,2) are functions of angles
a1 ,a2, and b defined in Fig. 1, whose explicit forms ar
given by

ci5
1

2
Axi

21yi
2, g i5

1

2
tan21S 2xi

yi
D , ~7!

with the definitions

x15sinb~cosa12cosa2!,

x25sinb~cosa11cosa2!,

y15cosb~12cosa1cosa2!12 sina1sina2 ,

y25cosb~11cosa1cosa2!22 sina1sina2 . ~8!

Consequently, we can decompose the Schro¨dinger equation
H0C0(u1 ,u2)5E0C0(u1 ,u2) into two independent Mathieu
equations. SettingC0(u1 ,u2)5w1(u1)w2(u2), we obtain

2
]2w i

]u i
2

1
2

EK
@ciEDcos 2~u i1g i !2Ei #w i50, ~ i 51,2!,

~9!

where the quantitiesEK5\2/(2I ) and ED5q2r 2/(4p«R3)
represent the kinetic and the interaction energy, respectiv
The eigenvalueE of the initial Schro¨dinger equation is ex-
pressed as the sum ofE5E11E2. Note that the periodic
terms}cos 2(ui1gi) originate from two minima~or maxima!
of the interaction termWD(Q1 ,Q2) shown in Fig. 2.17

Eigenfunctions of Eq.~9! are described by four types o
the Mathieu functions, given by ce2n(v i ,u i), se2n11(v i ,u i),
ce2n11(v i ,u i), and se2n12(v i ,u i) with the definitionsv i
[ciED /EK and n50,1,2, . . . . Each of them belongs to a
different eigenvalue and can be expressed in terms of
Fourier-cosine expansion, for instance,

ce2n~v i ,u i !5 (
m50

`

A2m
(2n)~v i !cos 2m~u i1g i !. ~10!

The coefficients$A2m
(2n)% are determined by a successive re

tion obtained by substituting Eq.~10! into Eq. ~9!. The am-
plitudes of $A2m

(2n)% rapidly decrease with increasingm, so
that we can truncate the summation in Eq.~10! at m520 in
actual calculations.

Figure 3 plots the calculated spectra of eigenenergieE
5E11E2 as a function ofED , whereEK is taken as an en
ergy unit. The angles (a1 ,a2 ,b) are set to be (p/4,0,0), for
example. We find, though some levels are degenerate w
ED50, that they split off for finiteED with a monotonous
variation with increasingED . For high-ED limit, some levels
become degenerate again. It indicates that the relative mo
of paired rotors is frozen out forED@EK due to the strong
Coulomb interaction. This behavior can be understood fr
the spatial profile of the interaction termWD(Q1 ,Q2) shown
in Fig. 2. With increasingED , the depths of two minima of
2-2



e
hi

a
ra

t
i

fo

or
e

d

th
ce
n
an
a
re

r
by

the

s

e

ing
ures.

and
the

-
he
-

n
out

that

o
for

m;

DIELECTRIC ANOMALY IN COUPLED ROTOR SYSTEMS PHYSICAL REVIEW B69, 035202 ~2004!
WD(Q1 ,Q2) grow, and larger barrier heights hinder th
quantum transition of a particle through the barrier. T
gives rise to localized wave functions around these minim
Consequently, in the limit ofED@EK , the amplitudes of the
eigenfunctions are strongly localized around the two minim
and these two localized eigenstates are nearly degene
Even if the higher-order termWD

(4) is taken into account, the
energy spectra do not change much, since it only sligh
disturbs the symmetry of the depths of two minima shown
Fig. 2. When varying the angles (a1 ,a2 ,b), the curves in
Fig. 3 slightly shift upwards and/or downwards except
the unchanged values ofE at ED50.

IV. DIELECTRIC SUSCEPTIBILITIES

Let us consider the dielectric response of dipole rot
coupled via dipolar interaction. The real part of th
frequency-dependent dielectric susceptibility is expresse

xmm~v,T!52
2

«Z (
j ,lÞ j

u^Ej upmuEl&u2

3
Ej2El

~Ej2El !
22~\v!2

expS 2
Ej

kBTD , ~11!

whereZ5( jexp(2Ej /kBT) is the partition function anduEj&
is the eigenvector belonging to the eigenvalueEj . The quan-
tity pm is the m component of the total dipole momentp
5q(r11r2), which depends on the relative orientation wi
respect to the external field. We should note that the sus
tibility depends on the selection rules for dipole transitio
between different eigenstates. In Fig. 3, allowed dipole tr
sitions forpx are indicated in parts by solid arrows. Note th
only a part of allowed transitions are shown in the figu

FIG. 3. The energy spectra of the paired rotor as a function
ED . Solid arrows indicate a part of allowed dipole transitions
the componentpx in the case of (a1 ,a2 ,b)5(p/4,0,0). The expla-
nation on three labels~a!–~c! is given in text.
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which are dominant for the dielectric susceptibilityx(v, T)
at temperaturesT'EK /kB . The rest of the allowed dipola
transitions do not contribute to the susceptibility given
Eq. ~11!, because the energy differenceuEj2El u is so large
and/or the Boltzmann factor exp(2Ej /kBT) becomes much
smaller than unity. The interpretation of three labels~a!–~c!
shown in Fig. 3 will be given later.

We have calculated the temperature dependence of
dielectric susceptibilityxmm(v,T) for variousED . Figure 4
shows the calculated results of dc susceptibilityxxx(T) nor-
malized by a factorq2r 2/(«EK). We have taken four value
of ED /EK : the solid line (ED50), the dashed one
(ED /EK50.01), the dash-dotted one (ED /EK50.1), and the
dotted one (ED /EK51.0). The angles are set to b
(a1 ,a2 ,b)5(p/4,0,0) for all ED . For the case ofED50,
the susceptibility monotonically increases with decreas
temperature and becomes constant at lower temperat
The crossover temperature between the steady increase
the almost constant value in Fig. 4 is determined by
minimum-energy difference of eigenstates atED50 that are
allowed for dipole transition, namely, indicated as~a! in Fig.
3. For the case ofED /EK.1, the strong Coulomb interac
tion prevents from the relative motion of rotors so that t
magnitude of the susceptibilityx(T) decreases with increas
ing ED .

It is noteworthy that, for relatively weak interactio
ED /EK,0.1, a bump appears in the susceptibility at ab
EK /(kBT)'5.0. The kinetic energyEK5\2/(2I ) for actual
rotating molecules is of the order of 1 meV,14 indicating that
the characteristic temperatureT* 5EK /kB30.2 correspond-
ing to the bump is estimated as about 1 K. We made sure

f
FIG. 4. The dielectric susceptibilityxxx(T) for the zero-

frequency limitv→0 as a function of the inverse temperature 1/T.
The strength of dipolar interaction is increased from top to botto
~i! ED50 ~solid!, ~ii ! ED50.01 ~dashed!, ~iii ! ED50.1 ~dash-
dotted!, and iv! ED51.0 ~dotted! in units of EK . Bumps at around
EK /(kBT)'5.0 appear in the cases of~ii ! and ~iii !. Inset shows
three components ofh j ,l(T) for the case of~iii !, whose definitions
are given in text.
2-3
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the bump can be observed for any angles (a1 ,a2 ,b) when
ED /EK is less than 0.1. This anomaly stems from the cor
lated rotation of paired rotors via the dipolar interaction, a
can be interpreted by the argument on the selection rule
dipolar transition.

To understand the origin of the bump, we decompose
total susceptibilityxxx(T) given in Eq.~11! as

xxx~T!5 (
( j ,lÞ j )

h j ,l~T!, ~12!

h j ,l~T!52
2

«Z

u^Ej upxuEl&u2

Ej2El
FexpS 2

Ej

kBTD2expS 2
El

kBTD G ,
~13!

where( ( j ,lÞ j ) is the summation over all possible combin
tions of (j ,l ) under the conditionlÞ j . Note the fact that
only threecomponents ofh j ,l(T) are responsible for the tota
susceptibility~12! around the characteristic temperatureT* .
We denote these components byha, hb, andhc, which are
characterized by the eigenfunctionC j5^u1 ,u2uEj& and C l
5^u1 ,u2uEl& as follows:

ha; C j5ce0~u1!ce0~u2!, C l5ce1~u1!ce1~u2!,
~14!

hb; C j5ce0~u1!ce1~u2!, C l5ce1~u1!ce0~u2!,
~15!

hc; C j5se1~u1!se2~u2!, C l5se2~u1!se1~u2!. ~16!

The alphabets superscribed onh correspond to three dipola
transitions labeled by~a!–~c! shown in Fig. 3. For example
the solid arrow of~a! in Fig. 3 connects the eigenstatesC j
andC l defined in Eq.~14!.

For weak couplingED!EK , the solution of the Mathieu
equation~9! is easily solved. In the lowest order of the pe
turbation theory, the eigenvaluesEi( i 51,2) read

Ei5
EK

2
n21aED ~n50,61,62, . . . ! ~17!

with a constanta. The solution~17! gives the eigenenergie
of the statesuEj& and uEl& relevant to the three componen
as follows:

ha; ~Ej ,El !5~0,EK1dEa!, ~18!

hb; ~Ej ,El !5S EK

2
6dEb ,

EK

2
7dEbD , ~19!

hc; ~Ej ,El !5S 5EK

2
6dEc ,

5EK

2
7dEcD . ~20!

The small correctionsdE stem from the small interaction
energyED!EK . Substituting these eigenenergies into E
~13!, we find that the three components are approximated

ha~u!5
2pa

2

«EK

12e2u

Z~u!
, ~21!
03520
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hb~u!5
2pb

2

«EK

ue2u/2

Z~u!
, ~22!

hc~u!5
2pc

2

«EK

ue25u/2

Z~u!
, ~23!

where we defineu5EK /(kBT). The quantitiespa , pb , and
pc become equal to the value ofu^Ej upxuEl&u for the case of
ha, hb, andhc, respectively. The explicit form of the parti
tion functionZ(u) is

Z~u!5114e2u/214e2u14e22u18e25u/214e24u

14e29u/218e25u1•••, ~24!

which monotonically decreases with risingu and reaches
unity for the limit u→`. This means that the compone
ha(u) is a monotonically increasing function ofu. On the
other hand, the componentshb(u) and hc(u) are convex
functions giving a maximum at finiteu. The conditions ofu
for the maximum ofhb andhc are expressed by

12
u

2
2u

Z8~u!

Z~u!
50, for hb, ~25!

12
5

2
u2u

Z8~u!

Z~u!
50, for hc. ~26!

The solutions of Eqs.~25! and~26! are estimated asu'4 for
hb andu'0.5 for hc. Since the total susceptibilityx(T) is
given by the summationha1hb1hc, it is expected that the
convex features ofhb(u) andhc(u) cause the bump of the
total susceptibility atu'5 shown in Fig. 4.

The argument is clarified by the numerical results sho
in the inset of Fig. 4, where theu dependence of the compo
nents forED /EK50.1 are displayed;ha ~dashed-dotted!, hb

~dotted!, hc ~dashed-dotted-dotted!, together with that of the
total susceptibilityx5ha1hb1hc ~solid!. The component
hb clearly shows a maximum atu'4, whereas the contri-
bution ofhc is negligible due to the factore25u/2 in Eq. ~23!.
As a result, the summationha(u)1hb(u) shows a bump at
u55.0, which is the origin of the anomalous bump of t
total susceptibilityx(T) at the characteristic temperatu
T* 5EK /kB30.2. We should note here that, if quantum r
tors are not interacting at all, the componenthb exactly van-
ished due to the degeneracyEj5El5EK/2 @see Eq.~19!#,
and only the componentha is dominant for the total suscep
tibility x(T). This means that the total susceptibility is
monotonic function same asha so that the bump does no
emerge. The anomalous bump of the susceptibility, theref
manifests the relevance of the dipolar interaction to the
electric response of quantum rotors.

V. CONCLUSIONS

It is important to recall experiments reported in Ref.
for the dielectric susceptibility of KCl crystals with Li de
fects. It has been found that the susceptibility does not s
linearly with the Li concentration, and even becomes sma
with increasing concentration ('1000 ppm), where the in-
2-4
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teraction between defects becomes relevant. In additio
bump of the susceptibility is observed at about 200 mK
concentrations of 200–1000 ppm. These temperature de
dences of the susceptibility together with the bumps are
covered well by our results shown in Fig. 4. Noting th
defects in both systems move along closed loops
correlate each other, it is natural to assume that the sim
picture holds. For a quantitative discussion, of course,
should take into account the effect of potential variati
hindering the free rotation of Li1, which is caused by the
Coulomb interaction between a mobile Li1 ion and the
host atoms K1 and Cl2. The problem has been theoretical
investigated in Refs. 19 and 20 based on the two-le
tunneling model.

In conclusion, we have investigated the quantum dyna
H.

nd

A

z.

un

e

ek
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ics of two dipole rotors coupled via dipolar interaction. B
solving analytically the eigenvalue problem of coupl
rotors, we have demonstrated the energy spectra of cou
rotors as a function of dipolar interaction. The anomalo
temperature dependence of dielectric susceptibility is a
shown. Our model is so general that it should be applica
in a variety of physical context relevant to quantum rotor
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