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Effect of coupling of forward- and backward-going electron-hole pairs on the static local-field
factor of jellium
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We investigate the effect of the coupling of the forward- and backward-going electron-hole pairs on the
static local-field factor of jellium with and without a gap. We calculate the static local-field factor for the two
types of jellium as a function ofq using the Bethe-Salpeter equation. We assume that a particle and a hole
interact via a statically screened Coulomb interaction. The polarization diagrams that include this interaction
are summed to infinite order, leading to a matrix equation for the inverse of the polarization propagator.
Employing a string of manipulations we convert the matrices in convenient forms, and we then invert the
resulting matrices iteratively. This allows us to use matrices of very large size, something that would have not
been feasible with straightforward inversion, and therefore achieve a very high level of convergence of results
with respect to sampling of electron states in the Fermi sea with relative computational ease. For the calcula-
tion of the static local-field factor, we find that the coupling of both kinds of pairs gives qualitatively different
results compared to the case when there is no coupling, and that the coupling of both kinds of electron-hole
pairs is necessary for obtaining the most accurate results. We compare our results with recent calculations and
point out the similarities and differences.
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I. INTRODUCTION

Various researchers1–7 using the Bethe-Salpeter equatio
for solids either ignore the backward-going electron-h
pairs or do not couple the forward- and backward-go
electron-hole pairs. Recently Olevano and Reining8 in their
calculation of the electron energy-loss spectrum of silic
included both kinds of electron-hole pairs and treated th
coupling as a perturbation. Their results are in excell
agreement with the experiment.9 The main motivation of this
work is to study the effect of the coupling of forward- an
backward-going electron-hole pairs on the static local-fi
factor of jellium with and without a gap. Jellium with a ga
is a model of an insulator as a free electron gas with a ga
the Fermi energy.10 The effect of the coupling in jellium
suggests the corresponding effect in solids.

The local-field factor G(uqu) was introduced by
Hubbard11 in his attempt to include the contribution of ex
change into the proper polarizability of the electron g
x(q,v), whereq and v are the polarization’s wave vecto
and frequency.

Hubbard, by employing some approximations, was able
sum an infinite series of ladder diagrams. The resulting fo
of the proper polarizability was given by the following e
pression:

xH~q,v!5
xRPA~q,v!

11vc~ uqu!G~ uqu!xRPA~q,v!
, ~1!

with

G~ uqu!5
uqu2

2~ uqu21uqFu2!
, ~2!
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and vc(uqu)54pe2/uqu2 being the Fourier transform of th
Coulomb interaction. In the above equations,xRPA(q,v) is
the random-phase approximation~RPA! proper polarizability
and qF is the Fermi wave vector. Because Hubbard on
included certain exchange diagrams in his calculation of
proper polarizability for jellium, the local-field factor he in
troduced accounts only for the exchange hole around e
electron. A number of authors12–15 have tried to include the
Coulomb correlation empirically by including a dimensio
less parameterj into Eq. ~2!:

G~ uqu!5
uqu2

2~ uqu21juqFu2!
. ~3!

Although much more elaborate calculations of the pro
polarizability of the electron gas were done over t
years,15–41most of them have the form of Eq.~1!, introduced
by Hubbard.

This paper is organized as follows: In Sec. II, we descr
the method of calculation and give details about some su
points of our calculation. In Sec. III we present the results
the static local-field factor of the electron gas, with and wi
out a gap, for the case where both kinds of electron-h
pairs are coupled and for the case where they are
coupled. We discuss and compare our results with the o
obtained from other calculations. In Sec. IV we present
conclusions.

II. METHOD OF CALCULATION

A. Jellium

The static local-field factor is important because it is
lated to the exchange-correlation factorf xc(uqu) and conse-
©2004 The American Physical Society04-1
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FIG. 1. Diagrams contributing to the calculation of the proper polarizability.
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quently to the exchange-correlation energyExc@n#, a quan-
tity of great importance in density-functional theory:42,43

G~ uqu!52
f xc~ uqu!
vc~ uqu!

5
1

vc~ uqu! S 1

x~q!
2

1

xRPA~q! D . ~4!

Throughout this work, suppressing a frequency argument
notes the static value for a constant, e.g.,x(q)5x(q,v
50). Exc@n# and f xc(uqu) are directly related in real space

f xc~ ur2r 8u!5F d2Exc@n#

dn~r !dn~r 8!
G

n0

. ~5!

In our approach, we calculate the proper polarizability of
electron gas,x(q), at a certain level of approximation, an
by using Eq.~4!, we obtainG(uqu). For the calculation of the
proper polarizability, we only include diagrams where t
electron and the hole interact via a statically screened C
lomb interaction, and we sum these diagrams to infinite
der. We show the diagrams included and their summatio
Fig. 1. Here we use a noninteracting, time-ordered elec
Green’s function,

G0~p!5
1

E2upu2/26 ih
, ~6!

which implies thatG(uqu)50 gives the RPA result, and a
lows for a qualitative assessment of the significance of c
pling forward- and backward-going electron-hole pairs. W
henceforth make the abbreviation,E(p)5upu2/2. Here we
use four-vector notation, i.e., we havep5(p,E), q
5(q,v), etc. Therefore, all electron states with momentu
smaller than the Fermi momentumqF , i.e., upu,qF , are
filled in the ground state, and all states withupu.qF are
empty in the ground state. The occupancy of a state,f (p), is
therefore given byf (p)51 for upu,qF and f (p)50 for upu
.qF . Also, this work assumes that one has zero temp
ture. From Feynman rules,44 one finds that the proper pola
izability x(q) can be expressed in a compact way in terms
the irreducible vertex functionG(p,p1q):

x~q!522i E d4p

~2p!4
G0~p!G0~p1q!G~p,p1q!. ~7!

The factor of 2 in Eq.~7! comes from the summation ove
spins. Use of the statically screened interaction between
electron and the hole has as a consequence the suppress
03510
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the dependence ofx on the energy exchanged between t
electron and the hole. ThereforeG(p,p1q) only depends on
v, the total energy of the electron-hole pair, which in o
case is equal to zero because we calculate the static pr
polarizability x(q). This allows us to perform the interna
frequency summation in Eq.~7! without any difficulty. The
static screening of the Coulomb interaction and the choice
the diagrams that contribute to the static proper polarizab
x(q) are the most important approximations employed
the calculation of the static local-field factorG(uqu). Be-
cause of the lack of dependence ofG(p,p1q) on the inter-
nal frequency, Eq.~7! takes the form

x~q!522i E d4p

~2p!4
G0~p!G0~p1q!G~p,p1q!. ~8!

A pictorial representation of the static proper polarizabil
x(q) is given in Fig. 2.

The equation of motion for the irreducible vertex functio
G(p,p1q) is

G~p,p1q!5dq,02 i E d4k

~2p!4

vc~p2k!

eRPA~p2k!
G0~k!

3G0~k1q!G~k,k1q!. ~9!

Equation~9! is depicted in terms of Feynman diagrams
Fig. 3. We perform the internal frequency summation in E
~9!, and we convert the integration ink space into summation
over discretek points. The equation forG(p,p1q) takes the
form

FIG. 2. Static proper polarizability.
4-2
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EFFECT OF COUPLING OF FORWARD- AND BACKWARD- . . . PHYSICAL REVIEW B 69, 035104 ~2004!
G~p,p1q!5dq,01
1

V (
k

vc~p2k!

eRPA~p2k!

f ~k!2 f ~k1q!

E~k!2E~k1q!1 ih

3G~k,k1q!. ~10!

V is the volume of the finite-sized ‘‘box’’ appropriate fo
one’s discretization of values ofk. We next define the ma
trices

Wpk5
vc~p2k!

eRPA~p2k!
~11!

and

Fkk85
1

V

f ~k!2 f ~k1q!

E~k!2E~k1q!1 ih
dkk8 . ~12!

Using all of the above definitions, Eq.~10! can be expresse
in matrix form, suppressing all indices, as follows:

G511WFG5F21~F212W!21. ~13!

Here, these matrices act in a space in which a vector has
component corresponding to each possible electron-hole
state. In the same way we can write Eq.~8!, the equation for
the static proper polarizabilityx(q), using

x~q!52V^FuFGuF&, ~14!

where F is one such vector with components all equal
1/AV. We combine Eqs.~13! and ~14! to obtain the final
form of the equation for the static proper polarizability,

x~q!52V^Fu~F212W!21uF&. ~15!

As mentioned, one of the most important aspects of our
culation is the coupling of both forward- and backwar
going electron-hole pairs. A forward-going electron-hole p
is the electron-hole pair for which we haveE(k)2E(k1q)
.0, while a backward-going electron-hole pair is the one
which we haveE(k)2E(k1q),0. According to Eq.~15!,
in order to calculatex(q) we subtract the statically screene
Coulomb interaction matrixW from the inverse of the free
electron-hole propagator matrixF21, and we invert the re-
sulting matrix. During the inversion, matrix elements ofW
can couple forward- and backward-going electron-hole p

FIG. 3. Diagrammatic representation of the irreducible ver
function.
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to both kinds of pairs, although coupling opposite types
pairs can be of secondary importance and has often b
neglected because of resulting simplifications.

For the calculation of the static proper polarizabilityx(q)
and consequently the local-field factorG(uqu), we create a
cubic grid ofk points. The dimensions of the cubic box an
the spacing between the grid points are selected in suc
way that as many ‘‘physical’’k vectors as possible will con
tribute to the calculation of the proper polarizability. By th
term ‘‘physical’’ vectors we meank vectors for which we
haveuk1qu.ukFu anduku,ukFu, so that thesek vectors cor-
respond to a forward-going electron-hole pair; oruk1qu
,ukFu and uku.ukFu, so that thesek vectors correspond to a
backward-going electron-hole pair.

As seen in Eq.~15!, we have to construct the matrice
F21 and W. The construction of the inverse free electro
hole propagator matrix is trivial. The free electron-ho
propagator matrixF is diagonal ink space and therefore it
inverse is also diagonal. The matrix elements of the inve
free electron-hole propagator are of the form

Fkk8
21

5V„f ~k!2 f ~k1q!…@E~k!2E~k1q!1 ih#dkk8 .
~16!

When constructing the screened Coulomb matrixW special
care is needed for the selection of its dimensions and
arrangement of its matrix elements because as we exp
below we have to Fourier transform this matrix. Forp2k
50, the screened Coulomb interaction matrix diverges.
circumvent this problem by replacing theW(p2k50) value
of the matrix with an average ofW Wav over a sphere cen
tered aroundk50 with volume V0 corresponding to one
discretek point:

Wav5
4p

V0
E

0

k0
dkk2e21~k!v~k!. ~17!

Here the volumeV0 is given by the expression

V05
~2p!3

V
5

4pk0
3

3
, ~18!

wherek0 is the radius of a sphere with volumeV0. Noting
that for k approaching zero,e21(k) is given by the expres-
sion

lim
k→0

e21~k!5Ak2, ~19!

Eq. ~17! takes the form

Wav54pe2A. ~20!

This substitution exploits ideas similar to those used
Godby, Schlu¨ter, and Sham.45

Upon completion of the construction of the matricesF21

and W the next step is the inversion of the matrixF21

2W. The straightforward inversion of the matrixF212W,
although the most easily implemented, is not recommen
because it scales asN3, whereN is the number of the physi
cal vectors. By employing this approach, one would
forced to use a small number of physical vectors and the

x

4-3
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TSOLAKIDIS, SHIRLEY, AND MARTIN PHYSICAL REVIEW B 69, 035104 ~2004!
fore the accuracy of the calculations will be limited. Inste
we use an iterative method for the inversion that scales be
with respect to the number of physical vectors, so that
can easily converge results with respect to the numbe
physical vectors. Specifically, we use an iterative method
solve Aux&5uF&, where we haveA5F212W. Note that
Wpk depends only on the differencep2k. This means that if
we Fourier transformW with respect tok, the resulting ma-

trix W̃ is diagonal in ‘‘real space,’’ which is a space in whic
the coordinate is the relative electron-hole separation. He
to act with theW matrix on some vectoruy& we may Fourier

transform uy& to real space, multiply byW̃, and Fourier
transform the result back tok space. By employing this pro
cedure, we are able to work with all physical quantities in
convenient forms. This not only speeds up the calculat
immensely, but also allows calculations in which a mu
larger number of physical wave vectors are considered,
the resulting convergence with respect to the number
physical wave vectors can be made fully satisfactory.

B. Jellium with a gap

Our choice of jellium with a gap or insulating jellium, a
introduced by Levine and Louie,46 is a two-parameter mode
In addition to the electron gas parameterr s , the gap is given
by lvF5Egap /\. The main hypothesis is that the imagina
part of the model dielectric function that describes the s
tem is

Im eLL~q,v!5H Im eL~q,v2!, uvu>lvF

0, uvu,lvF .
~21!

HereeLL is the Levine-Louie model dielectric function,eL is
the Lindhard dielectric function,vF5qF

2/2 is the Fermi fre-
quency, and we havev2

2 5v22(lvF)2. The sign ofv2 is
taken to be the same as that ofv. The Levine-Louie model
dielectric function is homogeneous, isotropic, has an anal
representation, and obeys causality and particle-number
servation.

The calculation of the static local-field factor for the ca
of jellium with a gap is almost identical with that of th
gapless jellium, described in the preceding section, exc
for two modifications. First, the free electron-hole propaga
matrix is given by the following expression:

Fkk85
1

V

f ~k!2 f ~k1q!

6A@E~k!2E~k1q!#21~lvF!21 ih
dkk8 ,

~22!

where the upper and lower signs are to be used to mimic
sign of E(k)2E(k1q). Second, the Coulomb interaction
screened by the static Levine-Louie dielectric function giv
by
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eLL~q,0!511
2

qFa0p S 1

Q2
2

l

2Q3

3F tan21
2Q1Q2

l
1tan21

2Q2Q2

l G
1F l2

8Q5
1

1

2Q3
2

1

8QG lnFl21~2Q1Q2!2

l21~2Q2Q2!2G D ,

~23!

where we haveQ5q/qF .
For the determination of the parameterl for a specific

material, the static long-wavelength limit of the dielectr
function

eLL~0!511S vp

lvF
D 2

~24!

is matched to the values available from experiment, wh
vp is the plasma frequency.

III. DISCUSSION OF RESULTS

In this section we will present our results for the sta
local-field factor for the case where the forward- a
backward-going electron-hole pairs are coupled, and for
case where they are not coupled.

A. Jellium

In Fig. 4, the static local-field factor of jellium,G(uqu), is
given for different values ofr s . The values ofr s used are
2.07, 3.25, 3.93, and 4.86, which correspond to the fr
electron densities found in Al, Li, Na, and K, respective
The forward- and backward-going electron-hole pairs
coupled. In this case, the main characteristics of the lo
field factor are a parabolic region from 0 to 2uqFu, a region
consisting of a linear and a parabolic part from 2uqFu to
3.5uqFu, and a cusp atuqu52uqFu. By writing the local-field
factor asG(uqu)5a01a1uqu1a2uqu2 we are able to deter
mine the parametersa0 , a1, and a2. The values of these
parameters are given in Table I. At this point we have
emphasize that the smalluqu region is purely parabolic for al
the results we present in this paper. Because of the fact
we fit our data, for the smalluqu region, with a second degre
polynomial, a linear and a constant term appear forG(uqu).
The coefficients of the linear and the constant term are n
ligible compared to the coefficients of the parabolic term a
therefore are not taken into consideration. The results
tained by the diffusion Monte Carlo calculation of Moron
Ceperley, and Senatore47 indicate thatG(uqu) is almost com-
pletely given by its asymptotes, and that it is reproduc
quite accurately by the local-density approximation
density-functional theory foruqu<2uqFu. The asymptotic be-
havior of the static local-field factor of jellium is parabol
for both the small47 and large48 uqu regions.

Besides the fact that our results indicate that the reg
from 2uqFu to 3.5uqFu consists of a linear and a parabol
part, something which we believe comes from the fact t
4-4
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we sum only a specific subset of diagrams representing
interaction between the electron and the hole, another di
ence with the results of Moroniet al. is that our local-field
factor decreases with increasingr s . The explanation for this
fact could be that in RPA, screening is larger for smal
values ofr s . This means that the screening hole spends m
time in the vicinity of the electron. ThereforeW, the interac-
tion between the electron and the hole, is larger for sma

FIG. 4. Static local-field factor of gapless jellium for differe
values ofr s when the forward- and backward-going electron-ho
pairs are coupled.

TABLE I. Values of the expansion coefficients of the sta
local-field factor of gapless jellium in terms ofuqu for different
values ofr s when the forward- and backward-going electron-ho
pairs are coupled.

r s Energy range a0 a1 a2

2.07 0→2 0.2178
2→3.5 1.7646 21.2567 0.3849

3.25 0→2 0.1604
2→3.5 0.0789 0.1293 0.0637

3.93 0→2 0.1398
2→3.5 20.0251 0.1834 0.0460

4.86 0→2 0.1190
2→3.5 20.1112 0.2231 0.0309
03510
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r s and therefore the local-field factor is larger. If all the e
change and correlation effects are taken into account m
carefully, like in the calculation of Moroniet al., the local-
field factor has to increase with increasingr s because of the
exchange and correlation of the screening holes, which
do not take into consideration in our calculation. A compa
son of the values of the local-field factor of our calculati
and the calculation of Moroniet al. for very similar values of
r s and uqu is given in Table II. The values ofG(uqu) are in
reasonable agreement.

Concerning the cusp observed atuqu52uqFu, there is not a
consensus in the literature whether this is an actual cha
teristic of the static local field of jellium or it is an artifact o
the different approximations used to calculateG(uqu). The
static G(uqu) of Brosens, Devreese, and Lemmens,28–32 ob-
tained through a dynamical-exchange decoupling in
equation of motion for the Wigner distribution function
clearly exhibits this cusp. Brosens, Devreese, and Lemm
attribute the cusp of the static local-field factor to the beh
ior of the dynamical local-field factorG(q,v).29 They
proved thatG(q,v) has a logarithmic singularity at the fre
quenciesuvu5\uuqu2/22uquuqFuu/m. The two parabolasv1
5\(uqu2/22uquuqFu)/m and v25\(uquuqFu2uqu2/2) inter-
sect atuqu52uqFu andv50. At the point of intersection both

FIG. 5. Static local-field factor of gapless jellium for differen
values ofr s when the forward- and backward-going electron-ho
pairs are not coupled.

TABLE II. Comparison of the values of the static local-fie
factor of this work and the work of Moroniet al. ~Ref. 47!.

This work Moroniet al.
r s52.07 r s52.00

q/qF q/qF

1.02 0.20 1.01 0.25~1!

1.10 0.23 1.08 0.28~2!

1.51 0.45 1.51 0.64~2!

1.61 0.52 1.61 0.77~1!

1.80 0.66 1.81 0.84~1!

2.00 0.78 2.01 0.90~7!

2.14 0.83 2.15 0.99~5!

2.41 0.98 2.42 1.04~12!

2.70 1.19 2.69 1.09~10!

3.02 1.47 3.02 1.18~9!
4-5
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TSOLAKIDIS, SHIRLEY, AND MARTIN PHYSICAL REVIEW B 69, 035104 ~2004!
singularities cancel each other. The cancellation of the
logarithmic singularities has as a result the appearance
cusped structure in the static local-field factor. The cusp
also present in the Utsumi-Ichimaru model for the local-fie
factor49,50 and by the calculations of Faridet al.,51 who use
the Utsumi-Ichimaru model as their starting point. The cu
in all these calculations, including ours, is substantially sm
compared to that obtained by the calculations of Brose
Devreese, and Lemmens. Holaset al.,52 using first-order per-

FIG. 6. Static local-field factor of jellium with a gap for differ
ent values ofr s and l when both forward- and backward-goin
electron-hole pairs are coupled~solid curves! and not coupled
~dashed curves!.

TABLE III. Values of the expansion coefficients of the stat
local-field factor of gapless jellium in terms ofuqu for different
values ofr s when the forward- and backward-going electron-ho
pairs are not coupled.

r s Energy range a0 a1 a2

2.07 0→2 0.1258
2→3.5 0.0584 20.0326 0.1166

3.25 0→3.5 0.0824
3.93 0→3.5 0.0723
4.86 0→3.5 0.0620
03510
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turbation theory in the Coulomb interaction, calculated t
proper polarizability and consequently the static local-fie
factor. Their results reproduced the cusp, but the authors
tributed this feature to the use of only the first-order d
grams in the calculation of the proper polarizability. Hol
et al. came to this conclusion after comparing their resu
with the ones obtained by Geldart and Taylor,34 who used
higher-order diagrams for the calculation of the proper p
larizability and did not obtain any cusped structure. Based
the present results, we suggest that the cusp is a mathe
cal feature of the static local-field factor, as it is defined
this work, as argued by Brosens, Devreese, and Lemme29

In Fig. 5, we present the corresponding results for
static local-field factor, for different values ofr s , for the case
when the forward- and backward-going electron-hole pa
are not coupled. The 2uqFu cusp is wiped out except forr s
52.07, where a tiny cusp is still present. When the 2uqFu
cusp is eliminated, only one parabolic region is present, c
trary to the fact that two different parabolic regions have
exist, one for smallq and another for largeq. The main
effect of the omission of the coupling is the suppression
the 2uqFu cusp. In Table III the coefficients of the expansio
of G(uqu) with respect touqu are given. Therefore it become
evident that the coupling of the backward- to the forwa
going electron hole pairs would be important for carrying o
the most accurate calculations using the Bethe-Salpeter
proach.

B. Jellium with a gap

In Fig. 6, we present the results for the static local-fie
factor of insulating jellium for the case where both types
electron-hole pairs are either coupled~solid line! or not

TABLE IV. The values ofr s andl used for the calculations o
the static local-field factor of the insulating jellium.

Material r s l

LiF 1.4851 0.4050
MgO 1.5553 0.8294
Si 2.0060 0.4017
Diamond 1.3189 0.4982

TABLE V. Values of the expansion coefficients of the sta
local-field factor of jellium with a gap in terms ofuqu for different
values ofr s when the forward- and backward-going electron-ho
pairs are coupled.

Material Energy range a0 a1 a2

LiF 0→2 0.3565
2→3.5 3.9422 22.9728 0.8334

MgO 0→2 0.3975
2→3.5 4.5082 23.4144 0.9739

Si 0→2 0.7449
2→3.5 3.8986 22.0660 0.6867

Diamond 0→2 0.3845
2→3.5 5.2104 24.1458 1.1402
4-6
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coupled ~dashed line!. The calculations were done for th
values ofr s andl that correspond to MgO, Si, diamond, an
LiF. These values ofr s and l are given in Table IV. The
main features of the results are the same as those of
gapless jellium presented in the preceding section. The lo
field factor exhibits a cusp atuqu52uqFu and is mainly char-
acterized by one parabolic regime foruqu<2uqFu and a re-
gime for uqu>2uqFu which consists of a linear and
parabolic part. The values of the expansion coefficients
G(uqu) in terms ofuqu are given in Table V. For the jellium
with a gap, the cusp at 2uqFu appears to be higher especial
for the case of Si. For the case of Si the static local-fi
factor exhibits also a hump near 2uqFu.

Finally, the static local-field factor is given for the ca
where the forward- and backward-going electron-hole p
are not coupled. We see that for Si, diamond, and LiF,
2uqFu cusp is still present, although it is smaller in size co
siderably compared to the case where both electron-hole
types are coupled. For the case of MgO, the 2uqFu cusp is
totally eliminated, and the static local-field factor is main
characterized by one parabolic regime, which is qualitativ
a very different result. The values of the expansion coe
cients ofG(uqu) in terms ofuqu are given in Table VI. There-
fore the main effect of the omission of the coupling betwe
the two types of the electron-hole pairs is the suppressio
the 2uqFu cusp. The elimination of the 2uqFu cusp depends on
its height when both kinds of electron-hole pairs are coup
If the cusp is sufficiently large, it will not disappear, and t
static local-field factor will be characterized by two regime

TABLE VI. Values of the expansion coefficients of the sta
local-field factor of jellium with a gap in terms ofuqu for different
values ofr s when the forward- and backward-going electron-ho
pairs are not coupled.

Material Energy range a0 a1 a2

LiF 0→2 0.2399
2→3.5 0.3734 20.2020 0.2351

MgO 0→3.5 0.2468
Si 0→2 0.5619

2→3.5 2.9557 21.6488 0.6185
Diamond 0→2 0.2519

2→3.5 0.2715 20.1347 0.2411
ev

ni
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as it should be. On the other hand, if the cusp originally
not sufficiently large, it will be wiped out by the lack o
coupling. This will lead to a static local-field factor chara
terized by only one parabolic regime.

IV. CONCLUSIONS

We presented the calculation of the static local-field fac
of jellium using the Bethe-Salpeter equation. We only co
sidered diagrams where the electron-hole pair interact v
statically screened Coulomb interaction and we summ
these diagrams to infinite order. In our calculation of t
static local-field factor we coupled the forward- an
backward-going electron-hole pairs. We compared these
sults with the corresponding results obtained when the c
pling is omitted, and we conclude that the coupling of bo
kinds of electron-hole pairs is relevant for the most accur
calculation using the Bethe-Salpeter equation. The main
fect of the omission of coupling between the forward- a
backward-going electron-hole pairs is the suppression of
2uqFu cusp. The elimination of the 2uqFu cusp depends on its
height when both kinds of electron-hole pairs are coupled
the cusp is sufficiently large, it will not disappear, and t
static local-field factor will be characterized by two regime
as it should be. On the other hand, if the cusp originally
not sufficiently large, it will be wiped out by the neglect o
coupling. This will lead to a static local-field factor chara
terized by only one parabolic regime. This might have i
plications for the Bethe-Salpeter calculations in real soli
Another interesting feature of our calculation is the high a
curacy combined with the speed of calculation. This
achieved by the conversion of the relevant matrices into c
venient forms and the use of an iterative inversion approa
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