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Monte Carlo simulations of two-dimensional charged bosons
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Quantum Monte Carlo methods are used to calculate various ground-state properties of charged bosons in
two dimensions, throughout the whole density range where the fluid phase is stable. Wigner crystallization is
predicted atr ;=60. Results for the ground-state energy and the momentum distribution are summarized in
analytic interpolation formulas embodying known asymptotic behaviors. Near freezing, the condensate fraction
is less than 1%. The static structure facBjk) and susceptibilityy(k) are obtained from the density-density
correlation function in imaginary timés (k, 7). An estimate of the energy of elementary excitations, given in
terms of an upper bound involving(k) and y(k), is compared with the result obtained via analytic continu-
ation fromF(k, 7).
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[. INTRODUCTION and the susceptibility are instead obtained, using RQMC,
from the autocorrelation in imaginary time of the density-
The two-dimensional fluid of pointlike spinless bosonsfluctuation operator. The inverse Laplace transform of the
interacting with a I/ potential has drawn attention in the same autocorrelation function yields valuable information on
literature as a model in quantum statistical mechanics whichthe spectrum of elementary excitations.
parallels the physically more relevant fluid of electrons. At
zero temperature, the model is specified by the coupling pa- Il. METHOD
rameterr ;= 1/\/mnag, wheren is the density andg the _ _
Bohr radius. For smalt, the system is a weakly coupled ~ Quantum Monte Carlo is the method of choice for
fluid, well described by the random-phase approximation, Strongly interacting bosonic systems in their ground state,
whereas it becomes strongly correlated and eventually undepecause it yields exact numerical results for a number of
goes Wigner crystallization upon increasing Several re- quantities, subject only to known statistical errors.
sults for the ground-state energy, static structure, screening The DMC method® samples a probability distribution
properties, and elementary excitations have been reported ugtoportional  to  the  “mixed distribution” f(R)
ing the correlated basis function thedyarious implemen- =®(R)¥(R), where R={r;, ... r\} is a point in the
tatons of the Singwi-Tosi-Land-S@nder (STLS  2N-dimensional configuration space of the systain(R) is
formalism®® and the Overhauser modelThe momentum a trial wave function, andP(R) is the ground-state wave
distribution has been calculated for lowin the Bogoliubov ~ function. The exact ground-state energy is obtained as the
approximatior’. A comparison between the STLS results for average over the mixed distribution of the local energy,
the 1f potential and the Imj potential has been reported by EL(R)=¥(R) *H¥(R). For a general operator not com-
Moudgil et al® muting with the Hamiltonian, ground-state averages can be
Although the charged-boson model may find applications@Pproximated by the extrapolated estimteéce the average
to Superconductors, either as a System of bound-electropver the mixed distribution minus the variational estin)l,é‘fe
pairs or in terms of an effective action with fermionic de- Which leads to an error quadratic in the differencé (
grees of freedom integrated ddtno direct realization of the —¥). Our results for the one-body density matrix are given
system is experimentally available. Therefore numerical rein terms of this extrapolated estimate, as in Ref. 12.
sults provided by quantum Monte Carl@MC) simulations For operators diagonal iR we avoid mixed estimates
constitute the only reliable benchmark for analytic ap-resorting to the RQMC methdi(one could alternatively use
proaches. Extensive simulation results are available fothe forward walking techniqd within the DMC methodl
three-dimensiona(3D) charged bosor$'? and for the 2D In RQMC, the evolution in imaginary time of the system is
system with the I interaction®®~*° represented by a time-discretized path-{R,, ... Ry}
In this work we present QMC results for several ground-The  algorithm ~ samples  the  distribution P(X)
state properties of the 2D fluid of charged bosons with the= V' (Rg)?II!L G(R;_;—R;;€), where G(R—R’;¢) is a
1/r potential. We use two different algorithms, namely, dif- short-time approximation to the importance-sampled Green’s
fusion Monte CarldDMC),*® which is more efficient in the function ¥ (R’)(R’|exp(—eH)[RW(R)~*. Assuming M is
calculation of mixed averages, and reptation quantum Montéarge enough, the inner time slices of the path are individu-
Carlo(RQMC),Y” which gives easier access to correlations inally sampled from the distributiod®(R)?, and sequentially
imaginary time. The exact ground-state energy and the mixesampled according to the quantum dynamical fluctuations in
estimaté® of the one-body density matrix are calculated withthe ground state. Pure estimatofsh|O|®)=((O(R;))),
the former. Unbiased estimates of the static structure factcand ~ imaginary-time  correlation  functions, c(r)
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TABLE |. Ground-state energy for bosons from VM@ariational Monte Carlpand DMC, extrapolated
to the bulk limit and compared with estimates from approximate theories. We also give the average kinetic
energy and inverse compressibility obtained from @&g. All values are in Rydberg per particle, the digits in
parentheses represent the error bar in the last digit.

HNC STW STLS
rs E(PMO) E(VMC) (Ref. 1)  (Ref.3  (Ref. 5 Ex 1pK+
1 —1.1448(5)  —1.14269(7) —1.1458 —1.1062 0.2903 —0.531
2 —0.6740(2) —0.67192(6) —0.6740 —0.6631 —0.6484 0.1442 —0.3582
5 —0.31903(5) —0.317456(6) —0.3185 —0.3133 —0.3078 0.04896 —0.187
10 —0.17480(5) —0.17385(3) —0.1741 -—0.16685 —0.1724 0.01961 —0.1097
20 —0.093387(8) —0.092903(3) —0.0928 —0.086024 —0.0959 0.007533 —0.06177
40 —0.048986(8) —0.048737(2) 0.00286 —0.03359
75 —0.026965(6) —0.0268246(8) 0.001189 —0.01892

=({(O(R)O(R, ), are thus readily accessiblghere andb;=40/7. The reduceg? for the fit with four param-

{{---)) means average over the random walk in the space ddters and seven data points is 1.5. The above interpolation

quantum path¥, and 7=ne).’ formula allows us to obtain, by means of the virial theorem,
In all simulations we consider a systemMparticlesina the unbiased estimator of the average kinetic endtgy

square cell with periodic boundary conditions. The trial func-= —d(rsEy)/drs as well as of the inverse compressibility

tion is chosen of the pair product formW¥(R)

=exd —Zj(uri—r;|)], whereu(r) is the random-phase ap- rs

proximation pseudopotential following Ref. 19. Both the 1/pKT:_Z

pseudopotential and the Coulomb inter?lc;[igon are evaluated

using generalized Ewald sunisAs usualtt'® we estimate both reported in Table I.

the finite-size effect on the ground-state energy from varia- In Fig. 1 our results are compared with the previous DMC

tional Monte Carlo simulations. Variational energigg, cal- . .
culated withN in the range 25-200, are used to determinereSUItS by Rapisarda and Senaféfer 2D fermions and for

: . = the 2D Wigner crystal. Note the difference in behavior at
the best-2f|t parar_neter in the fornEm—EN+a(rs)/N high density, where the Pauli exclusion principle forces a
+b(rg)/N“. Assuming that the same size dependence holds—>, di f the fermi d th I
for the exact DMC energies, the optimal parameis(s;) f< -~ divergence of the fermion energy, and ine very sma
andb(rg) are then used to extrapolate to the thermodynamiggggggegrcit;)l:? ztztt'sﬂcgo a;nlgr?g;n.lgn;w;t qlrgins_:_c;]r;s
limit the result of a single DMC simulation withl=52.2° ystallize ats= ! 5T o
Other quantities have comparatively smaller finite-size er- ,
rors, typically below the statistical accuracy of the present 165 L
simulations.

2
&Eg_r J Eg
drs s &r§

Ill. RESULTS

(Ry)

A. Ground-state energy

The DMC ground-state energies of the 2D bosonic fluid in Ler

the thermodynamic limit are compared in Table | with the
results obtained with the STLS method by Gblsith a

parametrized wave function approach by Sim, Tao, and Wu
and within the hypernetted-chain approximatigtiNC) by

Apaja et al! While all computations agree qualitatively, we 1.55 -
note that the agreement between HNC and the exact DMC -
results is particularly good. Our DMC results can be accu- L
rately reproduced by the parametrized function C

6

ry/%(E(r,)—¢,/T,)

0 20 40 60 80

Eg(rs)z—[aor:°+alrgl+a2r§2+ a3r:3]‘°, (1) :
. . FIG. 1. Ground-state energy for 2D triangular Wigner crystal

wherea, andbo arz?sflxed .by .the smalis b.e.hawoil [E(rs (WC), bosongB), and unpolarizedUP) and polarizedP) fermions
—0)= - 1.29355/57], by is fixed by requiring _a_ constant 4q 5 function of ;. Wigner crystal and fermion data are from Ref.
subleading term fors—0, andb, andbg by requiring lead- 22 For clarity we plotted r¥E(r)—c,/rd], with ¢,
ing terms inr a”drs_slz forrs—o. The final values of the = 22122, while the inset shows the correspondiifg,) curves.
parameters are c=7/40, a,=0.2297, a,;=0.161, a, Points with error bars are size-extrapolated DMC results, continu-
=0.0594,a5=0.01017,by=80/21, b;=94/21, b,=73/14, ous curves are analytical fits.
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/T, FIG. 3. Variational Monte Carlo results for the one-body density

matrix n(r) (left scale and the quantitym(r) of Eq. (6) (right
scalg at rg=2. Results are shown for systems Nf=52 (solid
lines and N=100 (dotted line$ particles. Size effects on these

diff . itical d L | he diff quantities are virtually removed using the correction proposed by
' erence. In critical density Is analogous to the ', erenceMagro and CeperleyRef. 13 for 2D bosons with I interactions.
obtained in the 3D case, where bosons crystallizer sat

=160 and fermions at;=100.*

FIG. 2. One-body density matrix(r) atrs=1, 2, 5, 10, 20, 40,
and 75.

wherex=Kkrg. Given the known values of the density and of
g(0) (see the following sectionwe determined the remain-

) ) ) ) ing parameters by a least-squares fit to the DMC data on
The one-body density matrir(r) and its Fourier trans- n(k), n(r), and the average kinetic energy.
form, the momentum distribution(k), have been computed Equation(2) implies a very slow convergence ofr) to
performing random displacements of particles on thg;g asymptotic limitn,
sampled configurations as explained in Ref. 13. Our results
for the one-body density matrix are shown in Fig. 2.

B. Momentum distribution

Extending to the 2D case the discussion presented for 3D T fra
charged bosons in Ref. 23, we fix the divergence of the mo- N(r—)—Np=Ng——e\/ — 0 (5)
mentum distribution at smak: ar@34) v or
n NgVr/2 . . .
n(k—0)= 0 SRALE (20  The above result allows us to obtain reliable estimates,of

45(k)  (krg)32’ directly from the large- tail of n(r). In fact, the quantity

where ny is condensate fraction andy=r.ag. The cusp
conditiorf* instead gives information on the short-range be-

havior of the momentum distribution: n(r)
m(r)= (6)
4rZg(0) 1+ T (U447 (31N rgr o/t
n(kﬂoo): S—G’ (3)
(krg)

whereg(0) is the pair-correlation function at=0. More- re?ches f|ts asymptotic valua(r—e)=n, at quite small
over, at small density, we expect the momentum distribution’ 24€S O (see '.:'g' 3 . :
' ’ Table Il contains the best-fit parameters and the resulting

:ﬁ e%(?yaf%?r&ﬂ%ﬁ;i&ﬁ?gﬁ?g e’ In agreement with harnA'Om(\:/alue of the condensate fractiog. The condensate fraction

We have collected all these information in a fitting for- Qecreases very rapidly with increasing the depletion be-

: .+ INQ already 50% at,=1, in agreement with the result of the
mula to interpolate the DMC data for the momentum distri Bogoliubov theor§ [in 3D (Ref. 12 a similar depletion oc-

bution n(k): curs atrs=5]. For large couplings, the Bogoliubov theory
(2 s 4g(0)r2 overestimates the condensate fraction. In a wide density
n(K) = (27)2pNgd2(K)+ Ny /ialie_K lag 4 §6+—es range in the liquid phase, say> 20, No is of t_hg order of
1K 1% or less. Such small values, obtained by fitting &g.to
a the extrapolated estimates from the simulation, are presum-
+ \/—3+a3+ agk+ask e—(xz—xae)/ai, (4) aplydmeaningful only as an indication of the order of mag-
K nitude.
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TABLE II. Best-fit parameters for Eq4). The last-but-one line reports the valuegfD) from Fig. 5 as
used in the fit ofn(k).

s 1 2 5 10 20 40 75
No 0.531 0.38 0.176  0.0677 0.018 0.001 0.0007
ag 0.839 0.853  0.475  0.977 0.861 1.21 2.59
a, 44 35 5.46
a, ~0.086  0.492 2.17 1.96 1.05 0.946 0.098
as 0.696 056 -21 -113 -008 074 0.627
a, 1.13 0.226 023 -001 —0.163 0.184  —0.103
as 0.135 0.192 0.28 0.7 —0006 —0.014 —0.024
ag -111  -6.07 112 -152 0.849 3.44 0.576
a, 6.98 2.29 1.45 1.86 2.61 1.99 2.59
Jo 0.21 0.078 0.01

no (Ref. 7) 0.537 0.398  0.230

C. Imaginary-time correlation functions: Static response
function and static structure factor

sharp peak develops in correspondence with the first lattice
wave vector of the 2D Wigner crystakro=(2m/3)"?

Information on charge response properties of the systeﬁ3-3- ) S )
such as screening, plasma oscillations, or polarization are !N Fig. 5 we report the pair-distribution function
contained in the imaginary-time density-density correlation

. 1
funct = —ri|—
unction 9(nN =y i; (8(ri=ri[=1)). 9

At low density g(r) develops a high peak and long-range
oscillations typical of a system approaching localization. As
the density increases the effective repulsion between par-
ticles decreases and overlapping between charges becomes
possible. The behavior dd(k) andg(r) is qualitatively in
agreement with the findings of Apajet al.® but for both
functions the Monte Carlo results show more pronounced
effects of correlations at low densities.

The static response functigp(k) can be evaluated from
the relation

1 )
F(kaT):N<Pk(T)Pk(O)>:fO dwe”™S(k,w), (7)

where p(7)=2;e®" and S(k,w) is the dynamical re-
sponse function. The correlation functioRék, 7) have been
computed with RQMC for systems of 56 particles.

The static structure factds(k) is readily obtained from
the imaginary-time density-density correlation function as

5= [ “dostke)=Fko). ®) Sk
, 0

(O]

X(k)z—zf: dwz—Zf:F(k,T)dT. (10)

In Fig. 4 we report the behavior & k) for various densities.

As rs increases and approaches the crystallization density, @e se forF (k,7) a form fitted to the Monte Carlo data in

the available imaginary-time rangsee below.

2 T T T
“‘Q.‘:“ 1.5 [ T T T T T ]
1.5 1
= tn‘}h 1
= 1+ eIt 2 3 Sk e e B AR —
05 t . 05 1
0 1 1 0 N
0 2 4 6 8 5 6
krg 1/rg

FIG. 4. Static structure factd®(k) as a function ofkr, for rg FIG. 5. The pair-distribution function fors=1, 2, 5, 10, 20,
=1,2,5,10,20,40,60. Lines are only guides to the eyes. Highed0, and 6Qcubic spline interpolation of Monte Carlo dat&ligher
peaks correspond to higher valuesrgfas in Fig. 5. peaks correspond to higher valuesrgf
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FIG. 6. Effective interaction for =2, 5, 10, 20, 40, and 60 _ _ .
(open symbols, Monte Carlo data; lines, cubic spline interpola- FlGd'_8' The excitation spe:j:tra_f:])g?]2_,5,10,20(fg|| circles atr)ld d
tions). Deeper minima correspond to lower densities. The solid doté)pmei,ﬂ1 |a_mo_no)sare compared with their respective upper boun
atk=0 are the values of 4K+ from Table | " (solid lineg. Dashed curves corresponds to data from Ref. 1
T ' for r¢=5 andr¢=20. Curves with deeper minimum corresponds to

In Fig. 6 we report the static effective interaction lower densities.

v/ e(k,0), wherevy is the Coulomb interaction anelk,0)

=1[1+vyx(k,0)] is the static dielectric function. At low S(k,w)= >, [{n|p]0)[28(w— wpo). (12)
the effective interaction is given by the compressibility sum n
rule
We estimate the energy dispersion of the collective exci-
op 1 tation by fitting the imaginary-time dependence Ffk, 7)

lim

==, 11 i _ o197 ~007 Thi
o€(k0)  pKy (11 with F(k,7)=A(k)e +B(k)e This amounts to

representing the dynamical structure fac&{k,o) as the
sum of twoé functions. When a single mode has a dominat-
ing spectral weight, its dispersian, (k) is reproduced rea-
sonably well'’ regardless of the representation chosen for
the remaining part of the spectrdm & function atw,(k) in

while in the short-wavelength limit it behaves like the Cou-
lomb interaction. The minimum o, /e(k,0) deepens and
shifts to largelk upon increasing. We note that a negative
dielectric function cannot be interpreted as a signal of insta:, . 25
bility of the bosonic fluid due to the presence of the rigidthIS casg .

background. As in the case of the structural properties, in the M_oreover, combining our results fCX(kg af?d S(k) we
large coupling regime the Monte Carlo data for the effective®Pt@in, by means of a sum-rule approath;a rigorous up-
potential show more pronounced features than the results &er bound for the plasmon dispersion,

Apaja et al.” This is shown, in terms of the static response <2pS(k)

function x(k), in Fig. 7. wMN< 13
D. Excitation spectrum At low k a single mode exhausts the sum rule. In this case,

The elementary excitation spectrum of the density quc-the upper bound in Eq(13) becomes an equality and the

tuation is contained in the dynamic structure factor strength of the excitation coincides wig{k).

05 : : ! ¥
0.8
(-
= 06 ]
™ @
£ 025 O o
R s 0.4 s 9
0.2 R
LR 4
o O 1 1
2.5 3.5 4.5
Krg
FIG. 7. The static response functigifk) atrs=1 (solid dots FIG. 9. Excitation spectrum near the rotonlike minimum fgr
andr =10 (open diamonds The solid lines are from Apajat al. =10,20,40,60. Full circles and open diamonds, data from two-
(Ref. 1). exponential fit toF(k, 7); solid lines, upper-bounds from EL3).
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In Fig. 8 we show our results for the excitation energies=60. Near freezing, the condensate fraction is less than 1%.
extracted directly front(k,7) and compare them with their Unbiased results for the static structure facs0k) and sus-
corresponding upper bounds, at different densities. On ineeptibility y(k), as well as some limited information on the
creasingrg a rotonlike mode, close to the first reciprocal excitation spectrum, are extracted from the density-density
lattice vector of the Wigner crystal, develops and softenscorrelation function in imaginary times (k, 7).

The evolution of this minimum as the crystallization transi-
tion is approached is shown in more detail in Fig. 9.

In conclusion, we have presented an extensive QMC
study of ground-state properties of 2D charged bosons. We The work of S.C. was partially supported by the Deutsche
give an analytic representation of the ground-state energlforschungsgemeinschaft through Schwerpunktprogramm
which fits our simulation data and includes known 1095. We acknowledge financial support from INFM for the
asymptotic behaviors. Wigner crystallization occursrat “Iniziativa Calcolo Parallelo.”
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