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We consider as a clue to the understanding of the pseudogap phase if.lgherconductors the metal-
insulator crossover in underdoped, nonsuperconducting cuprates as temperature decreases and a similar cross-
over in superconducting cuprates when a strong magnetic field suppresses superconductivity SM@pin
and chargdU(1)] Chern-Simons gauge field theory, applied to the model, is developed to describe this
striking phenomenon. Two length scales have been derived from the theory: the antiferromagnetic correlation
length £~ (&]In &) "2, where 6 is the doping concentration, and the thermal de Broglie wavelength of the
dissipative charge carrieis;~ (T 8/t) 2 whereT is the temperature,the hopping integral. At low tempera-
tures é<\, the antiferromagnetic short-range order dominates, and the charge carriers become localized,
showing insulating behavior. On the contrary, at high temperaté#es, the dissipative motion of charge
carriers prevails, exhibiting metallic conductivity. Furthermore, the gauge interaction induces binding of
spinons(spin excitation and holongcharge carrierinto “electron” resonance. This process introduces a new
energy scale, the inverse recombination time, which turns out to be essential in the interpretation of the
out-of-plane resistivity. The major steps in the theoretical derivation of these results, particularly the calculation
of the current-current correlation function and the Green'’s function for the physical electron, are presented with
some detail. The obtained theoretical results are systematically compared with the in-plane and out-of-plane
resistivity data and the magnetoresistance data, as well as the nuclear magnetic relaxation data in the
pseudogap regime. Very good agreement is obtained.
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[. INTRODUCTION decrease of doping a striking metal-insulator crossover
(MIC) was observed.The existence of a pseudogap in the
The mechanism of higfi; superconductivity, a great in- normal state of underdoped cuprates was further confirmed
tellectual challenge posed by Bednorz andlletuto the con- by studying theab-plane optical conductivit§,specific heat
densed matter physics community 16 years ago, to a larg@easurementsand many others. However, the most direct
extent remains unresolved. The understanding of thevidence of the pseudogap comes from the angle-resolved-
‘pseudogap”—i.e., a suppressed density of statBOS)  photoemission spectroscopARPES experiments which
near the Fermi level—as one of the most distinctive featuregnowed ad-wave-like gap in the normal state in Bi-2212
of cupratedparticularly in the underdoped regimigom the - pejoyy the crossover temperatufé.® The pseudogap struc-

conventional superconductors, may serve as a key {0 thg e i the total density of states was also detected in tunnel-
high-T. conundrum.(For a recent review of this issue con- ing experiments on Bi-2212

sult Ref. 1) The current picture of the pseudogap opening appears as
follows:1° There exists a large Fermi surfadeS) in cuprate
A. Pseudogap phenomenology superconductors, consistent with predictions of electronic

Agap in the spin excitation spectrum was first observed jstructure studles*at high temperatures. As the temperature
nuclear magnetic resonan¢®MR) experimenté, showing ~ decreases below”, the pseudogap first opens nearx, it
up as DOS reduction in both Knight shift and spin-lattice tNen gradually “eats up” the original FS, converting it into
relaxation rate, below a certain crossover temperalifre ~PSeudogapped” part, eventually leaving only short discon-
Later on, a gap in the charge excitations was also found ifected arcs aroundm(2,7/2). Finally, these arcs shrink to
transport measurements. Unlike optimally doped cuprateBodal points of the gap function, and the pseudogap con-
where the linear temperature dependence of the in-plane r&erges to the superconducting gap, with the sahveave-
sistivity extends to very low temperatures, in underdopedike symmetry. Meanwhile, the quasiparticle peak which isill
samples the temperature dependence becomes sublinear Hefined in the normal-pseudogap state, becomes well defined
low some characteristic temperatufé because of the re- in the superconducting state, like in typical BCS supercon-
duced scattering rate due to a gap operifiglpon further  ductors. This picture seems to be universal for all classes of
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cuprate superconductors and is consistent with all availableelated to this quantum phase transition? There were several
data on pseudogap phenomena. proposalé”?®to be checked by experiments. By extrapolat-
ing the curveT* (8), whered is the doping concentration to
temperatures below,, a “critical concentration”§,~0.19
B. Different schools of thought was identified, where the superconducting condensation en-

However, the smooth crossover of the pseudogap into §79Y also reaches a maximifffiThe specific heat jump at the
superconducting gap does not tell us tbegin of the  Superconducting St)ransmon changes its doping dependence at
pseudogap itself. Theoretical models attempting to interpreifis point as welf? These authors argue that below the QCP
the pseudogap are very much diversified, including théhe short-range antiferromagnetic correlations dominate, giv-
nearly antiferromagnetic FermiNAFF) liquid approact! ~ ing way to superconducting ordering at that point. _
the crossover from Bose-Einstein condensati&&EC) to Before resorting to a review our own work we would like
BCS scenarid? and many other.Closely related to our 0 mention a recent scanning tunneling microscégyM)
approach, there are two schools of thought. According to on&XPeriment exhibiting explicitly the competition and coexist-
school, pseudogap is a “precursor” to superconductivity;€1ce of the pseudogap and superconducting ptsise
i.e., the superconducting state is more fundamental. The M pattern seems to be messy: the superconducting regions
other school emphasizes the proximity to the Mott insulating?'® Separated by pseudogap areas at nanoscale, but are kept
state, considering the pseudogap phase as nothing but dopgefierent as Josephson arrays. However, these two types of
Mott insulators. Therefore, the normal state is more fundal€9ions refuse to mix with each other, as Zaanen put it
mental, while the superconducting state is derived from thigictorially™ like “oil and vinegar in salad dressing.” More-
anomalous normal state, as the BCS superconductivity afver, these two regions behave totally differently: the typical
pears when a pairing force is present in the Landau Fermirésonance” states caused by Ni impurities in the supercon-
liquid. ducting areas disappear completely in the pseudogap phase.

There were several early proposals on the first approacH,nis means these two phases, in spite of their apparent simi-
assuming preformed pairs in the normal stdtd@his ap- larity, are_ofdlﬁergnt naturé? To elucidate their competition
proach was developed further by different groups. Emen@nd coexistence is a real challenge to theory.
and Kivelson considered phase fluctuations of the supercon-
ducting order parameter which destroy the coherence above
T..* Somewhat related appear the nodal liquid apprbach ~ What is the key to the understanding of the pseudogap
and its QER variant!® Randeria attempted to derive several phase? An “obvious” answer is the pseudogap formation—
properties of the pseudogap phase, starting from a lowke., to explain how a gap is originated and how the states are
density, short-correlation-length superconducting statés  filled in as the temperature increases. Apparently this is not
fair to say that to describe the rich variety of phenomena irenough, as we know that one scale or a single variable usu-
the pseudogap phase by superconducting fluctuations alodly cannot give rise to a “show” in physics. There must be
is a too difficult, if not impossible task. some competition. Our attention was attracted by the spec-

The other school of thought was pioneered by Andef€on. tacular MIC observed in underdoped, nonsuperconducting
The reference compound before doping is a Mott insulatocuprates in the absence of a magnetic field and a similar
characterized by a strong on-site Coulomb repulsion. Thgghenomenon in superconducting samples when an applied
electrons are basically localized, forming singlet pairs. A fi-strong magnetic field suppresses the superconductivity.
nite amount of energyspin gap is needed to break this First of all, this crossover is a rather universal phenom-
singlet pair. Although similar to superconducting singlet pair-enon. A minimum in resistancéaround 50-100 Kand a
ing, this state itself is very different from the superconduct-crossover from metallic conductivity at high temperatures to
ing state. A mean-field theory using the spin-charge separansulating behavior at low temperatures has been observed in
tion concept and “slave boson” technique was developecheavily underdoped La ,Sr,CuQ, (LSCO) (Refs. 5 and 33
very early!’® To implement the single-occupancy constraintnonsuperconducting Bi,Sr,_,CuG;. 5 (Ref. 34, and non-
coming from the on-site repulsion and to describe the intersuperconducting YB#&£u;0;_ 5 (YBCO) (Ref. 35 and 3B
action between “slave” particles a gauge field theory wasand La-doped Bi-220(Ref. 37). It has also been observed in
developed®?! First the U1) gauge field theor¥? then the  electron-underdoped Nd,CeCuQ, (NCCO) (Ref. 38 and
SU(2) gauge field theo’? was developed to account for Pr,_,CeCuQ, (PCCO (Ref. 39. Very recently, this issue
various properties of the pseudogap phase by Lee and ctas been studied systematically again on a series of high-
workers. The transport properties in the pseudogap phasguality LSCO sample®) and the earlier results have been
were also considered using thé1l) gauge field modet* A reconfirmed. Quite a few physicists consider this crossover
new version of this approach was formulated recently inas localization due to inhomogeneities. We disagree with this
terms of “spinons,” “chargons,” and “visons” with some interpretation. In some of these samples, the estimiatéd
predictions to be verified by experiments. =<0.1, wherekg is the Fermi wave vector anflis the elastic

A different, but related approach is to associate themean free path; i.e., the resistivity is well above the loffe-
pseudogap phase with a quantum critical pgi@CP.%® It Regel limit. This means localization due to disorder effect is
was proposed that the strong fluctuations near the QCP maytelevant here.
be responsible for superconducting pairing and anomalous More importantly, such a MIC has also been observed in a
properties in the normal statéWhat is the order parameter number of superconducting samples when a strong magnetic

C. Clue to the problem
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field suppresses the superconductivity. It was first found orexhibiting metallic conductivity. Therefore the competition,
LSCO, where a strong pulsed magnetic field up to 60 T couldr fighting between the real part of the “self-energy,” the
suppress superconductivity in samples up to optimamass gap, and the imaginary part, the dissipation gives rise
doping?'*2 Further, a crossover to insulating behavior wasto this spectacular phenomenon: MIC. In this sense, it serves
found at low temperatures. A similar crossover was als@s a clue to the understanding of the pseudogap phase.
found in La-doped Bi-2201Refs. 43 and 4pand electron- A natural question would be, what are the other conse-
doped Ps_,CeCuQ, (Ref. 39, as well as in Zn-doped guences of the existence of these two factors? It turns out
YBCO (Ref. 45. Again, the interpretation in terms of local- that a number of experimental observations in the pseudogap
ization due to disorder does not work here, since the estiphase can be explained by it. Roughly speaking, the spin
matedkg€ ~12-25 at the MIC point in some of these sys- (Spinong and charggholong excitations in the pseudogap
tems, and the resistivity is well below the loffe-Regel limit. phase behave like “separate particles” in their scattering
Ascribing MIC to proximity to the QCP as caused by chargeagainst gauge fluctuations, which renormalizes their proper-
density wave od-density-wave instabiliti€é?8is not a good  ties and dominates the in-plane transport phenomena. How-
explanation, either. While in LSCO the insulating behaviorever, at small energy-momentum scale the gauge field binds
persists up to optimal dopirf};*?in La-doped Bi-2201 such Spinon and antispinon into magnon “resonance.” Similarly
a behavior stops at 1/8 dopifiwell below the optimal ~spinon and holon are bound into electron “resonance” with
doping, and no signatures of any stripe phase showed upon-Fermi-liquid properties. In particular, these “recom-
Several authors consider the insulating behavior at low tembined” particles show up in the out-of-plane transport.
peratures as due to non-Fermi-liquid properffeslowever,
the MIC itself was not addressed in any theoretical consid- D. Outline of the rest of the paper
erations known to us.

In our view the MICis the clue to the understanding of
the pseudogap phas®/e consider the MIC in underdoped
cuprates in the absence of a magnetic field and MIC in su

perconducting samples when a strong magnetic field SUps'uperconducting samples when a strong magnetic field sup-

presses .syperconducnvn;he same pheno.menon with the presses superconductivity was considered in Ref. 49. Due to
same origin as an outcome of the competition between the

. . N space limitations, the presentation in these two publications
short-range antiferromagnetic order and the dissipative MQ3/as inevitably too concise. The main purpose of this paper is

tion of the charge carriers_. We have app!ied the SU(Z)twofold: to present the computations in more detail to outline
X U(l).Chern-S|m9n$the spln—ch.arg)e_gauge f|eld theo'ry 0 the essential steps and to compare the results of our calcula-
treat this problent/~**The formalism itself will be outlined ;" o experiments in the pseudogap phase in a more sys-
k?”ef'Y in the next sec’gion, whereas here we give some intuige maic way. Most results have not been published before.
tive picture of our main results. The spin-charge gauge formalism is outlined in Sec. I,

i We start frpml the Mott insudlating state which SdhOWS aM"\hereas the calculation of the in-plane and out-of-plane re-
tiferromagnetic long-range ordéAF LRO). Upon doping  gigiivity is described in Sec. Ill. The computation of the

beyond certain threshold the AF LRO is destroyed, being.gpningn current-current correlation function which is the
replaced bY AF short-ran.ge orde&RO, ch_aractenzed by an key ingredient in studying many physical quantities is pre-
AF correlation lengttg. Since the holes_qjgto_rt the AF back- gented in Sec. IV. The calculation of the Green's function for
grogrllg and their average distanees™ ™ intuitively, £ 1o physical electron needed to compare with the ARPES
~& =%, whered is the doping concentration. This has beenyaia and FS, as well as theaxis resistivity calculation, is
confirmed by the neutron scatterln_gjllgxper|méﬁt©.ur the-  gescribed in Sec. V. In our approach the spin and charge are
oretical treatment proves~(4|In §)”"*, providing the first ot Iy separated, as in one-dimensional interacting sys-
length scale. Put another way, the correspondli/gg energy scaléms. They are not confined, either. Instead, they form a
is the spin excitatiorispinon gapms=J(4|In &)™, whereJ  14,nd state due to the transverse gauge field. A new energy
is the AF exchange interaction. A competing factor is thegcgle__the inverse recombination time for the physical
dissipative motion of the charge carriers with CharaCteriStiCeIectron—appears in the binding process which shows up in
energy~Tm,, whereT is the temperature, whiley,~ 8/t is  the out-of-plane resistivity. Section VI is devoted to compari-
the effective mass of the charge cariigolon), tthe hopping  son of theory with experiment. We first start with the in-
integral. The corresponding '?Dgth scale is the thermal dg|ane resistivity(A), whose normalized value shows univer-
Broglie wavelength\r~ (T o/t)~~*. We know that in trans-  ga| pehavior(B), then continue with out-of-plane resistivity
port and many related phenomena when two scales are cont). Finally, we consider other observables, including the
peting producing a crossover, only the shortest tifaed  magnetoresistancéD) and the spin-lattice relaxation rate

corresponding lengjhscale or the largest energy scale mat-(g) "The paper ends with several concluding remagsc.
ters. Thus, at low temperaturés<iy, the AF SRO domi- /),

nates, and the charge carriers become localized, showing in-
sulating behavior. We would like to emphasize that this
“peculiar localization” is mainly due to interaction rather
than disorder. On the other hand, at high temperat§res In this section we review the formalism involved in the
=\t, the dissipative motion of charge carriers dominatesderivation of the low-energy effective action for thel

The formulation of the spin-charge gauge field theory was
presented earliéf. The calculation of the in-plane resistivity
and MIC in underdoped cuprates in the absence of magnetic
field was briefly reported in Ref. 48, whereas the MIC in

Il. SPIN-CHARGE GAUGE FORMALISM
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model in a range of parameters which should provide amion, with linear dispersion and a pseudospin structure re-
adequate theoretical description of the “pseudogap phase” dfted to the two Nel sublattices. The fermion system exhib-
high-T. cuprates. This effective action will be the startingits a “small” FS with e~t5, & being the doping
point for the computation of physical observables to be comeoncentration, centered around the points#/2,= #/2) in
pared with the experimental data. For further details on thehe Brillouin zone.

derivation, see Ref. 47. (i) Vyea dresses the holons by spin vortices of opposite
chirality in the two Nel sublattices. The spinons in the pres-
A. Chern-Simons representation of thet-J model ence of this gas of “slowly moving” dressed holons acquire

a massmg~ v/4d|In 4] yielding SRAFO. This is due to a cou-

Our theoretical treatment of tHeJ model is based on the . .
following theorend":5: pling at large scales of the formeAFAzaza). Self-

If we couple the fermions of thé-J model to a U(1) consistency of this treatment relies on the inequaky
gauge fieldB,,, gauging the global charge symmetry, and to~ 1< €s~J\/éIn 4] for small 5. The derived doping depen-

an SU(2) gauge fiel¥,, gauging the global spin symmetry dence of the AF correlation length is consistent with the

0
of the model, and we assume that the dynamics of the gaug¥utron data ) o
fields is described by the Chern-Simons actions: (iii) The self-generated “photon” field\, couples the
Fermi liquid of holons to the gapped spinons, described by a

1 f massive CP?) nonlinear sigma (Nkr) model.

Ses(B)=—5—| dxe""B,d,B,,

B. Magnons and electrons as “composite” particles

A low-energy effective action foA is obtained by inte-
grating out spinons and holons, in a path-integral formula-
. . . . tion. We make the assumption that the scaling liflarge
where e*"? is the fully antisymmetric tensor; then the spin- distance, long timecan be taken separately for the two
chargefor SU(2)xU(1)] gauged model so obtained is ex- g hsystem& Then, using the techniques of Ref. 53, one can

actly equivalent to the origindtJ model. rove that in this scaling limit the action guadraticin A.
Let us give some ideas of the proof of the above theoremyg conclusion follows from a derivative expansion for the

for the partition function. We expand the patrtition function of pinon action, due to the presence of a mass soaleand
the gauged model in the first-quantized formalism in terms oo, 4 tomographic decomposition along rays perpendicular
t_he world lines of fermions. After integrqting out thg gaugeys the FS of holons, using the quadratic dependenca o
fields, the effect of the coupling 8,(V,,) is only to give & ¢ scaling action for a single raBchwinger action This
factore '"2(e'™?) for any single exchange of the fermion 1 cans that all results derived from the renormalizgee-
world lines, so the two effects cancel each other exactly.  gratic action inA are valid beyond the standard perturbative
To the fermion field of the gauged model, denotedhly  yreatment. Thus the skeptism towards the gauge field ap-
(« spin indey, we apply a formal spin-charge decomposi- yroach based on the worry that the coupling to the gauge

tion: x,~Hz,, V‘_’h‘freH denotes a spinless fermi¢holon)  fie|q is strong, while the treatment is perturbative, is not well
field andz, a spin; hard-core bosofspinon field satisfy- jystified.

ing the Constraint’;za=l. This constraint eliminates double The term obtained from Spinon integration is a two-
occupation, as required in theJ model. dimensional(2D) Maxwell-like action(as in quantum elec-
The above Spin-charge decomposition intrOdUCGSanftthodynamic$, because the Spinons are massive and the
U(1) gauge symmetry which will be called hfsom holon/  spinon action is parity invariant. The transverse component
spinon: would then generate a logarithmic confining potential be-
A A tween spinons and anti-spinons. The longitudinal part is
Zo(X) = €79Z,(x),  H(X)—H(x)e , (2 gapped due to the plasmon effect at fifiteThis means that

with A a real gauge parameter, with which a self-generated Only spinons were coupled to the gauge field, the renor-
gauge fieldA , is associated, analogous to the one appearingr@lized gauge field would have confining dynamics. How-
in the slave boson and slave fermion approa@ﬁé%. ever, there are also fermlor(}bolons) coupled _to the gauge
We remark that, in view of this residual h/s gauge inter-field, as well. The terr_n .obtamed frpm hoIon_mtegrauon, QUe
action, the spin-charge separation performed abowefis- to the presence of a finite FS, exhibits a Reizer singulatity.
ori purely formal and only the dynamics of the coupled sys-More precisely, the transverse componéit of the gauge
tem determines if it has a physical substance. As an exampléeld turns out to be, fow,|q],»/|q]~0, of the form
a confining dynamics would completely destroy the physical .
spin-charge separation. . o
In a mean-field approximati6h(MFA) to the spin-charge —xlal+i K@) : @)
gaugedt-J model, in a region of parameters which should
correspond to the “pseudogap phase” of high-cuprates, wherey is the diamagnetic susceptibility andthe Landau
the role of the three gauge fields is the following. damping.
(i) Byea carries a fluxar per plaquette, converting viathe  This behavior dominates over the Maxwellian term at
Hofstadter mechanism the spinless holointo a Dirac fer- large scales, destroying confinement. Nevertheless, as we

1
SC'S'(V):EI d3xTr et 3Vu

2
V,0,V,+ 3V V,,Vp}, (1)

(ATATY(w,q)~
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shall see, the attraction generatedAlyin spinon-antispinon X U(1) spin-charge gauging is motivated by the analysis of
and spinon-holon pairs will be sufficient to produce reso-the 1Dt-J model in the limit of smallJ/t.>” The model is
nances with the quantum numbers of the magnon and eleexactly solvable by Bethe ansatz and conformal field theory
tron, respectively. Therefore a true spin-charge separation iechniques, and one knows the critical exponents of its cor-
not realized in our approach. An “intermediate” situation in relation functions. They are basically derived by decompos-
between confinement and full separation—namely, theng the fermion field of the model into spinon and holon. The
“ composité nature of magnons and electrensgs at the root  spin-charge gauging corresponds, using a dimensional reduc-
of our interpretation of the anomalous behavior of physicaltion from 2D to 1D, to a semionic nature of the two excita-
guantities. tions; i.e., an exchange of spinon or holon fields yields phase

Akey and novel feature of our approach is the mass of théactorse™'™?, intermediate between the fermiongt™ and
spinon with a specific doping dependence described abovéhe bosonic 1. This is exactly a property needed to reproduce,
This feature is not shared by the other SUXQ)(1) gauge in a sort of MFA, the known critical exponents. It may be
field theory® where the gauged SU(2) symmetry is an en-worthwhile to compare the role of the(ll), SU(2), and h/s
largement of the particle-hole symmetry at half-filling with gauge fields in 1D and 2D. In 1D a gauge field has no trans-
switched statistics of holon and spinon with respect to oursverse(physica) components, while in 2D it does have one.
The mass of the spinons in our approach and its competitiohe disappearance of this degree of freedom in 1D with re-
with dissipation of the gauge field due to coupling with ho- spect to 2D induces the following effects.
lons have far-reaching consequences, and it turns out to be (i) B),-o=0; hence there is no Hofstatder mechanism and
responsible, in our scheme, for phenomena like the MIC, the the holon has a quadratic dispersion.
low-T positive transverse in-plane magnetoresistance, the (jj) VLFA:o; hence there is no spinon mass generation.
peak in the dc conductivity, and the Cu spin-lattice relaxation  (jjiy AT =0; hence spinons and holons are decoupled and
rate, hence for many experimental signatures of the this yields a true spin-charge separation in 1D.
“pseudogap phase.”

lll. RESISTIVITY AND SPIN-CHARGE DECOMPOSITION

€. Motivation for the gauging group choice In this section we highlight the distinctive features of the

We end this section with some comments on our choice oéxperimental data on in-plane and out-of-plane resistivity in
the gauging group in the theorem stated at the beginning ainderdoped cuprates, sketch the theoretical scheme for com-
this Section. This theorem is a special case of the followingutations, and outline the qualitative understanding of the

more general theorem. resistivity behavior in our gauge field approach.
Theorem® (Chern-Simons representations of thel
mode). Let G be a subgroup of the global symmetry group A. In-plane resistivity

of the 2Dt-J model; consider th&-gaugedt-J model ob-
tained by replacing the fermion field, of thet-J model in
the action S;;(c), with a new fieldy minimally coupled to a
gauge fieldw, with gauge groups. Denote the action of the
G-gauged model b, ;(x,W). Define the Chern-Simons ac-
tion for W by

One of the first striking experimental findings on high-
cuprates was the anomalous behavior of in-plane resistivity,
which in optimally doped samples appears linearTinin
underdoped samples, it deviates from the linear dependence
at low temperatures, but the standard metallic behavi®f
derived from the Fermi liquid theory is not observed. In-
stead, there are the following two distinctive features.

(@ In many strongly underdoped samples there exists a
minimum in the resistivity, arounet 50—100 K, correspond-
ing to a MIC, as we outlined in Sec. | C. A similar crossover
Then, for a suitable choice of a real constigtand of the is also observed in superconducting samples if superconduc-
statistics ofy, fermionic or bosonic depending dt;, the tivity is suppressed by applying a strong magnetic field.
model with actionS;;(x,W) +kgS. s (W) is exactly equiva- (b) Another characteristic feature of in-plane resistivity
lent to the originak-J model. which appears quite universal in underdoped samples is an

The two basic features of the 2B) model needed for the inflection point—i.e. a maximum ofdp/dT at T*
proof of the theorem are its dimensionality, necessary to ap~100-300 K; this maximum disappears for higher dopings.
ply the Chern-Simons theory, and the Gutzwiller projectionAt even higher temperatures the resistivity exhibits a linear
forbidding double occupation, needed to have at most pointin T behavior approached from below. In the literatlifeis
like intersection betweeg world lines. In fact(see the com- also defined by some authors as the temperature where the
ment after the theorem in Sec. I) Aonly with this property  resistivity deviates from the linear dependence, as we men-
can we associate well-defined phase factors to interchange tibned in Sec. | A. That value is higher than the inflection
the world lines. point.

Each of the Chern-Simons representations allowed by the To calculate the in-plane resistivity we use the loffe-
theorem can be taken as a starting point for a mean-fieltarkin rule?! a somewhat counterintuitive but a typical fea-
theory. In particular the slave boson and slave fermion apture of the gauge approach, stating that the physical resistiv-
proaches can be derived by choosiBg-U(1) andkyy) ity p is a sum of the resistivity due to spinons,, and the
=+1 and —1, respectively! Our choice of the SU(2) resistivity due to holonspy:

2
W, W,+ EWMW,,WP .

S w=i d3x Tr e#?P
c.s.(W) yp XTre
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p=pstpn. (4) over, as will be shown in Sec. VI B, the normalized resistiv-
o ) . ) .ty is a universal curve if its value at the MIC poiff,,c and
The derivation of this addition rule is based on the followmgtﬁ/e inflection pointT* are used as referenceps. AR{”\C/ery low
consideration: If we couple the electron to an external elecfemperature many samples exhibit a second inflection point

tromagnetic(e.m) field Ae ., it t_urns<out<that we can at- a0y which the resistivity appears approximately logarith-
tribute an arbitrary e.m. chargewith 0<e<1 to the spinon ¢ in T (Ref. 41); again we interpret this as a crossover to a
and a charge % e to the holon, because in the path integral yitferent “phase.”

formalism,e can always be eliminated by the change of vari-
ableA— A+ €A, . As a consequence, neglecting “photon”

. S B. Out-of-pl istivit
drag, the renormalized e.m. current polarization bulbble, tr-ol-plane resisivity

obeys the rule The out-of-plane resistivity exhibits a completely differ-
. . . ent T dependence. At low temperatures in the “pseudogap
(Iem) "=(ILg) "+ (IIy) (5 phase”p, is insulating, behaving likd ~* with a coefficient

essentially independent of the mateffat higher tempera-
tures p. typically develops a rounded kné&® As empha-

. 8 -
vanishing. This will be self-consistently verifiedposteriori sized by Ar_1d_ersor’1, the coexistence at the same temperature
except for very low temperatures. A crucial assumption her@f @ metallic in-plane and an insulating out-of-plane resistiv-
is the quadratic dependence of the effective actionAjn ity is hard to reconcile within a Fermi liquid theory, whereas
which, as we pointed out in Sec. 1A, is valid beyond the it might have a natural explanation in the framework of spin-

standard perturbation expansion in the scaling limit. So doe§harge “separation.” In such a scheme, in fact, a spinon-
the loffe-Larkin formula. holon decomposition of the electron holds only in the GuO

Denoting byj® the spinon current, the spinon resistivity is layer and spinons and holons should recombine into elec-

calculated from the fully renormalized current polarizationfons to hop between layers and contributepto The out-
bubble of-plane resistivity is then determined by the time scale of

electron recombination. In our approach we have a way to
(50 j3(y)y=Mgx—y) (6) implement this general ideas proposed by Anderson in the
) “pseudogap phase.”
via the Kubo formula To calculatep, we use the approach proposed by Kumar
1 1 R, = and Jayannava (KJ) which is motivated by the experimen-
(ps) "=0s=—[w IMI(0,q=0)]ju—0 tal observation that the-axis transport is essentially incoher-
o ent; i.e., there is no bandlike motion orthogonal to the €uO
= Zj dx?x°I1(x%,q=0). (7)  planes. One can then consider a system of two layers weakly
0 coupled by an effective tunneling matrix element,, tak-
ing into account an averaged momentum dependence of the
opping parametefvanishing for diagonal momentaOne

From Eq.(5) and the Kubo formula, one can derive the loffe-
Larkin rule, provided both conductivities; and o, are non-

For holons we have similar equations replacing the inde
ih
sbyh (e_.g.,J deF‘Otes the h(_)lon C“Tfem‘” Eq. (6) _the can write the 2D retarded Green function of the electron
expectation value is taken by integration o¥erthe spinon ) -
field z, of the continuum Nz model, and the Dirac holon (holon-spinoj resonance for smaib and momentunkg on
field . The last equality in Eq(7) is obtained via the Leh- the FS as
mann representation and the superscRptlenotes the re-
tarded propagator. . o GR(w,EF)NTT, (8)
As pointed out first by Andersolf,the in-plane resistivity wTl

should be interpreted in terms of spin-charge separation. In @167 js the wave function renormalization afidthe scat-
gauge approach, if the scattering time of spinons or holong, 4 rate. Taking into account a virtual hopping between

by gauge fluctuations is shqrte_r than the Iifgtime (.’f the elecy,q layers induces a shift of the real part of the denominator
tron (as in our casg then this time scale will dominate the of Eq. (8) from w to w+Zt,. Let us denote byGR the
) +Zt.. N

in-plane resistivity and it might exhibit a different tempera- corresponding Green’s functions. The out-of-plane conduc-

ture dependence than the_ electron I|f_et|me. . . tivity in the incoherence regime can be written through the
It turns out that a peculiar feature like MIC is mainly due Kubo formula as

to the spinon contribution. As we mentioned in Sec. | C, MIC

is caused by competition between the spinon mass term with do an ; ;

the gauge field dissipation. The spinon contribution to resis- o= —E J —2t§e2—(w)A+(k,w)A,(k,w), 9
tivity, proportional to the spinon scattering rate against the K 2m de

gauge field, turns out to be T~ * at low temperatures when \where A.=(—1/m)ImG. are the spectral functions and
the spinon mass effect dominates, while itid™ at high () the Fermi distribution function. Inserting E¢8) into

temperatures when the gauge field dissipation overwhelmsEq_ (9) after standard manipulations one obtains
In our theoretical framework we identify the inflection

point as the signal of a crossover to a different “phase,” the 1(1 I
so-called strange-metal phase, characterized-bgear re- P\ T 252 (10
sistivity, which will be addressed in a separate pap#fore- v teZ
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where v is the density of states at the FS. One can alreadynalism, an approximation justified by the mass gap of the
anticipate that the first term causes the insulating behavispinon. Roughly speaking, it is valid providetk<Jam
and, being independent tf, it is essentially independent of ~J(|8In 8)2 The kernel appearing in E¢L3) has the for-
the material, as experimentally observed. Via Et)) we  mal structure of an evolution kernel for a 3D Hamiltonian
have related the behavior pf to the computation of and H=—-A,+ m§ and time parametex. It can thus be expanded
Z, thus to the low-energy behavior of the electron Greerin terms of Feynman paths starting fromat “time” 0 and
function. This propagator in turn can be expressed at largeeachingx at “time” s. It is convenient to parametrize these
scales in terms of holon and spinon fieldsand ¢, and be  paths through their three-velocity*, ©=0,1,2, using a

extracted from a linear combination of terms Feynman-Schwinger-FradkirSP representatiorisee, e.g.,
_ Ref. 62
(Pa(X) 25 (X) YY) Za(Y)), (1)

where o denotes the pseudospin structure of the Dirac ho- Ga(x,0|A)=igvSf dse’ismgf D(;Sf dp
lons, @ the component-spin index of the spinons, and the 0
propagator(11) is calculated using the low-energy spinon s
and holon effective actions. xexp{ip(J' q&(t)dt—x)

We shall see that theerivedlifetime of the electron reso- 0

tively, and therefore it cannot explain the temperature behav-
ior of in-plane resistivity, in particular the MIC, but it indeed
sets the scale of the out-of-plane resistivity. We shall also see
that the theoretical curve indeed has a rounded knee, corre- +¢-A ] (14
sponding to the crossover between the high- and low-
temperature regimes, in full consistency with experiment. Here thep integration enforces the constraint on the initial
The following two section$lV and V) are more technical. - and final points of the paths and we use a shorthand notation
Those who are mainly interested in the qualitative aspect ofor the 3D scalar product: e.g.,
the gauge field approach can skip them and move directly to
Sec. VI p-X=p,X* (15
For a better understanding of formula4), notice that for-
IV. SPINON CURRENT-CURRENT CORRELATION mally setting ¢*(t) =dx*(t)/dt, the last exponential i$
FUNCTION times the Lagrangian of a 3D particle coupled to the e.m.
In this section we outline the computation of the spinonPotentialA,, corresponding to the previous Hamiltonibin
current polarization bubble—i.e., the current-current correla@s one expects in a path-integral formulation. Since under a

tion functionTl(w,q)—at smallw andg. This computation /S dauge transformatio%%)() the spinon  field z,(x)
was briefly sketched in Ref. 48 and it is needed to derive th&hanges by the phase fac , it follows that

nance is~T~ % T~ Y2 at low and high temperatures, respec- s
xex;)(if dt[%1 H2(t)
0

X+ ft¢(t')dt'
0

in-plane resistivity, as explained above. We will provide n — Al[A(X)—A(0)]
more technical details here for those who would like to fol- Ga(x0A,+d,0)=e Ga(x.0A,). (16
low the actual calculation. The gauge dependence of the Green function is already

captured by the so-called “Gor’kov approximation”
A. Feynman-Schwinger-Fradkin representation

We start by writing explicitly the spinon Nk model ef- GQ(X,OIA)zexp< : IXAMqu G,(x,0), (17
0

fective action

where[§ denotes integration along a straight line from (xto

1
S=f 3= 05 2(Fg—iA)Zal 2+ (0 — A Z,)|? andG(x,0) is the free propagatdin the absence of gauge
9 field). Expression(14) is useful to go beyond Gor’kov ap-
+miztz,. 1, (12)  Pproximation by means of the identffy
where g~J~ 1, vs~Ja is the spinon velocity, witha the s L
lattice spacing, anang *~a/(|8In 8))*2 the spinon correla- JOA# X+ JO $(t)dt’ | p*(1)dt

tion length. After a suitable rescaling of variables, the spinon
propagator can be recast in the Schwinger representation

Ga(x,y|A)=igvSf dse‘iS(AA+m§)(x,y), (13
0 XF,,

t
x+)\f ¢(t”)dt”), (18
wherex=(vx%x), A=(vsAq,A), andA, denotes the 3D 0
covariant Dalambertian(or relativistic Laplacian The  whereF,,=d,A,—d,A, is the gauge field strength. Picto-
propagator has been considered in the zero-temperature fatally, this representation is illustrated in Fig. 1. The second
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P with nonvanishing polarization components in the limit of

GylA=Y y small w, g, and w/|q], where one finds the leading, Reizer
P ix—y singularity, given by®

~ > diq; . @ - -
Hﬁj(q,w)=(5ij——2') —ik—=+x|ql?|, i,j=1,2,
_ q |l
N (22
Hoo(d,w)=v+wp. (23

FIG. 1. Feynman-Schwinger-Fradkin representation.
_ _ _ In Egs. (22) and (23), x=xs+xn, wWhere ygn) is the
term in Eq.(18), denoted byZ(P), gives the correction to gpinon (holon) diamagnetic susceptibilityx the Landau
the Gor’kov approximation and it is gauge invariant, as itdamping,» the density of states at the FS of holons, angd

depends only orf,,. Shifting ¢*(t) by 2p* one can re-  the plasmon gap. For free holons,
write

1 t
X -~
Ga(x,0|A)=exp(ifA#dxﬂ)ea(x,o“:), (19 Xh 127m, 6mé’
0

and for free spinons,
X o d3p
Ga(x,0|F)=igvSex;<if A(g)dg)f dsf
0 0 (2m)°

(24)

Xs~mgt. (25)

Hence, in this presumably reasonable approximation, for low

X exp[—ipx—i(p®+ mg] doping x> xs. Due to the dependence on the field strength
F in Eq. (21), only the correlator of the electrid=¢;) and

Xf Do exp(ilfsdtd’z(t)) magnetic ;) fields can appear in the computation. Since
4Jo0 the A, propagator is short ranged whereas Alepropagator

. . , is Iong_ rangeq,_ the ‘.‘electric” field contribution. at Iarg(_e
Xex;{—iJ dMJ' dS’JS ds’[ p#(s') spales is nggllglble with respept to the mggnetlc, and in
0 0 0 first approximation we neglect it. However, it might be use-
ful to keep in mind that doing this we neglect a short-range

—2p*][$"(s") —2p"] attraction between spinon and antispir(@n holon. Due to

< the gapless nature ok, we consider the effect of finite
)\J' [¢(s”’)—2p]ds’””. (200  temperature using the thermal propagator
0

<Fij(X)Frs(0)>

XF .,

B. Gauge field strengthF correlation function do di ||Z|2e*iwfo+”z'5
_ _Now we turn _to the polarization ope_ratﬂs. Expressing =(6ir 6js— 5iséjr)f EJ : o .
it in terms of spinon propagators we find (2m) i — k— x|K|?
Hs(X'Y):<DA(x)G(X'Y|A)DZ(y)G(y1X|A)>A “
i [x xcot%{ %) . (26)
= < ( 9= Efy Fwde> G(x,y|F)

This does not contradict our earlier approximation in con-

x sidering the zero-temperature spinon propagator in view of

- EL Fﬂﬂdxp) G(x,y| —F)> » (2D) the finite spinon mass gap. The leading ordeT icorrection
A enters via the thermal gauge field propagator in our scheme.

where(- ), denotes integration ovek with the effective ac-  Since the energy scale for field fluctuations is seThin Eq.
tion in the scaling limit andD 5 the covariant derivative. (26) the integration over frequency is cut off @a< T which
Notice that the two non-gauge-invariant Gor’kov terms ofin turn implies|K[=< (T«/x)"2
the two spinon propagators cancel each other so that the |n the limit Té%<1 an approximate evaluation of the
result is explicitly gauge invariant and it depends onlyFon  apove integral gives
We use now the quadratic structure of the scaling action
S(A) (see Sec. Il B to integrate out the gauge field. The

X

. 02172
explicit expression foS(A) in the Coulomb gauge is —i one Qul¢l™/4, (27)
1 — 13 -1
_= 02 oy whereQq= («T/x)*~is a momentum cutoff an@, -~ can be
S(A) ZJ AXd™XALITA, , identified as the length scale of gauge fluctuations, analogous
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to the anomalous skin depttA posteriorithe upper limit for 1 1 __ (1 92~ 2

T in the inequality above turns out to be reasonable because g(a)=f de dM\J dove @ N7 (32)
the typical time scale is-Qu '~T ¥3<T 1 at low T.) It 0 0 0

turns out that this scale is triggering also the size of the ] )
spinon-antispinon magnon resonance. It also follows that for Finally we evaluate the andsintegrals by a saddle point
me>Q, in the expectation valug2l) the derivative term approximation, obtaining, fomZ=T/y,

dominates over thE terms at large scales, so that to evaluate

I1 the leading term is obtained by computing 1 (Xo)z_)'(’z
p~x/2s s~ = _— (33
(G(X.0F)G(x,0~F))a (28) 2V - T
S
and then taking the spatial derivatives. Notice that @) X
comclde_s with the prgpagato(ﬂ(x)-ﬂ(O)), where () and the magnoﬂ propagator irnx space becomes
=Zz*oz is a “magnon” field. We denote by} and ¢4 the
velocity fields relative to the FSF representation of the two . .
Green functions in Eq(28). Integrating overA the product (Q(x)-Q(0))
of the two FSF expansions one obtains an effective action -
| (¢1,,) in the velocity fields, which is quartic neglecting _ 1 oxol —2i \/m2— If 1X|Qo
the ¢ dependence irF. This approximation can be self- (x°)2—|§|2 P Y 2
consistently justifieda posteriorj becaus¢see Eq(33)]
1(s >
ST , N e—12_ /0 —1/2 — T |x|Q
p~ms> Sfods d(s')~s (X°Img) =< (29) x ’(x°)2—x2—ZQ§g( > 0)
C. Eikonal and saddle point approximation (x%)2—x|2 (34
The ¢ integration is then performed using the eikonal > T |>2|Qo
approximation ms——f —
i i
f [D¢1][D¢2]exp{zf b+ Zf ¢§] el(41.42) To apply the Kubo formula one needs to perform
. the Fourier transform atq=0 of (j5(x)-j%0))
=el(1(#1:92)4, .0, B0 ~(4,0(x)- 3“0 (0)). We consider the region®>|x] and

where (-), 4, denotes the average with respect to the€valuate théx| integration via a saddle point. Using the form

Gaussian measure appearing in the left-hand diths) of of f_arldg one finds that the (_exponent E@4) at largex’

Eq. (30). This can be justified if is small, sincel ~T for T exhibits a complex saddle point at a schtf(x’)~(x)"?
small. Within this approximation the contribution of the two thus verifying the above assumed inequality with a behavior
Green functions factorizes. This factorization in diagram-of & standard diffusion and with argumest4. (In the more
matic language means that after the cancellation of the self2récise numerical evaluation we neglect small-scale fluctua-
energy and vertex renormalization implicitly involved in the tions, splitting the above saddle point into a set of isolated
cancellation among Gor'kov terms, the remaining leadingsaddle pointg.A numerical extrapolation in the region of
effect of A fluctuations is a self-energy renormalization of the Small x° yields an approximate® dependence of the form
gauge-invariant spinon propagator. At this stage the cor-

relator (Q(x) - 3(0)) can be written as IX[(X0) ~ e ™Hx.(x0),  x(x°)=(C2Qy2+C'|x%/my) Y2

T (35)
3 —i| p?+mi——f +i
J d DJO dsexp{ P X (a) |s+ipx with C,C’ finite positive constant@~0.5), thus approach-
T 5 ing a finite value ax®—0. Settinga(x°) = Qo|x](x°) and
—;Q%%uo], (3D

T
0y _ i+ / 2_ 01,0
where a=|p[sQy,f andg are functions which summarize 1) 'V Ms Xf(a(x X

the effect of gauge fluctuations, and their length scale varia- 02
tion is in fact~Q51. Explicit integral representations 6f _ ngg(a(Xo)) (x) (36)

andg are ’
g mE -~ f(a()

1 1 __ (1 -
f(a)=a2f dm\f d)\)\f dop2e= v’ O-N?
0 0 0 we have
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i im(d=0xO The above formula explains the physics underlying Eq.
(I i) a=0x%) _ . . erly :
(39): the gauge fluctuations couple the spinon-antispinon pair

into a resonance with mass gap

, . T
mgo=2 Re ms—|c)—( (41

:f d2x(j ,(x°,%)j*(0,0))

—-1/2
S T T
[(XO)Z_Xg]S &XC(XO)Z : and inverse lifetime
Sincef is smooth on the scal&T~le, assuming fox® the 7o =2 Im\ /mﬁ— icI. (42)
same scale the dominance of the saddle point requires a X

lower bound for the temperature, which combined with pre-

: . S Z; and Z, can be interpreted a3-dependent wave-
vious upper bound yields a range of validity given by

function renormalization factors which modify the tempera-

ture dependence of thighysica) correlation functions. Fi-

nally, we expect that the plausible effect of the neglected

residual short-range attraction is a further renormalization of

the mass gap, but we believe that this does not introduce
In physical units, this gives a range of temperatures besignificative changes.

tween a few tens and a few hundreds of kelvin. The real part

of the exponential in Eq:37) is monotonically decreasing in V. ELECTRON GREEN'S FUNCTION

x°; therefore we evaluate the integral appearing in Kubo | this section we evaluate the continuum limit of the
formula (7) by principal part evaluation. Since our approachelectron Green’s function within our approach, extracting, in
is valid only at large scales, we introduce an UV cutoff in theparticular, the wave-function renormalization constarnd
integral at)\le and evaluate the integration assuming the inverse lifetimel’ needed to compute. in KJ's ap-
large. Then we make the conjecture that for smalthe  proach.

physics is dominated by large scales and the small-scale con-

2 T
mg= )—( =mQp- (38

tribution can be taken into account by removing the UV cut- A. Holon effective action
off after a multiplicative scale renormalization. The result of  |n order to have a more systematic derivation, it is worth-
this approximation is while to start by writing the hopping Hamiltonian for holons,

Hhopp, Neglecting at first the coupling to the h/s gauge field.

Restricting the holon fieldH to the two Nel sublattices,
labeled byA, to which the origin belongs, ar8l we have in
momentum space

Ts=2 |me dx°x°T1(x°,q=0)

Z:

] N N
~Im T | B e S (HEK) HE(K)
mZ_;f(Cel'n'M) k

1
where 0 —2t— +iy_
\/§(7+ Y-)

Zj=QoZa , Zo=(mi—icT/x) [}/ Tf"(CE™]¥Q5?, 1
. . ; . —2t—=(y+—iy-) 0
and numerically one findsf(Cée™)~0.2+i3.3 and V2
f7(Ce' ™) real. For simplicity we set Ini(Ce ™4 =c and R
we still denote bym? the quantitym?—Ref(Ce™*T/x X(HA(k))

which in the range of temperature we are interested is in fact Hg(K) “3
almost equal ton?.
where
D. Spinon-antispinon “resonance” (magnorn) propagator y-=cogk,a) = cogk,a), (44)

~ For a better understanding of the above equation, we naa being the lattice spacing and the sum okeunning in the
tice that the retarded magnon correlator at posiévs given  reduced Brillouin zone. The eigenvaluesttf,,, are given

in the same approximations by by
.0 i Zq Lo g €. (k)= =2t\cogk,a)?+ cogk,a)?; (45)
(2-Q)(w,q) , T o([aICQq €™, hence they describe double cones with vertices-Hatr(2,
w—2\/mg—ic— +/2) in the Brillouin zone.
(40) Since the chemical potential for the holon system is posi-
tive, u~2t4, only thee, band of the double cones exhibits
whereJ, is the Bessel function. a FS. For each of these double cones one can identify a
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two-component, continuum, Dirac field,, «=1,] describ-
ing the low-energy physics of the system. The continuum
effective action for holong, coupled to the h/s field , can

be cast in the form

Sh(,A)= f A3yl yo(do— m—iAg) +veyi(di—1A) Y,
(46)

wherey=y¢'y,, yo=0,, vi=(0y,0y), andvge=2ta being
the Fermi velocity. The relation betwegnz and the original
electron fieldc, in the two sublattices is found to be given—
e.g., near the4/2,7/2) double cone—by

(ca(0)ei(0)~e 2T X([y (x) ¢, (0)
FIG. 2. Tomographic decomposition of the Fermi surface patch

— 1 () ¢1(0)]12(x)2;(0)), with square boxes of siza.
(cB(x)cA(0))~ e/ (™22 X[l ™y (x) i (0) whereq spans the box; therefole-n(6)|, |g/\n(6)|<A.
i N Due to the Dirac structure of;, to apply the tomographic
e " (X)11(0)]24(X)Z4(0)). decomposition to the holon propagator, we first decompose

(47)  the freey correlator as

Analogous relations hold near the other three doubl€ ,(x)#4(0))
cones. Note that in the correlator, the contribution of the
spin flips of the “optimal spinon configuration” of Ref. 47 d3k
must be taken into account. zf

g ikx ]
(2m)%] = yo(kotke) +7,k,—ie sgr([kI—ke) ],

B. Tomographic decomposition

d*k 1

In the previous section we evaluated the effect of gauge :f e ,
fluctuatiorﬁ)s on the correlator at large scales, using thegFS?: (2m)? ko ke —[K+ie sgri[K] k)
path-integral representation. An analogous representation is
hard to use for th&, correlator because of the finite density
of holons. This representation would in fact contain a series
of alternating sign contributions, corresponding to an arbi-
trary number of closed fermion word lines, describing the In the scaling limit the matrix in square brackets does not
contributions of the particles in the finite-density groundhave a pole and, for momenta in a box labeledngy), it
state, besides the path from 0 xo(see, e.g., Ref. 31To  approaches
overcome this difficulty, we apply a dimensional reduction
by means of the tomographic decomposition introduced by yo— ;,.ﬁ( 0)
Luther and Haldan& To treat the low-energy degrees of A(O)= 2
freedom we choose a slice of thickne&s=kg/\, with A 2
>1, in momentum space around the FSygfas shown in
Fig. 2.

(49

Yo(Kotke) = 7,K, 1
kot ke+ K[ —ie sgrilkl—ke) |,

(50

In Ref. 54 it has been shown that the tomographic decom-

T . . I,]position is valid at large distances even in the presence of a
To simplify the description, we assume a circular FS, an’_.". . ) n e .
minimal coupling to a “photon” field. Applying the tomog-

approximation reasonable for los/(the method applies nev- : . :
o X raphic decomposition to the holon propagator in the presence
ertheless to the general case by considering a Fermi momen;

tum varying along the FSWe decompose the slice in ap- of an external h/s gauge.fleléi, in the scaling limit, using
. ) Egs.(49) and(50), we derive
proximately square sectors; each sector corresponds to a
quasiparticle field in the sense of Gallavotti-Shankar —
renormalizatiof* (see also Ref. 65 Each sector is charac- (Ya(X)h5(0))
terized by a unit vectoﬁ(a), pointing from the center of the dago d%q L .
FS to the center of the box, labeled by the angleetween ~E A4 ai)f Zj _zeflkpn(ai)xeuqoxoﬂq.x
this direction and thek, axis. The original momentunk ' A (2m)
inside a given sector is written as
X

)
, (51)

k=ken(6)+q, (49 Qo—Hyg +iesgrig-n(6)]
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where
R N i . . . )
Hy=Ao+n(60)-(q—A)+ Z—kF[(q—A)/\n(ﬁ)] : (52

and [, denotes integration over a square box of sizeTo the Fourier transform of the term in square bracket of(&f). one
can apply the FSF path representatisae also Ref. 66 for a treatment of linear dispersittsing manipulations analogous
to those performed in the previous section, one can rewrite&g.as

- d*q 0 d*q
jo dUJA (2mz ot fodujA (277)2@(_(”1

ddo
2

%J d0A(0)exp{—ikFﬁ(0)>Z]exp<ifOXAdeM)J

o2
X expl{iq2(x°—u) —ig[x+n( 0)u]}ex;< Iqul)
F

uk 1 u u’ u’
fD(pLex%ijogcpf(u’)du’)exp{—ifodrrfodu’fo du”<p“(u’)go”(u”)FW( Tfo go(u”')dU"')H, (53

X

where we use the short notatioq”=(i~ﬁ(6), ql=(i <Ea(x),r/,ﬁ(o)>

/\ﬁ(&), and ¢ is the velocity field of componentg*(t) ) )
=(1,1¢, (1)). Note that in Eq.53) we have replaced the B A(XO)kFJ deelxl(ﬂ) Axo)f2
original discrete summatiorr; with the continuum limit A Ji
(ke/A)fd6. We have checked by explicit computatién
that the term in curly brackets describing the correction to

A( 0) aﬁeikFXH(o)

Gork’ov approximation is irrelevant within the approxima- X[ =—————0(Xg) + —————0(=Xo)

tion scheme adopted in previous section and below, so we X)(8) —X"ve X|(0)+ X ve

shall drop it from now on(This agrees with the fact that the M

holon scattering time behaves likeT~*3, a posteriori a Xexrl(ifo A,de"). (56)

much longer time with respect to the electron scattering time,

triggered by gauge fluctuations on spingnghen, theu in-

tegration can be performed exactly, after the trivgglinte-

gration. Theq integration gives C. Electron propagator

Next, we compute the electron Green’s function using Eq.

A A0 e (47). The Gor’kov terms in thae) and z correlators cancel
f_A qe (ay) against each other and the gauge field fluctuations act only
on the gauge-invariant spinon correlator. Within the approxi-
1 el Ay—x%g) _q _ 1 mations used in previous section, one can easily verify that

i — ~i———, (54  this correlator in the scaling limit irk space behaves as
(X =Xx"vg) X|~Xvr square root of thé) propagator(40). We perform now the
Fourier transform of the electron propagator for momenta
close to the Fermi surface, in a sector labeled by the angle
G (w,(7/2,m/2)+n(n)ke+q), for smallo andq. We inte-

grate overd using the following.

Lemma® Let f(6,x) be a smooth function; then in the

where the last approximation is valigh the weak sengan
the limit Avex®>1. Setting A (xo) = (kg /vex®) Y2, the q;
integration gives

A .
f da, ellax — e ke)atx] large distance limitx[>A ~* we have
—A
ATA (%) _ .
=A(Xo) dyéA(XO)xLye7|y 12 L R R . 2 . R
~ ATA(x0) fd0e'kF[“(’7)‘”(")]‘Xf(0,x)~k—f(n,x)é,\fl(x/\n(n)),
F
e A(xo)/2 (57)
~A(Xo) (55)

i
where §, -1 denotes an approximaté function of width

Collecting all pieces, the holon Green'’s function in the scal-A . L
ing limit and for Axy>1 can be written as Settingx=|x|n(¢) we approximate
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FIG. 3. Angle-dependent spectral weight of the electron propay
gator. The thick lines close tat(7/2,= 7/2) represent the region of

FS with spectral weight larger than 1/2 fé6r-0.05.

I 1
Sr-1(x/\n(n))~ ﬁ[ﬁ(d)— n+8(¢—n+m]. (58
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where we have reintroduced the spinon veloaity previ-
ously set equal to 1. From E(9) we can immediately read
off the inverse scattering timd" for the electron:T’
=—ImX.

D. Fermi surface and electron resonance

We now make the following assumption.

Assumption FSThe neglected short-range attraction be-
tween spinon and holon renormalizes the real paft a#x-
actly to 0, so that the electron exhibits a Fermi surface.

If assumption FS holds, one might conjecture that this is
ue to a mechanism somewhat analogous to the one which
renormalizes to zero the mass of the two-fermion bound state
(“pion” ) of massless QE whose constituent fermions are
dynamically massiv&® This cancellation between mass and
self-energy attractions is there triggered by a symmetry prin-
ciple, whose analog in our scheme would require further in-
vestigation. One should remark that our treatment of the

One can easily perform thé integration; the remaining Problem resembles the one discussed in Ref. 23 in the
integration over space-time variables is done as in the previSU(2)xXU(1) slave boson approach and in fact it yields a

ous section: namely, by saddle point approximatior|fbin

the limit x°>|>2| and by principal part evaluation and scale

renormalization fox®. The final result is

+n(n)ke+q

G o T
22
1

dx|
w"'E_UFm(O)QH

~S(9)Z eld-n(7)]x(0)

1

dx| ’
w—E—va(O)qH

+ e id-n(7)[x:(0)

(59

similar structure for the FS, although the scattering time is
rather different.

Under assumption FS, finally, f(ﬁ=6 and >0 small
we find the structuré8) with the replacement— S(7)Z.

This structure shows that the gauge fluctuations are able
to bind together spinon and holon into a resonance for low
energies and momenta close to the Fermi momenta, but with
a wave function renormalization constant which depends
both on the point of the FS, due &(#), and the tempera-
ture. In particulaZ ~ T8, soZ vanishes if formally extrapo-
lated toT=0. This implies a peculiar non-Fermi-liquid char-
acter for this system of “electron resonances.” However, a

real extrapolation tof =0 cannot be done because ﬂhér
saddle point is only dominant fof = ymsQ,. The system
therefore appears to fit naturally within the scheme of un-
stable fixed point§UFP’s) outlined by Andersof’ There it

is argued that in general in the renormalization groRf®)

whereS(7) is the angle-dependent part of the wave functionformalism, starting at high temperature and energy and inte-

renormalization constant:

1
S(m=3 . (60)

1- %[cos{ n)+sin(7n)]

This angle-dependent spectral weight is demonstrated i

grating out high frequencies one derives a low-temperature

and low-frequency model. However, the system does not al-

ways flow smoothly under the RG ®©=0. It might develop

a tendency to approach at intermediate temperatures an in-

frared UFP. The composite holon-spinon system discussed
bove yielding the “electron resonance” might be a UFP in
e temperature range of validity of our approximations. The

Fig. 3. In Eq.(59), Z is the wave function renormalization lar d d f th functi lizati
constant averaged over the FS; writing the tomographic moghgular dependence of thé wave-lunction renormalization

mentum cutoff as\ =kg /X, with A>1, and taking into ac- S(J’) yldelds _ﬁore_ductz)on of_;c]he spﬁtcttralewglght %u;sLde t_?he
count the definition ofQ, we obtain reduce rifouin zone, - In - quaiitativ greement. wi

ARPES experiments in underdoped cuprdgee Ref. 23 for
2 1/2 a similar situation in the SU(2JU(1) slave boson ap-
Zw)\(%) (msK) _ proacH. In fact, the intensity measured in ARPES experi-
Ke J? ments is proportional to I'6(w,k)n(w); denoting byl (k)
the integrated intensity along the “electron FS” we have a
contribution tol due to the “electron resonance” given by

(61)

The renormalized electron self-enerdyis given by

.
_ 2_ i~
T=vs\/me-ic, (62) 1(R(6)ke)~S(6)Z.
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The factorS(6) is peaked around=5=/4 [for the FS  decreasing the temperature, as shown in the experiments dis-
near (m/2,7/2)] and it is substantially reduced on the oppo- cussed in Sec. | C. This crossover is determined by the inter-
site side(see Fig. 3 play between the AF correlation leng¢hand the thermal de

One might try to extend the analysis performed above foBroglie wavelength\1.”° Whenx 1= ¢ the “peculiar” local-
momentag around the holon FS in a shell of thicknessby  ization due to SRAFO is not felt and a metallic behavior is

including the contributions of momenﬁioutside the shell, observed. In the opposite limitr= ¢ we find the insulating

but still smaller than the UV cutoff of the continuum model. behavior (but due to the gauge interactiorp,#e(*'M", a

If in this contribution one tentatively neglects the effect of behavior found for a “standard” localizationThe doping
gauge fluctuations which gi\/e rise to incoherent Componen@ependence is rather weak, due to a delicate cancellation in
to the “electron” Green function, the essential features of ourthe doping dependence of the dimensionless variable
present consideration will remain; a detailed analysis is in

progress. £\2 Te  Tc
(5] i (©9
VI. COMPARISON WITH EXPERIMENTS
A. MIC of in-plane resistivity which controlspg; see Eq.(64). Our formula for ps has

Let us now summarize the main results of Sec. IV, usefuessentially no free parameters except for an overall resistivity
to derive a formula for the in-plane resistivipy, for com-  Scale. The only paramet€@(1) used in our numerical cal-
parison with the experimental data. culations is the coefficient in the parametrization

We have shown thdtunder the stated approximatigribe
gauge fluctuations exhibit a typical scale, a sort of anoma- t
lous skin penetration deptlQ, 1~ 6 *T~2 In the range X3~ ﬁlﬁln alr,
of temperature identified blylgz T/x=myQ, the gauge field
couples a spinon-antispinon pair into a magnon resonance
a scale triggered ngl. The resonance exhibits a complex
mass termM of “relativistic” structure:

Which one can fine-tune by using, e.g., the minimum of re-
sistivity for some fixed doping. The entire set of curves
p(8,T) is then completely determined. As shown in Fig. 1 of
T Ref. 48, the agreement with experimental data is really good,
M =2 /mﬁ—ic—, (63) and the MIC temperature goes down, as the doping increas-
X ing. If there were no logarithmic correction in our derived
where c~3.3, whose imaginary part appears as a c:onse§pinon mass, there would be no doping dependahed for

qguence of the dissipative nature of gauge fluctuations foPhe MIC temperature.
energies smaller thah.
The residue of the complex pole in the magnon resonance B. Universal normalized resistivity

correlator is alsd@ dependent and behaves ligg *(M «)?, . - .
, , - - - Now we consider a more subtle prediction following from
wherek is the Landau damping. Using~dQ~QoQ) and  5r theoretical treatment.

the Kubo formula for spinon conductivity one obtains As mentioned in Sec. Il A, an inflection poiff* has
411/8 been observed in heavily underdoped cuprates at a higher
n |1+ E) temperature, wherdp/dT has a maximum. Such an inflec-
_ ms™ At 64) tion point can be tentatively identified with the pseudogap
Ps Jo |1 £\2] temperature. Such an inflection point also appears in our de-
sin 7 arctars)\—T rived in-plane resistivity formuléawe still denote it byT*),

and the “relativistic” structure of the mass term is respon-
whereé~|681In 812 Ny~ (x/Tc)Y2 sible for it. We find thatT* corresponds toy~3.4. More-
For the holons one can borrow a computation performedver, there is another inflection point in experimental data at
diagrammatically in Ref. 22 for a Fermi liquid interacting low temperatures below which the resistivity exhibits an ap-
with a gauge field exhibiting a Reizer singularity. Adding, proximate logarithmic temperature dependeticéve pro-
via the Matthiessen rule, the contribution of impurities onepose to identify these two inflection points as the upper and
finds lower bounds for the validity of our approximation and to
approximately identify theS-T parameter region correspond-
ing to the “pseudogap phase” of cuprates. Above the upper
inflection point, the system enters the “strange metal” phase
to which a separate paper is devotBdelow the lower in-
For smalls, T/t we haveps>py,, so the spinon contribu- flection point, the system also crosses over to a new phase
tion dominates the physical resistivity in the loffe-Larkin whose properties have to be explored.
rule. For lowT, ps~1/T, thus exhibiting an insulating be-  Neglecting theT*® contribution, as justified at lovT,
havior, for T= ym? one findsps~ T, thus showing a me- from our formula(64) we notice that if we define the “nor-
tallic behavior. From formuld64) a MIC is thus recovered malized resistivity”

4/3

pPh~ 9| (EFTimp)71+ - (65
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1.6 of the normalized resistivity is an explicit prediction of
1al theory in agreement with experiment.
Also, the recently experimentally observaeb asymme-
121 try in the conductivity of LSCO at low temperatufé$®has
1t a natural explanation in our framework as due to the anisot-
- ropy of the MIC temperature im-b directions. A detailed
e 08y explanation will be given in a separate communicafion.
0.6
04+ C. Out-of-plane resistivity
0ot Let us summarize the results of Sec. V needed to compute
pc. In the temperature rangeagsT/XsmsQo, the gauge
O or  oa oe o8 1 12 fluctuations couple spinon and holon close to the FS into an

T/T* “electron” resonance with scattering raté proportional to

. o the inverse lifetime of the magnon; hence
FIG. 4. Calculated “normalized” resistivity, vs reduced tem-

peratureT/T* (see text for explanation

JT( ) )1’2 T
7 | tilng) °
P(T)_P(Twc) I'=—Im m2—icI~
nT= ! 6 °

P T p(Twio) ©7 X

TS\ 12 T
= . —~1

t
xm
this is a universali.e., doping-independenfunction of the ° (69)
variabley, Eq. (66), whereTy,,c denotes the minimum gi,

and one finds it corresponding yo~-1.7. The wave-function renormalization is the product of a
This curve has been noticed in the YBGRef. 39 data  termS(#), varying along the FS, wher@is the angle label-
and quantitatively similar “universal curves” have been ob-ing the direction from the center, inherited from the Dirac

served also for LSC& BSLCO, and BSCG! (In these last  structure of the holon action, andladependent terrd. This
references a different definition df* was used, based on in turn is a product of a term proportional to the “magnon”
deviation from linearity ofp, not directly accessible to our renormalization constar,, and a term coming from inte-
approach and therefore not permitting a direct comparisogration over fluctuations of holons, Gaussian for those along
with our formula. A rough estimate, however, gives for thatand linear for those perpendicular to the FS, with a scale set

T* a value dependent on the material, but approximatelyyy gauge fluctuations, hence giving a contributie®3'?:
twice our definition of T*.) Our formalism, on the other

hand, explains in a neat way their universality character. In Z~Z,0Q%¥%~ \[6mQ,. 69)
Fig. 4 we plot the calculated normalized resistivity to be aQo Qo (
compared with the corresponding experimental curve on

LSCO and YBCO that we extracted from the data of Takagi To computep, we average t_he apgular dependence of
et al® and Trappenierst al®5: see Fig. 5. We did not make ) 2nd insert Eqsi68) and(69) in KJ's formula, Eq.(10).

) PP L g. o It follows from Egs. (10) and (68) that for low T, p.
any attempts to reconcile the calculated and observed Ioca}:T_l and for higher temperature. if the first term in E
tion of the MIC temperature which may depend on factors 10) siill dominategs ~T*e’2 with é coefficient inde en-q-
not included in our consideration but the universal characte{' Pe o P

dent oft.. These features reproduce qualitatively the behav-

. ior observed experimentally in several materi@dlsSCO,
N " YBCO, etc) in the “pseudogap phase” including the
14 1% LSCO x20.04 = & rounded knee cited in Sec. Il B, which corresponds to the
iale tggg xig.gg ° f” | above change of temperature dependence.
H YBCO ;26140 ° & As a consequence of KJ's approgghat low T appears to
L .c."a 1 give a direct test for the scattering rate of the “electron” in
< os | ';‘ QQO“ | the pseudogap phase. The “metallic” contribution of the sec-
. I ond term is important only at higher temperature, where it
061 1 $* scales asT8, causing a further flattening of thp(T)
04 | oo T 1 curves or possibly a minimum. Apart from an overall scale,
o - e . ) ) ; 9
. JrA having already fixed witlp,},, the variableymg, our formula
02 o 3.A Dc,)i“ i N .
o %, oqle has only one free parameter, the scal&efi.e., essentially
0 : oo;.e;%@:.“ 0‘6 ols 1 1'2 the scalexn controlling the cutoff on momenta perpendicular
’ ’ .T/T* ' ' to the FS,A =kg /N and weighting the “metallic” contribu-

tion. This parameter should be a somewhat large number and
might be roughly estimated by fitting. for one doping con-
centration. For other dopings tHedependence behavior of

FIG. 5. Temperature dependence fg in underdoped LSCO
(extracted from Ref. band YBCO(extracted from Ref. 35
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<
ol \
T $=0.09
0 . . . . .
0 50 100 150 200 250 300
Temperature (K) 0 * X * X !
0 50 100 150 200 250 300
FIG. 6. Calculated temperature dependence of the out-of-plane Temperature (K)
resistivity (in arbitrary unit$ for different doping concentrations: o
5=0.05 (solid line), §=0.07 (dashed ling and 5=0.09 (dotted FIG. 7. Calculated temperature dependence of the resistivity an-
line). Inset shows experimental data on LSCO, extracted from Reflsotropy ratio as a function of temperature for different doping con-
77. centrations: =0.05 (solid line), §=0.07 (dashed ling and &

=0.09 (dotted ling. Inset shows corresponding experimental data

on LSCO, extracted from Ref. 60.
pc is then derived and as one can see from Fig. 6, the theo-

retical results are in good agreement with experiment
data®®

Having an explicit theoretical dependence ®andT for
both p. andp,, one can further analyze the anisotropy ratio

agusceptibility in the transverse actiony— y(H)=yx
+crﬁ(H)/47r2y as discussed in Ref. 74. This effect is, how-
ever, subleading at low.

Under the approximations of Sec. IV the result of effects
?1) and (2) can be summarized by a modification of the

shown in Fig. 7; this ratio clearly saturates at Idwsince “relativistic” mass term of spinon:

bothp. andp scale as T, but at higher temperature, in the
“metallic” region for in-plane resistivity, the ratio decreases
M—M(H)= \/

like T-Y4 Again this behavior is qualitatively consistent
with the experimental data in the “pseudogap pha¥&’as
shown in the inset of the same figure.

, [ cT &°H?
(70

s I x(H)  3q2

(A technical comment: the minimal coupling in the FSF
D. Hidden MIC in superconducting cuprates path representat,ion .ofG(x,0.|F)_ prOdu.CeS a term
and magnetoresistance explie[gdAN[3ds [§ dST¢'(s) —2p' ¢ (s) — 2p'le;H}  [see

(2 I h I -
The techniques developed in previous sections are usefLIJEIq 0]] and evaluating the integral in Gaussuan approxi

to compute other observables, like the transverse in- plan'g'at'on this term yields a contributiog'* TP 10 the 0
magnetoresistance and théCu spin-lattice relaxation rate. correlator in Eq(31). This finally is responsible for the shift
The calculation of magnetoresistance is outlined in Ref, 490f the last term in the square root in EZ0)). The limits of
therefore here we only briefly review the results. validity of the |x| saddle point become((H)Qo|M(H)|

The basic underlying hypothesis is that suppressing supers T, Im[M(H)]=mZ, which for the range of physical pa-
conductivity by applying a magnetic field, in superconduct-rameters considered herél£100 T) gives a temperature
ing underdoped samples one recovers the normal-statange still lying between a few tens and a few hundreds
“pseudogap phase.” degrees. Hence, to conclude, the presencl afodifiespg

A magnetic fieldH perpendicular to the plane then modi- via the cyclotron effect, by reducing the damping frdity
fies the gauge effective action in two ways) Via a minimal  to T/y(H) —H?s%/3Q32.
coupling it induces a shifA—A—gA¢, in the spinon term This reduction makes the thermal de Broglie wavelength
and A—A+(1—¢)Ag, in the holon term, where is the  \; longer, so the MIC occurs at a higher temperature with
spinon effective charge aml,, is the vector potential cor- respect to the system a&t=0. The external magnetic field
responding to the applied uniform static magnetic fidldn  then reveals the MIC originally hidden in the superconduct-
a mean-field treatment the effective charge should be choséng samples.
as to satisfy the loffe-Larkin rule for diamagnetic suscepti- Furthermore, the shift of the minimum o¢f causes a
bility (see Refs. 49 and J4Thereforee~x,/x. (2) The  strong positive transverse magnetoresistaivi@) at low T,
presence oH induces a parity-breaking Chern-Simons termas in fact experimentally seéh/” an effect missing in pre-
in the holon actior[oh(H)/27T]A°eija'A', whereo,(H) is  vious theoretical treatmenfé At higher temperatures, in the
the holon Hall conductivity. Sincé, is short ranged, with a region where dissipation dominates, the shift of diamagnetic
gap y=v+w, [see Eq.(22)], it can be integrated out first, susceptibility due to the Chern-Simons term induces a reduc-
yielding an effective renormalization of the diamagnetiction of resistivity, a tendency contrasted by the classical cy-
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clotron effect on holons, taken into account in the Boltzmann  The|x] andx? integrations are performed as in Sec. IV C.

equation approximation. One then has two possible types of <\ ;mina a cutoff for theal intearation in Ea(71) given b
MR curves: one is always positive but it exhibits a knee g @ g a7 g y

b thda inverse anomalous skin depfly and using the smooth-
elow the crossover temperature between the mass gap an g ) .

the dissipation dominated regiorisee Fig. 3 in Ref. 49  N€SS ofA(q) at this scale we derive

This behavior can be compared with the one observed in o

LSCO reported in Ref. 76 and one finds a reasonably gooj daf“ d|(ﬂ|(ﬂ |,&(a)|ZeiQ"X‘(O)COSl‘)MQgJO(CeiWM).
agreement. If, in contrast, the quantum effects related t lal<Qq

on(H) are sufficiently strong, a minimum develops, eventu- (73
ally leading to a negative MR in some region around it. The
MR scales quadratically witld (see Fig. 2 in Ref. 4Qin
agreement, in particular, with data on LSCOaway from
the dopings=1/8 where the stripe effects dominafén the
explicit formula one should also take into account the modi-
fication induced byH in the contribution of the Landau

Numerically —one finds Ré&(cé™)=a and
Im Jo(ce' ™) =b with a/b~0.1. Plugging Eqs(73) and(40)
into Eq. (72) one obtains, from the Kubo formul@l),

(TT) 1~ (1-8)%/o|m| 2

damping toZ;: Vk—{[T/x(H)1Qq >—c'H?Qq °}*? where argM [argM

¢’ is a new constant- f”(Ce'™) in fact roughly estimated, X 3005{ > )+b5'”( > ) . (74
together with a parameter coefficientldfin o(H), by com-

parison with an experimental curve at some doping. For low T, 1/T;T~a+bT, and for higherT, one finds

Finally we notice that in Zn-doped superconducting1/T,T~T~ Y4 therefore the spin lattice relaxation rate
samples of BSLCO the MIC become observable upon in{1/T,T) on Cu sites exhibits a maximum and an inflection
crease of Zn dopingwhen a magnetic field suppresses Su-point at higher temperature, as observed in YBCO under-
perconductivity and it shifts to higher temperature as the doped sample&
level of Zn doping increaséS. This effect is qualitatively If a were 0, then ;T would be proportional to the
consistent with our picture. In fact, the Zn doping di:sturbsspinon conductivityos, and the maximum and inflection
the AF background, so making the AF correlation Iengthpoim would be at the same temperature of the MIC @tid
shorter, therefore shifting the MIC temperature up, a'_thougf}espectively. However, due to theerm in Eq.(74), they are
we are not able, at the moment, to make a quantitative estispjfted. In particular, the inflection point is found at a lower

mate of this shift. temperatureT,, in qualitative agreement with the fact that
experimentally the pseudogap temperature deduced from the
E. Spin-lattice relaxation rate spin-lattice relaxation rate is lower than that derived from the

resistivity measurements.

We end this section by remarking that preliminary calcu-
ions are giving also encouraging results, when compared
with the experimental data, for the electronic ac conductivity
R at smallw (Ref. 73 and the electronic specific heéRef.
1 Im xs(q, w) 80).

1

We turn now to the spin-lattice relaxation rate for the Cu
sites (1T,) (Ref. 63; see Ref. 48. This can be theoretically

) lat

computed using the Kubo formula

T 211 R(2Y|2
r = im [ AR 7

VIl. CONCLUDING REMARKS

where,&(ﬁ) Is the hyperfine field ands(ﬁ,w) the sﬁpirj sus- To summarize we have presented in this paper the calcu-
ceptibility. For the Cu sites the hyperfine field(q) is |ation of physical quantities like the in-plane and out-of-
peaked aroun@ag=(7,), thus probing the AF spin fluc- piane resistivities, spin-lattice relaxation rate, etc., within the
tuations. The electron spin fiel§(x)=c'(a/2)c(x) is re- spin-charge gauge field approach, and compared the theoret-

lated to the spinon and holon fields by ical results with experimental data in the pseudogap phase
o with very good agreement. In particular, we have elucidated
S(X)~[1—H*H(x)]e'QaFX()(x). the origin of the MIC in the nonsuperconducting cuprates as

well as the MIC in superconducting samples when a strong
magnetic field suppresses the superconductivity. In our view,
this striking phenomenon is an intrinsic property of the
pseudogap phase which can shed light on other puzzles in
_ this regime. We are still in the process of studying the diver-
IMm xs(Qpar+ 0, ) sified properties using our approach in this interesting phase.
m There is some skeptism with respect to the gauge field
approach in general, mainly because of the strong interac-
o _ . . - tions among the constituent particles. Our attempt in this
~|mJ' dXo 'XoJ d?x(1- 8% Q(x)- 02(0))e'd*. direction, at least, gives some encouraging signals: if the
0 underlying physics is grasped by the treatment and appropri-
(720  ate nonperturbative tools are employed, there is a fair chance

ApproximatingH* H by its mean field value and using
the Lehmann representation one finds, for srgall

w—0 w
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to correctly describe the puzzling phenomena in the strongljinear dispersion for the holons and spinons “massive” due
correlated systems. The treatment is not “rigorous” in theto interaction with vortices attached to slowly moving renor-
mathematical-physics sense, but still acceptable by #nalized holons. If the system were truly “relativistic,” we
“theoretical-physics” standard. Needless to say, the finalould have spinon-holon confinement. However, in the ac-
word belongs to experiments, verifying all consequences ofyal system the presence of a finite Fermi surface breaks the
the theoretical interpretation. “bootstrap” symmetry and gives rise to the very peculiar
The gauge field approach provides us with a nontrivialReizer singularity, producing the spinon-antispinon and

picture in strongly correlated two-dimensional systems. Unspinon-holon binding force. The physical consequences of
like the one-dimensional systems where the spin and chargfiis nontrivial picture have to be further explored.

are fully separated and three-dimensional systems where the
spin and charge are confined, the spin and charge in two-
dimensional systems appear “separated” in their scattering
against gauge fluctuations, while being bound into “elec-
tron” resonance at a low-energy—momentum scale. In par- We thank J.H. Dai for his collaboration in an early stage
ticular, in the “pseudogap phase” the presencerdiux and  of this project. Useful discussions with Y. Ando and D. Ba-
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