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Monte Carlo simulations of two-dimensional charged bosons
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Quantum Monte Carlo methods are used to calculate various ground-state properties of charged bosons in
two dimensions, throughout the whole density range where the fluid phase is stable. Wigner crystallization is
predicted atr s.60. Results for the ground-state energy and the momentum distribution are summarized in
analytic interpolation formulas embodying known asymptotic behaviors. Near freezing, the condensate fraction
is less than 1%. The static structure factorS(k) and susceptibilityx(k) are obtained from the density-density
correlation function in imaginary time,F(k,t). An estimate of the energy of elementary excitations, given in
terms of an upper bound involvingS(k) andx(k), is compared with the result obtained via analytic continu-
ation fromF(k,t).
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I. INTRODUCTION

The two-dimensional fluid of pointlike spinless boso
interacting with a 1/r potential has drawn attention in th
literature1 as a model in quantum statistical mechanics wh
parallels the physically more relevant fluid of electrons.
zero temperature, the model is specified by the coupling
rameterr s51/ApnaB , where n is the density andaB the
Bohr radius. For smallr s the system is a weakly couple
fluid, well described by the random-phase approximatio2

whereas it becomes strongly correlated and eventually un
goes Wigner crystallization upon increasingr s . Several re-
sults for the ground-state energy, static structure, scree
properties, and elementary excitations have been reporte
ing the correlated basis function theory,1,3 various implemen-
tations of the Singwi-Tosi-Land-Sjo¨lander ~STLS!
formalism,4,5 and the Overhauser model.6 The momentum
distribution has been calculated for lowr s in the Bogoliubov
approximation.7 A comparison between the STLS results f
the 1/r potential and the ln(r) potential has been reported b
Moudgil et al.8

Although the charged-boson model may find applicatio
to superconductors, either as a system of bound-elec
pairs9 or in terms of an effective action with fermionic de
grees of freedom integrated out,10 no direct realization of the
system is experimentally available. Therefore numerical
sults provided by quantum Monte Carlo~QMC! simulations
constitute the only reliable benchmark for analytic a
proaches. Extensive simulation results are available
three-dimensional~3D! charged bosons11,12 and for the 2D
system with the ln(r) interaction.13–15

In this work we present QMC results for several groun
state properties of the 2D fluid of charged bosons with
1/r potential. We use two different algorithms, namely, d
fusion Monte Carlo~DMC!,16 which is more efficient in the
calculation of mixed averages, and reptation quantum Mo
Carlo~RQMC!,17 which gives easier access to correlations
imaginary time. The exact ground-state energy and the m
estimate16 of the one-body density matrix are calculated w
the former. Unbiased estimates of the static structure fa
0163-1829/2004/69~3!/035109~6!/$22.50 69 0351
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and the susceptibility are instead obtained, using RQM
from the autocorrelation in imaginary time of the densit
fluctuation operator. The inverse Laplace transform of
same autocorrelation function yields valuable information
the spectrum of elementary excitations.

II. METHOD

Quantum Monte Carlo is the method of choice f
strongly interacting bosonic systems in their ground sta
because it yields exact numerical results for a number
quantities, subject only to known statistical errors.

The DMC method16 samples a probability distribution
proportional to the ‘‘mixed distribution’’ f (R)
5F(R)C(R), where R5$r1 , . . . ,rN% is a point in the
2N-dimensional configuration space of the system,C(R) is
a trial wave function, andF(R) is the ground-state wave
function. The exact ground-state energy is obtained as
average over the mixed distribution of the local ener
EL(R)5C(R)21HC(R). For a general operator not com
muting with the Hamiltonian, ground-state averages can
approximated by the extrapolated estimate~twice the average
over the mixed distribution minus the variational estimate!,16

which leads to an error quadratic in the difference (F
2C). Our results for the one-body density matrix are giv
in terms of this extrapolated estimate, as in Ref. 12.

For operators diagonal inR we avoid mixed estimates
resorting to the RQMC method17 ~one could alternatively use
the forward walking technique18 within the DMC method!.
In RQMC, the evolution in imaginary time of the system
represented by a time-discretized pathX5$R0 , . . . ,RM%.
The algorithm samples the distribution P(X)
5C(R0)2P i 51

M G(Ri 21→Ri ;e), where G(R→R8;e) is a
short-time approximation to the importance-sampled Gree
function C(R8)^R8uexp(2eH)uR&C(R)21. Assuming M is
large enough, the inner time slices of the path are indivi
ally sampled from the distributionF(R)2, and sequentially
sampled according to the quantum dynamical fluctuation
the ground state. Pure estimators,^FuOuF&5^^O(Ri)&&,
and imaginary-time correlation functions, c(t)
©2004 The American Physical Society09-1
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TABLE I. Ground-state energy for bosons from VMC~variational Monte Carlo! and DMC, extrapolated
to the bulk limit and compared with estimates from approximate theories. We also give the average
energy and inverse compressibility obtained from Eq.~1!. All values are in Rydberg per particle, the digits
parentheses represent the error bar in the last digit.

r s E(DMC) E(VMC)
HNC

~Ref. 1!
STW

~Ref. 3!
STLS

~Ref. 5! Ek 1/rKT

1 21.1448(5) 21.14269(7) 21.1458 21.1062 0.2903 20.531
2 20.6740(2) 20.67192(6) 20.6740 20.6631 20.6484 0.1442 20.3582
5 20.31903(5) 20.317456(6) 20.3185 20.3133 20.3078 0.04896 20.187
10 20.17480(5) 20.17385(3) 20.1741 20.16685 20.1724 0.01961 20.1097
20 20.093387(8) 20.092903(3) 20.0928 20.086024 20.0959 0.007533 20.06177
40 20.048986(8) 20.048737(2) 0.00286 20.03359
75 20.026965(6) 20.0268246(8) 0.00118920.01892
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5^^O(Ri)O(Ri1n)&&, are thus readily accessible~here
^^•••&& means average over the random walk in the spac
quantum pathsX, andt5ne).17

In all simulations we consider a system ofN particles in a
square cell with periodic boundary conditions. The trial fun
tion is chosen of the pair product form,C(R)
5exp@2(ij(uur i2r j u)#, whereu(r ) is the random-phase ap
proximation pseudopotential following Ref. 19. Both th
pseudopotential and the Coulomb interaction are evalu
using generalized Ewald sums.19 As usual,11,19 we estimate
the finite-size effect on the ground-state energy from va
tional Monte Carlo simulations. Variational energiesEN , cal-
culated withN in the range 25–200, are used to determ
the best-fit parameter in the formE`5EN1a(r s)/N
1b(r s)/N

2. Assuming that the same size dependence ho
for the exact DMC energies, the optimal parametersa(r s)
andb(r s) are then used to extrapolate to the thermodyna
limit the result of a single DMC simulation withN552.20

Other quantities have comparatively smaller finite-size
rors, typically below the statistical accuracy of the pres
simulations.

III. RESULTS

A. Ground-state energy

The DMC ground-state energies of the 2D bosonic fluid
the thermodynamic limit are compared in Table I with t
results obtained with the STLS method by Gold,5 with a
parametrized wave function approach by Sim, Tao, and W3

and within the hypernetted-chain approximation~HNC! by
Apaja et al.1 While all computations agree qualitatively, w
note that the agreement between HNC and the exact D
results is particularly good. Our DMC results can be ac
rately reproduced by the parametrized function

Eg~r s!52@a0r s
b01a1r s

b11a2r s
b21a3r s

b3#2c, ~1!

wherea0 and b0 are fixed by the smallr s behavior1 @E(r s

→0).21.293 55/r s
2/3#, b1 is fixed by requiring a constan

subleading term forr s→0, andb2 andb3 by requiring lead-
ing terms inr s

21 andr s
23/2 for r s→`. The final values of the

parameters21 are c57/40, a050.2297, a150.161, a2
50.0594, a350.01017,b0580/21, b1594/21, b2573/14,
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and b3540/7. The reducedx2 for the fit with four param-
eters and seven data points is 1.5. The above interpola
formula allows us to obtain, by means of the virial theore
the unbiased estimator of the average kinetic energyEk
52d(r sEg)/drs as well as of the inverse compressibility

1/rKT52
r s

4 F ]Eg

]r s
2r s

]2Eg

]r s
2 G ,

both reported in Table I.
In Fig. 1 our results are compared with the previous DM

results by Rapisarda and Senatore22 for 2D fermions and for
the 2D Wigner crystal. Note the difference in behavior
high density, where the Pauli exclusion principle forces
r s

22 divergence of the fermion energy, and the very sm
dependence on statistics at largerr s . In two dimensions
bosons crystallize atr s.60 and fermions atr s.34. The

FIG. 1. Ground-state energy for 2D triangular Wigner crys
~WC!, bosons~B!, and unpolarized~UP! and polarized~P! fermions
as a function ofr s . Wigner crystal and fermion data are from Re
22. For clarity we plotted r s

3/2@E(r s)2c1 /r s)], with c1

522.2122, while the inset shows the correspondingE(r s) curves.
Points with error bars are size-extrapolated DMC results, cont
ous curves are analytical fits.
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difference in critical density is analogous to the differen
obtained in the 3D case, where bosons crystallize ar s
5160 and fermions atr s5100.11

B. Momentum distribution

The one-body density matrixn(r ) and its Fourier trans-
form, the momentum distributionn(k), have been compute
performing random displacements of particles on
sampled configurations as explained in Ref. 13. Our res
for the one-body density matrix are shown in Fig. 2.

Extending to the 2D case the discussion presented for
charged bosons in Ref. 23, we fix the divergence of the m
mentum distribution at smallk:

n~k→0!.
n0

4S~k!
.

n0Ar s/2

~kr0!3/2
, ~2!

where n0 is condensate fraction andr 05r saB . The cusp
condition24 instead gives information on the short-range b
havior of the momentum distribution:

n~k→`!.
4r s

2g~0!

~kr0!6 , ~3!

whereg(0) is the pair-correlation function atr 50. More-
over, at small density, we expect the momentum distribut
to be approximately Gaussian, in agreement with harmo
theory for the crystalline phase.

We have collected all these information in a fitting fo
mula to interpolate the DMC data for the momentum dis
bution n(k):

n~k!5~2p!2rn0d2~k!1n0Ar s/2

k3/2e
2k2/a0

2
1

4g~0!r s
2

a1
61k6

1S a2

Ak
1a31a4Ak1a5k D e2(k22ka6)/a7

2
, ~4!

FIG. 2. One-body density matrixn(r ) at r s51, 2, 5, 10, 20, 40,
and 75.
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wherek5kr0. Given the known values of the density and
g(0) ~see the following section!, we determined the remain
ing parameters by a least-squares fit to the DMC data
n(k), n(r ), and the average kinetic energy.

Equation~2! implies a very slow convergence ofn(r ) to
its asymptotic limitn0

n~r→`!2n0.n0

G~1/4!

4G~3/4!
Ar sr 0

r
. ~5!

The above result allows us to obtain reliable estimates ofn0
directly from the large-r tail of n(r ). In fact, the quantity

m~r !5
n~r !

11G~1/4!/@4G~3/4!#Ar sr 0 /r
~6!

reaches its asymptotic valuem(r→`)5n0 at quite small
values ofr ~see Fig. 3!.

Table II contains the best-fit parameters and the resul
value of the condensate fractionn0. The condensate fraction
decreases very rapidly with increasingr s , the depletion be-
ing already 50% atr s51, in agreement with the result of th
Bogoliubov theory7 @in 3D ~Ref. 12! a similar depletion oc-
curs atr s55]. For large couplings, the Bogoliubov theor
overestimates the condensate fraction. In a wide den
range in the liquid phase, sayr s.20, n0 is of the order of
1% or less. Such small values, obtained by fitting Eq.~4! to
the extrapolated estimates from the simulation, are pres
ably meaningful only as an indication of the order of ma
nitude.

FIG. 3. Variational Monte Carlo results for the one-body dens
matrix n(r ) ~left scale! and the quantitym(r ) of Eq. ~6! ~right
scale! at r s52. Results are shown for systems ofN552 ~solid
lines! and N5100 ~dotted lines! particles. Size effects on thes
quantities are virtually removed using the correction proposed
Magro and Ceperley~Ref. 13! for 2D bosons with lnr interactions.
9-3



S. De PALO, S. CONTI, AND S. MORONI PHYSICAL REVIEW B69, 035109 ~2004!
TABLE II. Best-fit parameters for Eq.~4!. The last-but-one line reports the value ofg(0) from Fig. 5 as
used in the fit ofn(k).

r s 1 2 5 10 20 40 75

n0 0.531 0.38 0.176 0.0677 0.018 0.001 0.0007
a0 0.839 0.853 0.475 0.977 0.861 1.21 2.59
a1 44 3.5 5.46
a2 20.086 0.492 2.17 1.96 1.05 0.946 0.098
a3 0.696 0.56 22.1 21.13 20.08 20.74 0.627
a4 1.13 0.226 0.23 20.01 20.163 0.184 20.103
a5 0.135 0.192 0.28 0.7 20.006 20.014 20.024
a6 2111 26.07 1.12 21.52 0.849 3.44 0.576
a7 6.98 2.29 1.45 1.86 2.61 1.99 2.59
g0 0.21 0.078 0.01

n0 ~Ref. 7! 0.537 0.398 0.230
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C. Imaginary-time correlation functions: Static response
function and static structure factor

Information on charge response properties of the sys
such as screening, plasma oscillations, or polarization
contained in the imaginary-time density-density correlat
function

F~k,t!5
1

N
^rk~t!rk~0!&5E

0

`

dve2tvS~k,v!, ~7!

where rk(t)5( ie
i (k•r ) and S(k,v) is the dynamical re-

sponse function. The correlation functionsF(k,t) have been
computed with RQMC for systems of 56 particles.

The static structure factorS(k) is readily obtained from
the imaginary-time density-density correlation function as

S~k!5E
0

`

dvS~k,v!5F~k,0!. ~8!

In Fig. 4 we report the behavior ofS(k) for various densities.
As r s increases and approaches the crystallization densi

FIG. 4. Static structure factorS(k) as a function ofkr0 for r s

51,2,5,10,20,40,60. Lines are only guides to the eyes. Hig
peaks correspond to higher values ofr s, as in Fig. 5.
03510
m
re
n

, a

sharp peak develops in correspondence with the first lat
wave vector of the 2D Wigner crystal,kr05(2pA3)1/2

.3.3.
In Fig. 5 we report the pair-distribution function

g~r !5
1

Nr (
iÞ j

^d~ ur i2r j u2r !&. ~9!

At low density g(r ) develops a high peak and long-rang
oscillations typical of a system approaching localization.
the density increases the effective repulsion between
ticles decreases and overlapping between charges bec
possible. The behavior ofS(k) and g(r ) is qualitatively in
agreement with the findings of Apajaet al.,1 but for both
functions the Monte Carlo results show more pronounc
effects of correlations at low densities.

The static response functionx(k) can be evaluated from
the relation

x~k!522E
0

`S~k,v!

v
dv522E

0

`

F~k,t!dt. ~10!

We use forF(k,t) a form fitted to the Monte Carlo data i
the available imaginary-time range~see below!.

er
FIG. 5. The pair-distribution function forr s51, 2, 5, 10, 20,

40, and 60~cubic spline interpolation of Monte Carlo data!. Higher
peaks correspond to higher values ofr s .
9-4
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In Fig. 6 we report the static effective interactio
vk /e(k,0), wherevk is the Coulomb interaction ande(k,0)
51/@11vkx(k,0)# is the static dielectric function. At lowk
the effective interaction is given by the compressibility su
rule

lim
k→0

vk

e~k,0!
5

1

rKT
, ~11!

while in the short-wavelength limit it behaves like the Co
lomb interaction. The minimum ofvk /e(k,0) deepens and
shifts to largerk upon increasingr s . We note that a negative
dielectric function cannot be interpreted as a signal of ins
bility of the bosonic fluid due to the presence of the rig
background. As in the case of the structural properties, in
large coupling regime the Monte Carlo data for the effect
potential show more pronounced features than the resul
Apaja et al.1 This is shown, in terms of the static respon
function x(k), in Fig. 7.

D. Excitation spectrum

The elementary excitation spectrum of the density fl
tuation is contained in the dynamic structure factor

FIG. 6. Effective interaction forr s52, 5, 10, 20, 40, and 60
~open symbols, Monte Carlo data; lines, cubic spline interpo
tions!. Deeper minima correspond to lower densities. The solid d
at k50 are the values of 1/rKT from Table I.

FIG. 7. The static response functionx(k) at r s51 ~solid dots!
and r s510 ~open diamonds!. The solid lines are from Apajaet al.
~Ref. 1!.
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S~k,v!5(
n

u^nurku0&u2d~v2vn0!. ~12!

We estimate the energy dispersion of the collective ex
tation by fitting the imaginary-time dependence ofF(k,t)
with F(k,t)5A(k)e2v1(k)t1B(k)e2v2(k)t. This amounts to
representing the dynamical structure factorS(k,v) as the
sum of twod functions. When a single mode has a domin
ing spectral weight, its dispersionv1(k) is reproduced rea-
sonably well,17 regardless of the representation chosen
the remaining part of the spectrum@a d function atv2(k) in
this case#.25

Moreover, combining our results forx(k) and S(k) we
obtain, by means of a sum-rule approach,12,26 a rigorous up-
per bound for the plasmon dispersion,

vk
min<

2rS~k!

x~k!
. ~13!

At low k a single mode exhausts the sum rule. In this ca
the upper bound in Eq.~13! becomes an equality and th
strength of the excitation coincides withS(k).

-
ts

FIG. 8. The excitation spectra forr s52,5,10,20~full circles and
open diamonds! are compared with their respective upper bou
vk

min ~solid lines!. Dashed curves corresponds to data from Ref
for r s55 andr s520. Curves with deeper minimum corresponds
lower densities.

FIG. 9. Excitation spectrum near the rotonlike minimum forr s

510,20,40,60. Full circles and open diamonds, data from tw
exponential fit toF(k,t); solid lines, upper-bounds from Eq.~13!.
9-5
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In Fig. 8 we show our results for the excitation energ
extracted directly fromF(k,t) and compare them with thei
corresponding upper bounds, at different densities. On
creasingr s a rotonlike mode, close to the first reciproc
lattice vector of the Wigner crystal, develops and softe
The evolution of this minimum as the crystallization tran
tion is approached is shown in more detail in Fig. 9.

In conclusion, we have presented an extensive Q
study of ground-state properties of 2D charged bosons.
give an analytic representation of the ground-state ene
which fits our simulation data and includes know
asymptotic behaviors. Wigner crystallization occurs atr s
la

. B

k,

rty

03510
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.60. Near freezing, the condensate fraction is less than
Unbiased results for the static structure factorS(k) and sus-
ceptibility x(k), as well as some limited information on th
excitation spectrum, are extracted from the density-den
correlation function in imaginary time,F(k,t).
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