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We investigate the effect of the coupling of the forward- and backward-going electron-hole pairs on the
static local-field factor of jellium with and without a gap. We calculate the static local-field factor for the two
types of jellium as a function off using the Bethe-Salpeter equation. We assume that a particle and a hole
interact via a statically screened Coulomb interaction. The polarization diagrams that include this interaction
are summed to infinite order, leading to a matrix equation for the inverse of the polarization propagator.
Employing a string of manipulations we convert the matrices in convenient forms, and we then invert the
resulting matrices iteratively. This allows us to use matrices of very large size, something that would have not
been feasible with straightforward inversion, and therefore achieve a very high level of convergence of results
with respect to sampling of electron states in the Fermi sea with relative computational ease. For the calcula-
tion of the static local-field factor, we find that the coupling of both kinds of pairs gives qualitatively different
results compared to the case when there is no coupling, and that the coupling of both kinds of electron-hole
pairs is necessary for obtaining the most accurate results. We compare our results with recent calculations and
point out the similarities and differences.
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I. INTRODUCTION andv(|q|)=4me?/|q|? being the Fourier transform of the
Coulomb interaction. In the above equationgpa(Q,®) is
Various researchers’ using the Bethe-Salpeter equation the random-phase approximatiéRPA) proper polarizability
for solids either ignore the backward-going electron-holeand gg is the Fermi wave vector. Because Hubbard only
pairs or do not couple the forward- and backward-goingincluded certain exchange diagrams in his calculation of the
electron-hole pairs. Recently Olevano and Reifimgtheir  proper polarizability for jellium, the local-field factor he in-
calculation of the electron energy-loss spectrum of silicortroduced accounts only for the exchange hole around each
included both kinds of electron-hole pairs and treated theielectron. A number of authds'®have tried to include the
coupling as a perturbation. Their results are in excellenCoulomb correlation empirically by including a dimension-
agreement with the experimehThe main motivation of this less parameteg into Eq. (2):
work is to study the effect of the coupling of forward- and

backward-going electron-hole pairs on the static local-field |q|?
factor of jellium with and without a gap. Jellium with a gap G(lq)= 5 o (3
is a model of an insulator as a free electron gas with a gap at 2(19*+ &lael*)

the Fermi energy® The effect of the coupling in jellium
suggests the corresponding effect in solids.

The local-field factor G(|g|) was introduced by
Hubbard! in his attempt to include the contribution of ex-
change into the proper polarizability of the electron gas,
x(g,w), whereq and w are the polarization’s wave vector
and frequency.

Although much more elaborate calculations of the proper
polarizability of the electron gas were done over the

years®®~*'most of them have the form of E€{L), introduced

by Hubbard.

This paper is organized as follows: In Sec. Il, we describe
the method of calculation and give details about some subtle

: L oints of our calculation. In Sec. Ill we present the results for
Hubbard, by employing some approximations, was able t . ' . :
M ; . . he static local-field factor of the electron gas, with and with-
sum an infinite series of ladder diagrams. The resulting form

A . . _out a gap, for the case where both kinds of electron-hole
of the proper polarizability was given by the following ex pairs are coupled and for the case where they are not

pression. coupled. We discuss and compare our results with the ones

() obtained from other calculations. In Sec. IV we present our

Yu(g,w)= XrpA G @ , (1)  conclusions.
1+vc(lah)G(lal) xrpa(9, )

with Il. METHOD OF CALCULATION

) A. Jellium

G(la)= |2q| N (2 The static local-field factor is important because it is re-
2(|q|*+[qel®) lated to the exchange-correlation facfgg(|q|) and conse-
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FIG. 1. Diagrams contributing to the calculation of the proper polarizability.

guently to the exchange-correlation enekgy[n], a quan- the dependence of on the energy exchanged between the
tity of great importance in density-functional thed@/? electron and the hole. TherefoFép,p+q) only depends on
w, the total energy of the electron-hole pair, which in our
Cfkellah 1 1 1 case is equal to zero because we calculate the static proper
ve(lal) — ve(lah) L x(a)  xrpa(Q) polarizability x(g). This allows us to perform the internal

) ) frequency summation in Eq7) without any difficulty. The
Throughout this work, suppressing a frequency argument desatic screening of the Coulomb interaction and the choice of
notes the static value for a constant, e.g(Q)=x(a,@  the diagrams that contribute to the static proper polarizability
=0). Exdn] andf,(|q|) are directly related in real space: (q) are the most important approximations employed for
the calculation of the static local-field fact@(|q|). Be-

(5 cause of the lack of dependenceldfp,p+q) on the inter-
nal frequency, Eq(7) takes the form

G(lah= )

S*Exdn]

feo(lr—r1'])=| —=——
><c(|r r|) sn(rysn(r')

No
In our approach, we calculate the proper polarizability of the d'p

electron gasy(q), at a certain level of approximation, and, _ —2if G%p)G % p+a)T + 8
by using Eq(4), we obtainG(|q|). For the calculation of the xX(@ (2m)* (PGpralippra). @
proper polarizability, we only include diagrams where the

electron and the hole interact via a statically screened Coui

. : i S A pictorial representation of the static proper polarizability
lomb interaction, and we sum these diagrams to infinite or- (q) is given in Fig. 2.

der. We show the diagrams included and their summation i The equation of motion for the irreducible vertex function

Fig. 1. Here we use a noninteracting, time-ordered eIectroT,( 1q) is
Green’s function, p.pTq
! Ak vu(p—k)
Gp)=——— (6) Clootd) =5 _.f 0Pk o
E—|p|?/2+in (P.p+Q) =801 (27 FPAp—k) (k)

which implies t_hat_G(|q|)=O gives the RPA result, and al- X GO(k+ )T (K,k+q). 9)
lows for a qualitative assessment of the significance of cou-

pling forward- and backward-going electron-hole pairs. We ) . ] . . )
henceforth make the abbreviatioE(p)=|p|%2. Here we Equation(9) is depicted in terms of Feynman diagrams in
use four-vector notation, i.e., we havp=(p,E), q Fig. 3. We perform the internal frequency summation in Eqg.
=(q,w), etc. Therefore, all electron states with momentum(9): @nd we convert the integration kispace into summation
smaller than the Fermi momentuny, i.e., |p|<qg, are  OVer discretek points. The equation fdr(p,p+q) takes the
filled in the ground state, and all states wi>qr are  form

empty in the ground state. The occupancy of a stdi®), is

therefore given byf(p)=1 for |p|<qge andf(p)=0 for |p| GO (p+q)

>Qe . Also, this work assumes that one has zero tempera- Py

ture. From Feynman rulé$,one finds that the proper polar-

izability x(q) can be expressed in a compact way in terms of

the irreducible vertex functiol'(p,p+q): - o
. x(q) = = I(3,p+§)
: ﬂ

. p
x(q)= —2|f ZG(P)G%p+a)T(p,p+a). (7)
(2m)
The factor of 2 in Eq(7) comes from the summation over G(O)(p)
spins. Use of the statically screened interaction between the
electron and the hole has as a consequence the suppression of FIG. 2. Static proper polarizability.
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GO(p+q) to both kinds of pairs, although coupling opposite types of
pairs can be of secondary importance and has often been
ﬂ neglected because of resulting simplifications.
For the calculation of the static proper polarizabilitfq)

—— and consequently the local-field factG(|qg|), we create a
. =14+ | . < (B, P +q) cubic grlq ofk points. The dlr_nens!ons of the cubic pox and

' the spacing between the grid points are selected in such a
/ way that as many “physicalk vectors as possible will con-

ﬂ tribute to the calculation of the proper polarizability. By the
term “physical” vectors we meark vectors for which we
have|k+q|>|kg| and|k|<|kg|, so that thes& vectors cor-
respond to a forward-going electron-hole pair; |&r+ g

_ . . . _ <|kg| and|k|>|kg|, so that thes& vectors correspond to a
FIG. 3. Diagrammatic representation of the irreducible Vertexbackward-going electron-hole pair

function.

PR oy
1 (pF)

As seen in Eq(15), we have to construct the matrices
F~1 and W. The construction of the inverse free electron-
ve(p—k)  f(k)—f(k+aq) hole propagator matrix is trivial. The free electron-hole
RPAp—k) E(k)—E(k+q)+in propaga_tor matri_>F is diagonal ink space and therefor_e its
inverse is also diagonal. The matrix elements of the inverse
xXT'(k,k+Q). (100  free electron-hole propagator are of the form

V is the volume of the finite-sized “box” appropriate for F LoV (K) = f(k+aDE(K) —E(K+d) +i 716w
one’s discretization of values &f. We next define the ma- oo = V(O = (e )EC) —Elkt @)+ 7] (16)

trices
When constructing the screened Coulomb matkbspecial
ve(P—K) care is needed for the selection of its dimensions and the
pk=m (1) arrangement of its matrix elements because as we explain
€ p=k) below we have to Fourier transform this matrix. For k
and =0, the screened Coulomb interaction matrix diverges. We
circumvent this problem by replacing thé(p—k=0) value
E _ 1 f—flk+a) 5 (12  Of the matrix with an average oW W, over a sphere cen-
KTV E(K)—E(k+q)+ig tered aroundk=0 with volume V, corresponding to one
discretek point:

1
F(p,p+a)= g0ty 2

Using all of the above definitions, E¢LO) can be expressed
in matrix form, suppressing all indices, as follows: 411 (ko
Wav=—f dkke Y(k)v (k). (17
I=1+WFT=F YF1-w)~1, (13) VoJo

Here, these matrices act in a space in which a vector has of¢ere the volume/, is given by the expression
component corresponding to each possible electron-hole pair 3 3
(2m)°  4wkg

state. In the same way we can write E8), the equation for 0 '
the static proper polarizability(q), using \Y 3

(18

_ wherekg is the radius of a sphere with volumé&. Noting
x(@)=2V(®[FT|®), (149 that for k approaching zeroe (k) is given by the expres-
where @ is one such vector with components all equal tosion
1/\JV. We combine Eqgs(13) and (14) to obtain the final

form of the equation for the static proper polarizability, limoe‘l(k)=Ak2, (19
x(@)=2V(®[(F~'=W) " d). (159 Eq.(17) takes the form

As mentioned, one of the most important aspects of our cal- _ 2
culation is the coupling of both forward- and backward- Wa, =4me"A. (20
going electron-hole pairs. A forward-going electron-hole pairThis substitution exploits ideas similar to those used by
is the electron-hole pair for which we hat#k) —E(k+q)  Godby, Schiter, and Sharf®

>0, while a backward-going electron-hole pair is the one for Upon completion of the construction of the matri¢es!
which we haveE(k) — E(k+q)<0. According to Eq(15), and W the next step is the inversion of the mati !

in order to calculate/(q) we subtract the statically screened —W. The straightforward inversion of the matrx 1—W,
Coulomb interaction matrixV from the inverse of the free although the most easily implemented, is not recommended
electron-hole propagator matrik?, and we invert the re- because it scales &, whereN is the number of the physi-
sulting matrix. During the inversion, matrix elements\Wf cal vectors. By employing this approach, one would be
can couple forward- and backward-going electron-hole pairéorced to use a small number of physical vectors and there-
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fore the accuracy of the calculations will be limited. Instead

1 \
we use an iterative method for the inversion that scales bettere | (q,0)=1+ a T3
with respect to the number of physical vectors, so that we dr207\ Q% 2Q
can easily converge results with respect to the number of 20+Q? 20-0Q?
. g . . 71 71
physical vectors. Specifically, we use an iterative method to X |tan Tthan —
solve A|x)=|®), where we haveA=F 1—W. Note that
W, depends only on the differenge-k. This means that if A2 1 1 A2+ (20Q+Q?)2
we Fourier transfornW with respect td, the resulting ma- st a0 In o ool
iy R m ik I 8Q° 2Q% 8QJ [\?+(2Q-Q?)
trix W is diagonal in “real space,” which is a space in which
the coordinate is the relative electron-hole separation. Hence, 23
to act with thewW matrix on some vgctohy) \we may Four?er where we haveQ=q/qr .
transform |y) to real space, multiply byw, and Fourier For the determination of the parameterfor a specific

transform the result back tospace. By employing this pro- material, the static long-wavelength limit of the dielectric
cedure, we are able to work with all physical quantities intofunction
convenient forms. This not only speeds up the calculation
immensely, but also allows calculations in which a much

larger number of physical wave vectors are considered, and

the resulting convergence with respect to the number of iched 1o th | able f . ¢ wh
physical wave vectors can be made fully satisfactory. IS matched 1o the values available from experiment, where

oy, is the plasma frequency.

2
@p
)\—wF) (24)

ELL(O):1+

B. Jellium with a gap IIl. DISCUSSION OF RESULTS

Our choice of jellium with a gap or insulating jellium, as  In this section we will present our results for the static
introduced by Levine and Louf,is a two-parameter model. local-field factor for the case where the forward- and
In addition to the electron gas parametgr the gap is given backward-going electron-hole pairs are coupled, and for the
by Nwg=Eg,p/f. The main hypothesis is that the imaginary case where they are not coupled.
part of the model dielectric function that describes the sys-

tem is A. Jellium

In Fig. 4, the static local-field factor of jelliunG(|q|), is
given for different values of ;. The values ofr; used are
(21) 2.07, 3.25, 3.93, and 4.86, which correspond to the free-
0, |o|<\wg. electron densities found in Al, Li, Na, and K, respectively.
The forward- and backward-going electron-hole pairs are
. . . . . . . coupled. In this case, the main characteristics of the local-
Heree| | is the Levine-Louie model dielectric functios, is field factor are a parabolic region from 0 to@|, a region
the Lindhard dielectriczfunctiorth=q§/2 is the Fermi fre- consisting of a linear and a parabolic part fromgd to
quency, and we have® = v?— (A wg). The sign ofw_ IS  3.5q.|, and a cusp dig|=2|qgg|. By writing the local-field
taken to be the same as thatof The Levine-Louie model f5ct0r asG(|q|)=ag+ay|q|+a,|q|? we are able to deter-
dielectric function is homogeneous, isotropic, has an analyti¢yine the parametera,, a;, anda,. The values of these
repres.entation, and obeys causality and particle-number COBarameters are given in Table I. At this point we have to
servation. _ , , emphasize that the smédj| region is purely parabolic for all
The calculation of the static local-field factor for the caseine results we present in this paper. Because of the fact that
of jellium with a gap is almost identical with that of the \\q it our data, for the smally| region, with a second degree
gapless jellium, described in the preceding section, exceFrﬁolynomial, a linear and a constant term appearGéfq|).
for two modifications. First, the free electron-hole propagatorrhe coefficients of the linear and the constant term are neg-
matrix is given by the following expression: ligible compared to the coefficients of the parabolic term and
therefore are not taken into consideration. The results ob-
tained by the diffusion Monte Carlo calculation of Moroni,
1 f(k)—f(k+q) Ceperley, and Senatdfdndicate thaiG(|q|) is almost com-
vV + J[E(K)— E(k+ ) >+ (N wp)2+i 7]5kk” plgtely given by its asymptotes, and_ that it is .reprpduced
(22) qune_ accura}tely by the local-density approxmqnon of
density-functional theory fojg|<2|qg|. The asymptotic be-
havior of the static local-field factor of jellium is parabolic
where the upper and lower signs are to be used to mimic th#r both the smafl’ and largé® |qg| regions.
sign of E(k) —E(k+q). Second, the Coulomb interaction is  Besides the fact that our results indicate that the region
screened by the static Levine-Louie dielectric function givenfrom 2|qg| to 3.3q¢| consists of a linear and a parabolic
by part, something which we believe comes from the fact that

Im e (qw_), |w[=Nor
Im €. (9,0)=

Fkk/

035104-4



EFFECT OF COUPLING OF FORWARD- AND BACKWARSD. . .

L5 2.07

G(q)

04

03 -

0 1 1 1 1
0 0.5 1 1.5 2 25

a/q_{F}

35

PHYSICAL REVIEW B 69, 035104 (2004

2.07

3.25
3.93
4.86

G(9)

a/q_{F}

FIG. 5. Static local-field factor of gapless jellium for different
values ofrg when the forward- and backward-going electron-hole
pairs are not coupled.

rs and therefore the local-field factor is larger. If all the ex-
change and correlation effects are taken into account more
carefully, like in the calculation of Mororet al., the local-
field factor has to increase with increasingbecause of the
exchange and correlation of the screening holes, which we
do not take into consideration in our calculation. A compatri-
son of the values of the local-field factor of our calculation
and the calculation of Mororgt al. for very similar values of

rs and|q| is given in Table Il. The values d&(|q|) are in
reasonable agreement.

Concerning the cusp observed alt=2|qg|, there is not a
consensus in the literature whether this is an actual charac-
teristic of the static local field of jellium or it is an artifact of
the different approximations used to calcul&é€|q|). The

FIG. 4. Static local-field factor of gapless jellium for different static G(|q|) of Brosens, Devreese, and Lemméfisy ob-
values ofrg when the forward- and backward-going electron-holetained through a dynamical-exchange decoupling in the

pairs are coupled.

equation of motion for the Wigner distribution function,
clearly exhibits this cusp. Brosens, Devreese, and Lemmens

we sum only a specific subset of diagrams representing thattribute the cusp of the static local-field factor to the behav-

interaction between the electron and the hole, another diffeior of the dynamical local-field factoiG(q,w).?° They
ence with the results of Mororet al. is that our local-field  proved thatG(q,w) has a logarithmic singularity at the fre-
factor decreases with increasing The explanation for this quenciesw|=%]|q|?/2—|q||ge||/m. The two parabolas,
fact could be that in RPA, screening is larger for smaller=7(|q|%/2—|q||qe|)/m and w,=%(|q||qe| —|a|?/2) inter-
values ofr 4. This means that the screening hole spends moreect atq| =2|qg| andw=0. At the point of intersection both
time in the vicinity of the electron. Therefol#, the interac-

tion between the electron and the hole, is larger for smaller TABLE Il. Comparison of the values of the static local-field
factor of this work and the work of Mororet al. (Ref. 47.

TABLE |. Values of the expansion coefficients of the static

local-field factor of gapless jellium in terms o¢f| for different This work Moroniet al.
values ofrg when the forward- and backward-going electron-hole re=2.07 rs=2.00
pairs are coupled. a/de a/ge
; Energy range a a a 1.02 0.20 1.01 0.29)
s 0 ! 2 1.10 0.23 1.08 0.22)
2.07 0-2 0.2178 1.51 0.45 1.51 0.62)
2—-3.5 1.7646  —1.2567 0.3849 1.61 0.52 1.61 0.11)
3.25 0—2 0.1604 1.80 0.66 1.81 0.84)
2—-35 0.0789 0.1293 0.0637 2.00 0.78 2.01 0.90)
3.93 0-2 0.1398 2.14 0.83 2.15 0.99)
2—35 —0.0251 0.1834 0.0460 241 0.98 2.42 1.042)
4.86 0-2 0.1190 2.70 1.19 2.69 1.020)
2—3.5 —0.1112 0.2231 0.0309 3.02 1.47 3.02 1.18)
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TABLE Ill. Values of the expansion coefficients of the static  TABLE IV. The values ofrg and\ used for the calculations of
local-field factor of gapless jellium in terms ¢f| for different  the static local-field factor of the insulating jellium.
values ofrg when the forward- and backward-going electron-hole

pairs are not coupled. Material re N
e Energy range a a, a, LiF 1.4851 0.4050
MgO 1.5553 0.8294

2.07 0-2 0.1258 Si 2.0060 0.4017

2—35 0.0584 —0.0326 0.1166 Diamond 1.3189 0.4982
3.25 0-3.5 0.0824
3.93 0-3.5 0.0723
4.86 0-35 0.0620 turbation theory in the Coulomb interaction, calculated the

proper polarizability and consequently the static local-field
factor. Their results reproduced the cusp, but the authors at-
singularities cancel each other. The cancellation of the twdributed this feature to the use of only the first-order dia-
logarithmic singularities has as a result the appearance of @ams in the calculation of the proper polarizability. Holas
cusped structure in the static local-field factor. The cusp i€t al. came to this conclusion after comparing their results
also present in the Utsumi-Ichimaru model for the local-fieldwith the ones obtained by Geldart and Taytbmwho used
factor*®>° and by the calculations of Fariet al.>* who use  higher-order diagrams for the calculation of the proper po-
the Utsumi-Ichimaru model as their starting point. The cusgarizability and did not obtain any cusped structure. Based on
in all these calculations, including ours, is substantially smalthe present results, we suggest that the cusp is a mathemati-
compared to that obtained by the calculations of Brosenscal feature of the static local-field factor, as it is defined in
Devreese, and Lemmens. Hoketsal,>? using first-order per-  this work, as argued by Brosens, Devreese, and LemAens.
In Fig. 5, we present the corresponding results for the

4 static local-field factor, for different values of, for the case
when the forward- and backward-going electron-hole pairs
are not coupled. The|8¢| cusp is wiped out except far,
=2.07, where a tiny cusp is still present. When theg2

2r cusp is eliminated, only one parabolic region is present, con-
trary to the fact that two different parabolic regions have to
exist, one for smallg and another for large. The main

0 effect of the omission of the coupling is the suppression of
the 2/ge| cusp. In Table 11l the coefficients of the expansion

4r of G(|q|) with respect tdq| are given. Therefore it becomes

Diamond evident that the coupling of the backward- to the forward-
going electron hole pairs would be important for carrying out

r ] the most accurate calculations using the Bethe-Salpeter ap-

G proach.
(D T

0 T — T T T T ) )

B. Jellium with a gap

* In Fig. 6, we present the results for the static local-field
factor of insulating jellium for the case where both types of

2k electron-hole pairs are either couplésolid line) or not

TABLE V. Values of the expansion coefficients of the static

0 local-field factor of jellium with a gap in terms ¢§| for different

sk values ofrg when the forward- and backward-going electron-hole
pairs are coupled.

”s Material Energy range ag a; a,
LiF 0—2 0.3565
2—35 3.9422 —2.9728 0.8334
O o5 1 15 2 25 3 35 M© 02 0.3975
’ ’ ’ ’ 2—35 45082 —3.4144 0.9739

q/q_{F} .

Si 0—2 0.7449
FIG. 6. Static local-field factor of jellium with a gap for differ- 2—35 3.8986 —2.0660  0.6867
ent values ofrg and N\ when both forward- and backward-going Diamond 0-2 0.3845
electron-hole pairs are couple@olid curveg and not coupled 2—-35 5.2104 —4.1458 1.1402

(dashed curves
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TABLE VI. Values of the expansion coefficients of the static as it should be. On the other hand, if the cusp originally is
local-field factor of jellium with a gap in terms 4f| for different  not sufficiently large, it will be wiped out by the lack of
values ofrs when the forward- and backward-going electron-hole coupling. This will lead to a static local-field factor charac-

pairs are not coupled. terized by only one parabolic regime.
Material Energy range ag a, a,
- IV. CONCLUSIONS

LiF 0—2 0.2399
235 0.3734 —0.2020 0.2351 We presented the calculation of the static local-field factor

MgO 0—35 0.2468 of jellium using the Bethe-Salpeter equation. We only con-

S 02 0.5619 sidered diagrams where the electron-hole pair interact via a
2,35 29557 —1.6488 06185  Statically screened Coulomb interaction and we summed

Diamond 0-2 0.2519 these diagrams to infinite order. In our calculation of the
2,35 02715 -01347 02411 Static local-field factor we coupled the forward- and

backward-going electron-hole pairs. We compared these re-
sults with the corresponding results obtained when the cou-
coupled (dashed ling The calculations were done for the pling is omitted, and we conclude that the coupling of both
values ofr and\ that correspond to MgO, Si, diamond, and kinds of electron-hole pairs is relevant for the most accurate
LiF. These values of and A are given in Table IV. The calculation using the Bethe-Salpeter equation. The main ef-
main features of the results are the same as those of tHect of the omission of coupling between the forward- and
gapless jellium presented in the preceding section. The locaPackward-going electron-hole pairs is the suppression of the
field factor exhibits a cusp a4 =2|qe| and is mainly char-  2|dg| cusp. The elimination of the|8¢| cusp depends on its
acterized by one parabolic regime fbrlleqF| and a re- height when both kinds of electron-hole pairs are coupled. If
gime for |q|;2|qF| which consists of a linear and a the cusp is sufficiently Iarge, it will not disappear, and the
parabolic part. The values of the expansion coefficients oftatic local-field factor will be characterized by two regimes,
G(|q|) in terms of|q| are given in Table V. For the jellium as it should be. On the other hand, if the cusp originally is
with a gap, the cusp athF| appears to be h|gher especia”y not SUff|C|ent|y Iarge, it will be Wlped out by the neg|eCt of
for the case of Si. For the case of Si the static local-fieldcoupling. This will lead to a static local-field factor charac-
factor exhibits also a hump neafcg|. terized by only one parabolic regime. This might have im-

Finally, the static local-field factor is given for the case plication:?‘ for thg Bethe-Salpeter calculati_ons_ in reallsolids.
where the forward- and backward-going electron-hole pairé&nother interesting feature of our calculation is the high ac-
are not coupled. We see that for Si, diamond, and LiF, th&uracy combined with the speed of calculation. This is
2|qe| cusp is still present, although it is smaller in size Con_ach!eved by the conversion of th_e rele_vam matrices into con-
siderably compared to the case where both electron-hole pafenient forms and the use of an iterative inversion approach.
types are coupled. For the case of MgO, tHgg2 cusp is
totally eliminated, and the static local-field factor is mainly
characterized by one parabolic regime, which is qualitatively
a very different result. The values of the expansion coeffi- The authors would like to thank Valerio Olevano, Eric K.
cients ofG(|q|) in terms of|g| are given in Table VI. There- Chang, J. A. Soininen, and Dyutiman Das for useful discus-
fore the main effect of the omission of the coupling betweersions. A. T. is very grateful for the hospitality provided by
the two types of the electron-hole pairs is the suppression dlIST during the fall of 2001. This material is based upon
the 2qg| cusp. The elimination of the|g¢| cusp depends on work supported by the U.S. Department of Energy, Division
its height when both kinds of electron-hole pairs are coupledof Material Sciences under Grant No. DEFG02-91ER45439,
If the cusp is sufficiently large, it will not disappear, and thethrough the Frederick Seitz Materials Research Laboratory at
static local-field factor will be characterized by two regimes,the University of lllinois at Urbana-Champaign.

ACKNOWLEDGMENTS

1. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. Rev. 8\, Olevano and L. Reining, Phys. Rev. LeB6, 5962 (2001.

Lett. 80, 4510(1998. 9J. Stiebling, Z. Phys. B1, 355(1978.
2L.X. Benedict, E.L. Shirley, and R.B. Bohn, Phys. Rev.5B, 10D R. Penn, Phys. Rei28 2093(1962.
, R9385(1998. _ 113, Hubbard, Proc. R. Soc. London, Ser243 336 (1957).
L.X. Benedict and E.L. Shirley, Phys. Rev.3®, 5441(1999. 12 3. Sham, Proc. R. Soc. London, Ser283 33 (1965.

4G. Onida, L. Reining, R.W. Godby, R. Del Sole, and W. Andreoni,

BW.M. Sh .D. i, Phys. R 7(1967).
Phys. Rev. Lett75, 818 (1995. Shyu and G.D. Gaspari, Phys. R&63 667 (1967

14 i
5M. Rohlfing and S.G. Louie, Phys. Rev. Lefit, 2312(1999. "-M- Shyu and G.D. Gaspari, Phys. R0, 687 (1968.
6J.A. Soininen and E.L. Shirley, Phys. Rev.68, 16 423(2000. D.J.W. Geldart and S.H. Vosko, Can. J. Ph44. 2137(1966.

16 ; : . g
’G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phyi, 601 K.S. Singwi, M.P. Tosi, R.H. Land, and A. S$§mder, Phys. Rev.
(2002. 176, 589 (1968.

035104-7



TSOLAKIDIS, SHIRLEY, AND MARTIN PHYSICAL REVIEW B 69, 035104 (2004

17K.S. Singwi, A. Sjdander, M.P. Tosi, and R.H. Land, Phys. Rev. %°D.J.W. Geldart, Can. J. Phy45, 3139(1967).

B 1, 1044(1970. 36F. Toigo and T.O. Woodruff, Phys. Rev. B 3958(1970).
8p, Vashishta and K.S. Singwi, Phys. Rev6B875(1972. 37F, Toigo and T.O. Woodruff, Phys. Rev. 8 371 (1971).
193.s. Vaishya and A.K. Gupta, Phys. Rev7B4300(1973. 38 Hedin and S. Lundqvist, Solid State Ph@& 1 (1969.
?9A K. Gupta and K.S. Singwi, Phys. Rev. B, 1801(1977. 39A W, Overhauser, Phys. Rev. B 1888(1971).

E;L. Kle?nman, Phys. Revl60, 585 (1967). 40 J. Sham, Phys. Rev. B, 4357(1973.

o Kleinman, Phys. Revl72, 383(1968. 41K S. Singwi and M.P. Tosi, Solid State Phy$, 177 (1981).

24?.\/(\:/.FL?Icgreth, Phys. Re\81, 753(1969. 42p_Hohenberg and W. Kohn, Phys. R&36, B864 (1964).

.Y W.F. Woo and S.S. Jha, Phys. ReV3EB7 (197)). 43\, Kohn and L.J. Sham, Phys. Re40, A1133 (1965.
S.S. Jha, K.K. Gupta, and J.W.F. Woo, Phys. Rew,BL005

44see, for instance, A. Fetter and D. Waleckaantum Theory of
Many-Particle System@cGraw-Hill, San Francisco, 1971
45R.W. Godby, M. Schiter, and L.J. Sham, Phys. Rev38, 10 159
(1988.
Z.H. Levine and S.G. Louie, Phys. Rev.25, 6310(1982.

(1972).
26 K. Rajagopal and K.P. Jain, Phys. Rev5A1475(1972.
27AK. Rajagopal, Phys. Rev. 8, 1239(1972.
28F. Brosens, L.F. Lemens, and J.T. Devreese, Phys. Status Solidi B

74, 45 (1976. .

29F. Brosens, J.T. Devreese, and L.F. Lemmens, Phys. Status Soli‘gis' Moroni, D.M. Ceperley, and G. Senatore, Phys. Rev. Z&t.
B 80, 99 (1977). 4g, 0001995 o

%F, Brosens, L.F. Lemmens, and J.T. Devreese, Phys. Status Solidi”- H0las, in Strongly Coupled Plasma Physjcedited by F.J.
B 81, 551(1977). Rogers and H.E. DeWittPlenum, New York, 1987 p. 463.

313.T. Devreese, F. Brosens, and L.F. Lemmens, Phys. Re%, B - K. Utsumi and S. Ichimaru, Phys. Rev. 22, 5203(1980.
1349(1980. 505, Ichimaru, Rev. Mod. Phy&4, 1017(1982.

32F Brosens, J.T. Devreese, and L.F. Lemmens, Phys. R&L, B >'B. Farid, V. Heine, G.E. Engel, and I.J. Robertson, Phys. Rev. B
1363(1980. 48, 11 602(1993.

33D.J.W. Geldart and R. Taylor, Can. J. Ph¢8, 155 (1970. 52A. Holas, P.K. Aravind, and K.S. Singwi, Phys. Rev2B, 4912

34D.J.W. Geldart and R. Taylor, Can. J. Ph¢8, 167 (1970. (1979.

035104-8



