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Coulomb drag effect between Luttinger liquids

P. Schlottmann
Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

~Received 17 August 2003; published 23 January 2004!

The exact solution of the one-dimensional Hubbard model, the supersymmetrict-J model, and the gas of
fermions interacting via ad-function potential is used to calculate the drag current between two parallel
quantum wires. The critical exponent for the drag current at low temperatures is obtained by means of the
mesoscopic energy spectrum and conformal field theory. For a repulsive interaction between the carriers the
drag current is opposite to the driving current, while for attractive potentials the two currents are parallel.
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I. INTRODUCTION

Charge carriers moving in one conductor may interact
the Coulomb interaction with carriers in another conduc
located nearby. Via momentum conservation the charge
conductor 1 can exert a force on the carriers in the condu
2 and induce a drag current. This drag mechanism was
posed by Pogrebinskii1 for a semiconductor-insulator
semiconductor layer structure. At very low temperatures
drag effect in a two-dimensional system is dominated
phonons. The theoretical and experimental development
the electron drag effect in a coupled electron system h
recently been reviewed by Rojo.2

A Coulomb drag is also present between two para
quantum wires. While in two-dimensional layers the Ferm
liquid picture is expected to remain valid, in one-dimensio
systems the correlations between electrons lead to ex
properties generically referred to as Luttinger liquids.3 The
Luttinger liquid properties change the Coulomb drag
sponse for ballistic electrons. Characteristics of 1D syste
are the charge and spin separation, i.e., the charge and
contents of the wave functions propagate with different
locities, and the disappearance of the Fermi-liquid quasi
ticle pole in the excitation spectrum, which is replaced
incoherent structures. Hence, the Fermi-liquid picture bre
down for interacting electrons in one dimension. Experim
tal realizations are quasi one-dimensional organic cond
tors, e.g., the ‘‘Bechgaard salts,’’ which have strongly ani
tropic electronic properties,4 and quantum wires, such a
single-wall carbon nanotubes.5

Electron transport in a wire is ballistic if the scatterin
length of phonons and impurities is sufficiently long. F
simplicity we assume here that only the lowest on
dimensional subband of the conductors is occupied.
Coulomb-drag between quantum wires has previously b
studied within both, the Fermi-liquid and Luttinger liquid
pictures and is extensively reviewed in Ref. 6. We limit ou
selves to investigate the drag current in linear response to
voltage applied in the driving wire. While within the Ferm
liquid approach this leads to a drag current proportiona
temperature,7 the Luttinger liquid picture gives rise to non
universal power laws with critical exponents that depend
the interaction strength.8–11 In the diffusive regime the drag
rate also strongly depends on the effects of disorder.12

The Coulomb drag is typically discussed for equal wir
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with the carriers being spinless interacting fermions.6 This
model can be mapped onto the traditional Luttinger liqu
description for a one-dimensional conductor with the ‘‘spi
components playing the role of the driving and drag wir
The bosonization of the fermions in conjunction with th
renormalization-group flow then yield the drag curre
which is given by the renormalized backward-scattering a
plitude~sine-Gordon term! of the traditional Luttinger liquid.
The experimental results13–16 on the Coulomb drag betwee
parallel wires remain sparse, probably because~1! the drag
voltage usually has a very small amplitude and~2! it is dif-
ficult to create parallel electrically isolated quantum wir
that are sufficiently long and close enough to yield a m
surable drag voltage.6

In short wires the low-T conductance is affected by th
discrete energy-level spectrum and the current increase
steps as the voltage is increased.5 We consider here suffi-
ciently long wires so that the frequency can be treated a
continuous variable. At very lowT and smallv, of course,
there will be a crossover to the quantum limit, where t
discreteness of the energy spectrum plays a dominant ro17

On the other hand, the wires have to be sufficiently short
that the transport can be considered ballistic, i.e., scatte
by phonons and defects can be neglected.

In this paper we calculate the critical exponents of t
drag-current response function to a driving current in a p
allel wire for a Luttinger liquid. The critical behavior is de
termined by the low-energy excitation spectrum~mesoscopic
corrections to the ground-state energy! via conformal field
theory. To model the Luttinger liquid we use the exact Be
Ansatzsolution of integrable one-dimensional systems.18 The
situations of repulsive and attractive interactions have to
distinguished. In the former case the drag current is oppo
to the driving current, while in the latter the two currents a
parallel due to the formation of bound states of carriers
tween the two wires. For a repulsive interaction the resu
include those obtained perturbatively, e.g., via bosoniza
and renormalization group. In the attractive case a spin-
opens, which cannot be obtained perturbatively, i.e., from
bosonization of fermions.

The remainder of the paper is organized as follows.
Sec. II we discuss the standard situation of spinless carr
interacting via a repulsive potential in terms of the Bet
Ansatzsolution of ~i! the Hubbard model,~ii ! the gas of
particles with parabolic dispersion and ad-function poten-
©2004 The American Physical Society10-1
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tial, and ~iii ! the SU~3!-invariant t-J model. In Sec. III we
investigate the situation of spinless carriers interacting via
attractive potential using the exact solutions for~i! the Hub-
bard model,~ii ! the gas of particles with ad-function repul-
sion, and~iii ! the supersymmetrict-J model. In Secs. IV and
V some results of Secs. II and III, respectively, are exten
to the situation of carriers with spin. This can only be acco
plished for thed-function potential gas and thet-J models,
but not for the Hubbard model. Conclusions follow in Se
VI.

II. SPINLESS CARRIERS WITH REPULSIVE
INTERACTION

The standard approach6 considers two parallel quantum
wires with spinless carriers interacting via a repulsive pot
tial. Each conductor has a Fermi point for forward~back-
ward! moving charges. When an electric field is applied
the driving wire, some carriers are transferred from o
Fermi point ~e.g., for the backward movers! to the other
Fermi point~i.e., for forward movers!, thus generating a cur
rent. The momentum conservation of the interaction for c
riers between wires yields then a backward momentum tra
fer in the drag wire, inducing this way a drag curre
opposite to the driving current. The response function for t
current is proportional to a power of the temperature or f
quency, with the critical exponent being nonuniversal,
pending on the model, the interaction strength and the ba
filling. The critical exponents are determined by the lo
energy excitations of the model, i.e., the conformal towers
the Luttinger liquid under consideration. Below we briefl
review the excitation spectra and discuss the critical ex
nents for three models.

A. The Hubbard model

We assume that each wire consists of spinless fermion
a nearest-neighbor tight-binding Hamiltonian and that ca
ers on different wires interact with a local Coulomb intera
tion U. This corresponds to the Hubbard model,

HU52(
is

~cis
† ci 11s1ci 11s

† cis!1U(
i

ni1ni2, ~1!

wheres51,2 labels the conductors, the hopping matrix e
ment is set equal to 1, andnis is the number operator. W
considerNe itinerant carriers on a chain ofNa sites with
periodic boundary conditions. Model~1! has been exactly
diagonalized by means of two nested BetheAnsätzeby Lieb
and Wu19 in terms of two sets of rapidities,$kj% for j
51, . . . ,Ne representing the charges, and$la% for a
51, . . . ,M , with Ne22M corresponding to the populatio
difference between the two wires~spinons for the standar
Hubbard chain!. These rapidities are self-consistently det
mined by the BetheAnsatzequations and the energy is give
by E52( j 51

Ne 2 cos(kj).
For U.0 all the rapidities are real in the ground state a

densely distributed~without holes! between the respectiv
Fermi points at 6Q for the charges and6B for the
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‘‘spinons.’’19 If both wires have the same number of carrie
then the spinon band is completely filled, so thatB5`. The
critical properties of correlation functions at low temper
tures and small frequencies are determined by the l
energy excitation spectrum, which is given by the finite s
corrections of mesoscopic order to the ground-state energ
terms of a set of quantum numbers,20

E5Nae`1(
l

pv l

2Na
F(

q
~ ẑ21! lqDNqG2

1(
l

2pv l

Na
H F(

q
zqlDqG2

1nl
11nl

22
1

12J , ~2!

wheree` is the ground-state energy density in the therm
dynamic limit, l andq label the two bands and take valuesc
and s ~for charges and spinons!, and v l denote the group
velocities of the two bands. HereDNq is the departure of the
number of particles in the bandq from the equilibrium value,
i.e.,DNe andDM , respectively. Note that each band has tw
Fermi points corresponding to forward and backward m
ing states.Dq is the backward-scattering quantum numb
i.e., 2Dq represents the difference of forward to backwa
moving states in each band. These quantities are sensitiv
the parity in each set of rapidities. Finally,nq

6 define the
low-lying particle-hole excitations about each of the Fer
points. HereDNq , nq

6 , and 2Dq take always integer values
henceDq can either be an integer or half-integer depend
on the initial conditions.

The quantitieszlq in Eq. ~2! are the dressed generalize
charges of the excitations, which describe the interplay of
different Fermi points when particles~charges or spinons!

are added or removed, andẑ21 denotes the inverse of th
matrix. The integral equations determiningzlc5j l ,c(Q) and
zls5j l ,s(B) simplify considerably forB5`, wherezcs50,
zss51/A2, zsc5

1
2 zcc , andzcc is determined from20,21

jc,c~k!511E
2Q

Q

dk8cos~k8!G@sin~k!2sin~k8!#jc,c~k8!,

G~x!5ReFC~11 ix/U !2CS 1

2
1 ix/U D G Y ~pU !, ~3!

whereC is the digamma function and Re denotes real p
u52zcc

2 is related to the charge stiffness. The Fermi mom
tum for the charges ispFc5pn, with n5Ne /Na , and the
one for the spinonspFs5pn/2, so that for the Fermi mo-
mentum of the wires we havepF15pF25pn/2.

In terms of the quantum numbers defined above, the t
momentum of the system is given by20,21

P5
2p

Na
(

l
@NlDl1nl

12nl
2#. ~4!

From Eqs.~3! and~4! we obtain the conformal dimensions o
primary fields characterized by the above quant
numbers22
0-2
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Dc
65nc

61
1

8
@zcc~2Dc1Ds!6DNe /zcc#

2,

Ds
65ns

61
1

16
@2Ds6~2DM2DNe!#

2. ~5!

We can now compute the simplest case for the dr
current response function. In wire 1~driving wire! a carrier
with momentum2pF1 is transferred to the other Fermi poin
with pF1, and simultaneously in the drag wire~wire 2! a
charge undergoes the transformationpF2→2pF2. If pF1
5pF2 this process conserves momentum and energy.
quantum numbers for this process areDNe5DM50, since
each of the wires conserves its charges, andnc

65ns
650 be-

cause particle-hole excitations about the Fermi points o
contribute to higher order. The process involving both,
driving and the drag, wires corresponds toDc561 andDs

572, so thatDc
650 andDs

651. The critical exponent for
this correlation function does then neither depend on the
teraction strength nor on the band filling, because the ove
process is a conserving one, independent ofU. If, on the
other hand, we consider only the drag current, thenDc50
andDs571, so thatDc

65u/16 andDs
651/4.

At T50 the drag-current correlation function for lon
times and large distances is then proportional to

exp~22ipFsx!

@x21~vct !
2#u/8@x21~vst !

2#1/2
, ~6!

where the exponential represents the momentum tran
The response function falls off with a power law for lon
times and distances, where the critical exponent,u/411, is
nonuniversal and depends on the interaction strength
bandfilling. The extension to finite temperature and ch
length yields18,21,22

H pT/Na

sinh@pT~x2 ivct !/vc#

pT/Na

sinh@pT~x1 ivct !/vc#
J u/8

3H pT/Na

sinh@pT~x2 ivst !/vs#

pT/Na

sinh@pT~x1 ivst !/vs#
J 1/2

,

~7!

where the exponential representing the momentum tran
has now been dropped. We now consider the equal-time
relation function (t50) and integrate with respect tox to
obtain the temperature dependence of the drag current, w
is proportional to (pT/Na)u/4. The exponentu is shown in
Fig. 1~a! as a function of the band fillingn5Ne /Na for
severalU.18,22 For U50 andU5` we have thatu54 and
2, respectively.u is a decreasing function ofU. Note the
strong dependence ofu as n→1 as a consequence of th
metal-insulator transition.

It is also of interest to calculate the temperature dep
dence of the primary current, i.e., the driving current in w
1. To transfer a charge from one Fermi point to the othe
wire 1, it requires thatDc51 and Ds521 with all other
quantum numbers being zero. The conformal dimensions
03511
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thenDc
65u/8 andDs

651/4, i.e., the same values as for th
drag current. Hence, as expected, the two correlation fu
tions are identical.

For a drag current to take place we required thatpF1

FIG. 1. Critical exponentu as a function of the band fillingn for
~a! the Hubbard model for various values of the repulsionU, ~b! the
gas of charges withd-function repulsion for various coupling
strengthsc, and ~c! the supersymmetrict-J model with SU~3! in-
variance (2t5J). For n→0, u52 for all three models, while the
behavior is model dependent for largern. For the Hubbard mode
u→2 asn→1 because of the metal-insulator transition.
0-3
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P. SCHLOTTMANN PHYSICAL REVIEW B69, 035110 ~2004!
5pF2. Otherwise the momentum is not conserved and it w
require a phonon to make up for the difference in mom
tum. Hence, atT50, we obtain ad function if pF15pF2,
while for TÞ0 a sharp peak of width proportional toT is
expected, due to the lifetime of the excitations in a Lutting
liquid.

There are of course other possibilities for a moment
transfer between the two wires. The general condition forn1
particles being backscattered in wire 1 andn2 backscattered
in wire 2 is n1pF15n2pF2. In terms of the Fermi moment
of the two BetheAnsatzbands, i.e., charges and spinons, t
condition readsn1pFc5(n11n2)pFs . Small deviations from
this condition can still be compensated by temperat
broadening. The quantum numbers for the drag currentn2
carriers are pushed backward! are all zero exceptDs5n2.
The conformal dimensions for this case are 2Dc

65(zscn2)2

and 2Ds
65(zssn2)2. Herezsc andzss have to be determined

by solving the coupled integral equations forj i , j , since now
BÞ`. The equal-time correlation function is now~dropping
the phase factore22in2pFsx)

F pT/Na

sinh~pTx/vc!
G2(zscn2)2F pT/Na

sinh~pTx/vs!
G2(zssn2)2

, ~8!

and after integrating overx we obtain for the temperatur

dependence of the drag current, (pT/Na)2(zsc
2

1zss
2 )n2

2
21. Note

that, sincepF1ÞpF2, the exponent of the temperature depe
dence of the driving current response function is now diff
ent from that of the drag-current correlation function. Oth
mechanisms to transfer momentum between the wires
volve an umklapp process, i.e., a vector of the recipro
lattice is absorbed, so that

2n1pF152n2pF21G, G52pn, ~9!

wheren is another integer.

B. d-function potential

An alternative model with similar characteristics is t
gas of fermions interacting via ad-function potential.23 The
two conductors are labeled 1 and 2, and as for the Hubb
model this label plays the role of the spin. The model can
written as

Hc52(
i 51

Ne S ]

]xi
D 2

12c(
i , j

d~xi2xj !, ~10!

wherec is the interaction strength and$xi% are the positions
of the carriers. The dispersion in the wires here is parab
with the effective mass equated to 1/2. For periodic bou
ary conditions the BetheAnsatzsolution of this model is
similar to that of the Hubbard model. Two sets of rapiditie
corresponding to charges and spinons, are required to di
nalize the model. Forc.0 all the rapidities are real in th
ground-state and if both wires have the same number of
riers, then the spinon band is completely filled.23 The finite-
size corrections of mesoscopic order to the ground-state
ergy, the momentum, and the conformal dimensions are
given by Eqs.~2!, ~4!, and~5!, respectively. The same set o
03511
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quantum numbers as for the Hubbard model describes
low-energy excitations.18,20 The group velocities and the
dressed generalized charges are, however, different. The
plest case for momentum transfer between wires is ag
pF15pF2, for which zcs50, zss51/A2, zsc5

1
2 zcc , andzcc

5jc,c(Q) is determined from18

jc,c~k!511E
2Q

Q

dk8HN~k2k8!jc,c~k8!,

HN~x!5
1

pNc
ReFCS 11

ix

NcD2CS 1

N
1

ix

NcD G ~11!

for N52. HereC is again the digamma function. The dra
current is proportional to (pT/Na)u/4. The exponentu
52zcc

2 for thed-function potential is shown in Fig. 1~b! as a
function of the band fillingn5Ne /Na for severalc. The
dependence ofu on c is similar to the Hubbard model, ex
cept for n→1, where the continuum limit has no meta
insulator transition. All other conclusions are the same as
the Hubbard model, except that for a continuum model th
are no umklapp processes.

C. SU„3…-invariant t-J model

The t-J model involves three possible states per s
namely, a hole, an up-spin electron and a down-spin elect
A permutation symmetry of these three states between ne
boring sites leads to a supersymmetric algebra24,25and hence
to integrability. Here we assume that the number of hole
larger than both the number of up-spin and down-spin e
trons. The Hamiltonian is then given by

HtJ52(
is

P~cis
† ci 11s1ci 11s

† cis!P

1 (
iss8

ci 11s
† cis8

† cisci 11s81(
i

nini 11 , ~12!

whereP is a projector that excludes the multiple occupan
at each site andni5(scis

† cis is the number operator for sit
i. This variant of thet-J model corresponds to an effectiv
repulsion of particles on nearest-neighbor sites.

In order to map the Coulomb drag problem onto the
persymmetrict-J model we consider spinless carriers trav
ing along two quantum wires withs51,2 labeling the two
conductors. The BetheAnsatzsolution of thet-J model in
terms of two sets of rapidities~for the charges and spinons
respectively! can be found in Ref. 26. For the ground-sta
all rapidities are real and densely distributed. The simp
condition for the Coulomb drag is again thatpFc52pFs
5pn, wheren is the fermion density,Ne /Na , andpFc and
pFs are the Fermi momenta of the charge and spinon ba
respectively. In terms of the Fermi momenta for the tw
conductors this condition ispF15pF25pn/2, i.e., both
wires have the same number of carriers. As a consequen
the momentum conservation, the drag current is then aga
the opposite direction to the driving current.

As for the Hubbard model, the critical behavior at lon
times and large distances is determined by the finite-size
0-4
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rections to the ground-state energy. The general expres
of the conformal towers has the same form as in Eq.~2!,
where the quantum numbers also have the same mea
here. The ground-state energy in the thermodynamic lim
the group velocities, and the generalized dressed charges
however, model dependent and, hence, different. The con
mal dimensions only involve the generalized dress
charges, which for equal density of carriers in both cond
tors are againzcs50, zss51/A2, zsc5

1
2 zcc , and zcc

5jc,c(Q), where nowjc,c(p) satisfies the linear integra
equation

jc,c~p!512E
2Q

Q

dp8KN~p2p8!jc,c~p8!,

KN~x!5
1

pN
ReFCS 11

1

N
1

ix

N D2CS 11
ix

N D G ~13!

for N52. HereC is the digamma function.
The quantum numbers for the drag-current response fu

tion are the same as for the previous cases, i.e.,Ds561 and
all others are zero. Here we again assume the driving w
has the label 1 and wire 2 hosts the drag current. The c
formal dimensions for the drag current are thenDc

65u/16
andDs

651/4, and the temperature dependence of the co
lation function is (pT/Na)u/4. The exponentu is shown in
Fig. 1~c! as a function of the band fillingn5Ne /Na . Note
that for this modeln cannot exceed the value 2/3. Note th
u is now less than 2 and decreases withn. The current cor-
relation function for the driving wire has the same tempe
ture dependence. All other conclusions discussed for
Hubbard model remain valid here.

III. SPINLESS CARRIERS WITH ATTRACTIVE
INTERACTION

If the interaction between carriers in different wires
attractive, the dominant drag current is parallel to the driv
current. Below we discuss this effect using three integra
models, namely, the Hubbard model, the gas withd-function
interaction, and the standard supersymmetrict-J model.

A. The Hubbard model

We consider model~1! but for U,0. The BetheAnsatz
solution~i.e., the discrete Bethe equations! is the same as fo
repulsive interaction.19 The attractive interaction pairs th
electrons into Cooper-like singlet states without off-diago
long-range order even atT50.27 Here the two wires play the
role of the spin. Forequal number of carriersin each wire,
the singlet pairs introduce a ‘‘spin-gap’’~binding energy! in
the excitation spectrum of unpaired electrons. The pairs
like hard-core bosons and are characterized by a set of
rapiditiesL with Fermi points at6Q. Since excitations in-
volving only one conductor~spin excitations! are suppressed
by the gap, the finite-size corrections to the ground-state
ergy are those of a one-component Luttinger liquid,28
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E5Nae`1~pvF /2Na!~DM /z!2

1~2pvF /Na!@z2D21n11n221/12#, ~14!

where againe` is the ground-state energy density andvF is
the group velocity of the paired charges. The quantum nu
bers have similar meanings as before,DM is the departure of
the number of pairs from the equilibrium value, 2D is the
difference of forward to backward moving pairs, andn6

represents the low-lying particle-hole excitations for pair
electron states about each of the Fermi points. AgainDM ,
n6, and 2D take always integer values; henceD can either
be an integer or half-integer depending on the initial con
tions.

The quantityz is the generalized dressed charge, related
the stiffness of the Cooper pairs, given byz5j(Q), where
j(L) satisfies the integral equation28

j~L!1E
2Q

Q

dL8a2~L2L8!j~L8!51, ~15!

wherea2(x)5(uUu/2p)/(x21U2/4). The Fermi momentum
of the Cooper pairs ispF5pn/2, and the total momentum o
the system in terms of the quantum numbers isP
5(2p/Na)@MD1n12n2#. The conformal dimensions o
primary fields are obtained from Eq.~14! andP ~Ref. 28!,

D65n61
1

2
@DM /~2z!6zD#2. ~16!

Since the electrons are all paired in bound states, the d
and driving currents are parallel. The voltage applied to
driving wire can then only transfer charges from one Fer
point to the other without creating spin excitations, whi
are gapped. Consequently, there is a simultaneous ch
transfer in both wires. The quantum numbers correspo
ing to this process areD51 and all others are zero. In
terms of carrier field operators the current operator
simultaneous conductivity in both wires i
c12

† (x,t)c22
† (x,t)c21(x,t)c11(x,t) and the corresponding

equal-time response function is proportional to

e24ipFxS pT/Na

sinh~pTx/vF! D
u

, ~17!

whereu52z2 is related to the stiffness of the pairs. Integra
ing with respect tox we obtain (pT/Na)u21 for the simulta-
neous conduction through both channels.u as a function of
the electron densityn5Ne /Na is displayed in Fig. 2~a! for
several values ofU. Note that forU→2` we obtainu52
and forU→0 we haveu51. Note the strong dependence o
n asn→1 due to the Van Hove singularity of the filled ban
of pairs.

If the number of carriersin the two wires isdifferent, not
all the charges can be paired, and a second branch of s
~corresponding to unpaired charges! appears in the ground
state. This band of rapidities is then no longer gapped,
has a Fermi surface. The finite-size corrections to
ground-state energy are then again of the general form of
~2!, where l and q label the paired (p) and unpaired (u)
0-5
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P. SCHLOTTMANN PHYSICAL REVIEW B69, 035110 ~2004!
states. The conformal dimensions are similar to Eq.~5!, but
with indicesp andu. Since there are now two Dirac seas,
is possible to consider the driving and drag currents se
rately.

In order to discuss the drag current we have to distingu
two cases: either~i! the drag wire or~ii ! the drive wire has no
unpaired carriers. In case~i! the driving voltage accelerate

FIG. 2. Critical exponentu as a function of the band fillingn for
~a! the Hubbard model with attractiveU for various interaction
strengths,~b! the gas of charges with attractived-function potential
for various coupling strengthsc, and~c! the standard supersymme
ric t-J model. Forn→0, u52 for the first two models, whileu
54 for the t-J model.
03511
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h

paired and unpaired charges. The paired carriers give ris
a drag current parallel to the driving current and the d
current is determined by the quantum numbersDp521 and
Du51, while all other quantum numbers are zero, i.e., it
proportional to (pT/Na)2(zpp2zup)212(zpu2zuu)221. The un-
paired charges can induce a backward current of pair
pFu52pFp to satisfy momentum conservation, which has t
same temperature dependence as the pair-induced curre
case~ii ! the driving voltage accelerates only the pairs, but
drag current has two components, namely, from paired
unpaired charges. The drag current arising from pai
charges, which is parallel to the driving current, is charac
ized by the nonzero quantum numberDp51 and has the
exponent 2(zpp

2 1zpu
2 )21. The drag current arising from th

unpaired states, on the other hand, is opposite to the dri
current~characterized byDu51 and all other quantum num
bers being zero! and has the critical exponent 2(zup

2 1zuu
2 )

21. As a function of the unpaired charges, the expone
change discontinuously from case~i! to ~ii !.

B. d-function potential

We consider model~10! but for c,0. The discrete Bethe
Ansatzequations are the same as for a repulsive interactio23

As for the Hubbard model the attractive potential form
bound states of carriers between the two wires.27 We again
have to distinguish the cases of equal and different num
of carriers in each wire. In the former case all charges
paired in bound states, while in the latter case there are
paired carriers left over.

For equal number of carriersin each wire, the excitations
of unpaired electrons are gapped, and the finite-size exc
tion spectrum is again given by Eq.~14!.28 The group veloc-
ity for the pairs and the dressed generalized charge are, h
ever, different from those of the Hubbard model. The dr
and driving currents are parallel, since the carriers canno
depaired. For simultaneous conductivity in both wires t
quantum numbers areD51 and all others zero, and the crit
cal exponent for the current isu21, whereu52z2. u as a
function of n5Ne /Na is displayed in Fig. 2~b! for several
values ofc. Since in the continuum there is no upper ba
edge, there is no strong dependence ofu asn→1.

For wires withdifferent carrier densitiesnot all carriers
are paired, so that the rapidity band of unpaired carrier
partially filled and the system behaves like a two-compon
Luttinger liquid. As for the Hubbard model with attractiveU,
the corresponding conformal towers are given by Eq.~2!,
where l and q label the paired (p) and unpaired (u) states.
The dressed generalized charges entering the conformal
ers and dimensions are given byzpq5jpq(Q) and zuq
5juq(B),

jpl~L!1E
2Q

Q

dL8a2~L2L8!jpl~L8!

1E
2B

B

dL8a1~L2L8!jul~L8!5dpl ,

jul~L!1E
2Q

Q

dL8a1~L2L8!jpl~L8!5dul , ~18!
0-6
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wherean(x)5(nucu/2p)/@x21(nc/2)2#, andQ andB deter-
mine the number of paired and unpaired carriers, resp
tively. The conformal dimensions are given by

2Dp
65~zppDp1zupDu!2, 2Du

65~zpuDp1zuuDu!2.
~19!

With two Dirac seas, it is now possible to have separ
driving and drag currents. The analysis of the drag curr
follows in complete analogy to the last paragraph in S
III A.

C. Supersymmetric t-J model

In this section we consider the standardt-J model, which
involves three possible states per site~a hole, an up-spin
electron and a down-spin electron!. In contrast to the varian
discussed in Sec. II C, which is SU~3!-invariant, the presen
model is also integrable for 2t5J and has an underlying
supersymmetric algebra.24,25 The Hamiltonian is given by

HtJ52(
is

P~cis
† ci 11s1ci 11s

† cis!P

1 (
iss8

ci 11s
† cis8

† cisci 11s82(
i

nini 11 , ~20!

whereP is a projector that excludes the multiple occupan
at each site andni5(scis

† cis is the number operator for sit
i. This model corresponds to the largeU-limit of the Hubbard
model29 and the Zhang-Rice singlet state.30 Again the spin
index labels the two wires.

The BetheAnsatzsolution of this model involves two set
of rapidities, one for the charges and one for the spins.
equal number of carriers in each wire, in the ground-state
the carriers are paired in analogy to the Hubbard a
d-function models. The key difference of thet-J model with
the other two models is that the binding energy is zero,
the unpaired carrier excitations are not gapped in this c
Hence, we do not have to distinguish between the gap
and gapless situations. The system is a two-compon
@paired~p! and unpaired~u! carriers# Luttinger liquid and the
finite-size corrections to the ground-state energy is of
form of Eq. ~2!.

For simplicity we limit ourselves to the case of equ
carrier density in the driving and drag wires. As for the Hu
bard model with repulsiveU the matrix of dressed genera
ized charges has dimension 232. @Here we follow the nota-
tion of Refs. 18 and 31, which is actually in terms of holo
and up-spin holes, rather than electrons.# For the dressed
charges we obtain thatzpu50, zuu5221/2, zup5zpp/2, and
zpp5j(Q), where

j~L!511E
2Q

Q

dL8HN~L2L8!j~L8!, ~21!

with HN given by Eq.~11! for N52 andc51. The param-
eteru52zpp

2 appearing in the critical exponents is shown
Fig. 2~c! as a function ofn5Ne /Na . For all three models in
this section,u is a decreasing function ofn.
03511
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For the drag current we have to consider two contrib
tions. On the one hand, the driving potential pulls on t
paired electrons, giving rise to a drag current parallel to
driving current. The quantum numbers corresponding to
simultaneous conductivity in both wires areDp51 and all
others zero, and the critical exponent for the current
2(zpp

2 1zpu
2 )215u21. On the other hand, if either the driv

ing current or the drag current have a component of unpa
charges, then ifpFu52pFp there is the possibility of trans
ferring momentum between the two wires. In this case
driving and drag currents flow in opposite directions. T
quantum numbers for this process areDp51 andDu521,
while all other quantum numbers are zero. The critical ex
nent for the drag current is 2(zpp2zup)

212(zpu2zuu)
2

21. The situationpFu52pFp can only be satisfied if the
charge density in the two wires is very different.

IV. REPULSIVE INTERACTION: THE ROLE OF THE
SPIN

In this section we reconsider the situation of repuls
interaction between the carriers, but in contrast to Sec. II
carriers now have spin. The spin and the two wires give r
to four internal degrees of freedom. Unfortunately, the d
generate Hubbard model@of more than two internal variable
(N52)] is not integrable. We therefore limit ourselves to t
d-function interaction and the SU~5!-invariant t-J model.

A. d-function potential

The gas of fermions with four colors interacting via
d-function potential, defined by the Hamiltonian~10!, is also
integrable in terms of four nested BetheAnsätze.32 There are
then four sets of rapidities, corresponding to the charges~to-
tal number of particles! and three spinons sets for the relati
population of the internal degrees of freedom. For t
ground-state andc.0 all the rapidities are real.18,32 In the
absence of an external magnetic field, the first and th
spinon rapidity bands are completely filled.33 If in addition
the two wires have the same density of electrons, then
second spinon rapidity band is also completely filled. W
limit our discussion to this case.

The finite-size corrections of mesoscopic order to
ground-state energy the momentum and the conformal
mensions are given by Eqs.~2!, ~4!, and~5!, respectively, but
with l and q running over four indices.18 The low-energy
excitations are given in terms of four sets of quantum nu
bers, i.e., for each rapidity band, the change in the numbe
rapiditiesDNq , the quantum number for backward scatteri
Dq and particle-hole excitations about each Fermi point,nq

6 .
The matrix of generalized dressed charges has dimensio
34 and has the form characteristic of SU(N) invariance, i.e.,
zqc5@(N2q)/N#zcc , zcq5dq,0zcc and the spin sector is
given by the symmetric 333 matrix ZN defined by34

~Z N
22! i j 52d i , j2d i , j 212d i , j 11 ,

~Z N
21! i j 52

2

N

y1/2yiyj

xi
21xj

222x1/2xixj2y1/2
2

, ~22!
0-7
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where xj5cos(pj/N) and yj5sin(pj/N). Since all compo-
nents are equally populated, there are only two different c
formal dimensions of fields, one associated with the cha
sector~of central charge 1! and the other one with the SU(N)
symmetry~of central chargeN2153, Refs. 18 and 34!

2Dc
652nc

61Fzcc(
j 50

N21
N2 j

N
D j6

DNe

2zcc
G2

,

2DS
652nS

61
1

4 (
i , j 51

N21

DMi~Z N
22! i j DM j

1 (
i , j 51

N21

Di~Z N
2 ! i j D j6 (

i 51

N21

DMiDi , ~23!

wherenS
6 is the sum over the quantum numbers for the

citations at the forward and backward Fermi points for
q51,2,3, andq50 refers to the charges. Note thatDS

6 is
independent of the interaction strength and band filling; i
the same conformal dimension characterizing the SU(N)
Heisenberg chain and corresponding critical vertex mode35

If the electron density is the same in both wires and per s
component@SU~4! invariance#, then the Fermi momenta o
the rapidity bands arepF054pF3 , pF153pF3, and pF2
52pF3, wherepF35pn/4 andn5Ne /Na . The dressed gen
eralized chargezcc5jc,c(Q) is given by Eq. ~11! for N
54.

To study the drag effect we use the representationN1↑
>N1↓>N2↑>N2↓ , where wire 1 carries the driving curren
and wire 2 hosts the drag current. Momentum transfer
tween the wires is optimal when allNj s are equal. Under
these circumstancespF j s5pF3 for all j and s. The drag
current has now an up-spin and a down-spin channel.
corresponding currents are expected to be equal. For the
spin channelD251 andD3521, while all other quantum
numbers are zero. For the down-spin channel, on the o
hand,D351 and all other quantum numbers are zero. B
cases yield 2Dc

65zcc
2 /16 and 2DS

653/4, so that the critical
exponent for the drag current isu/1621/2. u as a function of
the total electron density is displayed in Fig. 3~a! for various
coupling strengths.

B. SU„5…-invariant t-J model

We now extend the model of Sec. II C to include sp
degrees of freedom. The Hamiltonian is still given by E
~12! but with s running from 1 through 4~spin-1/2 times
two wires!. The model still satisfies a supersymmetric alg
bra equivalent to the permutation of the degrees of freed
between neighboring sites.24,25 The degrees of freedom ca
be represented by a spin 2 and, hence, the invariance o
model is SU~5!. The BetheAnsatzsolution of the model
involves four sets of rapidities~one for the charges, two fo
the spin degrees of freedom of the wires, and one for
relative population of the wires!.26 For the ground-state al
rapidities are real and densely distributed.

We again use the representationN1↑>N1↓>N2↑>N2↓ ,
where wire 1 carries the driving current and wire 2 hosts
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drag current, and consider the limit of equal electron den
in each wire and for each spin-component. The general fo
of the finite-size corrections to the ground-state energy,
momentum, the dressed generalized charges and the co
mal dimensions is the same as for thed-function potential
described in the preceding subsection, as a consequen
the SU~4! invariance of the internal degrees of freedom. T
dressed charge for the charge sector is now given byzcc
5jc,c(Q) with jc,c(p) being the solution of Eq.~13! for N
54. The exponentu as a function of the total electron den
sity is displayed in Fig. 3~b!. In contrast to thed-function
potential, for the present modelu decreases withn.

If the electron density is the same in both wires and
spin component, then the Fermi momenta of the rapid
bands arepF054pF3 , pF153pF3, and pF252pF3, where
pF35pn/4. Momentum transfer between the Fermi points
the driving wire 1, and global momentum conservati
yields a backflow drag current. As in Sec. III A the dra
current has an up-spin and a down-spin channel, which
both equal. The corresponding quantum numbers are all z
except D251 and D3521 for the up-spin channel, an

FIG. 3. Critical exponentu as a function of the band fillingn for
~a! the gas of electrons withd-function repulsion (N54) for vari-
ous coupling strengthsc and~b! the supersymmetrict-J model with
SU~5! invariance. Forn→0, u52 for both models, while the be
havior is model dependent for largern. For thet-J model the maxi-
mum electron density isn5N/(N11).
0-8
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D351 for the down-spin channel. Both cases yield 2Dc
6

5zcc
2 /16 and 2DS

653/4, so that the critical exponent for th
drag current isu/1621/2.

V. ATTRACTIVE INTERACTION: THE ROLE OF THE
SPIN

In this section we consider the situation of an attract
potential between the carriers with spin~electrons!. As in
Sec. IV the spin and the two wires give rise to four intern
degrees of freedom. Since the degenerate Hubbard mod
not integrable, we limit ourselves to thed-function interac-
tion and the supersymmetrict-J model.

A. d-function potential

As discussed in Sec. IV A the gas of fermions with fo
colors interacting via ad-function potential, Eq.~10!, is also
integrable in terms of four sets of rapidities.18,32,33 For an
attractive interaction (c,0) the electrons form bound state
of up to four electrons~there are four degrees of freedom!. If
N1↑5N1↓5N2↑5N2↓ , all electrons are bound in four clus
ters, and clusters of less than four electrons are gap
There is then only one branch with Fermi surface and
finite-size contributions to the ground-state energy are of
form of Eq. ~14! with the dressed generalized charge giv
by z5j(Q), where

j~L!512E
2Q

Q

dL8JN~L2L8!j~L8!,

JN~x!5
1

pucu
ReFCS N1

ix

ucu D2CS 11
ix

ucu D G ~24!

for N54. For N52 this expression reduces to Eq.~18! for
equal carrier density in the two wires. The driving potent
in this case has to pull on the bound states of four, so tha
driving and drag currents are parallel. For simultaneous c
ductivity in both wires the quantum numbers areD51 and
all others zero, and the critical exponent for the curren
u21, whereu52z2. u as a function ofn5Ne /Na is dis-
played in Fig. 4~a! for several values ofc.

Another case that is of interest is when the conduct
have very different densities, so that electrons are boun
clusters of four and the remainder of electrons in the majo
band in Cooper pairs~spin singlets!. In this case the system
is a two-component Luttinger liquid. Now there is the pos
bility of transferring momentum between the two comp
nents of the Luttinger liquid~the Fermi momentum of the
Cooper pairs has to be twice that of the four electron bo
states!, which gives rise to a backflow drag current, in ad
tion to the forward drag current discussed above.

B. Supersymmetric t-J model

The extension of the standardt-J Hamiltonian, Eq.~20!,
to four internal degrees of freedom~spin times two conduc-
tors! can also be used to model the Coulomb drag probl
The BetheAnsatzsolution36 involves four sets of rapidities
one for the charges and three for the internal degree
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freedom. For equal number of electrons in each wire and
spin component, in the ground-state all the electrons
clustered in units of four, in analogy to the case of the attr
tive d-function potential. The key difference between the tw
models is that the binding energy is zero for thet-J model,
i.e., the bound states of less than four electrons are
gapped.36 The system is a four-component Luttinger liqu
and the finite-size corrections to the ground-state energy i
the form of Eq.~2! with the summation index running ove
four bands. For N1↑5N1↓5N2↑5N2↓ , the generalized
dressed chargezcc5j(Q), wherej(L) is the solution of Eq.
~21! with HN given by Eq.~11! for N54 and c51. The
remaining components of the matrix of dressed charges
zqc5@(N2q)/N#zcc , zcq5dq,0zcc , and the ‘‘spin’’ sector is
given by the symmetric 333 matrix ZN defined by Eq.
~22!.34 Here the charges ‘‘c’ ’ correspond toq50.

The Coulomb drag current has several components. H
we assume that the pull by the driving potential is on t
clusters of four. We consider only two contributions, name
~1! the drag current arising from the clusters of four ele
trons, which is parallel to the driving current and~2! the drag

FIG. 4. Critical exponentu as a function of the band fillingn for
~a! the gas of electrons (N54) with attractived-function potential
for various coupling strengthsc and ~b! the supersymmetrict-J
model for N54. For n→0, u52 for the d-function potential,
while u58 for the t-J model.
0-9
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P. SCHLOTTMANN PHYSICAL REVIEW B69, 035110 ~2004!
current on paired electron states in the drag wire, which
opposite to the driving current. For case~1! the quantum
numbers corresponding to the simultaneous conductivity
both wires are all zero, exceptDc521. The critical expo-
nent for the current is then 2zcc

2 215u21. u as a function
of n5Ne /Na is displayed in Fig. 4~b!. For case~2!, on the
other hand, momentum has to be transferred between
wires, which is only possible ifpF252pFc . The situation
pF252pFc can only be satisfied if the charge density in t
two wires is very different. The quantum numbers for th
process areDc51 and D2521, while all other quantum
numbers are zero. The critical exponent for the drag cur
is then 2( j 50

3 (zc j2z2 j )
221, where j 50 refers to the

chargec. The matrix of dressed generalized charges for t
case has to be determined by solving the system of inte
equations~see Ref. 34!.

VI. CONCLUSIONS

We considered two nearby parallel quantum wires w
carriers interacting via repulsive or attractive potentia6

Each conductor has at least one Fermi point for forw
~backward! moving charges. When an electric field is appli
to the driving wire, some carriers are transferred from o
Fermi point ~e.g., for the backward movers! to the other
Fermi point~i.e., for forward movers!, thus generating a cur
rent. This driving current may induce a drag current in t
second wire via the interaction among the carriers. The s
degree of freedom of the electrons only plays a second
role in this process, so that frequently spinless carriers
considered in this context.

For a repulsive interaction for carriers between wires,
momentum conservation of the interaction yields a backw
momentum transfer in the drag wire, inducing in this way
drag current opposite to the driving current. The respo
function for this current is proportional to a power of th
temperature, with a nonuniversal critical exponent. The
ponent depends on the model, the interaction strength,
the band-filling.

For an attractive interaction among carriers between
wires, on the other hand, the charges form bound states.
potential applied to the driving wire pulls the bound ele
trons and hence the drag and driving currents are paralle
the excitations into unbound carrier states are all gapp
then this is the only contribution to the drag current. Ho
ever, if the band of unbound carriers has a Fermi surfac
backflow current may also arise, in the case where the Fe
momenta are matched so that momentum transfer betw
bands is possible. The current response functions fol
power laws of the temperature, again with nonuniversal
ponents that depend on the model, the band filling, and
interaction strength.

We considered the exact BetheAnsatzsolutions of severa
integrable models to obtain the critical exponents from
conformal towers. The exact solution yields all excitati
branches, which either have Fermi points or are gapped.
former constitute a Luttinger liquid component. Only th
low-energy excitations of the Luttinger liquid are needed
calculate the asymptotic dependence of correlation functio
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which are described in terms of four quantum numb
~number of particles, backward-scattering quantum num
and particle-hole excitations at each of the Fermi poin!.
The excitation spectrum is obtained from the mesosco
finite-size corrections to the ground-state energy in terms
the group velocities and the matrix of dressed generali
charges, which describes the interplay of the different ex
tation branches as a consequence of the interaction.

If the carriers are spinless and the interaction is repuls
the system can be described in terms of the Hubbard mo
where the spin-index labels the wire~see Sec. II A!. The
simplest situation corresponds to equal carrier concentra
in the two wires. In this case the critical exponent is det
mined by u, which is related to the charge stiffness. T
exponent decreases with increasingU and has a strongn
dependence close to the metal-insulator transition~for n
→1). The latter dependence is absent in the continuum v
ant (d-function potential!, since this model has no meta
insulator transition. Hereu increases monotonically with th
band filling. Finally, for the SU~3!-invariant t-J model the
value ofu is always smaller than 2 and a decreasing funct
of n. In Sec. IV these results were extended to the case
carriers with spin. As mentioned above the effect of the s
is quantitative but not qualitative.

For spinless carriers with an attractive interaction the s
tem can be modeled by the Hubbard Hamiltonian with ne
tive U. In this case all carriers are paired in bound states
states of unpaired carriers are gapped. The system is a
component Luttinger liquid and the parameteru decreases
with n and is always less than one. The continuum limit
the model (d-function potential! yields similar results excep
in the limit n→1. The case of the standardt-J model is
physically different because the unpaired carrier excitati
are not gapped~see Sec. III C!. The exponentu in this case
also decreases monotonically withn. In Sec. V the extension
of these results to carriers with spin is presented. Again
effect of the spin is only quantitative.

The usual drag current discussed in the literature is
one induced via back scattering of ballistic carriers and m
mentum conservation through a repulsive interaction. T
linewidth of the excitations in the Luttinger liquid are pro
portional toT and smear thed function for the momentum
conservation. It then allows for a small mismatch~of order
T) between the Fermi momenta of the two wires. There
many other possibilities to introduce a drag current, for b
repulsive and attractive interactions. Some of these res
involve backscattering of several carriers and the absorp
of a vector of the reciprocal lattice~Umklapp process! if the
interaction is repulsive~see Sec. II A!, and backscattering fo
an attractive interaction if the carrier density in the two wir
is very different~see Sec. III A!.
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