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Weak magnetism and non-Fermi liquids near heavy-fermion critical points
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This paper is concerned with the weak-moment magnetism in heavy-fermion materials and its relation to the
non-Fermi-liquid physics observed near the transition to the Fermi liquid. We explore the hypothesis that the
primary fluctuations responsible for the non-Fermi-liquid physics are those associated with the destruction of
the large Fermi surface of the Fermi liquid. Magnetism is suggested to be a low-energy instability of the
resulting small-Fermi-surface state. A concrete realization of this picture is provided by a fractionalized Fermi-
liquid state which has a small Fermi surface of conduction electrons, but also has other exotic excitations with
interactions described by a gauge theory in its deconfined phase. Of particular interest is a three-dimensional
fractionalized Fermi liquid with a spinon Fermi surface and @)Wauge structure. A direct second-order
transition from this state to the conventional Fermi liquid is possible and involves a jump in the electron
Fermi-surface volume. The critical point displays non-Fermi-liquid behavior. A magnetic phase may develop
from a spin-density-wave instability of the spinon Fermi surface. This exotic magnetic metal may have a weak
ordered moment, although the local moments do not participate in the Fermi surface. Experimental signatures
of this phase and implications for heavy-fermion systems are discussed.
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[. INTRODUCTION In recent years, a number of experiments have unearthed
some fascinating phenomena near the zero-temperéfure

The competition between the Kondo effect and intermo-quantum transition between the heavy-fermion liquid and the
ment exchange determines the physics of a large class ofiagnetic metal. In particular, many experiments do not fit
materials which have localized magnetic moments couplegasily > into a description in terms of an effective Gaussian
to a separate set of conduction electtdivhen the Kondo theory for the spin-density-wave fluctuations, renormalized
effect dominates, the low-energy physics is well described bgelf-consistently by quartic interactiofs!® This theory
Fermi-liquid theory(albeit with heavily renormalized quasi- makes certain predictions on deviations from Fermi-liquid
particle mass@sIn contrast when the intermoment exchangebehavior as the heavy Fermi-liquid state approaches mag-
dominates, ordered magnetism typically results. netic ordering induced by the condensation of the spin-

A remarkable experimental property of such magneticdensity-wave mode; those predictions are, however, in dis-
states is that the magnetism is often very weak—the orderegigreement with experimental findings. This conflict raises
moment per site is much smaller than the microscopic localhe possibility that the magnetic state being accessed is not in
moment that actually occupies each site. The traditional exthe first category discussed above: a SDW emerging from a
planation of this feature is that the magnetism arises out ofieavy Fermi liquid. Rather, it may be the second kind of
imperfectly Kondo-screened local moments. In other wordsmagnetic metal where the local moments do not participate
the magnetism is to be viewed as a spin-density wave that all in the Fermi surface. In other words, the experiments
develops out of the parent heavy Fermi-liquid state. We willsuggest that the Kondo effe@trucial in forming the Fermi-
henceforth denote such a state as SDW. Clearly a SDW statigjuid state is itself suppressed on approaching the magnetic
may be a small moment magnet. state.

A different kind of magnetic metallic state is also possible  This proposal clearly raises several serious puzzles. How
in heavy-fermion materials where the moments order at relado we correctly describe the non-Fermi-liquid physics near
tively large energy scales, and simply do not participate irthe transition? If this non-Fermi-liquid behavior is accompa-
the Fermi surface of the metal. In such a situation, the saturied by the suppression of the Kondo effect, how do we
ration moment in the ordered state would naively be largereconcile it with the weak moments found in the magnetic
i.e., of order the atomic moment. state? The traditional explanation for the weak magnetism is

Often the distinction between these two kinds of magneti@apparently in conflict with the picture that the Kondo effect
states can be made sharply: the two Fermi surfaces in the twand the resultant heavy Fermi-liquid state are destroyed on
states may have different topologi@sbeit, the same volume approaching the magnetic state. In other words, the naive
modulo the volume of the Brillouin zone of the ordered expectation of a large saturation moment in a magnetic metal
statg, so that they cannot be smoothly connected to onevhere the local moments do not participate in the Fermi
another. surface must be revisited.
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The weakness of the ordered moment in the magnetision of the Kondo effect removes the local moments from the
state may be reconciled with the apparent suppression of tHeermi volume, resulting in a “small Fermi surface,” even
Kondo effect if we assume that there are strong quanturthough such a state may not actually be a ground state in the
fluctuations of the spins that reduce their moment. Suclsystem of interest. In our previous wotkwe argued that
strong quantum effects may appear to be unusual in threguch states do exist as ground states of Kondo lattice models
dimensional systems, but may be facilitated by the couplinnjL” regular d-dimensional lattices, and that the violation of
to the conduction electror(gven if there is no actual Kondo Luttinger’s theorem in such a state was intimately linked to
screening In this paper we study specific states where suctin® presence of neutr&=1/2 andS=0 excitations induced

quantum fluctuations have significantly reduced the ordere8lY toPological ordefsee also Appendix A we dubbed such

moment(or even caused it to vanishand the evolution of dround states PL _ . .
such states to the heavy Fermi liquid. Clearly, it is worthwhile to explore metalllc magnetic
We begin with several general pertinent observationsStates that develop out of such Fistates(just as the usual
First, consider the heavy Fermi-liquid state. This Fermi-SPW state develops out of the Fermi liquicSuch states,
liquid behavior is accompanied by a Fermi surface whichWhich we will denote SDW, represent a third class of me-

remarkably, satisfies Luttinger’s theorem only if the localt@llic magnetic states distinct from both the conventional
moments are included as part of the electron co(@uch a SPW and the conventional local-moment metal described

Fermi surface is often referred to as the “large Fermi sur-2bove. As we will see, in such magnetic states the local mo-
face,” and we will henceforth refer to such a phase ag. FL Ments do not participate in the Fermi surface. Nevertheless
The absorption of the local moments into the Fermi volumeth®y may have a weak ordered moment. Thus these states
is the lattice manifestation of the Kondo screening of theCffér an opportunity for resolution of the puzzles mentioned
moments. We take as our starting point the assumption th&P0ve. The properties and the evolution of such states, and
the Kondo effect becomes suppressed on approaching tﬁ@ew_parent FE states, to the Fermi Ilqwd will be the subject
magnetic state. What then happens to the large Fermi suff this paper. The SDW states inherit neutral spi§=1/2
face? spinon excitations an&=0 “gauge” excitations from the

In thinking about the resulting state theoretically, it is im- FL* states, which will be described more precisely below;
portant to realize that once magnetic order sets in, there is rigese excitations coexist with the magnetism and the metallic
sharp distinction between a large Fermi volume which in-behavior. The experimental distinction between the SDW
cludes the local moments, and a Fermi volume that excludednd SDW states is however subtle, and will also be de-

the local moments—the latter is often loosely referred to agcribed in this papekThe FL and FI states can be easily
“small.” This is because the Fermi volumes can only be distinguished by the volumes of the Fermi surfaces, but this

defined modulo the volume of the Brillouin zone, and thedistinction does not extend to the SDW and SD\étates,.

onset of magnetic order at least doubles the unit cell and We emphasize that a wide variety of heavy-fermion ma-
hence at least halves the Brillouin-zone volurf&nere can, terials display non-Fermi-liquid physics in the vicinity of the
however, be a distinction between the Fermi-surface topoloonset of magnetism that is, to a considerable extent, univer-
gies in the two situations. sal. However, the detailed behavior at very low temperature
In this paper we will take the point of view that the pri- appears to vary across different systems. In particular, in
mary transition involves the destruction of the large Fermisome materials a direct transition to the magnetic state at
surface, and that the resulting small-Fermi-surface state hasvgry low temperature does not occldue for instance to
distinct physical meaning even in the absence of magnetititervention of a superconducting statén other materials,
order. The magnetic order will be viewed as a low-energysuch a direct transition does seem to occur at currently ac-

instability of the resulting state in which the local momentscessible temperatures. In view of this, we will not attempt to
are not to be included in the Eermi volume. predict the detailed phase diagram at ultralow temperatures.

Evidence in support of this point of view exists. In the We focus instead on understanding the universal non-Fermi-
experiments the non-Fermi-liquid behavior extends to temliquid physics not too close to the transition and its relation
peratures well above the Neel ordering temperature even f4@ the magnetic state.
away from the critical point. This suggests that the fluctua-
tions responsible for the non-Fermi-liquid behavior have
very little to do with the fluctuations of the magnetic order
parameter. Some further support is provided by the results of Our analysis is based upon nonmagnetic translation-
inelastic neutron-scattering experiments that apparently sesvariant states that have a small Fermi surface*(Fland
critical behavior at a range of wave vectors includifgit ~ the related transitions to the heavy Fermi liquiL). As we
not restricted tpthe one associated with magnetic orderingshowed previously: the FL* state has a Fermi surface of
in the magnetic meta&l Finally, there even exist materials in long-lived electronlike quasiparticles whose volume does not
which the non-Fermi-liquid features persist into the magneti-count the local moments. The local moments are instead in a
cally ordered side—this is difficult to understand if the non-state adiabatically connected to a spin-liquid state with emer-
Fermi-liquid physics is attributed to critical fluctuations of gent gauge excitations. Such spin liquids can be classified by
the magnetic order parameter. the gauge group determining the quantum numbers carried

Conceptually, as we asserted above, it pays to allow foby the neutral5=1/2 spinon excitations and the gauge exci-
the possibility of a nonmagnetic state in which the supprestations, and previous wotk!® has shown that the most

A. Summary of results
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prominent examples arg, and U1) spin liquids. TheZ, A

spin liquids are stable in all spatial dimensiahs 2, while T _ N -
the U(1) spin liquids exist only ird=3 [the latter correspond BN Quantum .-~

to the existence of a Coulomb phase in a compatt) U So critical 7

gauge theory id=3, as discussed in Ref. 14Correspond- AN //

ingly, we also have the metalli¢, FL* and U1) FL* states. . NS
Our previous work! considered primarily th&, FL* state, 0 U(t) FL* FL N
whereas here we focus on théI)y FL* state. o JK'

As we have already discussed, these nonmagnetic states
may lead to magnetic order at low energies, or in proximate FIG. 1. Crossover phase diagram for the vicinity of the 3
states in a generalized phase diagram. In this manner the Fluantum transition involving breakdown of Kondo screenihgis
state leads to the SDW state, while the*Fitates lead to the the Kondo exchange in the Hamiltonian introduced in Sec. Ill. The
Z, SDW* and the W1) SDW* states. The relation between on!y true phase transition above is that at The0 quantum ‘c‘:ritica!’
the metallic SDW and SDW states has a parallel to that POINt 8t Jx=Jke between the FL and Pl phases. The “slave

. L bosonb measures the mixing between the local moments and the
Egtgﬁgq;he insulating Néstate and the AF state of Refs. conduction electrons and is also described in Sec. lll. The cross-

- ) ) overs are similar to those of a dilute Bose gas as a function of
We will also discuss the evolution from the(1l) SDW*  chemical potential and temperature, as discussed in Refs. 19 and

state to the conventional Fermi liquid. As explained earlier20—the horizontal axis is a measure of the boson chemical poten-
the underlying transition is that between FL and*Ftates tial u,. The boson is coupled to a compactiVgauge field; aff
which controls the nature of the Fermi surface. In Ref. 11,=0 this gauge field is in the Higgs/confining phase in the FL state,
we argued that the spinon pairing in the FL* state implied and in the deconfining/Coulomb phase in the* Ftate. There is no
that there must be a superconducting state in between the fhase transition aI>0 between a phase wittb)#0 and a phase
andZ, FL* states. There is no such pairing in théLlWFL* with (b)=0 because such a transition is absent in a theory with a
state, and hence there is the possibility of a direct transitiofomPact(l) gauge field ird=3 (Ref. 21 (the mean-field theories
between the FL and (1) FL* states: this transition and th of Secs. Il and IV C do show such transitions, but these will turn

etwee € a “L° states. this transition a € into crossovers upon including gauge fluctuatjorithe compact-
nature of the states flanking it are the foci of our paper. Not

. X . o hess of the gauge field therefore plays a role in the crossovers in the
that the volume of the Fermi surfagempsat this transition. “renormalized classical’ regime above the FL stathis has not

Nevertheless the transition may be second order. This i§gen worked out in any detail heréHowever, the compactness is
made possible by the vanishing of the quasiparticle residugot expected to be crucial in the quantum-critical regime. The cross-
on an entire portion of the Fermi surfaca “hot” Fermi over line displayed between the FL and quantum-critical regimes
surface on approaching the transition from the FL side. can be associated with the “coherence” temperature of the heavy
Non-Fermi-liquid physics is clearly to be expected at such aermi liquid. At low T, as discussed in the text, there are likely to
second-order Fermi-volume changing transition. We reiterat@e additional phases associated with magnetic ditier SDW and
that the U1) FL* state is only believed to exist id>2. SDW* phasey and these are not shown above but are shown in
We study the FL and (1) FL* states by the “slave” Fig. 2; they also appear in the mean-field phase diagram in Fig. 4.
boson method, introduced in the context of the single-
moment Kondo problertf In this method, the condensation
of the slave boson marks the onset of Kondo coherence th
characterizes the FL phase. In contrast the slave boson is no
condensed in the PLphase. Fluctuations about this mean—t th h i h di funci fh
field description lead to the critical theory of the transition 0 the schematic crossover phase diagram as a function ot the
involving a propagating boson coupled to a compa¢t)U Kondo exchangdy andT §hown in F'_g‘ 1'_ .
gauge field, in the presence of damping from fermionic ex- The crossover phase dlagrqm in Fig. 1 is similar to.that of
citations. a dilute Bose gas as a function of chemical potential and
We note that earlier studi¥'s'® of single-impurity prob- tempera_turé?’*zo Here the bosons are coupled to a1l
lems found a temperature-induced mean-field transition bedauge field, and this is important for many of the critical
tween a state in which the slave boson is conderiaed  Properties to be described in the body of the paper. Notably,
hence the local moment is Kondo screenadd a state in in Fig. 1 the density of bosons i®ot fixed, and varies as a
which the boson has no condensate: however, it was cofunction of T, Ji, and other couplings in the Hamiltonian.
rectly argued that this transition is an artifact of the meandndeed, the contours of constant boson density have a com-
field theory, and no sharp transition exists in the singleplicated structure, which are similar to those in Ref. 20. This
moment Kondo problem aff>0. If we now naively variation in the boson density is a crucial distinction from
generalize this single-impurity model to the lattice, we will earlier analysé€?® of boson models coupled to damped
find that theT =0 ground state always has Kondo screeningU(1) gauge fields: in these earlier works, the boson density
It is only upon including frustrating intermoment exchangewas fixed at al-independent value. As we will see, allowing
interactions—equivalent to having “dispersing” spinons— the boson density to vary changes the critical properties, and
that it is possible to break down Kondo screening and reachas significant consequences for the structure of the cross-
a state in which the slave boson is not condensed. This tramver phase diagram and for tiielependence of observables.

sition is not an artifact of mean-field theory; we show here
at it remains sharply defined o= 3.
Our analysis of the aboveé=3 U(1) gauge theory leads
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Demleret al?’ discussed fractionalized phases of Kondo
lattice models. However, they did not consider any states
with long-lived electronlike quasiparticles, as are present in
Quantum -~ the FL* phase.
critical Recently Essler and Tsveffkdiscussed the fate of one-
dimensional Mott insulator under a particular long-range in-
terchain hopping. At intermediate temperatures, they obtain a

T

uQ) FL* state with a small Fermi surface, in that the Fermi-surface
y FL volume does not count the local momefitddowever, their

U(1) SDW* con_strgction dqes not lead 1o a state with emergent gauge

\eT excitations in higher dimensions, and as they conclude, their

SDW JK state is unstable to magnetic order at low temperatures. We

believe this lowT state is an ordinary SDW state, and any
FIG. 2. Expected phase diagram and crossovers for the evolu€alizations of small Fermi surfaces at intermediate tempera-
tion from the U1) SDW* phase to the conventional FL. Two dif- tures are remnants of one-dimensional physics. In contrast,
ferent transitions argenericallypossible at zero temperature: Upon all our constructions are genuinely higher dimensional, and
moving from the SDW towards the Fermi liquid, the fractional- only work ford=2.
ization is lost first followed by the disappearance of magnetic order. The physics of the destruction of the large Fermi surface
Nevertheless the higher-temperature behavior in the region markegly the vanishing of Kondo screening has been addressed in
“quantum critical” is non-Fermi-liquid-like, and controlled by the interesting recent workg-32 using an “extended dynamical
Fermi-volume changing transition from FL to FLThis may be  mean-field theory.” We have argued in our discussion above
loosely associated with the breakdown of Kondo screening. that Vanishing of Kondo Screening is Conceptua”y quite a
] o ] o different transition from the onset of magnetic order; consis-
We will show that non-Fermi-liquid physics obtains in the (en¢ with this expectation, Sun and Kotffafound two dis-
quantum-critical region of this transition. Furthermore, weiinct noints associated with these transitions. It is our conten-
argue th_at fluctuation effc_acts may Igad to a spin-density Wavg,n, that the critical theory of the FL to (@) FL* transition
developing out of the spinon Fermi surface of thelLFL*  (giscussed in the present papisrthed =3 realization of the
phase, thereby obtaining the(ly SDW* phase. The ex- |5rge-dimensional critical point with vanishing Kondo
pected phase diagram and crossovers for the evolution fro@creening found by Sun and Kaotliar.

the U1) SDW* phase to the FL phase are shown in Fig. 2.
We examine few different kinds of such(l) SDW* phases
depending on the details of the spinon Fermi surface. We C. Outline
also describe a number of specific experimental signatures of
the U1) SDW* phase which may help to distinguish it from
more conventional magnetic metals.

The rest of the paper is organized as follows: In Sec. II,
we briefly review the properties of various fractionalized
Fermi liquids (FL*). A specific Ul) FL* state where the
spinons form a Fermi surface is considered. In Sec. Ill, we
construct a mean-field description of this state and its transi-
We have already mentioned a number of precursors to oufon to the heavy Fermi liquid. This transition involves a
ideas in our discussion so far. Here, we complete this byump in the Fermi-surface volume but is nevertheless shown
noting some other related developments in the literature. to be second order within the mean-field theory. This is made
Early on, Andrei and Colem&hand Kaganet al?® dis-  possible by the vanishing of the quasiparticle residus an
cussed the possibility of the decoupling of local momentsentire Fermi surfacéa hot Fermi surfageas one moves from
and conduction electrons in Kondo lattice models. Andreithe heavy Fermi liquid to the fractionalized Fermi liquid.
and Coleman had the local moments in a spin-liquid statéluctuations about this mean-field description are then con-
which is unstable to (1) gauge fluctuations, and did not sidered. In Sec. IV, we first consider fluctuation effects on the
notice violation of Luttinger’'s theorem. The possibility of phases—in particular the FLphase. We argue that the

B. Relation to earlier work

small electronic Fermi surfaces was noted by Kagaal, specific-heat coefficieny diverges logarithmically once the
but no connection was made to the requirement this imposdsading-order fluctuations are included. Furthermore, fluctua-
on emergent gauge excitatioHs. tions also make possible a spin-density-wave instability of

More recently, Burdiret al. described many aspects of the the spinon Fermi surface, leading to &1lWSDW* state. To
physics we are interested in here in a dynamical mean-fieldlustrate possible phases, we will discuss an improved mean-
theory of a random Kondo lattid8. In this work, we ob- field theory which includes the SDW order parameter, and
tained a state in which local moments formed a spin liquidpresent phase diagrams showing the influence of temperature
and stayed essentially decoupled from the conduction ele@nd magnetic field. We then examine fluctuation effects at
trons. They emphasized that the transition between such the critical point of the transition between Fland FL in
state(which is the analog of our PL state$ and a conven- Sec. V. We argue that the logarithmic divergence of the
tional heavy Fermi liquidthe FL stat@ should be understood specific-heat coefficient persists in the quantum-critical re-
as a Fermi-volume changing transition. However questiongion, and also that non-Fermi-liquid transport obtains there.
of emergent gauge structure were not addressed by them. In Sec. VI, we discuss the properties of thé1)) SDW*
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phase in greater detail with particular attention to its identi-a weak Kondo coupling to conduction electrdisThe re-
fication in experiments. A discussion of the implications forsulting U1) FL* state consists of a spinon Fermi surface
various experiments in Sec. VII will conclude the paper.  coexisting with a separate Fermi surface of conduction elec-
trons. There will also be gapless photon and gapped mono-
pole excitations. The physical electron Fermi surfdas
measured by de Haas—van Alphen experiments for instance
The existence of nonmagnetic translation-invariant smallWwill have a small volume that is determined by the conduc-
Fermi-surface states was shown in a recent paper by ustion electrons alone.
with a focus on two-dimensional Kondo lattices. Such states In our previous work, we pointed out that the transition
were obtained when the local-moment system settles into #0m a Z, FL* phase to the heavy FL will generically be
fractionalized spin liquidrather than a magnetically ordered preempted by superconductivity. This is due to the pairing of
staté due to intermoment interactions. A weak Kondo cou-spinons in theZ, phase. In contrast, we expect that due to
pling to conduction electrons does not disrupt the structure ogonservation of spinon number a direct transition between
the spin liquid but leaves a sharp Fermi surface of quasipathe U1) FL* and heavy FL phases should be possible.
ticles whose volume counts the conduction-electron density
alone (a small Fermi surfage Thus these states have frac- Ill. MEAN-FIELD THEORY
tionalized excitations that coexist with conventional Fermi-

liquid-like quasiparticle excitations. We dubbed these states % oh he h
FL* (to distinguish them from the conventional Fermi liquid Y1) FL* phase and its transition to the heavy FL. Consider

FL). We also pointed out an intimate connection between th@ three-dimensional Kondo-Heisenberg model, for concrete-

disappearance of the large Fermi surface and fractionalizd!€SS 0N @ cubic lattice:
tion, and this is discussed further in Appendix A. J
The FL* phase can be further classified by the nature ofH =", ekCEaCka—l——K > S cl Uaa’cra’+JH > §-S..
the spin liquid formed by the local moments. Recent years K 25 (rr’")
have seen considerable progress in our understanding of frac- 1)

tionalized spin liquids. An important feature of spin-liquid Herec,, represent the conduction electrons zSpdhe spin-
states ind=2 is that they possess emergent gauge structurg,, IocaI moments on the sites of a cubic lattice, summation
Put simply, this means that the distinct excitations in such,, ., repeated spin indicesis implicit. We use a fermionic

phases interact with each other through long-ranged interacg, a. _particle” representation of the local moments:
tions which can be mathematically encapsulated as gauge

interactions. In other words, the effective-field theory of the §=21f1 G, fiur, )

state is a gauge theory in its deconfined phase. The two natu-

ral possibilities are that the emergent gauge group is eithevheref,, describes a spinful fermion destruction operator at

Z, or U(1). The former is allowed in any dimensia®= 2 siter.

while the latter is only allowed inl=3 (or highey. Proceeding as usual, we consider a decoupling of both the
The Z, states have been discussed at length in the literdondo and Heisenberg exchange using two auxiliary fields

ture and in the present context in our earlier wbrka con-  in the particle-hole channel. Treating the fluctuations of these

trast, the Y1) states have not been discussed much, thougBuxiliary fields by a saddle-point approximati¢pformally

their possible occurrend@n d=3) and their universal prop- justified for a largeN SU(N) generalizatiofy we obtain the

erties have been appreciated by many workers in the fieldnean-field Hamiltonian

We therefore provide a quick discussion: The distinct excita-

tions in thed=3 U(1) spin-liquid phases are neutral spin-1/2 f_E €Ch Cha— X0 >y (FI Frat+H. C)+,U«f2 ft

II. FRACTIONALIZED FERMI LIQUIDS

A simple mean-field theory allows a description both of a

spinons, a gaples@mergent gauge photon, and a gapped e’y ralre
point defect(the “monopole”). The spinons are minimally
coupled to the photon and hence interact through emergent —boz (¢}, fratH.C), 3

long-ranged interactions. For simple microscopic models that
realize such phases, see Refs. 14 and 33. A crucial distincti
between theZ, spin liquids is that the spinons in this phase
are not generically paired, i.e., the spinon number is

Where we assumegty andb to be real, and have dropped
additional constants tH. The mean-field parametebg, xo,
u¢ are determined by the conditions

conserved?

Several classes of spin liquids are theoretically possible 1:<f‘r ) (4)
with the same gauge structure. These may be characterized ate
by the statistics of the spinons, their band structure, etc. For _ t

) . . 2bo=Jk(Crofra) 5

the rest of this paper, we will focus on a particular three-
dimensional W1) spin-liquid state with fermionic spinons 2x0=Ju(fl £, (6)
that form a Fermi surface. A specific toy model which dis- X0~ Hllralrre
plays this phase is presented in Appendix B. In the last equatiom, r’ are nearest neighbors.

As with the Z, spin liquids discussed in Ref. 11, the  There are two qualitatively different zero-temperature
gauge structure in the () spin-liquid state is also stable to phases. First, there is the usual Fermi-lig(ftl) phase when
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bg, xo. ms are all nonzero(Note thatby#0 implies that } [
xo7#0.) This phase is readily seen to have a large Fermi /o
surface as expected. Second, there is a phasg)(®ihere J@\«
the Kondo hybridizationby=0 but yo#0. (In this phase '
m:=0.) This mean-field state represents a situation where 7Tﬁ
the conduction electrons are decoupled from the local mo- ) | |

ments and form amall Fermi surface. The local-moment / \
system is described as a spin fluid with a Fermi surface of B et Cold Fermi SpinonFermi Smallclectron
neutral spinons. We expect thag~Jy . ! s e fermi surface
The transition between these two different states can also Fermi Liquid Fractionalized Fermi Liquid
be examined within the mean-field theory. Interestingly, the ) )
transition is second ordédespite the jump in Fermi volume FIG. 3. Fermi-surface evolution from FL to EL close to the

and is described bly,— 0 on approaching it from the Fermi- transition, the FL phase features two Fermi-surface shdetscold

liquid side. How can a second-order transition be associatef/2"d the hof sheet, see textUpon approaching the transition, the

with a jump in the volume of the electron Fermi Surface,)quasiparticle residug on the hoff sheet vanishes. On the Flside,

This can be understood by examining the Fermi surfaceg?emheet becomes the spinon Fermi Surfa.ce’ whereassheet is
. : . Simply the small conduction-electron Fermi surface.
closely in this mean-field theory.

for;g?icmean field Hamiltonian is diagonalized by the trans to match onto th_e small Fermi surface of =LOn the (_)ther
hand, thef-Fermi surface shrinks to match onto thpinon
Fermi surface of Ft.
Upon increasind, in the FL state and depending on the
band structure, another transition is possible, wherecthe
@ :
and becomes completely empty. Then, the Fermi-surface
Herey,,. are new fermionic operators in terms of which the topology changes from two sheets to a single sheet—such a
Hamiltonian takes the form transition between two conventional Fermi liquids is known
as Lifshitz transition and will not be further considered here.
. . The quasiparticle weight close to the FL-FE transition
Hme= kE Ek+ Ykat Yka+ + Ek- Yka- Yka— s (8) s readily calculated in the present mean-field theory. For the
“ electron Green’s function we find

Cka= Uk Yka+ T Uk Yka—

fra=UkVka+ — UkYka— -

with
g vk

5 gkjiw,)=:
+b3. (9)

+ - .
W, Ek+ va_Ekf (ll)

E _ &k ks €k Ekf
k= 2 — 2

Therefore at the Fermi surface of tleeband (which has
dispersionEy ., , the quasiparticle residué=u§). At this

Here e=mi— X02a-120Sky). The uy, vy introduced Fermi surfaceF, , ~ e,~0 so that

above are determined by

b E + i i (12)
v ~ = U~ — 7 Uk-
W=-g —_ 0 ke . Uituvi=1. (10 S et bovk
k+ 7 €k
Using Eqgs.(10), we then findZ~1 on thec-Fermi surface.
Consider first the Ft. phase wherd,=0=p;, but xo At the Fermi surface of thé band on the other hand,

#0. The electron Fermi surface is determined by thezvﬁ. Also near this Fermi surfacéek— €, ~t wheret is

conduction-electron dispersios, and is small. The spinon the conduction-electron bandwidth. We have assumed as is

Fermi surface encloses one spinon per site and has volunteasonable that>J, . Thus for thef-Fermi surface,

half that of the Brillouin zone. For concreteness, we will )

consider the situation where the electron Fermi surface does B~ et bg U~ — r (13)

not intersect the spinon Fermi surface. We will also assume ke ™ €k e— € ¢ bov"'

that the conduction-electron filling is less than half.
Now consider the FL phase near the transitismallb).

In this case, there are two bands corresponding,to: one (bo)z

This then gives

derives from the electrongwith weakf characterwhile the Z= UE~ T
other derives from théparticles(with weakc character. We
will call the former thec band and the latter thieband. For  Thus the quasiparticle residue stays nonzero orctRermi
small by, both bands intersect the Fermi energy so that theurface while it decreases continuously to zero on the
Fermi surface consists of two sheésee Fig. 3. The total f-Fermi surface on moving from FL to EL (The f-Fermi
volume is large, i.e., includes both local moments and consurface is “hot” while thec-Fermi surface is “cold.)

duction electrons. Upon moving toward the transition td FL  Clearly the critical point is not a Fermi liqui& vanishes
(by decreasing to zejpthe c-Fermi surface expands in size throughout the hot Fermi surface at the transition, and non-

(14)
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Fermi-liquid behavior results. It is interesting to contrast thisAs usual, the fielda, is introduced to impose the constraint
result with the spin-fluctuation modéHertz-Moriya-Millis  that there is one spinon per site and may be interpreted as the
criticality) where the non-Fermi-liquid behavior is only as- time component of the gauge field. By assumptiprs not
sociated with some hot lines in the Fermi surface, and coneondensed. It is useful to start by completely ignoring all
sequently plays a subdominant role. coupling betweert andf fermions. The action for thépar-
Despite the vanishing quasiparticle weighthe effective  ticles describes a Fermi surface of spinons coupled to a com-
massm* of the large-Fermi-surface state does not diverge apact U1) gauge field.
the transition in this mean-field calculation, because the elec- An important simplification for the three-dimensional sys-
tron self-energy is momentum dependent. Physically, theems of interestas compared td=2) is that the Y1) gauge
quasiparticle at the hot Fermi surface is essentially made ugheory admits a deconfined phase where the spinons poten-
of the f particle for smallb; even wherb goes to zero thé tially survive as good excitations of the phase. In what fol-
particle (the spinon continues to disperse due to the nonva-lows we will assume that the system is in such a deconfined
nishing xo term. Indeed the low-temperature specific heatphase(This is formally justified in the same lardédimit as
C~ T with y nonzero in both phases. As we argue belowthe one for the mean-field approximatipiThis deconfined
this is an artifact of the mean-field approximation and will bephase has a Fermi surface of spinons coupled minimally to a
modified by fluctuations. gapless “photon”[U(1) gauge field. (Due to the compact-
The detailed shape of the spinon Fermi surface in the FL ness of the underlying gauge theory, there is also a gapped
phase(or the hot Fermi surface which derives from it in the monopole excitation.Thus two static spinons interact with
FL phase depends on the details of the lattice and the formeach other through aemergent long-rangé&/r Coulomb in-
of the local-moment interactions. For the particular modelteraction. Putting back a small coupling between ¢tandf
discussed above, the spinon Fermi surface is perfectlparticles will not change the deconfined nature of this phase.
nested. In more general situations, a non-nested spinafin particular the monopole gap will be preserye@his is
Fermi surface will obtain. In all cases, however, the volumethe advocated (1) FL* phase.
of the spinon Fermi surface will correspond to one spinon
per site. A. Specific heat

IV. FLUCTUATIONS: MAGNETISM AND SINGULAR The coupling of the massless gauge photon to the spinon
SPECIFIC HEAT Fermi surface leads to several interesting modifications of

the mean-field results. First, consider the effect of the spatial
Fluctuation effects modify the picture obtained in the components of the gauge field. It is useful to work in the
mean-field theory in several important ways. We first discus augeV-a=0 so that the vector potential is purely trans-
fluctuat.ion effects in the two phases. The heavy Ferr_ni—liqui(%erse_ Unless otherwise stated, we assume a generic spinon
ph_ase is of course stat_)le to _fluctuatlons—thelr main Eﬁecf:ermi surfacgwithout flat portion$ henceforth. Integrating
being to end(_)w thé particle W'thgéi phyS|ca_| electric charge out the spinons and expanding the resulting action to qua-
thereby making it an electrot”" Fluctuation effects are dratic order gives the following well-known form for the

more interesting in the_ FL state, and are deSCT‘bed by a propagator for these transverse gauge fluctuations:
U(1) gauge theory minimally coupled to the spinon Fermi

surface(which continues to be essentially decoupled from
the conduction-electron small Fermi surfac&his may be
made explicit by parametrizing the fluctuations in the action

5 —kik; 1K

D (Rl = (@K iwn)ay(~k ~Ton)= o = 7.

in the FL* phase as follows: (17)
— aiag (0
Xor (T) =50 xor 9 Herel', y; are positive constants that are determined by the
The action then becomes details of the spinon dispersion, and is an imaginary Mat-
subara frequency. Note that the gauge fluctuations are over-
S=Sc+Si+Stct+ S, damped in the smati-limit. As was first shown in a different
context by Holsteiret al® (and reviewed in Appendix D
SCZJ de Ek(ﬁf— €)Cr. this form of the gauge-field action leads ta'én 1/T singu-
K larity in the low-temperature specific heat. Thus the specific-

heat coefficienty=C/T diverges logarithmically at low tem-
_ — . o perature in the () FL* phase.
Sf_f dTZ fr(9;~1ao)fr— 2 Xol€™r Tt HH.C), We also briefly mention the effect of the longitudinal
s (time component of the gauge field. This couples to the
_ local f fermion density, and so its influence is very much like
Scf=—JdrE (b,c,f,+H.c), a repulsive density-density interaction. The longitudinal
' gauge-field propagator has a structure very similar to that of
5 a standard random-phase approximation density-fluctuation
S, = dTZ 4lb| _ (16) propagator, and so does not lead to any non-Fermi-liquid
Jk behavior.

r
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B. Magnetic instability by specific-heat measurements, providing a concrete ex-

The repulsive interaction mediated by the Iongitudinalample ofawe_ak moment SDW metal with non-Fermi-liquid
éhermodynamlcs at low temperature.

art of the gauge interaction can lead to various instabilitie . ; ) . .
P gaug (c) Generic spinon Fermi surface, strong interaction: If

of the spinon Fermi surface. In particular, it is interesting to . )

consider a SDW instability of the spinon Fermi surface Thethe.3 Interactions are strong _enough, even for a non-nesf[ed
. . . ' spinon Fermi surface, the spinons can develop a full gap with

resulting state will have magnetic long-range order tha

. o tno portion of their Fermi surface remaining intact. The re-
could potentially have a weak moment as it is a SDW Statesulting phase is the same as that obtainedajnand has a

that is formed out of the spinon Fermi surface. However, ingharn"propagating linear dispersing photon at low energies.
contrast to the traditional view of the weak magnetism, here | sec. v we discuss experimental probes that can help
the SDW |n§t§b|I|Fy isnot t_hat of the Iarge—Ferm|-surface. distinguish these 1) SDW* phase from the conventional
heavy Fermi liquid. Despite the occurrence of magneticspin-density-wave metals.

long-range order, this magnetic state is far from conven-
tional. Because the SDW order parameter is gauge neutral,
the presence or absence of a SDW condensate has little sub-
stantive effect on the structure of the gauge fluctuations. In- In view of the possible occurrence of SDW phases we
deed, the latter remain as in thé1) FL* state, even after Will now consider a modified mean-field theory which cap-
the magnetic order has appeared in the descendaht U tures the magnetic instability at the mean-field level, but
SDW* state. The spinons continue to be deconfined and arfdo€S no longer correspond to a lafgesaddle point. We will
coupled to a gapless(ll) gauge field. Further, the monopole discuss the fully self-consistent solution of the mean-field

survives as a gapped excitation—this yields a sharp distinc€auations for arbitrary temperature and external magnetic

i ) . . field.
tion with more conventional magnetic phases. These gaug® . _— . .
g P gaug The mean-field Hamiltonian, written down explicitly for

excitations coexist with the gapless magnons associated wi ) )
broken spin rotation invariance and with a Fermi surface o U(2) symmetry, takes the following form:
the conduction electrons. However, due to the broken trans-
Ik;atlonal symmetry in this state,_there is no sharp o_llstmctlon HmfZE GkClaCka— E (Xfr,f;rafr,aJr H.c)
etween small and large Fermi surfaces. So to reiterate, the K ('

exotic magnetic metal, dubbed(1) SDW*, emerges as a
Iow-energy*mstablllty of the spinon Fermi surface of the par- + E :U*f,rf:afra_ 2 br(CIafraﬂL H.c.)
ent U1) FL* state. r T

Different possibilities emerge for the formation of the
spin-density wave out of the parenfl) FL* phase, depend- + E S (Hett i+ Hod - £ 0 prfrar
ing on the details of the spinon Fermi surface and the 2 4 0 etr T e iraTaal Tra
strength of the interactions driving the SDW instability. We
enumerate some of them below. 3 T o>

(a) Perfectly nested spinon Fermi surface: In this case, * HeXt'Z Craaa Crar + Econst (18
arbitrarily weak interactions will drive a SDW instability. In

the resulting state, the spinons are gapped. So upon integrathereH,,, is the external field, and we have allowed for a

ing out the spinons, the effective action for the gauge fieldspatial dependence of the mean-field parameigrs, x; ,
can be expanded safely in spatial and temporal gradientg, 5

. . . ; -, Heirr - They have to be determined from the following
with no long-range couplings. Gauge invariance now de'equatiohs:

mands that these terms in the gauge-field action have the
standard Maxwell form. Consequently, the photon becomes a

C. Mean-field theory with magnetism

N|

i i 1=(f{,fra), (19
sharp propagating mode at low energieglow the spinon ro
gap with linear dispersion. Despite clearly being a distinct
phase from conventional spin-density-wave metals, the ex- 2b,=J(c! i), (20
perimental distinction is subtle.
(b) Generic spinon Fermi surface, weak interaction: For a 2er'=(1—X)JH<f;rafrra>, (21)

generic spinon Fermi surface, the leading spin-density-wave

instability (which will require an interaction strength beyond 1

some threshold valyewill be at a wave vector that matches 3 _ v S _Tet >

one of the “g" wave vectors of the spinon Fermi surface. Heﬁ'r_x“]”; M, Mr_2<fr“0““'fr“’>’ (22)

In the resulting state, a portion of the spinon Fermi surface

(away from points connected by the ordering wave vectorwhere the last sum runs over the nearest neighbods site
survives intact. The damping of the gapledd)lbauge fluc- r. We have introduced a paramestewhich allows to control
tuations due to coupling to gapless spinons is preservedhe balance between ordered local-moment magnetism and
Consequently the low-temperature specific heat will continuespin-liquid behavior of thé electrons. A value=1/2 would

to behave a€(T)~T In(1/T). Thus for this particular (1) correspond to an unrestricted Hartree-Fock treatment of the
SDW* state its non-Fermi-liquid nature is readily manifestedoriginal Heisenberg interaction; we will employ valugs
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0.04 T T T
0.03 - decoupled 7
~ 3
g =
=3 3 ~
E 002 - =
g U(1) FL* /
& FL
0.01 1
3 U(1) SDW* SDW Kondo coupling J
0 1 1 1
0 0.5 1 1.5 2

FIG. 5. Staggered magnetization determined from the mean-
Kondo coupling J field solutionH s (18). Parameters are as in Fig. 4, the two curves
correspond to two horizontal cuts of the phase diagram in Fig. 4. At
T=0, the first-order character of the SDW-FL transition is clearly
seen. Note that smaller values of the decoupling paramejesid
smaller values of the magnetization in the SDW and SDyiases.

FIG. 4. Mean-field phase diagram &f,; (18) on the cubic
lattice, as function of Kondo couplindx and temperaturd. Pa-
rameter values are electron hoppitigl, Heisenberg interaction
Jy=0.1, decoupling paramet&r= 0.2, and conduction-band filling
Té=0.7. Th’i,n(thick) _Iines are secondfirst-) orde_r transitions. The conventional SDW phase intervenes wheretgll xo, M.

ecoupled” phase is an artifact of the mean-field theory, and the . .
corresponding transitions will become crossovers upon includinc\;?vre non;ero. Note that the transition betwee.n FL and SDWis
fluctuations, as will the transition between the FL an@l)UFL* eakly f'rSt_ order at low temperat‘L‘Jres. At h'g"h tem_peratgre,
phases; the transitions surrounding the SDW and 3Whases will the mean-field theo,fy only has a .decoupled solution with
of course survive beyond mean-field theory. bo= xo=Ms=0—this decoupling is a well-known mean-

field artifact and reflects the presence of incoherent excita-

<1/2 in order to model aveakmagnetic instability of the HONS:

. i . . In the FL phase, the above-mentioned Lifshitz transition
spinon Fermi-surface state. The constant piece of the Hamil- N in the | limit. ie. f
tonian reads occurs atJy=~1.7 in the low-temperature limit, i.e., falk

>1.7 only a single Fermi-surface sheet remains. Note that
2y |2 this transition does not lead to strong singularities in the
AL L mean-field parameters.
(1=x)Jy The staggered magnetizations of the SDW and 3DW
states as determined from the mean-field solution are shown
> Heg, M, . (23)  in Fig. 5; we can expect that fluctuation corrections will sig-
r ’ nificantly reduce these mean-field values. We have also stud-

2b?
Econst:_Z :uf,r+2 K"'E

r rr’

N| =

ied different values of the decoupling parameten particu-

For simplicity, we consider a simple cubic lattice, and|ar smaller values ofx lead to a suppression of ordered
assume a tight-binding dispersion for the conduction elecmagnetism in favor of the nonmagnetic Fistate, i.e., the
trons, €= —2t2 ;-1 0SK,) ~ e, Where uc controls the  spyy instability of FL* is shifted to lower temperaturéand
conduction-band filling. The mean-field equations can beyecomes completely suppressed at sml similarly, the
self-consistently solved using a large unit cell, allowing for grdered moment in the SDW phases is decreased with de-
spatially inhomogeneous phasgdn this section we restrict creasingx.
our attention to mean-field solutions where the = xo Interesting physics obtains when an external magnetic
fields are realtime-reversal invariaftand obey the full lat-  fie|q s turned on, and the corresponding mean-field phase
tice symmetries, antl, =b, is site independent. We employ djagram is discussed in Appendix C.

a 2x 1 unit cell, then antiferromagnetism is characterized by
I\7Ir~§(=MSeprQ~r) where Q= (m,,) is the antiferro-
magnetic wave vector, and is the magnetization axis
(which is arbitrary in zero external field

In Fig. 4 we show a phase diagram obtained from self- We now turn to the effects of fluctuations beyond the
consistently solving Eq(18) together with the above mean- mean-field theory at the phase transition between the FL and
field equations at zero external magnetic field. ALUFL* U(1) FL* phases. In mean-field theory, this transition occurs
phase withby=0 andyx#0 is realized at intermediate tem- through the condensation of the slave boson fiel&uch a
peratures. As expected, it is unstable to magnetic order afondensation survives as a sharp transition beyond mean
low T, resulting in a W1) SDW* ground state for small field only whenT=0.

Jk—this phase has in additioM# 0. For the present pa- We begin by observing that in the mean-field theory all
rameter values, the spinon Fermi surface is gapped out in thae important changes near the transition occur at the hot
SDW* phase. Increasingy drives the system into the FL Fermi surface. The cold Fermi surfagessentially made up
phase withhy# 0, xo# 0, andM =0; at low temperatures a of c particles plays a spectator role. We therefore integrate

V. FLUCTUATIONS NEAR THE FERMI-VOLUME
CHANGING TRANSITION

035111-9



T. SENTHIL, MATTHIAS VOJTA, AND SUBIR SACHDEV PHYSICAL REVIEW B69, 035111 (2004

out thec fields completely from the action in Eq16) to  accessed by varying, . Without any additionalformally
obtain an effective action involving thb, f, and gauge irrelevan} second-order time derivative terms fbrin the
fields alone. We also partially integrate dugxcitations well — action, the quantum-critical point between the FL and)U
away from the hot Fermi surface: this changestildfective ~ FL* phases occurs precisely a,=0, T=0. We will now
action from the simple local term in E¢L6), and endows it  discuss the physical properties in the vicinity of this critical
with frequency and momentum dependence. In this mannggoint first atT=0, and then aT >0, followed by an analy-
we obtain the following effective action at long distance andsis of transport properties using the quantum Boltzmann

time scales: equation in Sec. V C. Section V D will comment on the ef-
fect of the SDW or SDW phases that may appear at very
S=S+5, (24 low temperaturegthese are not shown in Fig. 1, but sketched
in Fig. 2.
5 - (V—ia)?
Sb:f drd’r| b} ;= pp—iao— 2m, b A. Zero temperature

In a mean-field analysis of Eg24), we see that the PL
, (25)  phase(the Coulomb phase of the gauge theooptains for
#p,<<0 with (b)=0, while the FL phaséthe “Higgs” phase

and S has the same form as in E(L6). Notice that theb of the gauge theobyt_)btains for'“b_>0' .
field has become a propagating boson, with the same terms Consider fluctuations for,<0 in the FL* phase. Here,
in the action as a microscopic canonical boson: here thedf€re are no bosons in the ground state, and all self-energy

; ; ; ; : fehdl
terms arise from al{,f) fermion polarization loop integrated corrections a_\ssomated with t_he quartlc couplmganlsh._
well away from thef-Fermi surface. The parametess,m, | ¢ gauge-field propagator is given by H47), and this

may be interpreted as the chemical potential and mass of th%oes CO””('ij‘te a nonzfero bosqn silf-%nergy. ATfsmaII mo-
bosons, respectively. Thé(f) fermion loop will also lead to mentﬁp and imaginary _req(;J?nUGs the Ioson S€ b—energy
higher time and spatial gradient terms as well as a density2S the structuredetermined from a single gauge-boson ex-

density coupling betweemandf in Eq. (24), but all these are C"ange process, as in Refs. 22 and 23
f lly irrel h -critical poi fi - .
ec;rtma y irrelevant near the quantum-critical point of inter S (ki) ~K2(1+ oyl el el)+ ), 26
A key feature of Eq(24), induced by taking the spatial \yherec, is some constant. Apart from terms which renor-
and temporal continuum limit, is that we have lost informa- )iz the boson mass,, these self-energy corrections are
tion on the compactness of thel) gauge fielda, i.e., the |55 relevant than the bare terms in the action, and so can be

continuum action is now no longer periodic undaf:  gafely neglected near the critical point. Notice also that
—ay +2m, as was the case for the lattice actid®). The 2,(0,0)=0, and so the quantum-critical point remains at
U(1) gauge field is now effectively noncompact, and conse-, _

quently monopole excitations have been suppressed. The the critical exponents can now be determined as in Refs.

monopole gap is finite in the @) FL* phase(which is the 54 anq 41, and are simply those of the mean-field theory of
analog of the “Coulomb” phase of the compact gaugegq (24):

theony).*® In the FL phase, the monopoles do not exist—they

are confined to eac_h other. This occurs due to the condensa- v=1/2, z=2, 75=0. (27)

tion of the boson field. However, the monopole gap is not

expected to close at the transitifhand so neglecting the As in Eq.(26) we can also determine the fate of the boson
compactness of the gauge field is permissible. Indeed, thguasiparticle pole as influenced by the gauge fluctuations; we
continuum action24) provides a satisfactory description of obtain
the critical properties of the FL to @) FL* transition atT

=0. However, as we noted in the caption of Fig. 1, the

compactness of the gauge field is crucial in understanding Imzb(k,ez Z_mb
the absence of @>0 phase transition above the FL phase.

The action in Eq(24) above is similar to that popular in The boson lifetime is clearly longer than its energy, and this
gauge theory descriptioffs®® of the normal state of opti- pole remains well defined. Finally, we recall our statement in
mally doped cuprates but with some crucial differences. Her&ec. 1V A that the gauge fluctuations lead td b(1/T) spe-
the chemical potential of the bosons is fixed while in Refs.cific heat in the F& phase, with a diverging, coefficient.
22 and 23 the boson density was fixed; as we will see belowlhis behavior remains all the way up to, and including, the
this significantly modifies the physical implications of the critical point. Parenthetically, we note that the same calcula-
critical theory, and the nature of the non-Fermi-liquid critical tion in d=2 dimensions will yieldCo T3,
singularities a§ >0. Furthermore, we are interested specifi- We turn next tou,>0, in the FL phase. Here the bosons
cally in d=3, as opposed to thd=2 case considered in are condensed, and E¢(R6) or explicit calculations show
Refs. 22 and 23. that

The phase diagram of the acti@¥) was sketched in Fig.
1. The horizontal axis, represented in Fig. 14y, is now (b)=bg~ () Y2~ (Ix— ko) 2, (29

u
+—|bl4+ .-
b

2
~sgr(e)e’In(1/]e|). (29
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whereJi. is the position of the critical point in Fig. 1. The In the U1) FL* region, there is an exponentially small
transverse gauge-field propagator may be obtained as in Setensity of thermally exciteth quanta, and so the boson con-
IV A by integrating out both the bosons and fermions andductivity o, is also exponentially small. As in earlier wofk,

expanding the resulting action to quadratic order; the bosothe resistances of tHeandf quanta add in series, and so the
condensate leads to a “Meissner” term in the gauge propatotal b andf conductivity remains exponentially small. The

gator so that Eq(17) is replaced by physical conductivity is therefore dominated by that of the
. . . fermions, which again has a conventiofdl dependence.
Dij(kiiwp)=(ai(k,iw,)aj(—k,—wy,)) Finally, we comment on the transport in the quantum-

critical region. This we will estimate following the method of

Ref. 22, with a more complete calculation appearing in the
following section. A standard Fermi’'s golden rule computa-
tion of scattering off low-energy gauge fluctuations shows

Here ps is the boson “superfluid density,” and we haye  that a boson of energy has a transport scattering rate
~b3. The presence of such a Meissner term cuts off the

singular gauge fluctuations. The divergence of the specific- 1
heat coefficienty(T) as a function of temperaturat the Tou(€) ~Te (32
critical point implies that it diverges at=0 on approaching

the transition from the FL side. As shown in Appendix D, for energiese<T?3. From this, we may obtain the boson
this is indeed the case, and we find thatdiverges asy ~ conductivity by inserting in the expression
~In(1/by). In experiments, such a divergingis sometimes

interpreted as a diverging effective mass. Importantly, the - ~f &k ro (e k2 — ﬁn(ebk))
divergence ofy is unrelated to the singularity in the quasi- b burt *bk depk |
particle residue on the hot Fermi shegf,which obeyszZ
~b§ as shown in Eq(14), and so vanishes linearly as a
function of Jx — Jk. -

TS
Tlon|/k+ xik?+ ps’

(30

(33

where n(e)=1/(e“’"—1) is the Bose function, and

=k?/(2my) +3,(0,0)=k?/(2m}) + ¢, T¥? for some constant

c,. Estimating the integral in E¢33) we find that there is an

incipient logarithmic divergence at smalivhich is cutoff by

B. Nonzero temperatures 3,(0,0~T¥2 and soo, diverges logarithmically withr:
A crucial change af >0 is that it is now no longer true

that>,(0,0)=0 in a region with(b)=0. Instead, as in ear- ap~In(1/T). (34

; ; ; 20
e studies of the dilute Bose ga%7°we have There are no changes to the estimate of ftlkwnductivity

from earlier work??? and we haver;~T %3, Using again

d
Eb(0,0)=2uf d’k ! the composition rule of Ref. 43, we see that the asymptoptic
(2m)% exd k?/(2m,T)]—1 low-temperature physical conductivity is dominated by the
behavior in Eq.(34).
_u £(312) (2mT)% ind=3 31) As an aside, we note that for the the@®g) in two spatial
4732 b ' dimensions the result of E¢34) continues to hold, whereas

the fermion part becomes;~ T~ %2 This implies that the

This behavior determines the crossover phase boundariggymptoptic lowT physical conductivity is dominated by
shown in Fig. 1. The physical properties are determined b¥q. (34) in d=2 as well.
the larger of the two “mass” terms in tHe Green’s function,
| wp| or =,(0,0)—consequently, the crossover phase bound-
aries in Fig. 1 lie aff ~| up|?*~ I — k| ?%. These bound- _ _
aries separate the(l) FL* region at lowT and u, <0, and We now address e_Iectn_caI transport properties of the
the FL region at lowT and u,>0, from the intermediate theory(24) in more detail, using a quantum Boltzmann equa-
quantum-critical region. Note that there is no phase transitioOn. The analysis is in the same spirit as the work of Ref. 44
in the FL region aff>0: this is due to the compactness of Put, as we have discussed in Sec. | A, the variation in the
the underlying W1) gauge theory, and the fact that the boson dens_lty as afun_ctlon of temp_erature _Iegids to very_dlf-
“Higgs” and “confining” phases are smoothly connected in ferent physical propertles, and requires a distinct analysis of
a compact (1) gauge theory in three total dimensicits.  the transport equation. . o

We now briefly comment on the nature of the electrical We saw in Sec. V B that the electrical conductivity was
transport in the three regions of Fig. 1. The behavior is quitélominated by théd boson contribution, and so we focus on
complicated, and we will first highlight the main results by the time(t) dependence described by the distribution func-
simple estimates in the present section. A more complet@On
presentation based upon the quantum Boltzmann equation R
appears in Sec. V C. f(K,t) = (bi(t)by(1)). (35

The conventional FL region is the simplest, with the usual -
T2 dependence of the resistivity—the gauge fluctuations aré the absence of an externhysica) electric fieldE, we
quenched by the “Meissner effect.” have the steady-state valfigk,t) = f(k) with

C. Quantum Boltzmann equation
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W————T———T T
—s— T=10"u=0.1]1
--m--- T=10%i=1
—— T=107u=0.1]]

--x--- T=107u=1

1
exp{[k?/(2mp) — up+3p(0,0 /T —1"

fo(k)=

(36)

15}
with 2,(0,0) given in Eq(31). The transport equation in the
presence of a nonzer&(t) can be derived by standard !
means, and most simply by an application of Fermi’'s golden
rule. The bosons are assumed to scatter off a fluctuating
gauge field with a propagator given by E@7) or (30), and L

this yields the equation BN T IR

y(k)

10

z4

af(kt) - af(kt 0
( )+E(t)- (» ) 0 05 1 15 2
ot ok k
~d0 [ d'g kiDij(G, )k FIG. 6. Plot of the functiork®y(k) for a few values of the
== . g'm 2 ) reduced temperatuieand the interaction parameter(40). (k) is
—o T (277) mg

defined in Eqs(38) and (41), and has been obtained from the nu-
merical solution of the quantum Boltzmann equatidg).

2my 2my

k2 (k+0)? " -
X 6 —Q|[f(k,t)[1+f(k+q,t)] o o
whereT is a reduced temperature, andparametrizes the
X[1+n(Q)]—f(k+g,0)[ 1+ F(K)InQ)], (37)  temperature dependence of the effective “mass” of the
bosons from Eq(31); I' and x; are the parameters of the
where n((2) is the Bose function at a temperatufeas gauge propagatdf?7). The linearized form of the Boltzmann

above. equation(37) for the function
We will now present a complete numerical solution of Eq.
(37) for the case of a weak, static electric field, to linear f1(K)=y(kl /ZmbT) (41)

order inE. The analysis near the quantum-critical point par-

allels that of Ref. 45, with the main change being that insteads obtained as

of the critical scattering appearing from the boson self-

interactionu, the dominant scattering is from the gauge-field — w - -
fluctuations[note, however, that it is essential to include the ~ — fé(k):f dkq[K1(k, k) (k) +Ka(k k) ¢(ky)]
interactionu to first order in the self-energy shift in Eqg. 0 (42)
(36)]. We write

_— . with £5(x) = a/(x?)[exp6-+u\T)— 1]~ the expressions
fk,=To(k) +k-Efa(k), (38) for the functionsK, , are given in Appendix E. From the

where we notice that; depends only on the modulus kf  Solution of Eq.(42) one obtains the conductivity according

and is independent daf We now have to insert E¢38) into ~ tO

the transport equatiof87) and the expression for the elec-

trical current 1

o(T,u)=

_ ddk |Z . 6mNT
Jty= J - —f(K.1), (39
(27)% My : . .
The integral equatio42) was solved by straightforward
numerical iteration on a logarithmic momentum grid. We

show sample solutions for the functi@h (k) in Fig. 6. The

It is useful to rewrite the equations in dimensionless quanfirlal results for the scaling function of the conductivity are
L= — — . displayed in Fig. 7. For small temperatures, the logarithmic
tities Q=0/T, k=k/IN2myT, o=op/(Mpxy). Then it is divergence ofo,(T) announced in Eq(34) is clearly seen;

easy to see that the solution of the quantum Boltzmann equgg |arger temperatures the conductivity is exponentially sup-
tion at the critical couplingu, =0, is characterized by tWo  asqed due to the temperature-dependent boson mass. In the
parameters crossover region, the results could be fitted with a power law
over a restricted temperature range of roughly one decade,

[ iy 43

linearize everything irE, and so determine the proportion-
ality betweenJ andE.

2

= ﬁ(Zm )3T however, no extended power-law regime emerges. In com-
r2 b/ parison with experiments, one has to keep in mind that the
physical resistivity is given by a sum of boson and fermion
(32 T resistivities, and that the Iogarithmically_dec_regsing low-
u=u— (400  temperature part of &f,(T) cannot be easily distinguished
4732 Xt from a residual resistivity arising from impurities.
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10" e with more conventional SDW metals.
E ] We begin by considering a(W) SDW* phase in which a
] portion of the spinon Fermi surface remains intact. As dis-

IS 1 I cussed in Sec. 1V, the coupling between the gapless spinons
o £ T — Tl ] and the gauge field leads to singularities in the low-
i ~al ] temperature thermodynamics in this phase. In particular the
A ] specific heat behaves &(T)~TIn(1/T) at low tempera-
10‘10.4'""““";'6.3' 1(“)2 1(')1 100 ture. Thus this phase is readily distinguished experimentally
T from a conventional SDW. Electrical transport in thigl)
SDW* phase will be through the conduction electrons with
no participation from the spinons. Thus electrical transport
will be Fermi-liquid-like. In contrast thermal transport will
receive contributions from both the conduction electrons and
the gapless spinons. Consequently the thermal conductivity
will be in excess of that expected on the basis of the
Wiedemann-Franz law with the free-electron Lorenz number.
The distinction with conventional SDW phases is much
more subtle for W1) SDW* phases where the spinons have a
T full gap. In this case, there is a propagating gapless linear
__ dispersing photon which is sharp. The presence of these gap-
FIG. 7. Scaling function for the boson conductivityy  less photon excitations potentially provides a direct experi-
=ay,/(Myxs), as function of the reduced temperatdrdor differ- ~ mental signature of this phase. It is extremely important to
ent values of the interaction paramete(40). The results are ob- realize that the emergent gauge structure of a fractionalized
tained from the numerical solution of the quantum Boltzmann equapPhase is completely robust to all local perturbations, and is
tion (42) together with Eq(43). Top panel: conductivity-(T) ona  NOt to be confused with any modes associated with broken
i symmetries. Thus despite its gaplessness the photon is not a
Goldstone mode. In fact, the gaplessness of the photon is
protectedeven if there are small terms in the microscopic
Hamiltonian that break global spin rotation invariance. Being
Our discussion so far has focused primarily on the crossgapless with a linear dispersion, the photons will contribute a
over between the FL to @) FL* phases, as this captures the T2 specific heat at lowl' which will add to similar contribu-
primary physics of the Fermi-volume changing transition. Attions from the magnons and the phonons of the crystal lat-
low T, we discussed in Sec. IV B that the longitudinal part oftice. In addition, the conduction electrons will contribute a
the gauge fluctuations may induce SDW order on the spinofinear T term. The phonon contribution is presumably easily
Fermi surface of the PL phase(leading to the SDW  subtracted out by a comparison between the heavy Fermi
phase. On the FL side of the transition, the gauge fluctua-liquid and magnetic phases. To disentangle the magnon and
tions are formally gapped by the Anderson-Higgs mechaphoton contributions, it may be useful to exploit the robust-
nism. They will, however, still mediate a repulsivéhough  ness of the photons to perturbations. Thus for materials with
finite rangedl interaction between the quasiparticles at thean easy-plane anisotropy, application of an in-plane magnetic
hot Fermi surface. Furthermore the shape of the hot Fernfield will gap out the single magnon, but the photon will stay
surface evolves smoothly from the spinon Fermi surface igapless and will essentially be unaffected weak fields
the FL* phase. Consequently, it is to be expected that th@hus careful measurements of field-dependent specific heat
SDW order will continue into the FL region up to some may perhaps be useful in deciding whether th&)LSDW*
distance away from the transition. Thus it seems unlikely thaphase is realized.
there will be a direct transition from SDWto FL at zero Finally, quasielastic Raman scattering has been suggested
temperature. The actual situation then has some similaritiess a probe of the (1) gauge-field fluctuatior§ in the con-
to the mean-field phase diagram in Fig. 4. However, fluctuatext of the cuprates—the same prediction applies essentially
tions will strongly modify the positions of the phase bound-unchanged here to the fractionalized phased=8.
aries, and we expect that thé1) FL* region actually occu- Conceptually the cleanest signature of th&l)USDW*
pies a larger portion of the phase diagram. Also there is nphase would be detection of the gapped monopole. However
sharp transition between the FL andl) FL* regions(un-  at present we do not know how this may be directly done in
like the mean-field situation in Fig.)4and there is instead experiments. Designing such a “monopole detection” ex-
expected to be a large intermediate quantum-critical regioperiment is an interesting open problem.
as shown in Fig. 2.

1/6(T)

log-log scale. Bottom panel: resistivityd(T) on a linear scale.

D. SDW order

VIl. DISCUSSION

VI. EXPERIMENTAL PROBES OF THE U (1) SDW* STATE . . . . . .
The primary question which motivates this paper is how

In this section, we discuss experimental signatures of théo reconcile a weak-moment magnetic metal with non-Fermi-
U(1) SDW* phase focusing particularly on the distinctions liquid behavior close to the transition to the Fermi liquid. We
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have explored one concrete route toward such a reconcilids again described by a theory of condensation of a slave
tion. The U1) SDW* magnetic states discussed in this paperboson field coupled to a Fermi surface of spinons by(&) U
may be dubbed spin-charge separated spin-density-wagauge field. For a noncompact(1) gauge field, such a
metals. They constitute a class distinct from both the convertheory has a number of interesting properties. As noticed by
tional spin-density-wave metal and the local-moment metaRltshuler et al,*’ the spin susceptibility at extremal wave
mentioned in the Introduction. However, they share a numVectors of the spinon Fermi surface Hasssibly divergent
ber of similarities with both conventional metals. Just as insingularities due to the gauge fluctuations. Indeed the spin
the conventional local-moment metal, in thg1y SDW*  Physics of this model is critical and described by a nontrivial
state the local moments do not participate in the Fermi surfixed point. The dynamical susceptibility at these extremal
face. Despite this the ordering moment may be very smallvave vectors and at a frequeneyis expected to satisfy/T
Indeed this state may be viewed as a spin-density wave th&€aling. For a general spinon Fermi surface these extremal
has formed out of a parent nonmagnetic metallic state with #/ave vectors will chart out one-dimensional lines in the Bril-
small Fermi surface. This parent state is a fractionalizedouin zone at which critical scattering will be seen in inelas-
Fermi liquid in which the local moments have settled into afiC neutron scattering. A spin-density-wave instability can de-
spin liquid and essentially decoupled from the conductiorv€lop out of this critical state at a particular extremal wave
electrons. The spinons of the spin liquid form a Fermi sur-vector where the amplitude of the diverging susceptibility is
face which undergoes the SDW transition—this transitionthe largest. Arguments very similar to those in Sec. V B also
does not affect the deconfinement property of the gauge fielghow that transport will be governed by non-Fermi-liquid
because the SDW order parameter is gauge neutral and thagwer laws in this theory.
does not effectively couple to the gauge-field excitations. ~ There is a strikingjualitativeresemblance between these

We showed that in the region of evolution from this stateresults and the experiments on CgCAuy . At the critical
to the conventional Fermi liquid, non-Fermi-liquid behavior AU concentration neutron-scattering experiments see critical
obtains (at least at intermediate temperatyré#/e also ar- ~Scattering on lines in the Brillouin zone satisfying/T
gued that the underlying transition that leads to this nonscaling® Magnetic ordering occurs at particular wave vectors
Fermi-liquid physics is the Fermi-volume changing transi-on this line. Furthermore, empirically the spin fluctuations
tion from FL to FL* . Despite the jump in the Fermi volume, appear to be quasi-two-dimensional, suggesting that the
this transition is continuous and characterized by the vanishideas sketched above may indeed be relevant. We note that
ing of the quasiparticle residu on an entire sheet of the they significantly differ from earlier proposals to explain the
Fermi surface(the hot Fermi surfadeon approaching the behavior of CeCy ,Au,.*® As mentioned in the text, the
transition from the FL side. specific heat in thel=2 quantum-critical region will have

A specific heat that behaves d@dn(1/T) is commonly the formC/T~T~ 13 interestingly, such a behavior has been
observed in a variety of heavy-fermion materials close to thé@bserved in YbR}Si, in the low-temperature regime near a
transition to magnetism. In the context of the ideas explorediuantum-critical poinf® On the theoretical front, there are a
in this paper, such behavior of the specific heat is naturallpumber of conceptual isstésrelated to the legitimacy of
obtained inthree-dimensionabystems. A small number of ignoring the compactness of the gauge fieldiin2. Devel-
heavy-fermion materials exhibit such a singular specific hea®Ping a more concrete theoretical description of these gen-
even in the presence of long-ranged magnetic order. As weral ideas is an interesting challenge for future work.
have emphasized, precisely such non-Fermi-liquid specific
.heat. obtains in one of the exotic ma_gnetic mgtals discussed ACKNOWLEDGMENTS
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It is also of interest to consider a different scenario in
which the small-Fermi-surface state is unstable at low tem-
perature towardonfinemenbf spinons and magnetic order.
It is particularly interesting to consider such a scenarid in Oshikawa has presenf&dan elegant nonperturbative ar-
=2. The physics of the Fermi-volume changing fluctuationsgument demonstrating that the volume of the Fermi surface

APPENDIX A: OSHIKAWA'S ARGUMENT AND
TOPOLOGICAL ORDER
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is determined by the total number of electrons in the system. v
In our previous work} and in the present paper, we have 2—0VFL=pa(mod 2. (A4)
argued for the existence of a nonmagnetic' Ftate with a (2m)?
different Fermi-surface volume. As we discussed eaffier, N )
this apparent conflict is resolved when we allow for global [N the FL* state, there are additional low-energy excita-
topological excitations in Oshikawa’s analysis; such excitalions of the local moments that yield an additional topologi-
tions emerge naturally in the gauge theories we have discal contribution to the change in crystal momentum. Indeed,
cussed for the FL state. In other words, Oshikawa’s argu- the influence of an iqsertion qf fluk is closely analogous to
ment implies that violation of Luttinger's theorem must be the _transformat|or514|n the Lieb-Schultz-Matfisargument,
accompanied by topological order. and it was showti**that a spin-liquid state id=2 acquires

In this appendix, we briefly recall the steps in Oshikawa’sthe momentum change
argument, and show how it can be modified to allow for a
small Fermi surface in a PLstate. As far as possible, we Aptzzﬂ
follow the notation of Oshikawa’s paper. X ay ay

For definiteness, consider a two-dimensional Kondo lat-
tice with a unit cell of lengthsa,,. The ground state is where the second factor on the rhs now counts the number of

assumed to be nonmagnetic, with equal numbers of up- an@"> WhiCh have _undergone ghe Li(?b-SchuItz-Matt.is trans-
down-spin electrons. Place it on a torus of lendths, with formation. Now using\ Px=AP,+ AP, , we now obtain the

Ly/ay, Ly/a, coprime integers. Adiabatically insert a flux modified Luttinger theorem obeyed in the Fphase:
® =27 (h=c=e=1) into one of the holes of the tordsay

the one enclosing the circumferencg acting only on the 5 Vo
up-spin electrons. Then the initial and final Hamiltonians are (27m)2
related by a unitary transformation generated by

2
mod—) , (A5)

X

VeLx=(pa—1)(mod2. (A6)

It is clear that the above argument is easily extended to a
Z, FL* state ind=3. The case of (1) FL* state ind=3 is
' (A1) somewhat more delicate because there is now a gapless spec-
trum of gauge fluctuations which can contribute to the evo-
wheren, is the number operator of all electrofiacluding lution of the wave function under the flux insertion; never-

the local momentswith spin up on the site. After perform-  theless, the momentum change in E45) corresponds to an

ing the unitary transformation to make the final Hamiltonian/l0Wed gauge flux, and we expect that E45) continues to

equivalent to the initial Hamiltonian, the final and initial 2PP!Y-

states are found to have a total crystal momentum which

differs by APPENDIX B: TOY MODEL WITH U (1)
FRACTIONALIZATION AND A SPINON FERMI SURFACE

2i
U=ex;{ » > Ny

T

b _2_77 LyLy &(modz—w) (A2) In this appendix, we will display a concrete model in
X y . . . . . . .

Ly vo 2 three spatial dimensions that is in &l)fractionalized phase

in three dimensions, and has a Fermi surface of spinons

wherev,=a,a, is a volume of a unit cell, the second factor coupled to a gapless(ll) gauge field. As discussed earlier,
on the right-hand sidéhs) counts the number of unit cells in this spinon Fermi surface could eventualat low energies
the system, and,=2p,; is the mean number of electrons in undergo various instabilities including in particular to a spin-
every unit cell. Clearly the crystal momentum is defineddensity-wave state.

X

modulo 27/a,, and hence the modulus in EGA2). Consider the following model:
Now imagine computing the change in crystal momentum
by studying the response of the quasiparticles to the inserted H=H,+Hy+Hp+H,+Hy,

flux. As shown by Oshikawa, the quasiparticles associated
with a Fermi surface of volum®& lead to a change in mo-

mentum which is Hey= —<2> t(yly +he),
rr

2
mod—

9=
X a,

2 % (
x (2m)%(LyLy)

: (A3) Ho=A X e (ylyl, —yl ul)+Hc,
()

where the second factor on the rhs counts the number of

quasiparticles within the Fermi surface. Equatihg, and Hp=—-w Z” CO by r = yen),
AP}, and the corresponding expressions Ad?, andAPY, fre’r]

Oshikawa obtained the conventional Luttinger theorem,

which applies to the volum¥®= Vg, of the Fermi surface in H,=u E nrzr, ,

the FL state, (re’y
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Hy=UY (N,—1)2 (B1) He=—K2, cogVxa),
r P

Here ¢, destroys a spinful charge-1 electron at each site of a .

cubic lattice in three spatial dimensione'?r’ creates a Hu=+U2 E?,
charge-2, spin-0 “Cooper pair” that resides on the links.
N, is conjugate tap,,» and may be regarded as the Cooper

pair number associated with each lilk. is the total charge Hi=—A 2 (eiamf;rfr,+ H.c). (B7)
associated with each site and is given by (re’y
Here K=2w?/U, and the sum=p runs over elementary
N, = 2 Nypr + l//rTl#r- (B2) plaguettesH .4 together with the constraint may be viewed
r'er as a Hamiltonian for a compact ) gauge theory coupled to

I . a gauge charge-1 fermionic matter fiéldNote that to lead-
The HamiltonianH may be regarded as describing a systemng or%ler the? term does not contributeH . still admits

of ele<_:trons coupled with strong phase flugtuations. The firSéeveral different phases depending on its parameters. Of in-
term in Hy_represents Josephsor_1 coupling be‘W?e“ WQerest to us is the limiK~w2/U>u. In this limit, mono-
“nearest-n_e|ghbor" bondsH, penalizes flgctuanons in the poles of the compact (1) gauge field will be gapped. Con-
Cooper pair number at each bordl, penalizes fluctuations sequently at low energies, we may take the gauge field to be

in the total charge\, that can be associated with each lattice S
site. The total charge of the full system clearly is noncom_pact. The co¥(a) term can then be exp_anded to
quadratic order to get the usual Maxwell dynamics for the
gauge field. Thd particles form a Fermi surface which is
Ne= 2 N, . (B3)  coupled to this gapless () gauge field. Note that in the
' low-energy manifold witiN, =1 at allr, all excitations have

) ) .zero physical electric charge. Thus thparticles are neutral
Depending on the various model parameters, several digarmionic spinons

tinct phases are possible. Here we focus on the limit of large  p¢ with any Fermi surface, this spinon Fermi-surface
U. DiagonalizingH,, requires that the ground stégsatisfy  gtate could at low energies further undergo various instabili-
N,=1 at all sites’. There is a gap of ordeJ to states that do jeg to other state@ensity waves, pairing, elcdepending
not satisfies this condition. Clearly the system is insulating ing, the residual interactions between the spinons. There are
this limit. _ various sources of such interactions: First there is the gauge
The conditionN, =1 for all r still allows for a huge de- jnteraction that is explicit irHey in the leading order. Then
generacy of ground states which will be split once the othefne t term contributes td4 4 at second order and leads to a
terms in the Hamiltonian are included. This splitting may bequartic spinon-spinon interaction as well. The specific low-
described by deriving an effective Hamiltonian that lives ingnergy instability of the spinon Fermi surface will be deter-
the space of degenerate states specifiepy 1. As dis- ined by the details of the competition between these vari-

cussed in Ref. 14, this effective Hamiltonian may be usefully,ys sources of interaction, and will not be discussed further
viewed as acompact U(1) gauge theory. This may be eX- pere for this model.

plicitly brought out in the present case by the change of apart from the deconfined phase discussed above, the

variables model possesses confined phases; for largieose occur for
_ smalleru, and the deconfinement transition occurs through
brr =€, the condensation of monopoles in the gauge field.
nrrlzerE”/ (B4)

APPENDIX C: MEAN-FIELD PHASE DIAGRAM IN AN

EXTERNAL ZEEMAN MAGNETIC FIELD
Ura=Fo for reA,
In this appendix we briefly discuss the behavior of the

lﬂra:itfﬂﬁfjg for reB. (B5) mean-field theory of Sec. IV C in an e>_<ternally_ applied field._
A sample zero-temperature phase diagram is displayed in

Heree, = + 1 on theA sublattice and- 1 on theB sublattice. ~ Fig. 8, which shows very rich behavior.

In terms Of these Variab'eS, the Constra‘ﬂ?t: 1 reads The phases at Sma" fle|dS are Straightforward genera”za-
tions of the low-temperature zero-field phases of Fig. 4: The
Vjé+f:fr:1 (B6) U(1) SDW* has weakly polarized conduction electrobsg,

=0, nonzeroy, indicating spinon hopping, and a canted

at each site. (We note that botfa andE may be regarded as SPinon magnetizatioM , with a staggered component along
vector fields defined on the lattigedt orderw?/U, u, t, A, x and a uniform component alory The SDW phase has

the effective Hamiltonian takes the form similar characteristics, but noWw,# 0 indicating a conven-
tional weakly field-polarized magnet with confinement. Fi-
Heg=Hg+H,+H;, nally, the FL phase haby#0, xo#0, weakly polarized
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02— 7T T T which is here generically associated with c@ntinuous
transition.

f fully polarized

E APPENDIX D: SPECIFIC-HEAT SINGULARITY
5
S ok L) | Here we present some details on the calculation of the
g) £ canted / singular specific heat coming from gauge fluctuations. The
s calculations in the Ft. phase and at the critical point are
FL standard. We will therefore only consider the FL phase. In
this phase close to the critical point, transverse gauge fluc-
. U(l) SDw P\ tuations are described by the action
0 0.5 1 1.5 2 3k L | |
i d ) .
fondo comptng - [ D) ( k2 pg[a(K, @)
FIG. 8. Mean-field phase diagram &f,; (18) on the cubic (2m) “n

lattice, now as function of Kondo couplinly and external fieldH, (D1)

atT=0. Parameter values are as in Fig. 4. For a description of the\g explained in Sec. V, close to the transitipg~ b2 This
phases see text. gives a free energy

heavy quasiparticles, and the mean-field paramk?terhas d3k |wn|
F= ,3 (D2)

only a uniformz component. 277)3
In the smalldy region, increasing external field progres-

sively suppresses the effect df,. At intermediate field, a 10 calculate the low-temperature specific heat, we need the

phase with “canted”f moments arises, where noyy=bg change in free energy on going from zero to a small nonzero

—0 (no spinon hopping and M, is canted as described temperature. After a Poisson resummation this is given by

above. Larger fields fully polarize the local moments, i.e.,

I\7I points uniformly alongz with maximum amplitude, and
Xo—bo 0. This phase is also realized for largé and

large fields—here the field quenches the Kondo effect. On fkm#o
the Fermi-liquid side of the phase diagram, two more phases

arise in the present mean-field theory which are labeled by ke Fme
FL, and FLs in Fig. 8; both have nonzeiy, andyq. In FL,, —ka wj

the mean-field parametdt, has both staggered and uniform
components, i.e., this phase describes canted, weakly
screened local moments. Turning to the;fhase, this high- :ka
field phase has the same symmetry characteristics as FL at
intermediate fields, but a different Fermi-surface topology. (D3)
Whereas FL phase at intermediate fields has a single Fer
surface sheet for one spin directithe majority spins have
one full and one empty band whereas the minority spins have 4
one patrtially filled and one empty bandn FL; the upper SF(T)= _fz
band of the majority spins becomes partially filled, too. FL ™Jkm=
and FLs are separated by a strongly first-order transition in uk(k+ py)
mean-field theory. There are numerous other phase transi- JA dk k¥  [muTcoth(muT)—1]e" ’
tions associated with a change in the Fermi-surface 2
topology—those do not display strong thermodynamic signa-
tures and are not shown. We note that for the field rangén the last equat_ion we have introduced an upper cutafibr
displayed in Fig. 8l|:|eer<ty the conduction electrons are in the momentum integral. The remaining mtegra]s can now be
general weakly affected by the field: significant polarizationStraightforwardly evaluated for smafl and we find
of them occurs only at much higher fields. T2 2

Notably, smaller values of the decoupling parametad- SF(T)= ( ) _ (D4)

SF(T)=F(T)—F(0)

w
'Bmwln(|k| +k?+ pg

m70 |w|+k(k?+ pgt+\)

z kfooduéﬁmw—u[\w|+k(k2+ps+)\)].
K,wAMZ0 JO

™he w,\ integrals may now be performed to obtain
e uk(K*+py)

uu2+(mﬁ)2

0 u

mit yet another field-induced transition in the small-re- 127

gion: If the magnetism is very weak, i.e., the spinons have
small gap compared to their bandwidth, then a small applie
field can close the spinon gap without significantly affecting C(T)=»T (D5)

their band structure. Such a transition would yield a kink in

the magnetization of the local-moment subsystem as functiowith y~In(1/ps) ~In(1/by). Settingps=0, a similar calcu-
of the applied field, implying a “metamagnetic” behavior lation also shows thaE(T)~T In(1/T) in the FL* phase.

jhus the specific heat
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For completeness, we mention the corresponding behaygjty f,(x)= [exp(x2+u\/:) 117! and n(x)=(e*—1)"..
ior in two dimensions. In analogy to the above calculations
The kernelK(x, kllk k\/‘:) is given by

we find C(T)=T?3in the quantum-critical and PLregions.

APPENDIX E: DETAILS OF THE QUANTUM
BOLTZMANN EQUATION

In the following we describe a few details of the deriva-
tion of the linearized version of the quantum Boltzmann

equation(42) in Sec. V C. Inserting the ansa28) into Eq.
(37) leads to a scalar equation foy. The frequency integral

] 1-a?
K(X,a,\)=Im| — ———==
\/a2+1—2ax
, ' (ax—1)2
+N(a“+1-2ax) 1-—F—— .
a’+1—2ax

The integrals necessary for the evaluatiorkaf, are of the

is easily performed; the remaining momentum integral cargrm

be split into radial and angular parts. This directly yields Eq.

(42), with

Ky(kky)=[1+fo(ky) +n(k2—K2)]

X, :,k\/:) (E1)

kK (1
X_

dx K
472) -

2k, k) =[fo(k)—n(k2—k3)]

—, _
kki (i xkl ki, —

X— dx—K X,=,kVT E2
472) - k ( k \/:) E3

n 1/2
d
f yy +C

with n=0, ... ,3 and can bperformed analytically.
The numerical solution of Eq42) is done by rewriting it
in the form

pk ]|
(k k1)+K2(k ky)—— ¢(k) D

which allows for a stable numerical iteration.

K >——fo<k>(f:d?l
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