
PHYSICAL REVIEW B 69, 035111 ~2004!
Weak magnetism and non-Fermi liquids near heavy-fermion critical points
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This paper is concerned with the weak-moment magnetism in heavy-fermion materials and its relation to the
non-Fermi-liquid physics observed near the transition to the Fermi liquid. We explore the hypothesis that the
primary fluctuations responsible for the non-Fermi-liquid physics are those associated with the destruction of
the large Fermi surface of the Fermi liquid. Magnetism is suggested to be a low-energy instability of the
resulting small-Fermi-surface state. A concrete realization of this picture is provided by a fractionalized Fermi-
liquid state which has a small Fermi surface of conduction electrons, but also has other exotic excitations with
interactions described by a gauge theory in its deconfined phase. Of particular interest is a three-dimensional
fractionalized Fermi liquid with a spinon Fermi surface and a U~1! gauge structure. A direct second-order
transition from this state to the conventional Fermi liquid is possible and involves a jump in the electron
Fermi-surface volume. The critical point displays non-Fermi-liquid behavior. A magnetic phase may develop
from a spin-density-wave instability of the spinon Fermi surface. This exotic magnetic metal may have a weak
ordered moment, although the local moments do not participate in the Fermi surface. Experimental signatures
of this phase and implications for heavy-fermion systems are discussed.
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I. INTRODUCTION

The competition between the Kondo effect and interm
ment exchange determines the physics of a large clas
materials which have localized magnetic moments coup
to a separate set of conduction electron.1 When the Kondo
effect dominates, the low-energy physics is well described
Fermi-liquid theory~albeit with heavily renormalized quas
particle masses!. In contrast when the intermoment exchan
dominates, ordered magnetism typically results.

A remarkable experimental property of such magne
states is that the magnetism is often very weak—the orde
moment per site is much smaller than the microscopic lo
moment that actually occupies each site. The traditional
planation of this feature is that the magnetism arises ou
imperfectly Kondo-screened local moments. In other wor
the magnetism is to be viewed as a spin-density wave
develops out of the parent heavy Fermi-liquid state. We w
henceforth denote such a state as SDW. Clearly a SDW s
may be a small moment magnet.

A different kind of magnetic metallic state is also possib
in heavy-fermion materials where the moments order at r
tively large energy scales, and simply do not participate
the Fermi surface of the metal. In such a situation, the s
ration moment in the ordered state would naively be lar
i.e., of order the atomic moment.

Often the distinction between these two kinds of magne
states can be made sharply: the two Fermi surfaces in the
states may have different topologies~albeit, the same volume
modulo the volume of the Brillouin zone of the ordere
state!, so that they cannot be smoothly connected to o
another.
0163-1829/2004/69~3!/035111~19!/$22.50 69 0351
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In recent years, a number of experiments have unear
some fascinating phenomena near the zero-temperature~T!
quantum transition between the heavy-fermion liquid and
magnetic metal. In particular, many experiments do not
easily2–5 into a description in terms of an effective Gaussi
theory for the spin-density-wave fluctuations, renormaliz
self-consistently by quartic interactions.6–10 This theory
makes certain predictions on deviations from Fermi-liqu
behavior as the heavy Fermi-liquid state approaches m
netic ordering induced by the condensation of the sp
density-wave mode; those predictions are, however, in
agreement with experimental findings. This conflict rais
the possibility that the magnetic state being accessed is n
the first category discussed above: a SDW emerging fro
heavy Fermi liquid. Rather, it may be the second kind
magnetic metal where the local moments do not particip
at all in the Fermi surface. In other words, the experime
suggest that the Kondo effect~crucial in forming the Fermi-
liquid state! is itself suppressed on approaching the magn
state.

This proposal clearly raises several serious puzzles. H
do we correctly describe the non-Fermi-liquid physics n
the transition? If this non-Fermi-liquid behavior is accomp
nied by the suppression of the Kondo effect, how do
reconcile it with the weak moments found in the magne
state? The traditional explanation for the weak magnetism
apparently in conflict with the picture that the Kondo effe
and the resultant heavy Fermi-liquid state are destroyed
approaching the magnetic state. In other words, the na
expectation of a large saturation moment in a magnetic m
where the local moments do not participate in the Fe
surface must be revisited.
©2004 The American Physical Society11-1
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The weakness of the ordered moment in the magn
state may be reconciled with the apparent suppression o
Kondo effect if we assume that there are strong quan
fluctuations of the spins that reduce their moment. S
strong quantum effects may appear to be unusual in th
dimensional systems, but may be facilitated by the coup
to the conduction electrons~even if there is no actual Kond
screening!. In this paper we study specific states where su
quantum fluctuations have significantly reduced the orde
moment~or even caused it to vanish!, and the evolution of
such states to the heavy Fermi liquid.

We begin with several general pertinent observatio
First, consider the heavy Fermi-liquid state. This Ferm
liquid behavior is accompanied by a Fermi surface whi
remarkably, satisfies Luttinger’s theorem only if the loc
moments are included as part of the electron count.~Such a
Fermi surface is often referred to as the ‘‘large Fermi s
face,’’ and we will henceforth refer to such a phase as F!.
The absorption of the local moments into the Fermi volu
is the lattice manifestation of the Kondo screening of
moments. We take as our starting point the assumption
the Kondo effect becomes suppressed on approaching
magnetic state. What then happens to the large Fermi
face?

In thinking about the resulting state theoretically, it is im
portant to realize that once magnetic order sets in, there i
sharp distinction between a large Fermi volume which
cludes the local moments, and a Fermi volume that exclu
the local moments—the latter is often loosely referred to
‘‘small.’’ This is because the Fermi volumes can only
defined modulo the volume of the Brillouin zone, and t
onset of magnetic order at least doubles the unit cell
hence at least halves the Brillouin-zone volume.~There can,
however, be a distinction between the Fermi-surface top
gies in the two situations.!

In this paper we will take the point of view that the pr
mary transition involves the destruction of the large Fer
surface, and that the resulting small-Fermi-surface state h
distinct physical meaning even in the absence of magn
order. The magnetic order will be viewed as a low-ene
instability of the resulting state in which the local momen
are not to be included in the Fermi volume.

Evidence in support of this point of view exists. In th
experiments the non-Fermi-liquid behavior extends to te
peratures well above the Neel ordering temperature even
away from the critical point. This suggests that the fluctu
tions responsible for the non-Fermi-liquid behavior ha
very little to do with the fluctuations of the magnetic ord
parameter. Some further support is provided by the result
inelastic neutron-scattering experiments that apparently
critical behavior at a range of wave vectors including~but
not restricted to! the one associated with magnetic orderi
in the magnetic metal.5 Finally, there even exist materials i
which the non-Fermi-liquid features persist into the magn
cally ordered side—this is difficult to understand if the no
Fermi-liquid physics is attributed to critical fluctuations
the magnetic order parameter.

Conceptually, as we asserted above, it pays to allow
the possibility of a nonmagnetic state in which the suppr
03511
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sion of the Kondo effect removes the local moments from
Fermi volume, resulting in a ‘‘small Fermi surface,’’ eve
though such a state may not actually be a ground state in
system of interest. In our previous work11 we argued that
such states do exist as ground states of Kondo lattice mo
in regular d-dimensional lattices, and that the violation
Luttinger’s theorem in such a state was intimately linked
the presence of neutralS51/2 andS50 excitations induced
by topological order~see also Appendix A!: we dubbed such
ground states FL* .

Clearly, it is worthwhile to explore metallic magneti
states that develop out of such FL* states~just as the usua
SDW state develops out of the Fermi liquid!. Such states,
which we will denote SDW* , represent a third class of me
tallic magnetic states distinct from both the convention
SDW and the conventional local-moment metal describ
above. As we will see, in such magnetic states the local m
ments do not participate in the Fermi surface. Neverthe
they may have a weak ordered moment. Thus these s
offer an opportunity for resolution of the puzzles mention
above. The properties and the evolution of such states,
their parent FL* states, to the Fermi liquid will be the subje
of this paper. The SDW* states inherit neutral spinS51/2
spinon excitations andS50 ‘‘gauge’’ excitations from the
FL* states, which will be described more precisely belo
these excitations coexist with the magnetism and the met
behavior. The experimental distinction between the SD
and SDW* states is however subtle, and will also be d
scribed in this paper.~The FL and FL* states can be easil
distinguished by the volumes of the Fermi surfaces, but
distinction does not extend to the SDW and SDW* states.!

We emphasize that a wide variety of heavy-fermion m
terials display non-Fermi-liquid physics in the vicinity of th
onset of magnetism that is, to a considerable extent, uni
sal. However, the detailed behavior at very low temperat
appears to vary across different systems. In particular
some materials a direct transition to the magnetic state
very low temperature does not occur~due for instance to
intervention of a superconducting state!. In other materials,
such a direct transition does seem to occur at currently
cessible temperatures. In view of this, we will not attempt
predict the detailed phase diagram at ultralow temperatu
We focus instead on understanding the universal non-Fe
liquid physics not too close to the transition and its relati
to the magnetic state.

A. Summary of results

Our analysis is based upon nonmagnetic translati
invariant states that have a small Fermi surface (FL* ), and
the related transitions to the heavy Fermi liquid~FL!. As we
showed previously,11 the FL* state has a Fermi surface o
long-lived electronlike quasiparticles whose volume does
count the local moments. The local moments are instead
state adiabatically connected to a spin-liquid state with em
gent gauge excitations. Such spin liquids can be classified
the gauge group determining the quantum numbers car
by the neutralS51/2 spinon excitations and the gauge ex
tations, and previous work12,13 has shown that the mos
1-2
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prominent examples areZ2 and U~1! spin liquids. TheZ2

spin liquids are stable in all spatial dimensionsd>2, while
the U~1! spin liquids exist only ind>3 @the latter correspond
to the existence of a Coulomb phase in a compact U~1!
gauge theory ind>3, as discussed in Ref. 14#. Correspond-
ingly, we also have the metallicZ2 FL* and U~1! FL* states.
Our previous work11 considered primarily theZ2 FL* state,
whereas here we focus on the U~1! FL* state.

As we have already discussed, these nonmagnetic s
may lead to magnetic order at low energies, or in proxim
states in a generalized phase diagram. In this manner th
state leads to the SDW state, while the FL* states lead to the
Z2 SDW* and the U~1! SDW* states. The relation betwee
the metallic SDW and SDW* states has a parallel to tha
between the insulating Ne´el state and the AF* state of Refs.
13 and 15.

We will also discuss the evolution from the U~1! SDW*
state to the conventional Fermi liquid. As explained earl
the underlying transition is that between FL and FL* states
which controls the nature of the Fermi surface. In Ref.
we argued that the spinon pairing in theZ2 FL* state implied
that there must be a superconducting state in between th
andZ2 FL* states. There is no such pairing in the U~1! FL*
state, and hence there is the possibility of a direct transi
between the FL and U~1! FL* states: this transition and th
nature of the states flanking it are the foci of our paper. N
that the volume of the Fermi surfacejumpsat this transition.
Nevertheless the transition may be second order. Thi
made possible by the vanishing of the quasiparticle resi
on an entire portion of the Fermi surface~a ‘‘hot’’ Fermi
surface! on approaching the transition from the FL sid
Non-Fermi-liquid physics is clearly to be expected at suc
second-order Fermi-volume changing transition. We reite
that the U~1! FL* state is only believed to exist ind.2.

We study the FL and U~1! FL* states by the ‘‘slave’’
boson method, introduced in the context of the sing
moment Kondo problem.16 In this method, the condensatio
of the slave boson marks the onset of Kondo coherence
characterizes the FL phase. In contrast the slave boson i
condensed in the FL* phase. Fluctuations about this mea
field description lead to the critical theory of the transiti
involving a propagating boson coupled to a compact U~1!
gauge field, in the presence of damping from fermionic
citations.

We note that earlier studies17,18 of single-impurity prob-
lems found a temperature-induced mean-field transition
tween a state in which the slave boson is condensed~and
hence the local moment is Kondo screened! and a state in
which the boson has no condensate: however, it was
rectly argued that this transition is an artifact of the me
field theory, and no sharp transition exists in the sing
moment Kondo problem atT.0. If we now naively
generalize this single-impurity model to the lattice, we w
find that theT50 ground state always has Kondo screeni
It is only upon including frustrating intermoment exchan
interactions—equivalent to having ‘‘dispersing’’ spinons
that it is possible to break down Kondo screening and re
a state in which the slave boson is not condensed. This t
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sition is not an artifact of mean-field theory; we show he
that it remains sharply defined ind53.

Our analysis of the aboved53 U~1! gauge theory leads
to the schematic crossover phase diagram as a function o
Kondo exchangeJK andT shown in Fig. 1.

The crossover phase diagram in Fig. 1 is similar to tha
a dilute Bose gas as a function of chemical potential a
temperature.19,20 Here the bosons are coupled to a U~1!
gauge field, and this is important for many of the critic
properties to be described in the body of the paper. Nota
in Fig. 1 the density of bosons isnot fixed, and varies as a
function of T, JK , and other couplings in the Hamiltonian
Indeed, the contours of constant boson density have a c
plicated structure, which are similar to those in Ref. 20. T
variation in the boson density is a crucial distinction fro
earlier analyses22,23 of boson models coupled to dampe
U~1! gauge fields: in these earlier works, the boson den
was fixed at aT-independent value. As we will see, allowin
the boson density to vary changes the critical properties,
has significant consequences for the structure of the cr
over phase diagram and for theT dependence of observable

FIG. 1. Crossover phase diagram for the vicinity of thed53
quantum transition involving breakdown of Kondo screening.JK is
the Kondo exchange in the Hamiltonian introduced in Sec. III. T
only true phase transition above is that at theT50 quantum critical
point at JK5JKc between the FL and FL* phases. The ‘‘slave’’
bosonb measures the mixing between the local moments and
conduction electrons and is also described in Sec. III. The cr
overs are similar to those of a dilute Bose gas as a function
chemical potential and temperature, as discussed in Refs. 19
20—the horizontal axis is a measure of the boson chemical po
tial mb . The boson is coupled to a compact U~1! gauge field; atT
50 this gauge field is in the Higgs/confining phase in the FL sta
and in the deconfining/Coulomb phase in the FL* state. There is no
phase transition atT.0 between a phase witĥb&Þ0 and a phase
with ^b&50 because such a transition is absent in a theory wit
compactU~1! gauge field ind53 ~Ref. 21! ~the mean-field theories
of Secs. III and IV C do show such transitions, but these will tu
into crossovers upon including gauge fluctuations!. The compact-
ness of the gauge field therefore plays a role in the crossovers in
‘‘renormalized classical’’ regime above the FL state~this has not
been worked out in any detail here!. However, the compactness
not expected to be crucial in the quantum-critical regime. The cro
over line displayed between the FL and quantum-critical regim
can be associated with the ‘‘coherence’’ temperature of the he
Fermi liquid. At low T, as discussed in the text, there are likely
be additional phases associated with magnetic order~the SDW and
SDW* phases!, and these are not shown above but are shown
Fig. 2; they also appear in the mean-field phase diagram in Fig
1-3
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We will show that non-Fermi-liquid physics obtains in th
quantum-critical region of this transition. Furthermore, w
argue that fluctuation effects may lead to a spin-density w
developing out of the spinon Fermi surface of the U~1! FL*
phase, thereby obtaining the U~1! SDW* phase. The ex-
pected phase diagram and crossovers for the evolution f
the U~1! SDW* phase to the FL phase are shown in Fig.
We examine few different kinds of such U~1! SDW* phases
depending on the details of the spinon Fermi surface.
also describe a number of specific experimental signature
the U~1! SDW* phase which may help to distinguish it from
more conventional magnetic metals.

B. Relation to earlier work

We have already mentioned a number of precursors to
ideas in our discussion so far. Here, we complete this
noting some other related developments in the literature

Early on, Andrei and Coleman24 and Kaganet al.25 dis-
cussed the possibility of the decoupling of local mome
and conduction electrons in Kondo lattice models. And
and Coleman had the local moments in a spin-liquid s
which is unstable to U~1! gauge fluctuations, and did no
notice violation of Luttinger’s theorem. The possibility o
small electronic Fermi surfaces was noted by Kaganet al.,
but no connection was made to the requirement this impo
on emergent gauge excitations.11

More recently, Burdinet al.described many aspects of th
physics we are interested in here in a dynamical mean-fi
theory of a random Kondo lattice.26 In this work, we ob-
tained a state in which local moments formed a spin liq
and stayed essentially decoupled from the conduction e
trons. They emphasized that the transition between su
state~which is the analog of our FL* states! and a conven-
tional heavy Fermi liquid~the FL state! should be understood
as a Fermi-volume changing transition. However questi
of emergent gauge structure were not addressed by them

FIG. 2. Expected phase diagram and crossovers for the ev
tion from the U~1! SDW* phase to the conventional FL. Two dif
ferent transitions aregenericallypossible at zero temperature: Upo
moving from the SDW* towards the Fermi liquid, the fractional
ization is lost first followed by the disappearance of magnetic or
Nevertheless the higher-temperature behavior in the region ma
‘‘quantum critical’’ is non-Fermi-liquid-like, and controlled by th
Fermi-volume changing transition from FL to FL* . This may be
loosely associated with the breakdown of Kondo screening.
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Demleret al.27 discussed fractionalized phases of Kon
lattice models. However, they did not consider any sta
with long-lived electronlike quasiparticles, as are presen
the FL* phase.

Recently Essler and Tsvelik28 discussed the fate of one
dimensional Mott insulator under a particular long-range
terchain hopping. At intermediate temperatures, they obta
state with a small Fermi surface, in that the Fermi-surfa
volume does not count the local moments.29 However, their
construction does not lead to a state with emergent ga
excitations in higher dimensions, and as they conclude, t
state is unstable to magnetic order at low temperatures.
believe this low-T state is an ordinary SDW state, and a
realizations of small Fermi surfaces at intermediate temp
tures are remnants of one-dimensional physics. In contr
all our constructions are genuinely higher dimensional, a
only work for d>2.

The physics of the destruction of the large Fermi surfa
by the vanishing of Kondo screening has been addresse
interesting recent works30–32 using an ‘‘extended dynamica
mean-field theory.’’ We have argued in our discussion abo
that vanishing of Kondo screening is conceptually quite
different transition from the onset of magnetic order; cons
tent with this expectation, Sun and Kotliar31 found two dis-
tinct points associated with these transitions. It is our cont
tion that the critical theory of the FL to U~1! FL* transition
~discussed in the present paper! is thed53 realization of the
large-dimensional critical point with vanishing Kond
screening found by Sun and Kotliar.

C. Outline

The rest of the paper is organized as follows: In Sec.
we briefly review the properties of various fractionalize
Fermi liquids (FL* ). A specific U~1! FL* state where the
spinons form a Fermi surface is considered. In Sec. III,
construct a mean-field description of this state and its tra
tion to the heavy Fermi liquid. This transition involves
jump in the Fermi-surface volume but is nevertheless sho
to be second order within the mean-field theory. This is ma
possible by the vanishing of the quasiparticle residueZ on an
entire Fermi surface~a hot Fermi surface! as one moves from
the heavy Fermi liquid to the fractionalized Fermi liqui
Fluctuations about this mean-field description are then c
sidered. In Sec. IV, we first consider fluctuation effects on
phases—in particular the FL* phase. We argue that th
specific-heat coefficientg diverges logarithmically once the
leading-order fluctuations are included. Furthermore, fluct
tions also make possible a spin-density-wave instability
the spinon Fermi surface, leading to a U~1! SDW* state. To
illustrate possible phases, we will discuss an improved me
field theory which includes the SDW order parameter, a
present phase diagrams showing the influence of tempera
and magnetic field. We then examine fluctuation effects
the critical point of the transition between FL* and FL in
Sec. V. We argue that the logarithmic divergence of
specific-heat coefficient persists in the quantum-critical
gion, and also that non-Fermi-liquid transport obtains the
In Sec. VI, we discuss the properties of the U~1! SDW*

lu-
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ed
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WEAK MAGNETISM AND NON-FERMI LIQUIDS NEAR . . . PHYSICAL REVIEW B 69, 035111 ~2004!
phase in greater detail with particular attention to its iden
fication in experiments. A discussion of the implications f
various experiments in Sec. VII will conclude the paper.

II. FRACTIONALIZED FERMI LIQUIDS

The existence of nonmagnetic translation-invariant sm
Fermi-surface states was shown in a recent paper by11

with a focus on two-dimensional Kondo lattices. Such sta
were obtained when the local-moment system settles in
fractionalized spin liquid~rather than a magnetically ordere
state! due to intermoment interactions. A weak Kondo co
pling to conduction electrons does not disrupt the structur
the spin liquid but leaves a sharp Fermi surface of quasi
ticles whose volume counts the conduction-electron den
alone ~a small Fermi surface!. Thus these states have fra
tionalized excitations that coexist with conventional Ferm
liquid-like quasiparticle excitations. We dubbed these sta
FL* ~to distinguish them from the conventional Fermi liqu
FL!. We also pointed out an intimate connection between
disappearance of the large Fermi surface and fractiona
tion, and this is discussed further in Appendix A.

The FL* phase can be further classified by the nature
the spin liquid formed by the local moments. Recent ye
have seen considerable progress in our understanding of
tionalized spin liquids. An important feature of spin-liqu
states ind>2 is that they possess emergent gauge struct
Put simply, this means that the distinct excitations in su
phases interact with each other through long-ranged inte
tions which can be mathematically encapsulated as ga
interactions. In other words, the effective-field theory of t
state is a gauge theory in its deconfined phase. The two n
ral possibilities are that the emergent gauge group is ei
Z2 or U~1!. The former is allowed in any dimensiond>2
while the latter is only allowed ind53 ~or higher!.

The Z2 states have been discussed at length in the lit
ture and in the present context in our earlier work.11 In con-
trast, the U~1! states have not been discussed much, tho
their possible occurrence~in d53) and their universal prop
erties have been appreciated by many workers in the fi
We therefore provide a quick discussion: The distinct exc
tions in thed53 U~1! spin-liquid phases are neutral spin-1
spinons, a gapless~emergent! gauge photon, and a gappe
point defect~the ‘‘monopole’’!. The spinons are minimally
coupled to the photon and hence interact through emer
long-ranged interactions. For simple microscopic models
realize such phases, see Refs. 14 and 33. A crucial distinc
between theZ2 spin liquids is that the spinons in this pha
are not generically paired, i.e., the spinon number
conserved.34

Several classes of spin liquids are theoretically poss
with the same gauge structure. These may be characte
by the statistics of the spinons, their band structure, etc.
the rest of this paper, we will focus on a particular thre
dimensional U~1! spin-liquid state with fermionic spinon
that form a Fermi surface. A specific toy model which d
plays this phase is presented in Appendix B.

As with the Z2 spin liquids discussed in Ref. 11, th
gauge structure in the U~1! spin-liquid state is also stable t
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a weak Kondo coupling to conduction electrons.35 The re-
sulting U~1! FL* state consists of a spinon Fermi surfa
coexisting with a separate Fermi surface of conduction e
trons. There will also be gapless photon and gapped mo
pole excitations. The physical electron Fermi surface~as
measured by de Haas–van Alphen experiments for insta!
will have a small volume that is determined by the condu
tion electrons alone.

In our previous work, we pointed out that the transitio
from a Z2 FL* phase to the heavy FL will generically b
preempted by superconductivity. This is due to the pairing
spinons in theZ2 phase. In contrast, we expect that due
conservation of spinon number a direct transition betwe
the U~1! FL* and heavy FL phases should be possible.

III. MEAN-FIELD THEORY

A simple mean-field theory allows a description both o
U~1! FL* phase and its transition to the heavy FL. Consid
a three-dimensional Kondo-Heisenberg model, for concre
ness on a cubic lattice:

H5(
k

ekcka
† cka1

JK

2 (
r

SW r•cra
† sW aa8cra81JH (

^rr 8&

SW r•SW r 8 .

~1!

Herecka represent the conduction electrons andSW r the spin-
1/2 local moments on the sites of a cubic lattice, summat
over repeated spin indicesa is implicit. We use a fermionic
‘‘slave-particle’’ representation of the local moments:

SW r5
1
2 f ra

† sW aa8 f ra8 , ~2!

wheref ra describes a spinful fermion destruction operator
site r.

Proceeding as usual, we consider a decoupling of both
Kondo and Heisenberg exchange using two auxiliary fie
in the particle-hole channel. Treating the fluctuations of th
auxiliary fields by a saddle-point approximation@formally
justified for a large-N SU(N) generalization#, we obtain the
mean-field Hamiltonian

Hmf5(
k

ekcka
† cka2x0 (

^rr 8&
~ f ra

† f r 8a1H.c.!1m f(
r

f ra
† f ra

2b0(
k

~cka
† f ka1H.c.!, ~3!

where we assumedx0 and b to be real, and have droppe
additional constants toH. The mean-field parametersb0 , x0 ,
m f are determined by the conditions

15^ f ra
† f ra&, ~4!

2b05JK^cra
† f ra&, ~5!

2x05JH^ f ra
† f r 8a&. ~6!

In the last equationr , r 8 are nearest neighbors.
There are two qualitatively different zero-temperatu

phases. First, there is the usual Fermi-liquid~FL! phase when
1-5
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b0 , x0 , m f are all nonzero.~Note thatb0Þ0 implies that
x0Þ0.) This phase is readily seen to have a large Fe
surface as expected. Second, there is a phase (FL* ) where
the Kondo hybridizationb050 but x0Þ0. ~In this phase
m f50.! This mean-field state represents a situation wh
the conduction electrons are decoupled from the local m
ments and form asmall Fermi surface. The local-momen
system is described as a spin fluid with a Fermi surface
neutral spinons. We expect thatx0;JH .

The transition between these two different states can
be examined within the mean-field theory. Interestingly,
transition is second order~despite the jump in Fermi volume!
and is described byb0→0 on approaching it from the Ferm
liquid side. How can a second-order transition be associa
with a jump in the volume of the electron Fermi surfac
This can be understood by examining the Fermi surfa
closely in this mean-field theory.

The mean-field Hamiltonian is diagonalized by the tra
formation

cka5ukgka11vkgka2 ,

f ka5vkgka12ukgka2 . ~7!

Heregka6 are new fermionic operators in terms of which t
Hamiltonian takes the form

Hmf5(
ka

Ek1gka1
† gka11Ek2gka2

† gka2 , ~8!

with

Ek65
ek1ek f

2
6AS ek2ek f

2 D 2

1b0
2. ~9!

Here ek f5m f2x0(a51,2,3cos(ka). The uk , vk introduced
above are determined by

uk52
b0vk

Ek12ek
, uk

21vk
251. ~10!

Consider first the FL* phase whereb0505m f , but x0
Þ0. The electron Fermi surface is determined by
conduction-electron dispersionek and is small. The spinon
Fermi surface encloses one spinon per site and has vo
half that of the Brillouin zone. For concreteness, we w
consider the situation where the electron Fermi surface d
not intersect the spinon Fermi surface. We will also assu
that the conduction-electron filling is less than half.

Now consider the FL phase near the transition~smallb0).
In this case, there are two bands corresponding toEk6 : one
derives from thec electrons~with weakf character! while the
other derives from thef particles~with weakc character!. We
will call the former thec band and the latter thef band. For
small b0, both bands intersect the Fermi energy so that
Fermi surface consists of two sheets~see Fig. 3!. The total
volume is large, i.e., includes both local moments and c
duction electrons. Upon moving toward the transition to F*
(b0 decreasing to zero!, thec-Fermi surface expands in siz
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to match onto the small Fermi surface of FL* . On the other
hand, thef-Fermi surface shrinks to match onto thespinon
Fermi surface of FL* .

Upon increasingb0 in the FL state and depending on th
band structure, another transition is possible, where thc
band becomes completely empty. Then, the Fermi-surf
topology changes from two sheets to a single sheet—su
transition between two conventional Fermi liquids is know
as Lifshitz transition and will not be further considered he

The quasiparticle weightZ close to the FL-FL* transition
is readily calculated in the present mean-field theory. For
electron Green’s function we find

G~k,ivn!5
uk

2

ivn2Ek1
1

vk
2

ivn2Ek2
. ~11!

Therefore at the Fermi surface of thec band ~which has
dispersionEk1 , the quasiparticle residueZ5uk

2). At this
Fermi surface,Ek1'ek'0 so that

Ek1'ek1
b0

2

ek2ek f
⇒uk'2

JH

b0
vk . ~12!

Using Eqs.~10!, we then findZ'1 on thec-Fermi surface.
At the Fermi surface of thef band on the other hand,Z

5vk
2 . Also near this Fermi surface,uek2ek fu't wheret is

the conduction-electron bandwidth. We have assumed a
reasonable thatt@JH . Thus for thef-Fermi surface,

Ek1'ek1
b0

2

ek2ek f
⇒uk'2

t

b0
vk . ~13!

This then gives

Z5vk
2'S b0

t D 2

. ~14!

Thus the quasiparticle residue stays nonzero on thec-Fermi
surface while it decreases continuously to zero on
f-Fermi surface on moving from FL to FL* . ~The f-Fermi
surface is ‘‘hot’’ while thec-Fermi surface is ‘‘cold.’’!

Clearly the critical point is not a Fermi liquid.Z vanishes
throughout the hot Fermi surface at the transition, and n

FIG. 3. Fermi-surface evolution from FL to FL* : close to the
transition, the FL phase features two Fermi-surface sheets~the cold
c and the hotf sheet, see text!. Upon approaching the transition, th
quasiparticle residueZ on the hotf sheet vanishes. On the FL* side,
the f sheet becomes the spinon Fermi surface, whereas thec sheet is
simply the small conduction-electron Fermi surface.
1-6



hi

s-
o

a
le
th
u

a
a
w

be

L
e
rm
de
ct
in
m
o

he
us
ui
fe
e

a
m
m

io

nt
s the

all

om-

s-

ten-
ol-
ned

to a

ped
h

se.

non
of

tial
he
s-
inon

ua-
e

the

ver-

fic-
-

al
e
ke
al
t of
tion
uid

WEAK MAGNETISM AND NON-FERMI LIQUIDS NEAR . . . PHYSICAL REVIEW B 69, 035111 ~2004!
Fermi-liquid behavior results. It is interesting to contrast t
result with the spin-fluctuation model~Hertz-Moriya-Millis
criticality! where the non-Fermi-liquid behavior is only a
sociated with some hot lines in the Fermi surface, and c
sequently plays a subdominant role.

Despite the vanishing quasiparticle weightZ, the effective
massm* of the large-Fermi-surface state does not diverge
the transition in this mean-field calculation, because the e
tron self-energy is momentum dependent. Physically,
quasiparticle at the hot Fermi surface is essentially made
of the f particle for smallb; even whenb goes to zero thef
particle ~the spinon! continues to disperse due to the nonv
nishing x0 term. Indeed the low-temperature specific he
C;gT with g nonzero in both phases. As we argue belo
this is an artifact of the mean-field approximation and will
modified by fluctuations.

The detailed shape of the spinon Fermi surface in the F*
phase~or the hot Fermi surface which derives from it in th
FL phase! depends on the details of the lattice and the fo
of the local-moment interactions. For the particular mo
discussed above, the spinon Fermi surface is perfe
nested. In more general situations, a non-nested sp
Fermi surface will obtain. In all cases, however, the volu
of the spinon Fermi surface will correspond to one spin
per site.

IV. FLUCTUATIONS: MAGNETISM AND SINGULAR
SPECIFIC HEAT

Fluctuation effects modify the picture obtained in t
mean-field theory in several important ways. We first disc
fluctuation effects in the two phases. The heavy Fermi-liq
phase is of course stable to fluctuations—their main ef
being to endow thef particle with a physical electric charg
thereby making it an electron.36,37 Fluctuation effects are
more interesting in the FL* state, and are described by
U~1! gauge theory minimally coupled to the spinon Fer
surface~which continues to be essentially decoupled fro
the conduction-electron small Fermi surface!. This may be
made explicit by parametrizing the fluctuations in the act
in the FL* phase as follows:

x rr 8~t!5eiarr 8(t)x0rr 8 . ~15!

The action then becomes

S5Sc1Sf1Sf c1Sb ,

Sc5E dt(
k

c̄k~]t2ek!ck ,

Sf5E dt(
r

f̄ r~]t2 ia0! f r2 (
^rr 8&

x0~eiarr 8 f̄ r f r 81H.c.!,

Sc f52E dt(
r

~brc̄r f r1H.c.!,

Sb5E dt(
r

4ubr u2

JK
. ~16!
03511
s

n-

t
c-
e
p

-
t
,

l
ly
on
e
n

s
d
ct

i

n

As usual, the fielda0 is introduced to impose the constrai
that there is one spinon per site and may be interpreted a
time component of the gauge field. By assumptionbr is not
condensed. It is useful to start by completely ignoring
coupling betweenc and f fermions. The action for thef par-
ticles describes a Fermi surface of spinons coupled to a c
pact U~1! gauge field.

An important simplification for the three-dimensional sy
tems of interest~as compared tod52) is that the U~1! gauge
theory admits a deconfined phase where the spinons po
tially survive as good excitations of the phase. In what f
lows we will assume that the system is in such a deconfi
phase.~This is formally justified in the same large-N limit as
the one for the mean-field approximation.! This deconfined
phase has a Fermi surface of spinons coupled minimally
gapless ‘‘photon’’@U~1! gauge field#. ~Due to the compact-
ness of the underlying gauge theory, there is also a gap
monopole excitation.! Thus two static spinons interact wit
each other through anemergent long-range1/r Coulomb in-
teraction. Putting back a small coupling between thec and f
particles will not change the deconfined nature of this pha
~In particular the monopole gap will be preserved.! This is
the advocated U~1! FL* phase.

A. Specific heat

The coupling of the massless gauge photon to the spi
Fermi surface leads to several interesting modifications
the mean-field results. First, consider the effect of the spa
components of the gauge field. It is useful to work in t
gauge¹W •aW 50 so that the vector potential is purely tran
verse. Unless otherwise stated, we assume a generic sp
Fermi surface~without flat portions! henceforth. Integrating
out the spinons and expanding the resulting action to q
dratic order gives the following well-known form for th
propagator for these transverse gauge fluctuations:

Di j ~kW ,ivn![^ai~kW ,ivn!aj~2kW ,2 ivn!&5
d i j 2kikj /k2

Guvnu/k1x fk
2

.

~17!

HereG, x f are positive constants that are determined by
details of the spinon dispersion, andvn is an imaginary Mat-
subara frequency. Note that the gauge fluctuations are o
damped in the small-q limit. As was first shown in a different
context by Holsteinet al.38 ~and reviewed in Appendix D!,
this form of the gauge-field action leads to aT ln 1/T singu-
larity in the low-temperature specific heat. Thus the speci
heat coefficientg5C/T diverges logarithmically at low tem
perature in the U~1! FL* phase.

We also briefly mention the effect of the longitudin
~time component! of the gauge field. This couples to th
local f fermion density, and so its influence is very much li
a repulsive density-density interaction. The longitudin
gauge-field propagator has a structure very similar to tha
a standard random-phase approximation density-fluctua
propagator, and so does not lead to any non-Fermi-liq
behavior.
1-7
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B. Magnetic instability

The repulsive interaction mediated by the longitudin
part of the gauge interaction can lead to various instabili
of the spinon Fermi surface. In particular, it is interesting
consider a SDW instability of the spinon Fermi surface. T
resulting state will have magnetic long-range order t
could potentially have a weak moment as it is a SDW st
that is formed out of the spinon Fermi surface. However
contrast to the traditional view of the weak magnetism, h
the SDW instability isnot that of the large-Fermi-surfac
heavy Fermi liquid. Despite the occurrence of magne
long-range order, this magnetic state is far from conv
tional. Because the SDW order parameter is gauge neu
the presence or absence of a SDW condensate has little
stantive effect on the structure of the gauge fluctuations.
deed, the latter remain as in the U~1! FL* state, even after
the magnetic order has appeared in the descendant~1!
SDW* state. The spinons continue to be deconfined and
coupled to a gapless U~1! gauge field. Further, the monopo
survives as a gapped excitation—this yields a sharp dist
tion with more conventional magnetic phases. These ga
excitations coexist with the gapless magnons associated
broken spin rotation invariance and with a Fermi surface
the conduction electrons. However, due to the broken tra
lational symmetry in this state, there is no sharp distinct
between small and large Fermi surfaces. So to reiterate
exotic magnetic metal, dubbed U~1! SDW* , emerges as a
low-energy instability of the spinon Fermi surface of the p
ent U~1! FL* state.

Different possibilities emerge for the formation of th
spin-density wave out of the parent U~1! FL* phase, depend
ing on the details of the spinon Fermi surface and
strength of the interactions driving the SDW instability. W
enumerate some of them below.

~a! Perfectly nested spinon Fermi surface: In this ca
arbitrarily weak interactions will drive a SDW instability. I
the resulting state, the spinons are gapped. So upon inte
ing out the spinons, the effective action for the gauge fi
can be expanded safely in spatial and temporal gradie
with no long-range couplings. Gauge invariance now
mands that these terms in the gauge-field action have
standard Maxwell form. Consequently, the photon becom
sharp propagating mode at low energies~below the spinon
gap! with linear dispersion. Despite clearly being a distin
phase from conventional spin-density-wave metals, the
perimental distinction is subtle.

~b! Generic spinon Fermi surface, weak interaction: Fo
generic spinon Fermi surface, the leading spin-density-w
instability ~which will require an interaction strength beyon
some threshold value! will be at a wave vector that matche
one of the ‘‘2kF’’ wave vectors of the spinon Fermi surfac
In the resulting state, a portion of the spinon Fermi surfa
~away from points connected by the ordering wave vec!
survives intact. The damping of the gapless U~1! gauge fluc-
tuations due to coupling to gapless spinons is preser
Consequently the low-temperature specific heat will contin
to behave asC(T);T ln(1/T). Thus for this particular U~1!
SDW* state its non-Fermi-liquid nature is readily manifest
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by specific-heat measurements, providing a concrete
ample of a weak moment SDW metal with non-Fermi-liqu
thermodynamics at low temperature.

~c! Generic spinon Fermi surface, strong interaction:
the interactions are strong enough, even for a non-ne
spinon Fermi surface, the spinons can develop a full gap w
no portion of their Fermi surface remaining intact. The r
sulting phase is the same as that obtained in~a!, and has a
sharp propagating linear dispersing photon at low energi

In Sec. VI we discuss experimental probes that can h
distinguish these U~1! SDW* phase from the conventiona
spin-density-wave metals.

C. Mean-field theory with magnetism

In view of the possible occurrence of SDW phases
will now consider a modified mean-field theory which ca
tures the magnetic instability at the mean-field level, b
does no longer correspond to a large-N saddle point. We will
discuss the fully self-consistent solution of the mean-fi
equations for arbitrary temperature and external magn
field.

The mean-field Hamiltonian, written down explicitly fo
SU~2! symmetry, takes the following form:

Hmf5(
k

ekcka
† cka2 (

^rr 8&
~x rr 8

* f ra
† f r 8a1H.c.!

1(
r

m f ,r f ra
† f ra2(

r
br~cra

† f ra1H.c.!

1
1

2 (
r

~HW eff,r1HW ext!• f ra
† sW aa8 f ra8

1
1

2
HW ext•(

r
cra

† sW aa8cra81Econst, ~18!

whereHW ext is the external field, and we have allowed for
spatial dependence of the mean-field parametersm f ,r , x rr 8 ,
br , HW eff,r . They have to be determined from the followin
equations:

15^ f ra
† f ra&, ~19!

2br5JK^cra
† f ra&, ~20!

2x rr 85~12x!JH^ f ra
† f r 8a&, ~21!

HW eff,r5xJH(
r 8

MW r 8 , MW r5
1

2
^ f ra

† sW aa8 f ra8&, ~22!

where the last sum runs over the nearest neighborsr 8 of site
r. We have introduced a parameterx which allows to control
the balance between ordered local-moment magnetism
spin-liquid behavior of thef electrons. A valuex51/2 would
correspond to an unrestricted Hartree-Fock treatment of
original Heisenberg interaction; we will employ valuesx
1-8



m

nd
lec

b
o
t

y
b

el
-

-
r
l
-
t

is
re,
th
-
ita-

on

that
the

own
g-
tud-

d

de-

etic
ase

he
and
urs

ean

all
hot

te

th
in

an-
es
. At
rly

WEAK MAGNETISM AND NON-FERMI LIQUIDS NEAR . . . PHYSICAL REVIEW B 69, 035111 ~2004!
,1/2 in order to model aweakmagnetic instability of the
spinon Fermi-surface state. The constant piece of the Ha
tonian reads

Econst52(
r

m f ,r1(
r

2br
2

JK
1(

rr 8

2ux rr 8u
2

~12x!JH

2
1

2 (
r

HW eff,r•MW r . ~23!

For simplicity, we consider a simple cubic lattice, a
assume a tight-binding dispersion for the conduction e
trons, ek522t(a51,2,3cos(ka)2mc , where mc controls the
conduction-band filling. The mean-field equations can
self-consistently solved using a large unit cell, allowing f
spatially inhomogeneous phases.39 In this section we restric
our attention to mean-field solutions where thex rr 85x0
fields are real~time-reversal invariant! and obey the full lat-
tice symmetries, andbr5b0 is site independent. We emplo
a 231 unit cell, then antiferromagnetism is characterized
MW r• x̂5Msexp(iQ•r ) where Q5(p,p,p) is the antiferro-
magnetic wave vector, andx̂ is the magnetization axis
~which is arbitrary in zero external field!.

In Fig. 4 we show a phase diagram obtained from s
consistently solving Eq.~18! together with the above mean
field equations at zero external magnetic field. A U~1! FL*
phase withb050 andx0Þ0 is realized at intermediate tem
peratures. As expected, it is unstable to magnetic orde
low T, resulting in a U~1! SDW* ground state for smal
JK—this phase has in additionMsÞ0. For the present pa
rameter values, the spinon Fermi surface is gapped out in
SDW* phase. IncreasingJK drives the system into the FL
phase withb0Þ0, x0Þ0, andMs50; at low temperatures a

FIG. 4. Mean-field phase diagram ofHmf ~18! on the cubic
lattice, as function of Kondo couplingJK and temperatureT. Pa-
rameter values are electron hoppingt51, Heisenberg interaction
JH50.1, decoupling parameterx50.2, and conduction-band filling
nc50.7. Thin~thick! lines are second-~first-! order transitions. The
‘‘decoupled’’ phase is an artifact of the mean-field theory, and
corresponding transitions will become crossovers upon includ
fluctuations, as will the transition between the FL and U~1! FL*
phases; the transitions surrounding the SDW and SDW* phases will
of course survive beyond mean-field theory.
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conventional SDW phase intervenes where allb0 , x0 , Ms
are nonzero. Note that the transition between FL and SDW
weakly first order at low temperatures. At high temperatu
the mean-field theory only has a ‘‘decoupled’’ solution wi
b05x05Ms50—this decoupling is a well-known mean
field artifact and reflects the presence of incoherent exc
tions.

In the FL phase, the above-mentioned Lifshitz transiti
occurs atJK'1.7 in the low-temperature limit, i.e., forJK
.1.7 only a single Fermi-surface sheet remains. Note
this transition does not lead to strong singularities in
mean-field parameters.

The staggered magnetizations of the SDW and SDW*
states as determined from the mean-field solution are sh
in Fig. 5; we can expect that fluctuation corrections will si
nificantly reduce these mean-field values. We have also s
ied different values of the decoupling parameterx; in particu-
lar smaller values ofx lead to a suppression of ordere
magnetism in favor of the nonmagnetic FL* state, i.e., the
SDW instability of FL* is shifted to lower temperatures~and
becomes completely suppressed at smallx); similarly, the
ordered moment in the SDW phases is decreased with
creasingx.

Interesting physics obtains when an external magn
field is turned on, and the corresponding mean-field ph
diagram is discussed in Appendix C.

V. FLUCTUATIONS NEAR THE FERMI-VOLUME
CHANGING TRANSITION

We now turn to the effects of fluctuations beyond t
mean-field theory at the phase transition between the FL
U~1! FL* phases. In mean-field theory, this transition occ
through the condensation of the slave boson fieldb. Such a
condensation survives as a sharp transition beyond m
field only whenT50.

We begin by observing that in the mean-field theory
the important changes near the transition occur at the
Fermi surface. The cold Fermi surface~essentially made up
of c particles! plays a spectator role. We therefore integra

e
g

FIG. 5. Staggered magnetization determined from the me
field solutionHmf ~18!. Parameters are as in Fig. 4, the two curv
correspond to two horizontal cuts of the phase diagram in Fig. 4
T50, the first-order character of the SDW-FL transition is clea
seen. Note that smaller values of the decoupling parameterx yield
smaller values of the magnetization in the SDW and SDW* phases.
1-9
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T. SENTHIL, MATTHIAS VOJTA, AND SUBIR SACHDEV PHYSICAL REVIEW B69, 035111 ~2004!
out the c fields completely from the action in Eq.~16! to
obtain an effective action involving theb, f , and gauge
fields alone. We also partially integrate outf excitations well
away from the hot Fermi surface: this changes theb effective
action from the simple local term in Eq.~16!, and endows it
with frequency and momentum dependence. In this man
we obtain the following effective action at long distance a
time scales:

S5Sb1Sf , ~24!

Sb5E dtd3r F b̄S ]t2mb2 ia02
~¹Wr2 iaW !2

2mb
D b

1
u

2
ubu41•••G , ~25!

and Sf has the same form as in Eq.~16!. Notice that theb
field has become a propagating boson, with the same te
in the action as a microscopic canonical boson: here th
terms arise from a (b, f ) fermion polarization loop integrate
well away from thef-Fermi surface. The parametersmb ,mb
may be interpreted as the chemical potential and mass o
bosons, respectively. The (b, f ) fermion loop will also lead to
higher time and spatial gradient terms as well as a dens
density coupling betweenb andf in Eq. ~24!, but all these are
formally irrelevant near the quantum-critical point of inte
est.

A key feature of Eq.~24!, induced by taking the spatia
and temporal continuum limit, is that we have lost inform
tion on the compactness of the U~1! gauge fielda, i.e., the
continuum action is now no longer periodic underarr 8→arr 812p, as was the case for the lattice action~16!. The
U~1! gauge field is now effectively noncompact, and con
quently monopole excitations have been suppressed.
monopole gap is finite in the U~1! FL* phase~which is the
analog of the ‘‘Coulomb’’ phase of the compact gau
theory!.40 In the FL phase, the monopoles do not exist—th
are confined to each other. This occurs due to the conde
tion of the boson field. However, the monopole gap is
expected to close at the transition,42 and so neglecting the
compactness of the gauge field is permissible. Indeed,
continuum action~24! provides a satisfactory description o
the critical properties of the FL to U~1! FL* transition atT
50. However, as we noted in the caption of Fig. 1, t
compactness of the gauge field is crucial in understand
the absence of aT.0 phase transition above the FL phase21

The action in Eq.~24! above is similar to that popular in
gauge theory descriptions22,23 of the normal state of opti-
mally doped cuprates but with some crucial differences. H
the chemical potential of the bosons is fixed while in Re
22 and 23 the boson density was fixed; as we will see be
this significantly modifies the physical implications of th
critical theory, and the nature of the non-Fermi-liquid critic
singularities asT.0. Furthermore, we are interested spec
cally in d53, as opposed to thed52 case considered in
Refs. 22 and 23.

The phase diagram of the action~24! was sketched in Fig
1. The horizontal axis, represented in Fig. 1 byJK , is now
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accessed by varyingmb . Without any additional~formally
irrelevant! second-order time derivative terms forb in the
action, the quantum-critical point between the FL and U~1!
FL* phases occurs precisely atmb50, T50. We will now
discuss the physical properties in the vicinity of this critic
point first atT50, and then atT.0, followed by an analy-
sis of transport properties using the quantum Boltzma
equation in Sec. V C. Section V D will comment on the e
fect of the SDW or SDW* phases that may appear at ve
low temperatures~these are not shown in Fig. 1, but sketch
in Fig. 2!.

A. Zero temperature

In a mean-field analysis of Eq.~24!, we see that the FL*
phase~the Coulomb phase of the gauge theory! obtains for
mb,0 with ^b&50, while the FL phase~the ‘‘Higgs’’ phase
of the gauge theory! obtains formb.0.

Consider fluctuations formb,0 in the FL* phase. Here,
there are no bosons in the ground state, and all self-en
corrections associated with the quartic couplingu vanish.41

The gauge-field propagator is given by Eq.~17!, and this
does contribute a nonzero boson self-energy. At small m
mentap and imaginary frequenciese, the boson self-energy
has the structure~determined from a single gauge-boson e
change process, as in Refs. 22 and 23!

Sb~k,i e!;k2~11c1ueu ln~1/ueu!1••• !, ~26!

wherec1 is some constant. Apart from terms which reno
malize the boson massmb , these self-energy corrections a
less relevant than the bare terms in the action, and so ca
safely neglected near the critical point. Notice also th
Sb(0,0)50, and so the quantum-critical point remains
mb50.

The critical exponents can now be determined as in R
20 and 41, and are simply those of the mean-field theory
Eq. ~24!:

n51/2, z52, h50. ~27!

As in Eq. ~26! we can also determine the fate of the bos
quasiparticle pole as influenced by the gauge fluctuations
obtain

ImSbS k,e5
k2

2mb
D;sgn~e!e2ln~1/ueu!. ~28!

The boson lifetime is clearly longer than its energy, and t
pole remains well defined. Finally, we recall our statemen
Sec. IV A that the gauge fluctuations lead to aT ln(1/T) spe-
cific heat in the FL* phase, with a divergingg coefficient.
This behavior remains all the way up to, and including, t
critical point. Parenthetically, we note that the same calcu
tion in d52 dimensions will yieldC}T2/3.

We turn next tomb.0, in the FL phase. Here the boson
are condensed, and Eq.~26! or explicit calculations show
that

^b&[b0;~mb!1/2;~JK2JKc!
1/2, ~29!
1-10
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whereJKc is the position of the critical point in Fig. 1. Th
transverse gauge-field propagator may be obtained as in
IV A by integrating out both the bosons and fermions a
expanding the resulting action to quadratic order; the bo
condensate leads to a ‘‘Meissner’’ term in the gauge pro
gator so that Eq.~17! is replaced by

Di j ~kW ,ivn![^ai~kW ,ivn!aj~2kW ,2vn!&

5
d i j 2kikj /k2

Guvnu/k1x fk
21rs

. ~30!

Here rs is the boson ‘‘superfluid density,’’ and we havers

;b0
2. The presence of such a Meissner term cuts off

singular gauge fluctuations. The divergence of the spec
heat coefficientg(T) as a function of temperatureat the
critical point implies that it diverges atT50 on approaching
the transition from the FL side. As shown in Appendix
this is indeed the case, and we find thatg diverges asg
; ln(1/b0). In experiments, such a divergingg is sometimes
interpreted as a diverging effective mass. Importantly,
divergence ofg is unrelated to the singularity in the quas
particle residue on the hot Fermi sheet,Z, which obeysZ
;b0

2 as shown in Eq.~14!, and so vanishes linearly as
function of JK2JKc .

B. Nonzero temperatures

A crucial change atT.0 is that it is now no longer true
that Sb(0,0)50 in a region with^b&50. Instead, as in ear
lier studies of the dilute Bose gas,19,20 we have

Sb~0,0!52uE ddk

~2p!d

1

exp@k2/~2mbT!#21

5u
z~3/2!

4p3/2
~2mbT!3/2 in d53. ~31!

This behavior determines the crossover phase bound
shown in Fig. 1. The physical properties are determined
the larger of the two ‘‘mass’’ terms in theb Green’s function,
umbu or Sb(0,0)—consequently, the crossover phase bou
aries in Fig. 1 lie atT;umbu2/3;uJK2JKcu2/3. These bound-
aries separate the U~1! FL* region at lowT andmb,0, and
the FL region at lowT and mb.0, from the intermediate
quantum-critical region. Note that there is no phase transi
in the FL region atT.0: this is due to the compactness
the underlying U~1! gauge theory, and the fact that th
‘‘Higgs’’ and ‘‘confining’’ phases are smoothly connected
a compact U~1! gauge theory in three total dimensions.21

We now briefly comment on the nature of the electric
transport in the three regions of Fig. 1. The behavior is qu
complicated, and we will first highlight the main results b
simple estimates in the present section. A more comp
presentation based upon the quantum Boltzmann equa
appears in Sec. V C.

The conventional FL region is the simplest, with the us
T2 dependence of the resistivity—the gauge fluctuations
quenched by the ‘‘Meissner effect.’’
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In the U~1! FL* region, there is an exponentially sma
density of thermally excitedb quanta, and so the boson co
ductivity sb is also exponentially small. As in earlier work,43

the resistances of theb andf quanta add in series, and so th
total b and f conductivity remains exponentially small. Th
physical conductivity is therefore dominated by that of thec
fermions, which again has a conventionalT2 dependence.

Finally, we comment on the transport in the quantu
critical region. This we will estimate following the method o
Ref. 22, with a more complete calculation appearing in
following section. A standard Fermi’s golden rule compu
tion of scattering off low-energy gauge fluctuations sho
that a boson of energye has a transport scattering rate

1

tbtr~e!
;TAe ~32!

for energiese!T2/3. From this, we may obtain the boso
conductivity by inserting in the expression

sb;E d3k tbtr~ebk!k
2S 2

]n~ebk!

]ebk
D , ~33!

where n(e)51/(ee/T21) is the Bose function, andebk
5k2/(2mb)1Sb(0,0)5k2/(2mb)1c2T3/2 for some constant
c2. Estimating the integral in Eq.~33! we find that there is an
incipient logarithmic divergence at smallk which is cutoff by
Sb(0,0);T3/2, and sosb diverges logarithmically withT:

sb; ln~1/T!. ~34!

There are no changes to the estimate of thef conductivity
from earlier work,22,23 and we haves f;T25/3. Using again
the composition rule of Ref. 43, we see that the asympto
low-temperature physical conductivity is dominated by t
behavior in Eq.~34!.

As an aside, we note that for the theory~24! in two spatial
dimensions the result of Eq.~34! continues to hold, wherea
the fermion part becomess f;T24/3. This implies that the
asymptoptic low-T physical conductivity is dominated b
Eq. ~34! in d52 as well.

C. Quantum Boltzmann equation

We now address electrical transport properties of
theory~24! in more detail, using a quantum Boltzmann equ
tion. The analysis is in the same spirit as the work of Ref.
but, as we have discussed in Sec. I A, the variation in
boson density as a function of temperature leads to very
ferent physical properties, and requires a distinct analysi
the transport equation.

We saw in Sec. V B that the electrical conductivity w
dominated by theb boson contribution, and so we focus o
the time ~t! dependence described by the distribution fun
tion

f ~kW ,t !5^bk
†~ t !bk~ t !&. ~35!

In the absence of an external~physical! electric fieldEW , we
have the steady-state valuef (kW ,t)5 f 0(k) with
1-11
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f 0~k![
1

exp$@k2/~2mb!2mb1Sb~0,0!#/T%21
, ~36!

with Sb(0,0) given in Eq.~31!. The transport equation in th
presence of a nonzeroEW (t) can be derived by standar
means, and most simply by an application of Fermi’s gold
rule. The bosons are assumed to scatter off a fluctua
gauge field with a propagator given by Eq.~17! or ~30!, and
this yields the equation

] f ~kW ,t !

]t
1EW ~ t !•

] f ~kW ,t !

]kW

52E
2`

` dV

p E ddq

~2p!d
ImF kiDi j ~qW ,V!kj

mb
2 G ~2p!

3dS k2

2mb
2

~kW1qW !2

2mb
2V D @ f ~kW ,t !@11 f ~kW1qW ,t !#

3@11n~V!#2 f ~kW1qW ,t !@11 f ~kW ,t !#n~V!#, ~37!

where n(V) is the Bose function at a temperatureT as
above.

We will now present a complete numerical solution of E
~37! for the case of a weak, static electric field, to line
order inEW . The analysis near the quantum-critical point p
allels that of Ref. 45, with the main change being that inst
of the critical scattering appearing from the boson se
interactionu, the dominant scattering is from the gauge-fie
fluctuations@note, however, that it is essential to include t
interaction u to first order in the self-energy shift in Eq
~36!#. We write

f ~kW ,t !5 f 0~k!1kW•EW f 1~k!, ~38!

where we notice thatf 1 depends only on the modulus ofk
and is independent oft. We now have to insert Eq.~38! into
the transport equation~37! and the expression for the ele
trical current

JW~ t !5E ddk

~2p!d

kW

mb
f ~kW ,t !, ~39!

linearize everything inEW , and so determine the proportion
ality betweenJW andEW .

It is useful to rewrite the equations in dimensionless qu
tities V̄5V/T, k̄5k/A2mbT, s̄5sb /(mbx f). Then it is
easy to see that the solution of the quantum Boltzmann e
tion at the critical coupling,mb50, is characterized by two
parameters

T̄5
x f

2

G2
~2mb!3T,

ū5u
z~3/2!

4p3/2

G

x f
, ~40!
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where T̄ is a reduced temperature, andū parametrizes the
temperature dependence of the effective ‘‘mass’’ of t
bosons from Eq.~31!; G and x f are the parameters of th
gauge propagator~17!. The linearized form of the Boltzmann
equation~37! for the function

f 1~k![c~k/A2mbT! ~41!

is obtained as

2 f 08~ k̄!5E
0

`

dk̄1@K1~ k̄,k̄1!c~ k̄!1K2~ k̄,k̄1!c~ k̄1!#

~42!

with f 08(x)5]/(]x2)@exp(x21ūAT̄)21#21; the expressions
for the functionsK1,2 are given in Appendix E. From the
solution of Eq.~42! one obtains the conductivity accordin
to

s̄~ T̄,ū!5
1

6p2AT̄
E

0

`

dk̄ k̄4 c~ k̄!. ~43!

The integral equation~42! was solved by straightforward
numerical iteration on a logarithmic momentum grid. W
show sample solutions for the functionk̄4 c( k̄) in Fig. 6. The
final results for the scaling function of the conductivity a
displayed in Fig. 7. For small temperatures, the logarithm
divergence ofsb(T) announced in Eq.~34! is clearly seen;
for larger temperatures the conductivity is exponentially s
pressed due to the temperature-dependent boson mass.
crossover region, the results could be fitted with a power
over a restricted temperature range of roughly one dec
however, no extended power-law regime emerges. In c
parison with experiments, one has to keep in mind that
physical resistivity is given by a sum of boson and fermi
resistivities, and that the logarithmically decreasing lo
temperature part of 1/sb(T) cannot be easily distinguishe
from a residual resistivity arising from impurities.

FIG. 6. Plot of the functionk̄4c( k̄) for a few values of the

reduced temperatureT̄ and the interaction parameterū ~40!. c( k̄) is
defined in Eqs.~38! and ~41!, and has been obtained from the n
merical solution of the quantum Boltzmann equation~42!.
1-12
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D. SDW order

Our discussion so far has focused primarily on the cro
over between the FL to U~1! FL* phases, as this captures th
primary physics of the Fermi-volume changing transition.
low T, we discussed in Sec. IV B that the longitudinal part
the gauge fluctuations may induce SDW order on the spi
Fermi surface of the FL* phase ~leading to the SDW*
phase!. On the FL side of the transition, the gauge fluctu
tions are formally gapped by the Anderson-Higgs mec
nism. They will, however, still mediate a repulsive~though
finite ranged! interaction between the quasiparticles at t
hot Fermi surface. Furthermore the shape of the hot Fe
surface evolves smoothly from the spinon Fermi surfac
the FL* phase. Consequently, it is to be expected that
SDW order will continue into the FL region up to som
distance away from the transition. Thus it seems unlikely t
there will be a direct transition from SDW* to FL at zero
temperature. The actual situation then has some similar
to the mean-field phase diagram in Fig. 4. However, fluct
tions will strongly modify the positions of the phase boun
aries, and we expect that the U~1! FL* region actually occu-
pies a larger portion of the phase diagram. Also there is
sharp transition between the FL and U~1! FL* regions~un-
like the mean-field situation in Fig. 4!, and there is instead
expected to be a large intermediate quantum-critical reg
as shown in Fig. 2.

VI. EXPERIMENTAL PROBES OF THE U „1… SDW* STATE

In this section, we discuss experimental signatures of
U~1! SDW* phase focusing particularly on the distinctio

FIG. 7. Scaling function for the boson conductivity,s̄

5sb /(mbx f), as function of the reduced temperatureT̄ for differ-

ent values of the interaction parameterū ~40!. The results are ob-
tained from the numerical solution of the quantum Boltzmann eq

tion ~42! together with Eq.~43!. Top panel: conductivitys̄(T̄) on a

log-log scale. Bottom panel: resistivity 1/s̄(T̄) on a linear scale.
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with more conventional SDW metals.
We begin by considering a U~1! SDW* phase in which a

portion of the spinon Fermi surface remains intact. As d
cussed in Sec. IV, the coupling between the gapless spin
and the gauge field leads to singularities in the lo
temperature thermodynamics in this phase. In particular
specific heat behaves asC(T);T ln(1/T) at low tempera-
ture. Thus this phase is readily distinguished experiment
from a conventional SDW. Electrical transport in this U~1!
SDW* phase will be through the conduction electrons w
no participation from the spinons. Thus electrical transp
will be Fermi-liquid-like. In contrast thermal transport wi
receive contributions from both the conduction electrons a
the gapless spinons. Consequently the thermal conduct
will be in excess of that expected on the basis of
Wiedemann-Franz law with the free-electron Lorenz numb

The distinction with conventional SDW phases is mu
more subtle for U~1! SDW* phases where the spinons have
full gap. In this case, there is a propagating gapless lin
dispersing photon which is sharp. The presence of these
less photon excitations potentially provides a direct exp
mental signature of this phase. It is extremely important
realize that the emergent gauge structure of a fractional
phase is completely robust to all local perturbations, and
not to be confused with any modes associated with bro
symmetries. Thus despite its gaplessness the photon is n
Goldstone mode. In fact, the gaplessness of the photo
protectedeven if there are small terms in the microscop
Hamiltonian that break global spin rotation invariance. Bei
gapless with a linear dispersion, the photons will contribut
T3 specific heat at lowT which will add to similar contribu-
tions from the magnons and the phonons of the crystal
tice. In addition, the conduction electrons will contribute
linear T term. The phonon contribution is presumably eas
subtracted out by a comparison between the heavy Fe
liquid and magnetic phases. To disentangle the magnon
photon contributions, it may be useful to exploit the robu
ness of the photons to perturbations. Thus for materials w
an easy-plane anisotropy, application of an in-plane magn
field will gap out the single magnon, but the photon will st
gapless and will essentially be unaffected~at weak fields!.
Thus careful measurements of field-dependent specific
may perhaps be useful in deciding whether the U~1! SDW*
phase is realized.

Finally, quasielastic Raman scattering has been sugge
as a probe of the U~1! gauge-field fluctuations46 in the con-
text of the cuprates—the same prediction applies essent
unchanged here to the fractionalized phases ind53.

Conceptually the cleanest signature of the U~1! SDW*
phase would be detection of the gapped monopole. Howe
at present we do not know how this may be directly done
experiments. Designing such a ‘‘monopole detection’’ e
periment is an interesting open problem.

VII. DISCUSSION

The primary question which motivates this paper is h
to reconcile a weak-moment magnetic metal with non-Fer
liquid behavior close to the transition to the Fermi liquid. W

-

1-13
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T. SENTHIL, MATTHIAS VOJTA, AND SUBIR SACHDEV PHYSICAL REVIEW B69, 035111 ~2004!
have explored one concrete route toward such a reconc
tion. The U~1! SDW* magnetic states discussed in this pap
may be dubbed spin-charge separated spin-density-w
metals. They constitute a class distinct from both the conv
tional spin-density-wave metal and the local-moment me
mentioned in the Introduction. However, they share a nu
ber of similarities with both conventional metals. Just as
the conventional local-moment metal, in the U~1! SDW*
state the local moments do not participate in the Fermi s
face. Despite this the ordering moment may be very sm
Indeed this state may be viewed as a spin-density wave
has formed out of a parent nonmagnetic metallic state wi
small Fermi surface. This parent state is a fractionaliz
Fermi liquid in which the local moments have settled into
spin liquid and essentially decoupled from the conduct
electrons. The spinons of the spin liquid form a Fermi s
face which undergoes the SDW transition—this transit
does not affect the deconfinement property of the gauge fi
because the SDW order parameter is gauge neutral and
does not effectively couple to the gauge-field excitations

We showed that in the region of evolution from this sta
to the conventional Fermi liquid, non-Fermi-liquid behavi
obtains~at least at intermediate temperatures!. We also ar-
gued that the underlying transition that leads to this n
Fermi-liquid physics is the Fermi-volume changing tran
tion from FL to FL* . Despite the jump in the Fermi volume
this transition is continuous and characterized by the van
ing of the quasiparticle residueZ on an entire sheet of th
Fermi surface~the hot Fermi surface! on approaching the
transition from the FL side.

A specific heat that behaves asT ln(1/T) is commonly
observed in a variety of heavy-fermion materials close to
transition to magnetism. In the context of the ideas explo
in this paper, such behavior of the specific heat is natur
obtained inthree-dimensionalsystems. A small number o
heavy-fermion materials exhibit such a singular specific h
even in the presence of long-ranged magnetic order. As
have emphasized, precisely such non-Fermi-liquid spec
heat obtains in one of the exotic magnetic metals discus
in this paper@the U~1! SDW* phase with a partially gappe
spinon Fermi surface#. It would be interesting to check fo
violations of the Wiedemann-Franz law at low temperature
such materials.

A general point emphasized in this paper is that the
served non-Fermi-liquid physics near the onset of magne
actually has little to do with fluctuations of the magne
order parameter. Rather we propose that the non-Fe
liquid physics is associated with the destruction of the la
Fermi surface. The concrete realization of this picture
plored in this paper is that the destruction of the large Fe
surface leads to a fractionalized Fermi liquid which even
ally ~at low temperature! develops spin-density-wave orde
As we discussed extensively, the resulting spin-density-w
state is an exotic magnetic metal.

It is also of interest to consider a different scenario
which the small-Fermi-surface state is unstable at low te
perature towardconfinementof spinons and magnetic orde
It is particularly interesting to consider such a scenario ind
52. The physics of the Fermi-volume changing fluctuatio
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is again described by a theory of condensation of a sl
boson field coupled to a Fermi surface of spinons by a U~1!
gauge field. For a noncompact U~1! gauge field, such a
theory has a number of interesting properties. As noticed
Altshuler et al.,47 the spin susceptibility at extremal wav
vectors of the spinon Fermi surface has~possibly divergent!
singularities due to the gauge fluctuations. Indeed the s
physics of this model is critical and described by a nontriv
fixed point. The dynamical susceptibility at these extrem
wave vectors and at a frequencyv is expected to satisfyv/T
scaling. For a general spinon Fermi surface these extre
wave vectors will chart out one-dimensional lines in the Br
louin zone at which critical scattering will be seen in inela
tic neutron scattering. A spin-density-wave instability can d
velop out of this critical state at a particular extremal wa
vector where the amplitude of the diverging susceptibility
the largest. Arguments very similar to those in Sec. V B a
show that transport will be governed by non-Fermi-liqu
power laws in this theory.

There is a strikingqualitativeresemblance between thes
results and the experiments on CeCu62xAux . At the critical
Au concentration neutron-scattering experiments see crit
scattering on lines in the Brillouin zone satisfyingv/T
scaling.5 Magnetic ordering occurs at particular wave vecto
on this line. Furthermore, empirically the spin fluctuatio
appear to be quasi-two-dimensional, suggesting that
ideas sketched above may indeed be relevant. We note
they significantly differ from earlier proposals to explain th
behavior of CeCu62xAux .48 As mentioned in the text, the
specific heat in thed52 quantum-critical region will have
the formC/T;T21/3; interestingly, such a behavior has be
observed in YbRh2Si2 in the low-temperature regime near
quantum-critical point.49 On the theoretical front, there are
number of conceptual issues50 related to the legitimacy of
ignoring the compactness of the gauge field ind52. Devel-
oping a more concrete theoretical description of these g
eral ideas is an interesting challenge for future work.
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APPENDIX A: OSHIKAWA’S ARGUMENT AND
TOPOLOGICAL ORDER

Oshikawa has presented51 an elegant nonperturbative a
gument demonstrating that the volume of the Fermi surf
1-14
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WEAK MAGNETISM AND NON-FERMI LIQUIDS NEAR . . . PHYSICAL REVIEW B 69, 035111 ~2004!
is determined by the total number of electrons in the syst
In our previous work,11 and in the present paper, we ha
argued for the existence of a nonmagnetic FL* state with a
different Fermi-surface volume. As we discussed earlie11

this apparent conflict is resolved when we allow for glob
topological excitations in Oshikawa’s analysis; such exc
tions emerge naturally in the gauge theories we have
cussed for the FL* state. In other words, Oshikawa’s arg
ment implies that violation of Luttinger’s theorem must
accompanied by topological order.

In this appendix, we briefly recall the steps in Oshikaw
argument, and show how it can be modified to allow fo
small Fermi surface in a FL* state. As far as possible, w
follow the notation of Oshikawa’s paper.51

For definiteness, consider a two-dimensional Kondo
tice with a unit cell of lengthsax,y . The ground state is
assumed to be nonmagnetic, with equal numbers of up-
down-spin electrons. Place it on a torus of lengthsLx,y , with
Lx /ax , Ly /ay coprime integers. Adiabatically insert a flu
F52p (\5c5e51) into one of the holes of the torus~say
the one enclosing thex circumference!, acting only on the
up-spin electrons. Then the initial and final Hamiltonians
related by a unitary transformation generated by

U5expS 2p i

Lx
(

r
nr↑D , ~A1!

wherenr↑ is the number operator of all electrons~including
the local moments! with spin up on the siter. After perform-
ing the unitary transformation to make the final Hamiltoni
equivalent to the initial Hamiltonian, the final and initia
states are found to have a total crystal momentum wh
differs by

DPx5
2p

Lx

LxLy

v0

ra

2 S mod
2p

ax
D , ~A2!

wherev05axay is a volume of a unit cell, the second fact
on the right-hand side~rhs! counts the number of unit cells i
the system, andra52ra↑ is the mean number of electrons
every unit cell. Clearly the crystal momentum is defin
modulo 2p/ax , and hence the modulus in Eq.~A2!.

Now imagine computing the change in crystal moment
by studying the response of the quasiparticles to the inse
flux. As shown by Oshikawa, the quasiparticles associa
with a Fermi surface of volumeV lead to a change in mo
mentum which is

DPx
q5

2p

Lx

V
~2p!2/~LxLy!

S mod
2p

ax
D , ~A3!

where the second factor on the rhs counts the numbe
quasiparticles within the Fermi surface. EquatingDPx and
DPx

q , and the corresponding expressions forDPy andDPy
q ,

Oshikawa obtained the conventional Luttinger theore
which applies to the volumeV5VFL of the Fermi surface in
the FL state,
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2
v0

~2p!2
VFL5ra~mod 2!. ~A4!

In the FL* state, there are additional low-energy excit
tions of the local moments that yield an additional topolo
cal contribution to the change in crystal momentum. Inde
the influence of an insertion of fluxF is closely analogous to
the transformation in the Lieb-Schultz-Mattis52 argument,
and it was shown53,54that a spin-liquid state ind52 acquires
the momentum change

DPx
t 5

p

ax

Ly

ay
S mod

2p

ax
D , ~A5!

where the second factor on the rhs now counts the numbe
rows which have undergone the Lieb-Schultz-Mattis tra
formation. Now usingDPx5DPx

q1DPx
t , we now obtain the

modified Luttinger theorem obeyed in the FL* phase:

2
v0

~2p!2
VFL* 5~ra21!~mod2!. ~A6!

It is clear that the above argument is easily extended
Z2 FL* state ind53. The case of U~1! FL* state ind53 is
somewhat more delicate because there is now a gapless
trum of gauge fluctuations which can contribute to the e
lution of the wave function under the flux insertion; neve
theless, the momentum change in Eq.~A5! corresponds to an
allowed gauge flux, and we expect that Eq.~A5! continues to
apply.

APPENDIX B: TOY MODEL WITH U „1…
FRACTIONALIZATION AND A SPINON FERMI SURFACE

In this appendix, we will display a concrete model
three spatial dimensions that is in a U~1! fractionalized phase
in three dimensions, and has a Fermi surface of spin
coupled to a gapless U~1! gauge field. As discussed earlie
this spinon Fermi surface could eventually~at low energies!
undergo various instabilities including in particular to a sp
density-wave state.

Consider the following model:

H5Htc1HD1Hb1Hu1HU ,

Htc52 (
^rr 8&

t~c r
†c r 81h.c.!,

HD5D (
^rr 8&

eifrr 8~c r↑
† c r 8↓

†
2c r 8↑

† c r↓
† !1H.c.,

Hb52w (
[ rr 8r 9]

cos~f rr 82f rr 9!,

Hu5u (
^rr 8&

nrr 8
2 ,
1-15



of

s
e

em
fir
tw
e

ce

d
rg

i

he
be
in

ll
-
o

s

d

f in-

-
be

to
he
s

l

ce
ili-

are
uge

a
w-
r-

ari-
her

the

gh

he
ld.
d in

iza-
he

d
g

i-

T. SENTHIL, MATTHIAS VOJTA, AND SUBIR SACHDEV PHYSICAL REVIEW B69, 035111 ~2004!
HU5U(
r

~Nr21!2. ~B1!

Herec r destroys a spinful charge-1 electron at each site
cubic lattice in three spatial dimensions;eifrr 8 creates a
charge-2, spin-0 ‘‘Cooper pair’’ that resides on the link
nrr 8 is conjugate tof rr 8 and may be regarded as the Coop
pair number associated with each link.Nr is the total charge
associated with each site and is given by

Nr5 (
r 8Pr

nrr 81c r
†c r . ~B2!

The HamiltonianH may be regarded as describing a syst
of electrons coupled with strong phase fluctuations. The
term in Hb represents Josephson coupling between
‘‘nearest-neighbor’’ bonds.Hu penalizes fluctuations in th
Cooper pair number at each bond.HU penalizes fluctuations
in the total chargeNr that can be associated with each latti
site. The total charge of the full system clearly is

Ntot5(
r

Nr . ~B3!

Depending on the various model parameters, several
tinct phases are possible. Here we focus on the limit of la
U. DiagonalizingHU requires that the ground state~s! satisfy
Nr51 at all sitesr. There is a gap of orderU to states that do
not satisfies this condition. Clearly the system is insulating
this limit.

The conditionNr51 for all r still allows for a huge de-
generacy of ground states which will be split once the ot
terms in the Hamiltonian are included. This splitting may
described by deriving an effective Hamiltonian that lives
the space of degenerate states specified byNr51. As dis-
cussed in Ref. 14, this effective Hamiltonian may be usefu
viewed as a~compact! U~1! gauge theory. This may be ex
plicitly brought out in the present case by the change
variables

f rr 85e rarr 8 ,

nrr 85e rErr 8 ~B4!

c ra5 f ra for r PA,

c ra5 isab
y f rb

† for r PB. ~B5!

Heree r511 on theA sublattice and21 on theB sublattice.
In terms of these variables, the constraintNr51 reads

¹W •EW 1 f r
†f r51 ~B6!

at each siter. ~We note that bothaW andEW may be regarded a
vector fields defined on the lattice.! At orderw2/U, u, t, D,
the effective Hamiltonian takes the form

Heff5HK1Hu1H f ,
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HK52K(
P

cos~¹W 3aW !,

Hu51u(
r

EW 2,

H f52D (
^rr 8&

~eiarr 8 f r
†f r 81H.c.!. ~B7!

Here K52w2/U, and the sum(P runs over elementary
plaquettes.Heff together with the constraint may be viewe
as a Hamiltonian for a compact U~1! gauge theory coupled to
a gauge charge-1 fermionic matter fieldf. ~Note that to lead-
ing order thet term does not contribute.! Heff still admits
several different phases depending on its parameters. O
terest to us is the limitK;w2/U@u. In this limit, mono-
poles of the compact U~1! gauge field will be gapped. Con
sequently at low energies, we may take the gauge field to
noncompact. The cos(¹W 3aW) term can then be expanded
quadratic order to get the usual Maxwell dynamics for t
gauge field. Thef particles form a Fermi surface which i
coupled to this gapless U~1! gauge field. Note that in the
low-energy manifold withNr51 at all r, all excitations have
zero physical electric charge. Thus thef particles are neutra
fermionic spinons.

As with any Fermi surface, this spinon Fermi-surfa
state could at low energies further undergo various instab
ties to other states~density waves, pairing, etc.! depending
on the residual interactions between the spinons. There
various sources of such interactions: First there is the ga
interaction that is explicit inHeff in the leading order. Then
the t term contributes toHeff at second order and leads to
quartic spinon-spinon interaction as well. The specific lo
energy instability of the spinon Fermi surface will be dete
mined by the details of the competition between these v
ous sources of interaction, and will not be discussed furt
here for this model.

Apart from the deconfined phase discussed above,
model possesses confined phases; for largeU those occur for
smalleru, and the deconfinement transition occurs throu
the condensation of monopoles in the gauge field.

APPENDIX C: MEAN-FIELD PHASE DIAGRAM IN AN
EXTERNAL ZEEMAN MAGNETIC FIELD

In this appendix we briefly discuss the behavior of t
mean-field theory of Sec. IV C in an externally applied fie
A sample zero-temperature phase diagram is displaye
Fig. 8, which shows very rich behavior.

The phases at small fields are straightforward general
tions of the low-temperature zero-field phases of Fig. 4: T
U~1! SDW* has weakly polarized conduction electrons,b0
50, nonzerox0 indicating spinon hopping, and a cante
spinon magnetizationMW r with a staggered component alon
x̂ and a uniform component alongẑ. The SDW phase has
similar characteristics, but nowb0Þ0 indicating a conven-
tional weakly field-polarized magnet with confinement. F
nally, the FL phase hasb0Þ0, x0Þ0, weakly polarized
1-16
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heavy quasiparticles, and the mean-field parameterMW r has
only a uniformz component.

In the small-JK region, increasing external field progre
sively suppresses the effect ofJH . At intermediate field, a
phase with ‘‘canted’’f moments arises, where nowx05b0

50 ~no spinon hopping!, and MW r is canted as describe
above. Larger fields fully polarize the local moments, i.
MW r points uniformly alongẑ with maximum amplitude, and
x05b050. This phase is also realized for largerJK and
large fields—here the field quenches the Kondo effect.
the Fermi-liquid side of the phase diagram, two more pha
arise in the present mean-field theory which are labeled
FL2 and FL3 in Fig. 8; both have nonzerob0 andx0. In FL2,
the mean-field parameterMW r has both staggered and unifor
components, i.e., this phase describes canted, we
screened local moments. Turning to the FL3 phase, this high-
field phase has the same symmetry characteristics as F
intermediate fields, but a different Fermi-surface topolo
Whereas FL phase at intermediate fields has a single Fe
surface sheet for one spin direction~the majority spins have
one full and one empty band whereas the minority spins h
one partially filled and one empty band!, in FL3 the upper
band of the majority spins becomes partially filled, too.
and FL3 are separated by a strongly first-order transition
mean-field theory. There are numerous other phase tra
tions associated with a change in the Fermi-surf
topology—those do not display strong thermodynamic sig
tures and are not shown. We note that for the field ra
displayed in Fig. 8,uHW extu!t, the conduction electrons are i
general weakly affected by the field; significant polarizati
of them occurs only at much higher fields.

Notably, smaller values of the decoupling parameterx ad-
mit yet another field-induced transition in the small-JK re-
gion: If the magnetism is very weak, i.e., the spinons hav
small gap compared to their bandwidth, then a small app
field can close the spinon gap without significantly affecti
their band structure. Such a transition would yield a kink
the magnetization of the local-moment subsystem as func
of the applied field, implying a ‘‘metamagnetic’’ behavio

FIG. 8. Mean-field phase diagram ofHmf ~18! on the cubic
lattice, now as function of Kondo couplingJK and external fieldHz

at T50. Parameter values are as in Fig. 4. For a description of
phases see text.
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which is here generically associated with acontinuous
transition.

APPENDIX D: SPECIFIC-HEAT SINGULARITY

Here we present some details on the calculation of
singular specific heat coming from gauge fluctuations. T
calculations in the FL* phase and at the critical point ar
standard. We will therefore only consider the FL phase.
this phase close to the critical point, transverse gauge fl
tuations are described by the action

S5E d3k

~2p!3

1

b (
vn

S uvnu
k

1k21rsD uaW ~kW ,vn!u2.

~D1!

As explained in Sec. V, close to the transitionrs;b0
2. This

gives a free energy

F5
2

b (
vn

E d3k

~2p!3
lnS uvnu

k
1k21rsD . ~D2!

To calculate the low-temperature specific heat, we need
change in free energy on going from zero to a small nonz
temperature. After a Poisson resummation this is given b

dF~T![F~T!2F~0!

52E
kW
(

mÞ0
E dv

2p
eibmvlnS uvu

k
1k21rsD

52E
kW ,v
E

0

`

dl (
mÞ0

keibmv

uvu1k~k21rs1l!

52E
kW ,v,l

(
mÞ0

kE
0

`

dueibmv2u[ uvu1k(k21rs1l)] .

~D3!

The v,l integrals may now be performed to obtain

dF~T!5
4

pEkW
(

m51

` E du
e2uk(k21rs)

u21~mb!2

5E
0

L dk k2

2p3 Eu

@puT coth~puT!21#e2uk(k21rs)

u2
.

In the last equation we have introduced an upper cutoffL for
the momentum integral. The remaining integrals can now
straightforwardly evaluated for smallT, and we find

dF~T!5
T2

12p
lnS L2

rs
D . ~D4!

Thus the specific heat

C~T!5gT ~D5!

with g; ln(1/rs); ln(1/b0). Settingrs50, a similar calcu-
lation also shows thatC(T);T ln(1/T) in the FL* phase.

e

1-17
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For completeness, we mention the corresponding beh
ior in two dimensions. In analogy to the above calculatio
we findC(T)}T2/3 in the quantum-critical and FL* regions.

APPENDIX E: DETAILS OF THE QUANTUM
BOLTZMANN EQUATION

In the following we describe a few details of the deriv
tion of the linearized version of the quantum Boltzma
equation~42! in Sec. V C. Inserting the ansatz~38! into Eq.
~37! leads to a scalar equation forf 1. The frequency integra
is easily performed; the remaining momentum integral c
be split into radial and angular parts. This directly yields E
~42!, with

K1~ k̄,k̄1!5@11 f 0~ k̄1!1n~ k̄22 k̄1
2!#

3
k̄ k̄1

2

4p2E21

1

dx KS x,
k̄1

k̄
,k̄AT̄D , ~E1!

K2~ k̄,k̄1!5@ f 0~ k̄!2n~ k̄22 k̄1
2!#

3
k̄ k̄1

2

4p2E21

1

dx
xk̄1

k̄
KS x,

k̄1

k̄
,k̄AT̄D ~E2!
n-

.v.
tu

03511
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with f 0(x)5@exp(x21ūAT̄)21#21 and n(x)5(ex21)21.

The kernelK(x,k̄1 / k̄,k̄AT̄) is given by

K~x,a,l!5ImS 2 i
12a2

Aa21122ax

1l~a21122ax!D 21S 12
~ax21!2

a21122ax
D .

The integrals necessary for the evaluation ofK1,2 are of the
form

E dy
yn21/2

y31C

with n50, . . . ,3 and can beperformed analytically.
The numerical solution of Eq.~42! is done by rewriting it

in the form

c~ k̄!52 f 08~ k̄!S E
0

`

dk̄1FK1~ k̄,k̄1!1K2~ k̄,k̄1!
c~ k̄1!

c~ k̄!
G D 21

which allows for a stable numerical iteration.
ys.
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