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Coulomb drag effect between Luttinger liquids
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The exact solution of the one-dimensional Hubbard model, the supersymmétritodel, and the gas of
fermions interacting via &-function potential is used to calculate the drag current between two parallel
guantum wires. The critical exponent for the drag current at low temperatures is obtained by means of the
mesoscopic energy spectrum and conformal field theory. For a repulsive interaction between the carriers the
drag current is opposite to the driving current, while for attractive potentials the two currents are parallel.
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[. INTRODUCTION with the carriers being spinless interacting fermibrighis
model can be mapped onto the traditional Luttinger liquid
Charge carriers moving in one conductor may interact viadescription for a one-dimensional conductor with the “spin”
the Coulomb interaction with carriers in another conductorcomponents playing the role of the driving and drag wires.
located nearby. Via momentum conservation the charges ifihe bosonization of the fermions in conjunction with the
conductor 1 can exert a force on the carriers in the conductorenormalization-group flow then vyield the drag current,
2 and induce a drag current. This drag mechanism was pravhich is given by the renormalized backward-scattering am-
posed by Pogrebinskii for a semiconductor-insulator- plitude (sine-Gordon termof the traditional Luttinger liquid.
semiconductor layer structure. At very low temperatures thdhe experimental result§* on the Coulomb drag between
drag effect in a two-dimensional system is dominated byparallel wires remain sparse, probably beca{igethe drag
phonons. The theoretical and experimental developments ofoltage usually has a very small amplitude d@glit is dif-
the electron drag effect in a coupled electron system havécult to create parallel electrically isolated quantum wires
recently been reviewed by Rofo. that are sufficiently long and close enough to yield a mea-
A Coulomb drag is also present between two parallelsurable drag voltag®.
guantum wires. While in two-dimensional layers the Fermi- In short wires the lowF conductance is affected by the
liquid picture is expected to remain valid, in one-dimensionaldiscrete energy-level spectrum and the current increases in
systems the correlations between electrons lead to exotisteps as the voltage is increasedle consider here suffi-
properties generically referred to as Luttinger liquidBhe  ciently long wires so that the frequency can be treated as a
Luttinger liquid properties change the Coulomb drag re-continuous variable. At very low and smallw, of course,
sponse for ballistic electrons. Characteristics of 1D systemthere will be a crossover to the quantum limit, where the
are the charge and spin separation, i.e., the charge and spiiscreteness of the energy spectrum plays a dominantfole.
contents of the wave functions propagate with different ve-On the other hand, the wires have to be sufficiently short, so
locities, and the disappearance of the Fermi-liquid quasiparthat the transport can be considered ballistic, i.e., scattering
ticle pole in the excitation spectrum, which is replaced byby phonons and defects can be neglected.
incoherent structures. Hence, the Fermi-liquid picture breaks In this paper we calculate the critical exponents of the
down for interacting electrons in one dimension. Experimen-drag-current response function to a driving current in a par-
tal realizations are quasi one-dimensional organic conducallel wire for a Luttinger liquid. The critical behavior is de-
tors, e.g., the “Bechgaard salts,” which have strongly anisotermined by the low-energy excitation spectramesoscopic
tropic electronic properties,and quantum wires, such as corrections to the ground-state enérgya conformal field
single-wall carbon nanotubés. theory. To model the Luttinger liquid we use the exact Bethe
Electron transport in a wire is ballistic if the scattering Ansatzsolution of integrable one-dimensional systeffighe
length of phonons and impurities is sufficiently long. For situations of repulsive and attractive interactions have to be
simplicity we assume here that only the lowest one-distinguished. In the former case the drag current is opposite
dimensional subband of the conductors is occupied. Théo the driving current, while in the latter the two currents are
Coulomb-drag between quantum wires has previously beeparallel due to the formation of bound states of carriers be-
studied within both, the Fermi-liquid and Luttinger liquid, tween the two wires. For a repulsive interaction the results
pictures and is extensively reviewed in Ref. 6. We limit our-include those obtained perturbatively, e.g., via bosonization
selves to investigate the drag current in linear response to trend renormalization group. In the attractive case a spin-gap
voltage applied in the driving wire. While within the Fermi opens, which cannot be obtained perturbatively, i.e., from the
liquid approach this leads to a drag current proportional tdosonization of fermions.
temperaturé, the Luttinger liquid picture gives rise to non-  The remainder of the paper is organized as follows. In
universal power laws with critical exponents that depend orSec. Il we discuss the standard situation of spinless carriers
the interaction strength.*! In the diffusive regime the drag interacting via a repulsive potential in terms of the Bethe
rate also strongly depends on the effects of disottler. Ansatzsolution of (i) the Hubbard model(ii) the gas of
The Coulomb drag is typically discussed for equal wiresparticles with parabolic dispersion andédafunction poten-
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tial, and (iii) the SU3)-invariantt-J model. In Sec. lll we “spinons.”19 If both wires have the same number of carriers,
investigate the situation of spinless carriers interacting via athen the spinon band is completely filled, so tBat>. The
attractive potential using the exact solutions forthe Hub-  critical properties of correlation functions at low tempera-
bard model(ii) the gas of particles with &-function repul- tures and small frequencies are determined by the low-
sion, and(iii ) the supersymmetricJ model. In Secs. IV and €nergy excitation spectrum, which is given by the finite size
V some results of Secs. Il and IlI, respectively, are extendegorrections of mesoscopic order to the ground-state energy in
to the situation of carriers with spin. This can only be accomterms of a set of quantum numbéfs,

plished for thes-function potential gas and thteJ models,

but not for the Hubbard model. Conclusions follow in Sec. _ ) A1 2
VI, E=Nae.+ 2 o5 > (Z7Y)14AN
al q
Il. SPINLESS CARRIERS WITH REPULSIVE > 2mv, S 2D 2+ T 2
: z n'+n -,
INTERACTION ™ N, || 4§ " P12

_The standard approg%tm(_)nsiders_ two parallel quantum \here e, is the ground-state energy density in the thermo-
wires with spinless carriers interacting via a repulsive PoteNgynamic limit,| andq label the two bands and take values

tial. Each .conductor has a Fermi poin_t for forwaﬂlnhc_k- and's (for charges and spinopsand v, denote the group
ward moving charges. When an electric field is applied toye|qcities of the two bands. HereN, is the departure of the
the d.rlvm'g wire, some carriers are transferred from ON&,umber of particles in the bargdfrom the equilibrium value,
Fermi point (e.g., for the backward moverso the other ;o AN_andAM, respectively. Note that each band has two

Fermi point(i.e., for forward movers thus generating & cur- permj points corresponding to forward and backward mov-
rent. The momentum conservation of the interaction for car-

) . . ing statesD,, is the backward-scattering quantum number,
riers between wires yields then a backward momentum tran§.—e” 2D, represents the difference of forward to backward

fer in the drag wire, inducing this way a drag current . ino"states in each band. These quantities are sensitive to
opposite to the driving current. The response function forthqhe parity in each set of rapidities. Finallg> define the
current is proportional to a power of the temperature or fre'Iow-lying particle-hole excitations a.bout eagh of the Fermi
guency, with the critical exponent being nonuniversal, de- oints. HereAN,,, n™ ., and D, take always integer values:
pending on the model, the interaction strength and the ban(ﬁ— D 9’h qt; . d half-i d d',
filling. The critical exponents are determined by the low- enceD, can either be an integer or half-integer depending
energy excitations of the model, i.e., the conformal towers of" the initial conditions.

the Luttinger liquid under consideration. Below we briefly The quantitieszq in Eq. (2)_are the (_jresseq generalized
review the excitation spectra and discuss the critical expoc_:_harges of the.exc[tatlons, which (_jescnbe the mterpl_ay of the
nents for three models. different Fermi points Whgn particlezharges or spinofs
are added or removed, arrd ! denotes the inverse of the
matrix. The integral equations determiniag= ¢ .(Q) and
7s=¢§ (B) simplify considerably foB=«, wherez =0,

We assume that each wire consists of spinless fermions o) =1/\/2, z,.= 3z.., andz. is determined froff"*!
a nearest-neighbor tight-binding Hamiltonian and that carri-
ers on different wires interact with a local Coulomb interac-
tion U. This corresponds to the Hubbard model, Ec,c(k):]-"'f

A. The Hubbard model

? i costk') G sin(k)— sink’) ¢ o(K'),
Q

/ (mU), 3

whereo= 1,2 labels the conductors, the hopping matrix ele-
ment is set equal to 1, amy, is the number operator. We whereV is the digamma function and Re denotes real part.
considerN, itinerant carriers on a chain dfi, sites with 6?=22§C is related to the charge stiffness. The Fermi momen-
periodic boundary conditions. Modé¢l) has been exactly tum for the charges ipr.=mn, with n=N¢/N,, and the
diagonalized by means of two nested Befltesazeby Lieb  one for the spinonpgs= 7n/2, so that for the Fermi mo-
and WU® in terms of two sets of rapiditiesik;} for j mentum of the wires we havg-, = pg,= 7n/2.
=1,... N, representing the charges, afd,} for « In terms of the quantum numbers defined above, the total
=1,... M, with N,— 2M corresponding to the population momentum of the system is given33y*
difference between the two wirdspinons for the standard
Hubbard chaip These rapidities are self-consistently deter- 2 P
mined by the Bethdnsatzequations and the energy is given P= N, El [NiDy+n—n; ]. 4
by E= —EJleZ cosk;).

For U>0 all the rapidities are real in the ground state andFrom Eqs(3) and(4) we obtain the conformal dimensions of
densely distributedwithout hole$ between the respective primary fields characterized by the above quantum
Fermi points at=Q for the charges andtB for the  number$?

Hu=—2 (C,Cis10tCl1,Ci0) FUD NNz, (1) 1
o [ §+|X/U

G(X)=Re{‘1’(l+iX/U)—\I’
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. . 1 4.5
Ag=ng + glze(2Dc+ Do) = AN/zc )%,
40 u=0
e_os 1 2 (a) !
Ag:n;+1—6[2Dst(2AM—ANe)] . (5) 35t 5
We can now compute the simplest case for the drag- © 39[ 4
current response function. In wire(@iriving wire) a carrier 8
with momentum— pg, is transferred to the other Fermi point 251
with pgs, and simultaneously in the drag wifavire 2) a
charge undergoes the transformatipp,— — pg,. If peg 20 U
=pg, this process conserves momentum and energy. The
guantum numbers for this process @&hBl.=AM=0, since 15,5 33 7 s 53 o
each of the wires conserves its charges, apekng =0 be- ' ' T on ' '
cause particle-hole excitations about the Fermi points only
contribute to higher order. The process involving both, the 4.5
driving and the drag, wires correspondshig=*1 andDg 0
=32, so thatA; =0 andA; =1. The critical exponent for 4.0 £=
this correlation function does then neither depend on the in- (b)
teraction strength nor on the band filling, because the overall 35t 1
process is a conserving one, independentJofif, on the 2
other hand, we consider only the drag current, tBer=0 @ 30}
andD¢=F1, so thatA_ = 6/16 andA  =1/4. 4
At T=0 the drag-current correlation function for long o5 L 8
times and large distances is then proportional to
. 2.0 —
exp(— 2ipgeX) © 0=
[+ (o)1 79+ (v h) 212 %00 0.2 0.4 06 0.8 1.0
where the exponential represents the momentum transfer. n
The response function falls off with a power law for long 20
times and distances, where the critical exponéft;+ 1, is
nonuniversal and depends on the interaction strength and
bandfilling. The extension to finite temperature and chain 18l
length yield$®2122 '
7TIN, 7TIN, o/8
sinf 7T (X—ivct)/ve] SN T (X+ivt)/ve] ® 16
" 7TIN, 7TIN, 12 (c)
sinf7T(x—ivgt)/vg] sin 7w T(x+ivgt)/lvg]] 141
(7)
where the exponential representing the momentum transfer 12 : - - - - -
has now been dropped. We now consider the equal-time cor- 0o o1 0208 0405 08

relation function {=0) and integrate with respect toto
obtain the temperature dependence of the drag current, which FIG. 1. Critical exponend as a function of the band filling for
is proportional to ¢T/N,)?*. The exponen® is shown in  (a) the Hubbard model for various values of the repuldibrib) the
Fig. 1(@ as a function of the band fillingn=N./N, for gas of charges withs-function repulsion for various coupling
severalU 22 ForU=0 andU= we have thaty=4 and strengthsc, and(c) the supersymmetrit-J model with SU3) in-
2, respectively.d is a decreasing function df. Note the varian_ce (2=J). Forn—0, #=2 for all three models, while the
strong dependence af asn—1 as a consequence of the behavior is model dependent for IargerFor the Hu_b_bard model
metal-insulator transition. 0—2 asn—1 because of the metal-insulator transition.

It is also of interest to calculate the temperature depen-
dence of the primary current, i.e., the driving current in wirethenA; = 6/8 andA = 1/4, i.e., the same values as for the
1. To transfer a charge from one Fermi point to the other irdrag current. Hence, as expected, the two correlation func-
wire 1, it requires thaD.=1 andD¢,=—1 with all other tions are identical.
guantum numbers being zero. The conformal dimensions are For a drag current to take place we required that
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=pg,. Otherwise the momentum is not conserved and it willquantum numbers as for the Hubbard model describes the
require a phonon to make up for the difference in momeniow-energy excitations®?° The group velocities and the
tum. Hence, aff=0, we obtain as function if pg1=peg», dressed generalized charges are, however, different. The sim-
while for T#0 a sharp peak of width proportional is  plest case for momentum transfer between wires is again
expected, due to the lifetime of the excitations in a Luttingerpg,=pg,, for which z.c=0, zsc= 12, zsc= 32, andz,.

liquid. = £..¢(Q) is determined frortf
There are of course other possibilities for a momentum o
transfer between the two wires. The general conditiomfor _ , L )
particles being backscattered in wire 1 andbackscattered Cock)=1+ f_Qdk Hi(k=k") &e.o(k),
in wire 2 isn{pg,=n,pg,. IN terms of the Fermi momenta
of the two BetheAnsatzbands, i.e., charges and spinons, this 1 iX 1
condition read®\pg.= (N1 +Ny)Prs. Small deviations from Hn(x) = W_NCRE{‘I’ 1+ Nc - N“L Nc 1D

this condition can still be compensated by temperature

broadening. The quantum numbers for the drag currept ( for N=2. HereW is again the digamma function. The drag
carriers are pushed backwarare all zero excepD=n,. ~ current is proportional to #T/ N?)m_ The exponenté
The conformal dimensions for this case am;2=(z,n,)? = 2Zcc for the 5-function potential is shown in Fig.() as a
and 2% = (z,,)2. Herezg, andzgs have to be determined function of the band. f|II|'ng.n=Ne/Na for severalc. The
by solving the coupled integral equations for; , since now dependence ob on c is similar to the Hubbard model, ex-
B+. The equal-time correlation function is nagropping ~ ¢ept forn—1, where the continuum limit has no metal-

the phase factoe™ 2"2Pr<) insulator transition. All other conclusions are the same as for
the Hubbard model, except that for a continuum model there
7TIN, 2(zsdn,)? 7TIN, 2(zse12)? are no umklapp processes.
sinh(7Tx/v,) sinh( 7w Tx/vg) @

C. SU(3)-invariant t-J model

and after integrating ovex we obtain for the temperature The t-J model involves three possible states per site,

2,2\ 2
dependence of the drag currentT/N,)?“sc"%9""1. Note  namely, a hole, an up-spin electron and a down-spin electron.
that, sincepg; # P2, the exponent of the temperature depen-a permutation symmetry of these three states between neigh-
dence of the dI’IVIng current response function is now d|ﬁer'boring sites leads to a Supersymmetric a|g%nd hence
ent from that of the drag'current correlation function. Otherto |ntegrab|||ty Here we assume that the number of holes is

mechanisms to transfer momentum between the wires inarger than both the number of up-spin and down-spin elec-
volve an umklapp process, i.e., a vector of the reciprocajrons. The Hamiltonian is then given by

lattice is absorbed, so that
2N1Pr1=2N,pr+ G, G=2mn, 9) Hu:—iz P(c,Cit1o+Cli1,Ci0) P

wheren is another integer.

. _ +2> CiT+1aCiTg'CioCi+10'+z nini+1, (12
B. é-function potential oo’ I
An alternative model with similar characteristics is the whereP is a projector that excludes the multiple occupancy
gas of fermions interacting via &function potentia?® The  at each site and;== ¢/, c;,, is the number operator for site
two conductors are labeled 1 and 2, and as for the Hubbard This variant of thet-J model corresponds to an effective
model this label plays the role of the spin. The model can b&epulsion of particles on nearest-neighbor sites.
written as In order to map the Coulomb drag problem onto the su-
persymmetrid-J model we consider spinless carriers travel-
ing along two quantum wires witlr=1,2 labeling the two
+20i§<:j 8(Xi— X)), (10 conductors. The Bethansatzsolution of thet-J model in
terms of two sets of rapiditiegor the charges and spinons,
wherec is the interaction strength arde;} are the positions respectively can be found in Ref. 26. For the ground-state
of the carriers. The dispersion in the wires here is paraboliall rapidities are real and densely distributed. The simplest
with the effective mass equated to 1/2. For periodic boundeondition for the Coulomb drag is again thpk.=2pg,
ary conditions the Bethénsatzsolution of this model is = sn, wheren is the fermion densityN./N,, andpg. and
similar to that of the Hubbard model. Two sets of rapidities,p. are the Fermi momenta of the charge and spinon bands,
corresponding to charges and spinons, are required to diageespectively. In terms of the Fermi momenta for the two
nalize the model. Foc>0 all the rapidities are real in the conductors this condition i$g;=pg,=an/2, i.e., both
ground-state and if both wires have the same number of cawires have the same number of carriers. As a consequence of
riers, then the spinon band is completely filldrhe finite-  the momentum conservation, the drag current is then again in
size corrections of mesoscopic order to the ground-state emhe opposite direction to the driving current.
ergy, the momentum, and the conformal dimensions are also As for the Hubbard model, the critical behavior at long
given by Eqgs(2), (4), and(5), respectively. The same set of times and large distances is determined by the finite-size cor-

a 2

he-3 (2

(?Xi

035110-4



COULOMB DRAG EFFECT BETWEEN LUTTINGER LIQUIDS PHYSICAL REVIEW B9, 035110 (2004

rections to the ground-state energy. The general expression E=Nae.+ (mve/2N,) (AM/z)?
of the conformal towers has the same form as in &), po e
where the quantum numbers also have the same meaning +(2mve/Ng)[z°D°+n" +n" —1/12],  (14)

here. The ground-state energy in the thermodynamic limit
the group velocities, and the generalized dressed charges
however, model dependent and, hence, different. The confo
mal dimensions only involve the generalized dresse
charges, which for equal density of carriers in both conduc
tors are againz,=0, zs<=1/2, zs.=3%z., and z.
=£..(Q), where nowé, .(p) satisfies the linear integral
equation

where agaire,, is the ground-state energy density andis

fie group velocity of the paired charges. The quantum num-

yers have similar meanings as befaké is the departure of

he number of pairs from the equilibrium valueD2is the

difference of forward to backward moving pairs, and

represents the low-lying particle-hole excitations for paired

electron states about each of the Fermi points. Agelih,

n*, and 2D take always integer values; henbBecan either

be an integer or half-integer depending on the initial condi-

Q tions.

Sec(P)=1— J’_de,KN(p_ P )&ec(P'), The quantityzis the generalized dressed charge, related to
the stiffness of the Cooper pairs, given by £(Q), where

. &£(A) satisfies the integral equati
1+ 1 + X

NN Y

° dA’a,(A—A")EA)=1, (15)
Q

iX
1+—” (13

1
KN(X)= mR%‘P N

f(A)+J

for N=2. HereV is the digamma function.

— 2 2 i
The quantum numbers for the drag-current response fune/yhereaz(x)—(|U|/277)/(x +U%A4). The Fermi mamentum

tion are the same as for the previous cases,D.g= =1 and of the Cooper pairs ip=n/2, and the total momentum of
o éhe system in terms of the quantum numbers Rs

all others are zero. Here we again assume the driving wir . .

has the label 1 and wire 2 hos%s the drag current. Thg con= (2mNa)[MD+n" —n"]. The conformal dimensions of
formal dimensions for the drag current are thep=6/16 primary fields are obtained from E¢l4) andP (Ref. 28,
andA; =1/4, and the temperature dependence of the corre- 1

lation function is @ T/N,)”*. The exponen® is shown in AT=n"+ z[AM/(Zz)izD]Z. (16)

Fig. 1(c) as a function of the band filling=N./N,. Note

that for this modeh cannot exceed the value 2/3. Note that  gjnce the electrons are all paired in bound states, the drag

6 is now less than 2 and decreases withThe current cor- 44 griving currents are parallel. The voltage applied to the
relation function for the driving wire h_as the_ same tempera—driving wire can then only transfer charges from one Fermi
ture dependence. All other conclusions discussed for thggint 1o the other without creating spin excitations, which
Hubbard model remain valid here. are gapped. Consequently, there is a simultaneous charge
transfer in both wires. The quantum numbers correspond-
IIl. SPINLESS CARRIERS WITH ATTRACTIVE ing to this process ar®=1 and all others are zero. In
INTERACTION terms of carrier field operators the current operator _for
simultaneous conductivity in both wires is
If the interaction between carriers in different wires is zﬂ,(x,t) ng,(x,t) Yo (X,1) ¥y, (X,1) and the corresponding
attractive, the dominant drag current is parallel to the drivingequal-time response function is proportional to
current. Below we discuss this effect using three integrable
models, namely, the Hubbard model, the gas wilunction
interaction, and the standard supersymmetdcmodel.

4
e—‘“pFX( TN ) (17

sinh 7w Tx/vg)

whered= 272 is related to the stiffness of the pairs. Integrat-
ing with respect tox we obtain ¢rT/N,)?"* for the simulta-

We consider mode{l) but for U<0. The BetheAnsatz neous conduction through both channélsas a function of
solution(i.e., the discrete Bethe equatigns the same as for the electron densith=N./N, is displayed in Fig. @) for
repulsive interaction? The attractive interaction pairs the several values o). Note that forU— — we obtainf=2
electrons into Cooper-like singlet states without off-diagonaland forU—0 we haved= 1. Note the strong dependence on
long-range order even @t=0.?" Here the two wires play the nasn—1 due to the Van Hove singularity of the filled band
role of the spin. Foequal number of carrierén each wire,  of pairs.
the singlet pairs introduce a “spin-gagbinding energy in If the number of carriersn the two wires idifferent not
the excitation spectrum of unpaired electrons. The pairs adll the charges can be paired, and a second branch of states
like hard-core bosons and are characterized by a set of re@orresponding to unpaired chargyeppears in the ground-
rapidities A with Fermi points at= Q. Since excitations in- state. This band of rapidities is then no longer gapped, but
volving only one conductofspin excitationsare suppressed has a Fermi surface. The finite-size corrections to the
by the gap, the finite-size corrections to the ground-state erground-state energy are then again of the general form of Eq.
ergy are those of a one-component Luttinger liogfid, (2), wherel and g label the paired §) and unpaired ()

A. The Hubbard model
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paired and unpaired charges. The paired carriers give rise to
a drag current parallel to the driving current and the drag
current is determined by the quantum numiegs= —1 and
D,=1, while all other quantum numbers are zero, i.e., it is
proportional to ¢rT/N)2@e 29 +2@u-2u*~1 The un-
paired charges can induce a backward current of pairs if
Pru= 2Pgp to satisfy momentum conservation, which has the
same temperature dependence as the pair-induced current. In
case(ii) the driving voltage accelerates only the pairs, but the
drag current has two components, namely, from paired and
unpaired charges. The drag current arising from paired
charges, which is parallel to the driving current, is character-
ized by the nonzero quantum numbBp=1 and has the
exponent 2¢5,+25,) —1. The drag current arising from the
unpaired states, on the other hand, is opposite to the driving
current(characterized by ,= 1 and all other quantum num-
bers being zemoand has the critical exponent Z(,+z;,)

—1. As a function of the unpaired charges, the exponents
change discontinuously from caée to (ii).

B. é-function potential

We consider mode(10) but for c<0. The discrete Bethe
Ansatzequations are the same as for a repulsive interaéfion.
As for the Hubbard model the attractive potential forms
bound states of carriers between the two wffed/e again
have to distinguish the cases of equal and different number
of carriers in each wire. In the former case all charges are
paired in bound states, while in the latter case there are un-
paired carriers left over.

Forequal number of carriergn each wire, the excitations
of unpaired electrons are gapped, and the finite-size excita-
tion spectrum is again given by E¢.4).2¢ The group veloc-
ity for the pairs and the dressed generalized charge are, how-
ever, different from those of the Hubbard model. The drag
and driving currents are parallel, since the carriers cannot be
depaired. For simultaneous conductivity in both wires the
quantum numbers a2=1 and all others zero, and the criti-
cal exponent for the current 8— 1, whereg=2z2. 6 as a
function of n=N./N, is displayed in Fig. &) for several
values ofc. Since in the continuum there is no upper band
edge, there is no strong dependenc&@sn—1.

For wires withdifferent carrier densitiesiot all carriers
are paired, so that the rapidity band of unpaired carriers is
partially filled and the system behaves like a two-component
Luttinger liquid. As for the Hubbard model with attractilg
the corresponding conformal towers are given by B,

FIG. 2. Critical exponen® as a function of the band filling for
(a) the Hubbard model with attractivel for various interaction

wherel andq label the paired §) and unpaired ) states.
strengths(b) the gas of charges with attractivefunction potential | h€e dressed generalized charges entering the conformal tow-

for various coupling strengtis and(c) the standard supersymmet- €IS and dimensions are given kg, =¢£,4(Q) and z,

ric t-J model. Forn—0, =2 for the first two models, whil&
=4 for thet-J model.

states. The conformal dimensions are similar to &} but
with indicesp andu. Since there are now two Dirac seas, it
is possible to consider the driving and drag currents sepa-
rately.

In order to discuss the drag current we have to distinguish
two cases: eithe(i) the drag wire ofii) the drive wire has no
unpaired carriers. In cad@) the driving voltage accelerates
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wherea,(x) = (n|c|/2m)/[x2+ (nc/2)?], andQ andB deter- For the drag current we have to consider two contribu-
mine the number of paired and unpaired carriers, respedions. On the one hand, the driving potential pulls on the
tively. The conformal dimensions are given by paired electrons, giving rise to a drag current parallel to the
driving current. The quantum numbers corresponding to the

2A, =(2ppDp+2ypDy)% 285 =(ZpyDp+ZuDu)?. simultaneous conductivity in both wires ag,=1 and all

(19 others zero, and the critical exponent for the current is

2 2\_1_p_ e N
With two Dirac seas, it is how possible to have separatt.Z(ZPP’L Zp,) —1=6—1. On the other hand, if either the driv

driving and drag currents. The analysis of the drag currenf9 current or the drag current have a component of unpaired

follows in complete analogy to the last paragraph in SecCNarges, then ibe,=2pe, there is the possibility of trans-
A ferring momentum between the two wires. In this case the

driving and drag currents flow in opposite directions. The

quantum numbers for this process &g=1 andD,= -1,

while all other quantum numbers are zero. The critical expo-
In this section we consider the standafd model, which  nent for the drag current is 2(,— zup)2+ 2(zpu—zuu)2

involves three possible states per sige hole, an up-spin  —1. The situationpg,=2pg, can only be satisfied if the

electron and a down-spin electioiin contrast to the variant charge density in the two wires is very different.

discussed in Sec. Il C, which is $8)-invariant, the present

model is also integrable fort2J and has an underlying IV. REPULSIVE INTERACTION: THE ROLE OF THE
supersymmetric algebf4:2° The Hamiltonian is given by SPIN

C. Supersymmetrict-J model

In this section we reconsider the situation of repulsive
Hy=—2 P(cl,Cii1,o+Cli1,Ci0)P interaction between the carriers, but in contrast to Sec. Il the
"7 carriers now have spin. The spin and the two wires give rise
: : to four internal degrees of freedom. Unfortunately, the de-
+ 2 ¢l1,Cl, CioCivie— 2 MiNis1, (200 generate Hubbard modkf more than two internal variables
oo’ ' (N=2)] is not integrable. We therefore limit ourselves to the
whereP is a projector that excludes the multiple occupancyd-function interaction and the §8)-invariantt-J model.
at each site andioncit,cm is the number operator for site
i. This model corresponds to the larddimit of the Hubbard A. é-function potential

9 . . . .
modef® and the Zhang-Rice singlet stafeAgain the spin The gas of fermions with four colors interacting via a

index labels the two wires. _ _ s-function potential, defined by the Hamiltoni&h0), is also
The BetheAnsatzsolution of this model involves two sets integrable in terms of four nested Bethasaze® There are

of rapidities, one for the charges and one for the spins. Fofen four sets of rapidities, corresponding to the chafges

equal number of carriers in each wire, in the ground-state ally| ,ymber of particlésand three spinons sets for the relative

the carriers are paired in analogy to the Hubbard and,onjation of the internal degrees of freedom. For the
S-function models. The key difference of thel model with ground-state and>0 all the rapidities are reaf32In the

the other two models is that the binding energy is zero, i.€.gpsence of an external magnetic field, the first and third
the unpaired carrier excitations are not gapped in this casgninon rapidity bands are completely fil&If in addition
Hence, we do not have to distinguish between the gappefie o wires have the same density of electrons, then the
and gapless situations. The system is a two-componelecong spinon rapidity band is also completely filled. We
[paired(p) and unpairedu) carrierd Luttinger liquid and the  imit our discussion to this case.

finite-size corrections to the ground-state energy is of the The finite-size corrections of mesoscopic order to the
form of Eq. (2). ground-state energy the momentum and the conformal di-

F_or simp_Iicity we Iir.ni.t ourselves to.the case of equal hansions are given by Eq®), (4), and(5), respectively, but
carrier density in the driving and drag wires. As for the Hub-\\iih | and q running over four indice®® The low-energy

bard model with repulsivé&) the matrix of dressed general- gy citations are given in terms of four sets of quantum num-
ized charges has dimensionx2. [Here we follow the nota-  pers j e for each rapidity band, the change in the number of
tion of Refs. 18 and 31, which is actually in terms of holons 5 jjgitiesA Ng, the quantum number for backward scattering
and up-spin holes, rather than electrgriSor the dressed D4 and particle-hole excitations about each Fermi pcmﬁt,

H — —_n—1/2 —
charges we obtain that, =0, zy,=2""% Zup=2pp/2, aNd  po mapriy of generalized dressed charges has dimension 4

Zpp=¢(Q), where X 4 and has the form characteristic of 3)(invariance, i.e.,
0 zqc=[(N—q)/N]zcc, Zeq= 5q,02cc_ and thq spin iector is
g(A)=1+f dA'Hy(A—A)EA), (21) given by the symmetric 8 3 matrix 2y defined by
-Q

Z32ii=26 =8 i-1— 6 {41,
with Hy given by Eq.(11) for N=2 andc=1. The param- (Zn i S

eter 0=22§p appearing in the critical exponents is shown in 2 ViYiYi
Fig. 2(c) as a function oh=N./N,. For all three models in (Zﬁl)ij =N 12YiYj —, (22
this section,d is a decreasing function af. Xi +XJ = 22X X~ Y1p
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where x; = cos(@@j/N) and y;=sin(mj/N). Since all compo- 9.0
nents are equally populated, there are only two different con- 80
formal dimensions of fields, one associated with the charge ' c=0

sector(of central charge Jland the other one with the SNJ
symmetry(of central chargdN—1=3, Refs. 18 and 34

N—-1 . 2
. . N—j AN,
= _ = —D. +t—
20, =2n; + chjzo N Pitaz |
1 N-1
205=2n5+7 2 AM{(Zy%);AM,
ij=1

C=co

N—-1 N—-1 1_00 L L
+”21Di(z§)ijojrizl AM,D;, (23 ' ' T

2.0

whereng is the sum over the quantum numbers for the ex-
citations at the forward and backward Fermi points for the
q=1,2,3, andg=0 refers to the charges. Note thAf is 19 |
independent of the interaction strength and band filling; it is
the same conformal dimension characterizing the NHU(
Heisenberg chain and corresponding critical vertex motels. @18t
If the electron density is the same in both wires and per spin
componen{SU(4) invariancd, then the Fermi momenta of (b)
the rapidity bands ar@ro=4pr3, Pr1=3Pr3, and pes
=2pg3, Wherepgs=mn/4 andn=N./N,. The dressed gen-
eralized chargez,.=¢..(Q) is given by Eq.(11) for N
=4,

To study the drag effect we use the representahign 0 01 02 03 04 05 06 07 08
=N; =N, =N, , where wire 1 carries the driving current n
and wire 2 h,OStS, the d_rag current. Momentum transfer be- g 3 critical exponend as a function of the band filling for
tween the wires is optimal when aN;, are equal. Under () the gas of electrons with-function repulsion Ki=4) for vari-
these circumstancesg;,=pg3 for all j and o. The drag  ous coupling strengthsand (b) the supersymmetrit-d model with
current has now an up-spin and a down-spin channel. Thgy(s) invariance. Fom—0, #=2 for both models, while the be-
corresponding currents are expected to be equal. For the URavior is model dependent for largerFor thet-J model the maxi-
spin channeD,=1 andD;=—1, while all other quantum mum electron density is=N/(N+1).
numbers are zero. For the down-spin channel, on the other
hand,D;=1 and all other quantum numbers are zero. Bot
cases yield &, =2z2/16 and 225 =3/4, so that the critical
exponent for the drag current®16— 1/2. # as a function of
the total electron density is displayed in FigaBfor various
coupling strengths.

hdrag current, and consider the limit of equal electron density
in each wire and for each spin-component. The general form
of the finite-size corrections to the ground-state energy, the
momentum, the dressed generalized charges and the confor-
mal dimensions is the same as for thdunction potential
) ) described in the preceding subsection, as a consequence of
B. SU®S)-invariant t-J model the SU4) invariance of the internal degrees of freedom. The
We now extend the model of Sec. IIC to include spindressed charge for the charge sector is now giverey
degrees of freedom. The Hamiltonian is still given by Eq.= . .(Q) with & .(p) being the solution of Eq(13) for N
(12) but with o running from 1 through 4spin-1/2 times =4. The exponend as a function of the total electron den-
two wires. The model still satisfies a supersymmetric alge-sity is displayed in Fig. ®). In contrast to thes-function
bra equivalent to the permutation of the degrees of freedomotential, for the present modéldecreases with.
between neighboring sité$?° The degrees of freedom can  If the electron density is the same in both wires and per
be represented by a spin 2 and, hence, the invariance of ttspin component, then the Fermi momenta of the rapidity
model is SU5). The BetheAnsatzsolution of the model bands arepgo=4pe3, Pr1=3Pr3, and pgo=2pg3, Where
involves four sets of rapiditie®ne for the charges, two for pgs;=mn/4. Momentum transfer between the Fermi points in
the spin degrees of freedom of the wires, and one for théhe driving wire 1, and global momentum conservation
relative population of the wirg$® For the ground-state all yields a backflow drag current. As in Sec. IllA the drag
rapidities are real and densely distributed. current has an up-spin and a down-spin channel, which are
We again use the representatibiy;=N; =N, =N, , both equal. The corresponding quantum numbers are all zero,
where wire 1 carries the driving current and wire 2 hosts theexceptD,=1 and D;=—1 for the up-spin channel, and

035110-8



COULOMB DRAG EFFECT BETWEEN LUTTINGER LIQUIDS PHYSICAL REVIEW B9, 035110 (2004

D;=1 for the down-spin channel. Both cases yield ;2 250
=272/16 and 2A$ = 3/4, so that the critical exponent for the
drag current is9/16—1/2. 2.00 ==
V. ATTRACTIVE INTERACTION: THE ROLE OF THE 50 |
SPIN
<]
In this section we consider the situation of an attractive 100 -
potential between the carriers with spielectrons. As in
Sec. IV the spin and the two wires give rise to four internal
degrees of freedom. Since the degenerate Hubbard model is 0.50 =0
not integrable, we limit ourselves to thefunction interac-
tion and the supersymmetrieJ model. 0.00 ‘ . . .
0.0 0.2 0.4 0.6 0.8 1.0
A. é-function potential 50 :
As discussed in Sec. IV A the gas of fermions with four
colors interacting via @-function potential, Eq(10), is also
integrable in terms of four sets of rapiditi€s>23 For an
attractive interactiond<<0) the electrons form bound states 60 |
of up to four electronsthere are four degrees of freedprif '
Ni;=N; =Ny, =N, , all electrons are bound in four clus- -
ters, and clusters of less than four electrons are gapped.
There is then only one branch with Fermi surface and the (b)
finite-size contributions to the ground-state energy are of the 40T
form of Eq. (14) with the dressed generalized charge given
by z=£(Q), where
Q ’ ! ! 20 ! ! ! !
g(A)=1—f QdA IN(A—A")E(AT), 0.0 0.2 04 0 06 0.8 1.0
1 ix ix FIG. 4. Critical exponen# as a function of the band filling for
In(X)= —Re{\lf N+ —|—¥| 1+ —” (24 (a) the gas of electrondN=4) with attractives-function potential
c| |c | for various coupling strengths and (b) the supersymmetrit-J

for N=4. ForN=2 this expression reduces to H38) for ~ Model forN=4. Forn—0, #=2 for the -function potential,

equal carrier density in the two wires. The driving potentialWhlle #=8 for thei-J model.

in this case has to pull on the bound states of four, so that the

driving and drag currents are parallel. For simultaneous con-

ductivity in both wires the quantum numbers d@e-1 and freedom. For equal number of electrons in each wire and per

all others zero, and the critical exponent for the current isspin component, in the ground-state all the electrons are

6—1, whered=272. 9 as a function oi=N,./N, is dis-  clustered in units of four, in analogy to the case of the attrac-

played in Fig. 4a) for several values of. tive 5-function potential. The key difference between the two
Another case that is of interest is when the conductorsnodels is that the binding energy is zero for ta@ model,

have very different densities, so that electrons are bound ine_’ the bound states of less than four electrons are not

clusters of four and the remainder of electrons in the majorityyapped® The system is a four-component Luttinger liquid

band in Cooper pairgspin singlets In this case the system anq the finite-size corrections to the ground-state energy is of

is a two-component Luttinger liquid. Now there is the possi-ihe form of Eq.(2) with the summation index running over

bility of transferring momentum between the two compo-¢, .- pands. ForN;; =Ny, =N, =N,,, the generalized

nents of the Luttinger liquidthe Fermi momentum of the r _ . ;
. , essed charge..= £(Q), where&(A) is the solution of Eq.
Cooper pairs has to be twice that of the four electron boun 21) with Hy given by Eq.(11) for N=4 andc=1. The

state$, which gives rise to a backflow drag current, in addi- - .

tion to the forward drag current discussed above. remaining components of the matrix of drﬂesge:j charg(_as are
Zqe=[(N—0)/N]zec, Zeqg= 6q,02cc, and the “spin” sector is

given by the symmetric 83 matrix Zy defined by Eg.

(22).34 Here the charges ¢’ correspond tog=0.

The extension of the standatel Hamiltonian, Eq.(20), The Coulomb drag current has several components. Here
to four internal degrees of freedoapin times two conduc- we assume that the pull by the driving potential is on the
tors) can also be used to model the Coulomb drag problemclusters of four. We consider only two contributions, namely,
The BetheAnsatzsolutiort® involves four sets of rapidities, (1) the drag current arising from the clusters of four elec-
one for the charges and three for the internal degrees dfons, which is parallel to the driving current atgj the drag

B. Supersymmetrict-J model
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current on paired electron states in the drag wire, which isvhich are described in terms of four quantum numbers
opposite to the driving current. For cagéb the quantum (number of particles, backward-scattering quantum number,
numbers corresponding to the simultaneous conductivity irand particle-hole excitations at each of the Fermi points
both wires are all zero, except,=—1. The critical expo- The excitation spectrum is obtained from the mesoscopic
nent for the current is thenzg,—1=¢—1. ¢ as a function finite-size corrections to the ground-state energy in terms of
of n=N./N, is displayed in Fig. %). For case2), on the  the group velocities and the matrix of dressed generalized
other hand, momentum has to be transferred between thgharges, which describes the interplay of the different exci-
wires, which is only possible ipr,=2pg.. The situation tation branches as a consequence of the interaction.
Pr2=2pPg Can only be satisfied if the charge density in the  |f the carriers are spinless and the interaction is repulsive,
two wires is very different. The quantum numbers for thisthe system can be described in terms of the Hubbard model,
process ardD =1 andD,=—1, while all other quantum where the spin-index labels the wifsee Sec. IIA The
numbers are zero. The critical exponent for the drag curren§implest situation corresponds to equal carrier concentration
is then 2 ((zgj—2,)?—1, where j=0 refers to the in the two wires. In this case the critical exponent is deter-
chargec. The matrix of dressed generalized charges for thisnined by 6, which is related to the charge stiffness. The
case has to be determined by solving the system of integralxponent decreases with increasidgand has a strong

equationgsee Ref. 3# dependence close to the metal-insulator transitifam n
—1). The latter dependence is absent in the continuum vari-
VI. CONCLUSIONS ant (5-function potential, since this model has no metal-

insulator transition. Her® increases monotonically with the

We considered two nearby parallel quantum wires withband filling. Finally, for the S(B)-invariantt-J model the
carriers interacting via repulsive or attractive potentfals. value of@ is always smaller than 2 and a decreasing function
Each conductor has at least one Fermi point for forwarchf n. In Sec. IV these results were extended to the case of
(backward moving charges. When an electric field is applied carriers with spin. As mentioned above the effect of the spin
to the driving wire, some carriers are transferred from onés quantitative but not qualitative.
Fermi point (e.g., for the backward moverso the other For spinless carriers with an attractive interaction the sys-
Fermi point(i.e., for forward movers thus generating a cur- tem can be modeled by the Hubbard Hamiltonian with nega-
rent. This driving current may induce a drag current in thetive U. In this case all carriers are paired in bound states and
second wire via the interaction among the carriers. The spigtates of unpaired carriers are gapped. The system is a one-
degree of freedom of the electrons only plays a secondaryomponent Luttinger liquid and the parametedecreases
role in this process, so that frequently spinless carriers ar@ith n and is always less than one. The continuum limit of
considered in this context. the model ¢-function potential yields similar results except

For a repulsive interaction for carriers between wires, th@n the limit n—1. The case of the standatdl model is
momentum conservation of the interaction yields a backwarghysically different because the unpaired carrier excitations
momentum transfer in the drag wire, inducing in this way aare not gappedsee Sec. Ill ¢. The exponen® in this case
drag current opposite to the driving current. The responsg|so decreases monotonically within Sec. V the extension
function for this current is proportional to a power of the of these results to carriers with spin is presented. Again the
temperature, with a nonuniversal critical exponent. The exeffect of the spin is only quantitative.
ponent depends on the model, the interaction strength, and The usual drag current discussed in the literature is the
the band-filling. one induced via back scattering of ballistic carriers and mo-

For an attractive interaction among carriers between thénentum conservation through a repulsive interaction. The
wires, on the other hand, the charges form bound states. Thgewidth of the excitations in the Luttinger liquid are pro-
potential applied to the driving wire pulls the bound elec-portional to T and smear thes function for the momentum
trons and hence the drag and driving currents are parallel. Eonservation. It then allows for a small mismatgi order
the excitations into unbound carrier states are all gappedr) petween the Fermi momenta of the two wires. There are
then this is the only contribution to the drag current. HOw-many other possibilities to introduce a drag current, for both
ever, if the band of unbound carriers has a Fermi surface, gepulsive and attractive interactions. Some of these results
backflow current may also arise, in the case where the Fernjhvolve backscattering of several carriers and the absorption
momenta are matched so that momentum transfer betweeyt 5 vector of the reciprocal lattiocdJmklapp processif the
bands is possible. The current response functions follownteraction is repulsivésee Sec. Il A and backscattering for

power laws of the temperature, again with nonuniversal exan attractive interaction if the carrier density in the two wires
ponents that depend on the model, the band filling, and thg very different(see Sec. 1l A.

interaction strength.

We considered the exact BetAasatzsolutions of several
integrable models to obtain the crltllcal gxponents frqm _the ACKNOWLEDGMENTS
conformal towers. The exact solution yields all excitation
branches, which either have Fermi points or are gapped. The The support by the U.S. Department of Energy under
former constitute a Luttinger liqguid component. Only the Grant No. DE-FG02-98ER45707 and by the U.S. National
low-energy excitations of the Luttinger liquid are needed toScience Foundation under Grant Mo. DMRO01-05431 is
calculate the asymptotic dependence of correlation functiongcknowledged.
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