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Spin-charge gauge approach to the pseudogap phase of high-Tc cuprates:
Theory versus experiments
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We consider as a clue to the understanding of the pseudogap phase in high-Tc superconductors the metal-
insulator crossover in underdoped, nonsuperconducting cuprates as temperature decreases and a similar cross-
over in superconducting cuprates when a strong magnetic field suppresses superconductivity. A spin@SU~2!#
and charge@U~1!# Chern-Simons gauge field theory, applied to thet-J model, is developed to describe this
striking phenomenon. Two length scales have been derived from the theory: the antiferromagnetic correlation
length j'(du ln du)21/2, whered is the doping concentration, and the thermal de Broglie wavelength of the
dissipative charge carrierslT'(Td/t)21/2, whereT is the temperature,t the hopping integral. At low tempera-
tures j<lT , the antiferromagnetic short-range order dominates, and the charge carriers become localized,
showing insulating behavior. On the contrary, at high temperaturesj*lT , the dissipative motion of charge
carriers prevails, exhibiting metallic conductivity. Furthermore, the gauge interaction induces binding of
spinons~spin excitation! and holons~charge carrier! into ‘‘electron’’ resonance. This process introduces a new
energy scale, the inverse recombination time, which turns out to be essential in the interpretation of the
out-of-plane resistivity. The major steps in the theoretical derivation of these results, particularly the calculation
of the current-current correlation function and the Green’s function for the physical electron, are presented with
some detail. The obtained theoretical results are systematically compared with the in-plane and out-of-plane
resistivity data and the magnetoresistance data, as well as the nuclear magnetic relaxation data in the
pseudogap regime. Very good agreement is obtained.

DOI: 10.1103/PhysRevB.69.024527 PACS number~s!: 71.10.Pm, 11.15.2q, 71.27.1a
-

ar
th

re

t
-

i

ce

d
te

e
r

-

ver
e
ed

ct
ved-

2
-
nel-

s as

nic
ture

o
n-

on-

ill
ned

on-
s of
I. INTRODUCTION

The mechanism of high-Tc superconductivity, a great in
tellectual challenge posed by Bednorz and Mu¨ller to the con-
densed matter physics community 16 years ago, to a l
extent remains unresolved. The understanding of
‘‘pseudogap’’—i.e., a suppressed density of states~DOS!
near the Fermi level—as one of the most distinctive featu
of cuprates~particularly in the underdoped regime! from the
conventional superconductors, may serve as a key to
high-Tc conundrum.~For a recent review of this issue con
sult Ref. 1.!

A. Pseudogap phenomenology

A gap in the spin excitation spectrum was first observed
nuclear magnetic resonance~NMR! experiments,2 showing
up as DOS reduction in both Knight shift and spin-latti
relaxation rate, below a certain crossover temperatureT* .
Later on, a gap in the charge excitations was also foun
transport measurements. Unlike optimally doped cupra
where the linear temperature dependence of the in-plane
sistivity extends to very low temperatures, in underdop
samples the temperature dependence becomes sublinea
low some characteristic temperatureT* because of the re
duced scattering rate due to a gap opening.3,4 Upon further
0163-1829/2004/69~2!/024527~19!/$22.50 69 0245
ge
e

s

he

n

in
s

re-
d
be-

decrease of doping a striking metal-insulator crosso
~MIC! was observed.5 The existence of a pseudogap in th
normal state of underdoped cuprates was further confirm
by studying theab-plane optical conductivity,6 specific heat
measurements,7 and many others. However, the most dire
evidence of the pseudogap comes from the angle-resol
photoemission spectroscopy~ARPES! experiments which
showed ad-wave-like gap in the normal state in Bi-221
below the crossover temperatureT* .8 The pseudogap struc
ture in the total density of states was also detected in tun
ing experiments on Bi-2212.9

The current picture of the pseudogap opening appear
follows:10 There exists a large Fermi surface~FS! in cuprate
superconductors, consistent with predictions of electro
structure studies at high temperatures. As the tempera
decreases belowT* , the pseudogap first opens near (0,p); it
then gradually ‘‘eats up’’ the original FS, converting it int
‘‘pseudogapped’’ part, eventually leaving only short disco
nected arcs around (p/2,p/2). Finally, these arcs shrink to
nodal points of the gap function, and the pseudogap c
verges to the superconducting gap, with the samed-wave-
like symmetry. Meanwhile, the quasiparticle peak which is
defined in the normal-pseudogap state, becomes well defi
in the superconducting state, like in typical BCS superc
ductors. This picture seems to be universal for all classe
©2004 The American Physical Society27-1
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cuprate superconductors and is consistent with all availa
data on pseudogap phenomena.

B. Different schools of thought

However, the smooth crossover of the pseudogap in
superconducting gap does not tell us theorigin of the
pseudogap itself. Theoretical models attempting to interp
the pseudogap are very much diversified, including
nearly antiferromagnetic Fermi~NAFF! liquid approach,11

the crossover from Bose-Einstein condensation~BEC! to
BCS scenario,12 and many others.1 Closely related to our
approach, there are two schools of thought. According to
school, pseudogap is a ‘‘precursor’’ to superconductivi
i.e., the superconducting state is more fundamental.
other school emphasizes the proximity to the Mott insulat
state, considering the pseudogap phase as nothing but d
Mott insulators. Therefore, the normal state is more fun
mental, while the superconducting state is derived from
anomalous normal state, as the BCS superconductivity
pears when a pairing force is present in the Landau Fe
liquid.

There were several early proposals on the first appro
assuming preformed pairs in the normal state.13 This ap-
proach was developed further by different groups. Em
and Kivelson considered phase fluctuations of the super
ducting order parameter which destroy the coherence ab
Tc .14 Somewhat related appear the nodal liquid approac15

and its QED3 variant.16 Randeria attempted to derive seve
properties of the pseudogap phase, starting from a l
density, short-correlation-length superconducting state.17 It’s
fair to say that to describe the rich variety of phenomena
the pseudogap phase by superconducting fluctuations a
is a too difficult, if not impossible task.

The other school of thought was pioneered by Anderso18

The reference compound before doping is a Mott insula
characterized by a strong on-site Coulomb repulsion. T
electrons are basically localized, forming singlet pairs. A
nite amount of energy~spin gap! is needed to break thi
singlet pair. Although similar to superconducting singlet pa
ing, this state itself is very different from the supercondu
ing state. A mean-field theory using the spin-charge sep
tion concept and ‘‘slave boson’’ technique was develop
very early.19 To implement the single-occupancy constra
coming from the on-site repulsion and to describe the in
action between ‘‘slave’’ particles a gauge field theory w
developed.20,21 First the U~1! gauge field theory,22 then the
SU~2! gauge field theory23 was developed to account fo
various properties of the pseudogap phase by Lee and
workers. The transport properties in the pseudogap ph
were also considered using the U~1! gauge field model.24 A
new version of this approach was formulated recently
terms of ‘‘spinons,’’ ‘‘chargons,’’ and ‘‘visons’’ with some
predictions to be verified by experiments.25

A different, but related approach is to associate
pseudogap phase with a quantum critical point~QCP!.26 It
was proposed that the strong fluctuations near the QCP
be responsible for superconducting pairing and anoma
properties in the normal state.27 What is the order paramete
02452
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related to this quantum phase transition? There were sev
proposals27,28 to be checked by experiments. By extrapola
ing the curveT* (d), whered is the doping concentration to
temperatures belowTc , a ‘‘critical concentration’’dc;0.19
was identified, where the superconducting condensation
ergy also reaches a maximum.29 The specific heat jump at th
superconducting transition changes its doping dependenc
this point as well.29 These authors argue that below the QC
the short-range antiferromagnetic correlations dominate,
ing way to superconducting ordering at that point.

Before resorting to a review our own work we would lik
to mention a recent scanning tunneling microscopy~STM!
experiment exhibiting explicitly the competition and coexis
ence of the pseudogap and superconducting phases.30 The
STM pattern seems to be messy: the superconducting reg
are separated by pseudogap areas at nanoscale, but are
coherent as Josephson arrays. However, these two type
regions refuse to mix with each other, as Zaanen pu
pictorially,31 like ‘‘oil and vinegar in salad dressing.’’ More
over, these two regions behave totally differently: the typi
‘‘resonance’’ states caused by Ni impurities in the superc
ducting areas disappear completely in the pseudogap ph
This means these two phases, in spite of their apparent s
larity, are of different nature.32 To elucidate their competition
and coexistence is a real challenge to theory.

C. Clue to the problem

What is the key to the understanding of the pseudo
phase? An ‘‘obvious’’ answer is the pseudogap formation
i.e., to explain how a gap is originated and how the states
filled in as the temperature increases. Apparently this is
enough, as we know that one scale or a single variable u
ally cannot give rise to a ‘‘show’’ in physics. There must b
some competition. Our attention was attracted by the sp
tacular MIC observed in underdoped, nonsuperconduc
cuprates in the absence of a magnetic field and a sim
phenomenon in superconducting samples when an app
strong magnetic field suppresses the superconductivity.

First of all, this crossover is a rather universal pheno
enon. A minimum in resistance~around 50–100 K! and a
crossover from metallic conductivity at high temperatures
insulating behavior at low temperatures has been observe
heavily underdoped La22xSrxCuO4 ~LSCO! ~Refs. 5 and 33!,
nonsuperconducting Bi21xSr22yCuO66d ~Ref. 34!, and non-
superconducting YBa2Cu3O72d ~YBCO! ~Ref. 35 and 36!
and La-doped Bi-2201~Ref. 37!. It has also been observed i
electron-underdoped Nd22xCexCuO4 ~NCCO! ~Ref. 38! and
Pr22xCexCuO4 ~PCCO! ~Ref. 39!. Very recently, this issue
has been studied systematically again on a series of h
quality LSCO samples,40 and the earlier results have bee
reconfirmed. Quite a few physicists consider this crosso
as localization due to inhomogeneities. We disagree with
interpretation. In some of these samples, the estimatedkF,
<0.1, wherekF is the Fermi wave vector and, is the elastic
mean free path; i.e., the resistivity is well above the Iof
Regel limit. This means localization due to disorder effec
irrelevant here.

More importantly, such a MIC has also been observed
number of superconducting samples when a strong magn
7-2
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field suppresses the superconductivity. It was first found
LSCO, where a strong pulsed magnetic field up to 60 T co
suppress superconductivity in samples up to optim
doping.41,42 Further, a crossover to insulating behavior w
found at low temperatures. A similar crossover was a
found in La-doped Bi-2201~Refs. 43 and 44! and electron-
doped Pr22xCexCuO4 ~Ref. 39!, as well as in Zn-doped
YBCO ~Ref. 45!. Again, the interpretation in terms of loca
ization due to disorder does not work here, since the e
matedkF,;12–25 at the MIC point in some of these sy
tems, and the resistivity is well below the Ioffe-Regel lim
Ascribing MIC to proximity to the QCP as caused by char
density wave ord-density-wave instabilities27,28is not a good
explanation, either. While in LSCO the insulating behav
persists up to optimal doping,41,42 in La-doped Bi-2201 such
a behavior stops at 1/8 doping,44 well below the optimal
doping, and no signatures of any stripe phase showed
Several authors consider the insulating behavior at low t
peratures as due to non-Fermi-liquid properties.46 However,
the MIC itself was not addressed in any theoretical cons
erations known to us.

In our view the MIC is the clue to the understanding o
the pseudogap phase. We consider the MIC in underdope
cuprates in the absence of a magnetic field and MIC in
perconducting samples when a strong magnetic field s
presses superconductivity,the same phenomenon with th
same origin: as an outcome of the competition between
short-range antiferromagnetic order and the dissipative
tion of the charge carriers. We have applied the SU
3U(1) Chern-Simons~the spin-charge! gauge field theory to
treat this problem.47–49The formalism itself will be outlined
briefly in the next section, whereas here we give some in
tive picture of our main results.

We start from the Mott insulating state which shows a
tiferromagnetic long-range order~AF LRO!. Upon doping
beyond certain threshold the AF LRO is destroyed, be
replaced by AF short-range order~SRO!, characterized by an
AF correlation lengthj. Since the holes distort the AF back
ground and their average distance;d21/2, intuitively, j
'd21/2, whered is the doping concentration. This has be
confirmed by the neutron scattering experiments.50 Our the-
oretical treatment provesj'(du ln du)21/2, providing the first
length scale. Put another way, the corresponding energy s
is the spin excitation~spinon! gapms5J(du ln du)1/2, whereJ
is the AF exchange interaction. A competing factor is t
dissipative motion of the charge carriers with characteri
energy;Tmh , whereT is the temperature, whilemh;d/t is
the effective mass of the charge carrier~holon!, t the hopping
integral. The corresponding length scale is the thermal
Broglie wavelengthlT;(Td/t)21/2. We know that in trans-
port and many related phenomena when two scales are c
peting producing a crossover, only the shortest time~and
corresponding length! scale or the largest energy scale m
ters. Thus, at low temperaturesj<lT , the AF SRO domi-
nates, and the charge carriers become localized, showin
sulating behavior. We would like to emphasize that t
‘‘peculiar localization’’ is mainly due to interaction rathe
than disorder. On the other hand, at high temperaturej
*lT , the dissipative motion of charge carriers dominat
02452
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exhibiting metallic conductivity. Therefore the competitio
or fighting between the real part of the ‘‘self-energy,’’ th
mass gap, and the imaginary part, the dissipation gives
to this spectacular phenomenon: MIC. In this sense, it se
as a clue to the understanding of the pseudogap phase.

A natural question would be, what are the other con
quences of the existence of these two factors? It turns
that a number of experimental observations in the pseudo
phase can be explained by it. Roughly speaking, the s
~spinons! and charge~holons! excitations in the pseudoga
phase behave like ‘‘separate particles’’ in their scatter
against gauge fluctuations, which renormalizes their prop
ties and dominates the in-plane transport phenomena. H
ever, at small energy-momentum scale the gauge field b
spinon and antispinon into magnon ‘‘resonance.’’ Simila
spinon and holon are bound into electron ‘‘resonance’’ w
non-Fermi-liquid properties. In particular, these ‘‘recom
bined’’ particles show up in the out-of-plane transport.

D. Outline of the rest of the paper

The formulation of the spin-charge gauge field theory w
presented earlier.47 The calculation of the in-plane resistivit
and MIC in underdoped cuprates in the absence of magn
field was briefly reported in Ref. 48, whereas the MIC
superconducting samples when a strong magnetic field
presses superconductivity was considered in Ref. 49. Du
space limitations, the presentation in these two publicati
was inevitably too concise. The main purpose of this pape
twofold: to present the computations in more detail to outl
the essential steps and to compare the results of our calc
tion with experiments in the pseudogap phase in a more
tematic way. Most results have not been published befor

The spin-charge gauge formalism is outlined in Sec.
whereas the calculation of the in-plane and out-of-plane
sistivity is described in Sec. III. The computation of th
‘‘spinon’’ current-current correlation function which is th
key ingredient in studying many physical quantities is p
sented in Sec. IV. The calculation of the Green’s function
the physical electron needed to compare with the ARP
data and FS, as well as thec-axis resistivity calculation, is
described in Sec. V. In our approach the spin and charge
not fully separated, as in one-dimensional interacting s
tems. They are not confined, either. Instead, they form
bound state due to the transverse gauge field. A new en
scale—the inverse recombination time for the physi
electron—appears in the binding process which shows u
the out-of-plane resistivity. Section VI is devoted to compa
son of theory with experiment. We first start with the i
plane resistivity~A!, whose normalized value shows unive
sal behavior~B!, then continue with out-of-plane resistivit
~C!. Finally, we consider other observables, including t
magnetoresistance~D! and the spin-lattice relaxation rat
~E!. The paper ends with several concluding remarks~Sec.
VII !.

II. SPIN-CHARGE GAUGE FORMALISM

In this section we review the formalism involved in th
derivation of the low-energy effective action for thet-J
7-3
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model in a range of parameters which should provide
adequate theoretical description of the ‘‘pseudogap phase
high-Tc cuprates. This effective action will be the startin
point for the computation of physical observables to be co
pared with the experimental data. For further details on
derivation, see Ref. 47.

A. Chern-Simons representation of thet-J model

Our theoretical treatment of thet-J model is based on the
following theorem.47,51

If we couple the fermions of thet-J model to a U(1)
gauge fieldBm , gauging the global charge symmetry, and
an SU(2) gauge fieldVm , gauging the global spin symmetr
of the model, and we assume that the dynamics of the ga
fields is described by the Chern-Simons actions:

Sc.s.~B!52
1

2pE d3xemnrBm]nBr ,

Sc.s.~V!5
1

4pE d3x Tr emnrFVm]nVr1
2

3
VmVnVrG , ~1!

whereemnr is the fully antisymmetric tensor; then the spi
charge@or SU(2)3U(1)] gauged model so obtained is e
actly equivalent to the originalt-J model.

Let us give some ideas of the proof of the above theor
for the partition function. We expand the partition function
the gauged model in the first-quantized formalism in terms
the world lines of fermions. After integrating out the gau
fields, the effect of the coupling toBm(Vm) is only to give a
factor e2 ip/2(eip/2) for any single exchange of the fermio
world lines, so the two effects cancel each other exactly.

To the fermion field of the gauged model, denoted byxa
(a spin index!, we apply a formal spin-charge decompo
tion: xa;Hza , whereH denotes a spinless fermion~holon!
field andza a spin-12 hard-core boson~spinon! field satisfy-
ing the constraintza* za51. This constraint eliminates doubl
occupation, as required in thet-J model.

The above spin-charge decomposition introduces a fur
U(1) gauge symmetry which will be called h/s~from holon/
spinon!:

za~x!→eiL(x)za~x!, H~x!→H~x!e2 iL(x), ~2!

with L a real gauge parameter, with which a self-genera
gauge fieldAm is associated, analogous to the one appea
in the slave boson and slave fermion approaches.21,22

We remark that, in view of this residual h/s gauge int
action, the spin-charge separation performed above isa pri-
ori purely formal and only the dynamics of the coupled s
tem determines if it has a physical substance. As an exam
a confining dynamics would completely destroy the physi
spin-charge separation.

In a mean-field approximation47 ~MFA! to the spin-charge
gaugedt-J model, in a region of parameters which shou
correspond to the ‘‘pseudogap phase’’ of high-Tc cuprates,
the role of the three gauge fields is the following.

~i! BMFA carries a fluxp per plaquette, converting via th
Hofstadter mechanism the spinless holonH into a Dirac fer-
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mion, with linear dispersion and a pseudospin structure
lated to the two Ne´el sublattices. The fermion system exhi
its a ‘‘small’’ FS with eF;td, d being the doping
concentration, centered around the points (6p/2,6p/2) in
the Brillouin zone.

~ii ! VMFA dresses the holons by spin vortices of oppos
chirality in the two Néel sublattices. The spinons in the pre
ence of this gas of ‘‘slowly moving’’ dressed holons acqu
a massms;Adu ln du yielding SRAFO. This is due to a cou
pling at large scales of the form (VMFA

2 za* za). Self-
consistency of this treatment relies on the inequalityeF

;td!es;JAdu ln du for smalld. The derived doping depen
dence of the AF correlation length is consistent with t
neutron data.50

~iii ! The self-generated ‘‘photon’’ fieldAm couples the
Fermi liquid of holons to the gapped spinons, described b
massive (CP1) nonlinear sigma (NLs) model.

B. Magnons and electrons as ‘‘composite’’ particles

A low-energy effective action forA is obtained by inte-
grating out spinons and holons, in a path-integral formu
tion. We make the assumption that the scaling limit~large
distance, long time! can be taken separately for the tw
subsystems.52 Then, using the techniques of Ref. 53, one c
prove that in this scaling limit the action isquadratic in A.
This conclusion follows from a derivative expansion for t
spinon action, due to the presence of a mass scalems , and
from a tomographic decomposition along rays perpendicu
to the FS of holons, using the quadratic dependence onA of
the scaling action for a single ray~Schwinger action!. This
means that all results derived from the renormalizedqua-
dratic action inA are valid beyond the standard perturbati
treatment. Thus the skeptism towards the gauge field
proach based on the worry that the coupling to the ga
field is strong, while the treatment is perturbative, is not w
justified.

The term obtained from spinon integration is a tw
dimensional~2D! Maxwell-like action~as in quantum elec-
trodynamics!, because the spinons are massive and
spinon action is parity invariant. The transverse compon
would then generate a logarithmic confining potential b
tween spinons and anti-spinons. The longitudinal part
gapped due to the plasmon effect at finiteT. This means that
if only spinons were coupled to the gauge field, the ren
malized gauge field would have confining dynamics. Ho
ever, there are also fermions~holons! coupled to the gauge
field, as well. The term obtained from holon integration, d
to the presence of a finite FS, exhibits a Reizer singularit55

More precisely, the transverse componentAT of the gauge
field turns out to be, forv,uquW ,v/uquW;0, of the form

^ATAT&~v,qW !;S 2xuquW 21 ik
v

uqW u D
21

, ~3!

wherex is the diamagnetic susceptibility andk the Landau
damping.

This behavior dominates over the Maxwellian term
large scales, destroying confinement. Nevertheless, as
7-4
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shall see, the attraction generated byAT in spinon-antispinon
and spinon-holon pairs will be sufficient to produce res
nances with the quantum numbers of the magnon and e
tron, respectively. Therefore a true spin-charge separatio
not realized in our approach. An ‘‘intermediate’’ situation
between confinement and full separation—namely,
‘‘ composite’’ nature of magnons and electrons—is at the root
of our interpretation of the anomalous behavior of physi
quantities.

A key and novel feature of our approach is the mass of
spinon with a specific doping dependence described ab
This feature is not shared by the other SU(2)3U(1) gauge
field theory23 where the gauged SU(2) symmetry is an e
largement of the particle-hole symmetry at half-filling wi
switched statistics of holon and spinon with respect to ou
The mass of the spinons in our approach and its compet
with dissipation of the gauge field due to coupling with h
lons have far-reaching consequences, and it turns out t
responsible, in our scheme, for phenomena like the MIC,
low-T positive transverse in-plane magnetoresistance,
peak in the dc conductivity, and the Cu spin-lattice relaxat
rate, hence for many experimental signatures of
‘‘pseudogap phase.’’

C. Motivation for the gauging group choice

We end this section with some comments on our choice
the gauging group in the theorem stated at the beginnin
this Section. This theorem is a special case of the follow
more general theorem.

Theorem56 ~Chern-Simons representations of thet-J
model!. Let G be a subgroup of the global symmetry gro
of the 2D t-J model; consider theG-gaugedt-J model ob-
tained by replacing the fermion field,c, of the t-J model in
the action,StJ(c), with a new fieldx minimally coupled to a
gauge fieldW, with gauge groupG. Denote the action of the
G-gauged model byStJ(x,W). Define the Chern-Simons ac
tion for W by

Sc.s.~W!5
1

4pE d3x Tr emnrFWm]nWr1
2

3
WmWnWrG .

Then, for a suitable choice of a real constantkG and of the
statistics ofx, fermionic or bosonic depending onkG , the
model with actionStJ(x,W)1kGSc.s.(W) is exactly equiva-
lent to the originalt-J model.

The two basic features of the 2Dt-J model needed for the
proof of the theorem are its dimensionality, necessary to
ply the Chern-Simons theory, and the Gutzwiller projecti
forbidding double occupation, needed to have at most po
like intersection betweenx world lines. In fact~see the com-
ment after the theorem in Sec. II A!, only with this property
can we associate well-defined phase factors to interchang
the world lines.

Each of the Chern-Simons representations allowed by
theorem can be taken as a starting point for a mean-fi
theory. In particular the slave boson and slave fermion
proaches can be derived by choosingG5U(1) and kU(1)
511 and 21, respectively.51 Our choice of the SU(2)
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3U(1) spin-charge gauging is motivated by the analysis
the 1D t-J model in the limit of smallJ/t.57 The model is
exactly solvable by Bethe ansatz and conformal field the
techniques, and one knows the critical exponents of its c
relation functions. They are basically derived by decomp
ing the fermion field of the model into spinon and holon. T
spin-charge gauging corresponds, using a dimensional re
tion from 2D to 1D, to a semionic nature of the two excit
tions; i.e., an exchange of spinon or holon fields yields ph
factorse6 ip/2, intermediate between the fermioniceip and
the bosonic 1. This is exactly a property needed to reprod
in a sort of MFA, the known critical exponents. It may b
worthwhile to compare the role of the U(1), SU(2), and h/s
gauge fields in 1D and 2D. In 1D a gauge field has no tra
verse~physical! components, while in 2D it does have on
The disappearance of this degree of freedom in 1D with
spect to 2D induces the following effects.

~i! BMFA
T 50; hence there is no Hofstatder mechanism a

the holon has a quadratic dispersion.
~ii ! VMFA

T 50; hence there is no spinon mass generatio
~iii ! Am

T50; hence spinons and holons are decoupled
this yields a true spin-charge separation in 1D.

III. RESISTIVITY AND SPIN-CHARGE DECOMPOSITION

In this section we highlight the distinctive features of t
experimental data on in-plane and out-of-plane resistivity
underdoped cuprates, sketch the theoretical scheme for c
putations, and outline the qualitative understanding of
resistivity behavior in our gauge field approach.

A. In-plane resistivity

One of the first striking experimental findings on high-Tc
cuprates was the anomalous behavior of in-plane resisti
which in optimally doped samples appears linear inT. In
underdoped samples, it deviates from the linear depende
at low temperatures, but the standard metallic behavior;T2

derived from the Fermi liquid theory is not observed. I
stead, there are the following two distinctive features.

~a! In many strongly underdoped samples there exist
minimum in the resistivity, around;50–100 K, correspond-
ing to a MIC, as we outlined in Sec. I C. A similar crossov
is also observed in superconducting samples if supercon
tivity is suppressed by applying a strong magnetic field.

~b! Another characteristic feature of in-plane resistiv
which appears quite universal in underdoped samples is
inflection point—i.e. a maximum of dr/dT at T*
;100–300 K; this maximum disappears for higher dopin
At even higher temperatures the resistivity exhibits a lin
in T behavior approached from below. In the literatureT* is
also defined by some authors as the temperature where
resistivity deviates from the linear dependence, as we m
tioned in Sec. I A. That value is higher than the inflecti
point.

To calculate the in-plane resistivity we use the Ioff
Larkin rule,21 a somewhat counterintuitive but a typical fe
ture of the gauge approach, stating that the physical resis
ity r is a sum of the resistivity due to spinons,rs , and the
resistivity due to holons,rh :
7-5
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r5rs1rh . ~4!

The derivation of this addition rule is based on the followi
consideration: If we couple the electron to an external e
tromagnetic~e.m.! field Ae.m , it turns out that we can at
tribute an arbitrary e.m. chargee with 0<e<1 to the spinon
and a charge 12e to the holon, because in the path integ
formalism,e can always be eliminated by the change of va
ableA→A1eAe.m . As a consequence, neglecting ‘‘photon
drag, the renormalized e.m. current polarization bubblePe.m.
obeys the rule

~Pe.m.!
215~Ps!

211~Ph!21. ~5!

From Eq.~5! and the Kubo formula, one can derive the Ioff
Larkin rule, provided both conductivitiesss andsh are non-
vanishing. This will be self-consistently verifieda posteriori
except for very low temperatures. A crucial assumption h
is the quadratic dependence of the effective action inA,
which, as we pointed out in Sec. II A, is valid beyond t
standard perturbation expansion in the scaling limit. So d
the Ioffe-Larkin formula.

Denoting byj s the spinon current, the spinon resistivity
calculated from the fully renormalized current polarizati
bubble

^ j s~x! j s~y!&5Ps~x2y! ~6!

via the Kubo formula

~rs!
215ss52@v21Im Ps

R~v,qW 50!# uv→0

52E
0

`

dx0x0Ps~x0,qW 50!. ~7!

For holons we have similar equations replacing the ind
s by h ~e.g., j h denotes the holon current!. In Eq. ~6! the
expectation value is taken by integration overA, the spinon
field za of the continuum NLs model, and the Dirac holon
field c. The last equality in Eq.~7! is obtained via the Leh-
mann representation and the superscriptR denotes the re-
tarded propagator.

As pointed out first by Anderson,18 the in-plane resistivity
should be interpreted in terms of spin-charge separation.
gauge approach, if the scattering time of spinons or hol
by gauge fluctuations is shorter than the lifetime of the el
tron ~as in our case!, then this time scale will dominate th
in-plane resistivity and it might exhibit a different temper
ture dependence than the electron lifetime.

It turns out that a peculiar feature like MIC is mainly du
to the spinon contribution. As we mentioned in Sec. I C, M
is caused by competition between the spinon mass term
the gauge field dissipation. The spinon contribution to re
tivity, proportional to the spinon scattering rate against
gauge field, turns out to be;T21 at low temperatures whe
the spinon mass effect dominates, while it is;T1/4 at high
temperatures when the gauge field dissipation overwhelm

In our theoretical framework we identify the inflectio
point as the signal of a crossover to a different ‘‘phase,’’ t
so-called strange-metal phase, characterized byT-linear re-
sistivity, which will be addressed in a separate paper.58 More-
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over, as will be shown in Sec. VI B, the normalized resist
ity is a universal curve if its value at the MIC pointTMIC and
the inflection pointT* are used as references. At very lo
temperature many samples exhibit a second inflection p
below which the resistivity appears approximately logari
mic in T ~Ref. 41!; again we interpret this as a crossover to
different ‘‘phase.’’

B. Out-of-plane resistivity

The out-of-plane resistivity exhibits a completely diffe
ent T dependence. At low temperatures in the ‘‘pseudog
phase’’rc is insulating, behaving likeT21 with a coefficient
essentially independent of the material.18 At higher tempera-
turesrc typically develops a rounded knee.59,60 As empha-
sized by Anderson,18 the coexistence at the same temperat
of a metallic in-plane and an insulating out-of-plane resist
ity is hard to reconcile within a Fermi liquid theory, where
it might have a natural explanation in the framework of sp
charge ‘‘separation.’’ In such a scheme, in fact, a spino
holon decomposition of the electron holds only in the Cu2
layer and spinons and holons should recombine into e
trons to hop between layers and contribute torc . The out-
of-plane resistivity is then determined by the time scale
electron recombination. In our approach we have a way
implement this general ideas proposed by Anderson in
‘‘pseudogap phase.’’

To calculaterc we use the approach proposed by Kum
and Jayannavar61 ~KJ! which is motivated by the experimen
tal observation that thec-axis transport is essentially incohe
ent; i.e., there is no bandlike motion orthogonal to the Cu2
planes. One can then consider a system of two layers we
coupled by an effective tunneling matrix element2tc , tak-
ing into account an averaged momentum dependence o
hopping parameter~vanishing for diagonal momenta!. One
can write the 2D retarded Green function of the electr
~holon-spinon! resonance for smallv and momentumkWF on
the FS as

GR~v,kWF!;
Z

v1 iG
, ~8!

whereZ is the wave function renormalization andG the scat-
tering rate. Taking into account a virtual hopping betwe
two layers induces a shift of the real part of the denomina
of Eq. ~8! from v to v6Ztc . Let us denote byG6

R the
corresponding Green’s functions. The out-of-plane cond
tivity in the incoherence regime can be written through t
Kubo formula as

sc52(
kW
E dv

2p
2tc

2e2
]n

]v
~v!A1~kW ,v!A2~kW ,v!, ~9!

where A65(21/p)Im G6 are the spectral functions an
n(v) the Fermi distribution function. Inserting Eq.~8! into
Eq. ~9! after standard manipulations one obtains

rc;
1

n S 1

G
1

G

tc
2Z2D , ~10!
7-6
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wheren is the density of states at the FS. One can alre
anticipate that the first term causes the insulating beha
and, being independent oftc , it is essentially independent o
the material, as experimentally observed. Via Eq.~10! we
have related the behavior ofrc to the computation ofG and
Z, thus to the low-energy behavior of the electron Gre
function. This propagator in turn can be expressed at la
scales in terms of holon and spinon fieldsza andcs and be
extracted from a linear combination of terms

^cs~x!za* ~x!c̄s~y!za~y!&, ~11!

wheres denotes the pseudospin structure of the Dirac
lons, a the component-spin index of the spinons, and
propagator~11! is calculated using the low-energy spino
and holon effective actions.

We shall see that thederivedlifetime of the electron reso
nance is;T21,T21/2 at low and high temperatures, respe
tively, and therefore it cannot explain the temperature beh
ior of in-plane resistivity, in particular the MIC, but it indee
sets the scale of the out-of-plane resistivity. We shall also
that the theoretical curve indeed has a rounded knee, co
sponding to the crossover between the high- and lo
temperature regimes, in full consistency with experiment

The following two sections~IV and V! are more technical
Those who are mainly interested in the qualitative aspec
the gauge field approach can skip them and move directl
Sec. VI.

IV. SPINON CURRENT-CURRENT CORRELATION
FUNCTION

In this section we outline the computation of the spin
current polarization bubble—i.e., the current-current corre
tion functionPs(v,qW )—at smallv andqW . This computation
was briefly sketched in Ref. 48 and it is needed to derive
in-plane resistivity, as explained above. We will provi
more technical details here for those who would like to f
low the actual calculation.

A. Feynman-Schwinger-Fradkin representation

We start by writing explicitly the spinon NLs model ef-
fective action

S5E d3x
1

g
@vs

22u~]02 iA0!zau21u~] i2 iAi !zau2

1ms
2za* za ,#, ~12!

where g;J21, vs;Ja is the spinon velocity, witha the
lattice spacing, andms

21;a/(ud ln du)1/2 the spinon correla-
tion length. After a suitable rescaling of variables, the spin
propagator can be recast in the Schwinger representatio

Ga~x,yuA!5 igvsE
0

`

dse2 is(DA1ms
2)~x,y!, ~13!

wherex5(vsx
0,xW ), A5(vsA0 ,AW ), and DA denotes the 3D

covariant Dalambertian~or relativistic Laplacian!. The
propagator has been considered in the zero-temperature
02452
y
or

n
e

-
e

-
v-

ee
re-
-

of
to

-

e

-

n

or-

malism, an approximation justified by the mass gap of
spinon. Roughly speaking, it is valid providedT!Jams
;J(ud ln du)1/2. The kernel appearing in Eq.~13! has the for-
mal structure of an evolution kernel for a 3D Hamiltonia
H52DA1ms

2 and time parameters. It can thus be expande
in terms of Feynman paths starting fromy at ‘‘time’’ 0 and
reachingx at ‘‘time’’ s. It is convenient to parametrize thes
paths through their three-velocityfm, m50,1,2, using a
Feynman-Schwinger-Fradkin~FSF! representation~see, e.g.,
Ref. 62!

Ga~x,0uA!5 igvsE
0

`

dse2 isms
2E DfE d3p

3expF ipS E
0

s

f~ t !dt2xD G
3expH i E

0

s

dtF 1
4 f2~ t !

1f•AS x1E
0

t

f~ t8!dt8D G J . ~14!

Here thep integration enforces the constraint on the init
and final points of the paths and we use a shorthand nota
for the 3D scalar product: e.g.,

p•x5pmxm. ~15!

For a better understanding of formula~14!, notice that for-
mally setting fm(t)5dxm(t)/dt, the last exponential isi
times the Lagrangian of a 3D particle coupled to the e
potentialAm , corresponding to the previous HamiltonianH,
as one expects in a path-integral formulation. Since und
h/s gauge transformationL(x) the spinon field za(x)
changes by the phase factoreiL(x), it follows that

Ga~x,0uAm1]mL!5ei [L(x)2L(0)]Ga~x,0uAm!. ~16!

The gauge dependence of the Green function is alre
captured by the so-called ‘‘Gor’kov approximation’’

Ga~x,0uA!5expS i E
0

x

AmdxmDGa~x,0!, ~17!

where*0
x denotes integration along a straight line from 0 tox

andGa(x,0) is the free propagator~in the absence of gaug
field!. Expression~14! is useful to go beyond Gor’kov ap
proximation by means of the identity62

E
0

s

AmS x1E
0

t

f~ t8!dt8Dfm~ t !dt

5E
0

x

Amdxm2E
0

1

dllE
0

s

dtE
0

t

dt8fm~ t !fn~ t8!

3FmnS x1lE
0

t

f~ t9!dt9D , ~18!

whereFmn5]mAn2]nAm is the gauge field strength. Picto
rially, this representation is illustrated in Fig. 1. The seco
7-7
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term in Eq.~18!, denoted byS(P), gives the correction to
the Gor’kov approximation and it is gauge invariant, as
depends only onFmn . Shifting fm(t) by 2pm one can re-
write

Ga~x,0uA!5expS i E
0

x

AmdxmDGa~x,0uF !, ~19!

Ga~x,0uF !5 igvsexpS i E
0

x

A~j!dj D E
0

`

dsE d3p

~2p!3

3exp[2 ipx2 i ~p21ms
2#

3E Df expS i
1

4E0

s

dtf2~ t ! D
3expF2 i E

0

1

dllE
0

s

ds8E
0

s8
ds9@fm~s8!

22pm#@fn~s9!22pn#

3FmnS lE
0

s8
@f~s-!22p#ds-D G . ~20!

B. Gauge field strengthF correlation function

Now we turn to the polarization operatorPs . Expressing
it in terms of spinon propagators we find

Ps~x,y!5^DA(x)G~x,yuA!DA(y)
† G~y,xuA!&A

5K S ]m2
i

2Ey

x

FmndxnDG~x,yuF !

3S ]m2
i

2Ey

x

FmrdxrDG~x,yu2F !L
A

, ~21!

where^•&A denotes integration overA with the effective ac-
tion in the scaling limit andDA the covariant derivative
Notice that the two non-gauge-invariant Gor’kov terms
the two spinon propagators cancel each other so that
result is explicitly gauge invariant and it depends only onF.
We use now the quadratic structure of the scaling ac
S(A) ~see Sec. II B! to integrate out the gauge field. Th
explicit expression forS(A) in the Coulomb gauge is

S~A!5
1

2E dx0d2xAmP̃mnAn ,

FIG. 1. Feynman-Schwinger-Fradkin representation.
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with nonvanishing polarization components in the limit
small v, qW , andv/uquW , where one finds the leading, Reiz
singularity, given by55

P̃ i j
'~qW ,v!5S d i j 2

qiqj

q2 D F2 ik
v

uqW u
1xuqW u2G , i , j 51,2,

~22!

P00~qW ,v!5n1vp . ~23!

In Eqs. ~22! and ~23!, x5xs1xh , where xs(h) is the
spinon ~holon! diamagnetic susceptibility,k the Landau
damping,n the density of states at the FS of holons, andvp
the plasmon gap. For free holons,

xh5
1

12pmh
;

t

6pd
, ~24!

and for free spinons,

xs;ms
21 . ~25!

Hence, in this presumably reasonable approximation, for
dopingxh@xs . Due to the dependence on the field streng
F in Eq. ~21!, only the correlator of the electric (F0i) and
magnetic (Fi j ) fields can appear in the computation. Sin
theA0 propagator is short ranged whereas theAT propagator
is long ranged, the ‘‘electric’’ field contribution at larg
scales is negligible with respect to the ‘‘magnetic,’’ and
first approximation we neglect it. However, it might be us
ful to keep in mind that doing this we neglect a short-ran
attraction between spinon and antispinon~or holon!. Due to
the gapless nature ofAT, we consider the effect of finite
temperature using the thermal propagator

^Fi j ~x!Frs~0!&

5~d ir d js2d isd j r !E dv

2pE dkW

~2p!2

ukW u2e2 ivj01 ikW•jW

i
v

ukW u
k2xukW u2

3cothS v

2TD . ~26!

This does not contradict our earlier approximation in co
sidering the zero-temperature spinon propagator in view
the finite spinon mass gap. The leading order inT correction
enters via the thermal gauge field propagator in our sche
Since the energy scale for field fluctuations is set byT, in Eq.
~26! the integration over frequency is cut off atv&T which
in turn impliesukuW&(Tk/x)1/3.

In the limit Tj0!1 an approximate evaluation of th
above integral gives

2 i
T

4px
Q0

2e2Q0
2ujW u2/4, ~27!

whereQ05(kT/x)1/3 is a momentum cutoff andQ0
21 can be

identified as the length scale of gauge fluctuations, analog
7-8
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to the anomalous skin depth.~A posteriorithe upper limit for
T in the inequality above turns out to be reasonable beca
the typical time scale is;Q0

21;T21/3,T21 at low T.! It
turns out that this scale is triggering also the size of
spinon-antispinon magnon resonance. It also follows that
ms@Q0 in the expectation value~21! the derivative term
dominates over theF terms at large scales, so that to evalu
Ps the leading term is obtained by computing

^G~x,0uF !G~x,0u2F !&A ~28!

and then taking the spatial derivatives. Notice that Eq.~28!

coincides with the propagator̂VW (x)•VW (0)&, where VW

5z* sW z is a ‘‘magnon’’ field. We denote byf1
m andf2

m the
velocity fields relative to the FSF representation of the t
Green functions in Eq.~28!. Integrating overA the product
of the two FSF expansions one obtains an effective ac
I (f1 ,f2) in the velocity fields, which is quartic neglectin
the f dependence inF. This approximation can be self
consistently justifieda posteriori, because@see Eq.~33!#

p;ms@
1

sE0

s

ds8f~s8!;s21/2;~x0/ms!
21/2. ~29!

C. Eikonal and saddle point approximation

The f integration is then performed using the eikon
approximation

E @Df1#@Df2#expH i

4E f1
21

i

4E f2
2J eI (f1 ,f2)

.ei ^I (f1 ,f2)&f1 ,f2, ~30!

where ^•&f1 ,f2
denotes the average with respect to t

Gaussian measure appearing in the left-hand side~LHS! of
Eq. ~30!. This can be justified ifI is small, sinceI;T for T
small. Within this approximation the contribution of the tw
Green functions factorizes. This factorization in diagra
matic language means that after the cancellation of the s
energy and vertex renormalization implicitly involved in th
cancellation among Gor’kov terms, the remaining lead
effect ofA fluctuations is a self-energy renormalization of t
gauge-invariant spinon propagator. At this stage the c
relator ^VW (x)•VW (0)& can be written as

F E d3pE
0

`

dsexpH 2 i S p21ms
22

T

x
f ~a! D s1 ipx

2
T

x
Q0

2s2g~a!J G2

, ~31!

where a5upuW sQ0 , f and g are functions which summariz
the effect of gauge fluctuations, and their length scale va
tion is in fact ;Q0

21. Explicit integral representations off
andg are

f ~a!5a2E
0

1

dllE
0

1

dl̃l̃E
0

1

dvv2e2a2v2(l̃2l)2
,

02452
se

e
r

e

o

n

l

-
lf-

g

r-

a-

g~a!5E
0

1

dllE
0

1

dl̃l̃E
0

1

dvve2a2v2(l̃2l)2
. ~32!

Finally we evaluate thep ands integrals by a saddle poin
approximation, obtaining, forms

2*T/x,

p;x/2s s;
1

2A ~x0!22xW2

ms
22

T

x
f ~a!

, ~33!

and the magnonVW propagator inx space becomes

^VW ~x!•VW ~0!&

;
1

~x0!22uxW u2
expH 22iAms

22
T

x
f S uxW uQ0

2
D

3A~x0!22xW22
T

2x
Q0

2gS uxW uQ0

2
D

3
~x0!22uxW u2

ms
22

T

x
f S uxW uQ0

2
D J . ~34!

To apply the Kubo formula one needs to perfor
the Fourier transform at qW 50 of ^ jWs(x)• jWs(0)&
;^]mVW (x)•]mVW (0)&. We consider the regionx0@uxuW and
evaluate theuxuW integration via a saddle point. Using the for
of f and g one finds that the exponent Eq.~34! at largex0

exhibits a complex saddle point at a scaleuxuW (x0);(x0)1/2,
thus verifying the above assumed inequality with a behav
of a standard diffusion and with argumentp/4. ~In the more
precise numerical evaluation we neglect small-scale fluc
tions, splitting the above saddle point into a set of isola
saddle points.! A numerical extrapolation in the region o
small x0 yields an approximatex0 dependence of the form

uxuW ~x0!;eip/4xc~x0!, xc~x0!5~C2Q0
221C8ux0u/ms!

1/2,
~35!

with C,C8 finite positive constant (C;0.5), thus approach
ing a finite value asx0→0. Settinga(x0)5Q0uxuW (x0) and

I ~x0!52 iAms
22

T

x
f „a~x0!…x0

2
T

4x
Q0

2g„a~x0!…
~x0!2

ms
22

T

x
f „a~x0!…

, ~36!

we have
7-9
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MARCHETTI, De LEO, ORSO, SU, AND YU PHYSICAL REVIEW B69, 024527 ~2004!
^ j m j m&~qW 50,x0!

5E d2xW ^ j m~x0,xW ! j m~0,0W !&

;
xc

3

@~x0!22xc
2#3 S ]2I ~x0!

]xc~x0!2D 21/2

e2I (x0). ~37!

Sincef is smooth on the scaleuxuW;Q0
21, assuming forx0 the

same scale the dominance of the saddle point require
lower bound for the temperature, which combined with p
vious upper bound yields a range of validity given by

ms
2*

T

x
*msQ0 . ~38!

In physical units, this gives a range of temperatures
tween a few tens and a few hundreds of kelvin. The real p
of the exponential in Eq.~37! is monotonically decreasing in
x0; therefore we evaluate thex0 integral appearing in Kubo
formula ~7! by principal part evaluation. Since our approa
is valid only at large scales, we introduce an UV cutoff in t
integral atlQ0

21 and evaluate the integration assumingl
large. Then we make the conjecture that for smallv the
physics is dominated by large scales and the small-scale
tribution can be taken into account by removing the UV c
off after a multiplicative scale renormalization. The result
this approximation is

ss52 ImE
0

`

dx0x0P~x0,qW 50!

;ImS Zj

Ams
22

T

x
f ~Ceip/4!D , ~39!

where

Zj5Q0ZV ,ZV5~ms
22 icT/x!1/4@x/T f9~Ceip/4!#1/2Q0

1/2,

and numerically one finds f (Ceip/4);0.21 i3.3 and
f 9(Ceip/4) real. For simplicity we set Imf (Ceip/4)5c and
we still denote byms

2 the quantityms
22Ref (Ceip/4)T/x

which in the range of temperature we are interested is in
almost equal toms

2 .

D. Spinon-antispinon ‘‘resonance’’ „magnon… propagator

For a better understanding of the above equation, we
tice that the retarded magnon correlator at positivev is given
in the same approximations by

^VW •VW &~v,qW !;
ZV

v22Ams
22 ic

T

x

J0~ uquWCQ0
21eip/4!,

~40!

whereJ0 is the Bessel function.
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The above formula explains the physics underlying E
~39!: the gauge fluctuations couple the spinon-antispinon p
into a resonance with mass gap

mV52 ReAms
22 ic

T

x
~41!

and inverse lifetime

tV
2152 ImAms

22 ic
T

x
. ~42!

Zj and ZV can be interpreted asT-dependent wave-
function renormalization factors which modify the temper
ture dependence of the~physical! correlation functions. Fi-
nally, we expect that the plausible effect of the neglec
residual short-range attraction is a further renormalization
the mass gap, but we believe that this does not introd
significative changes.

V. ELECTRON GREEN’S FUNCTION

In this section we evaluate the continuum limit of th
electron Green’s function within our approach, extracting,
particular, the wave-function renormalization constantZ and
the inverse lifetimeG needed to computerc in KJ’s ap-
proach.

A. Holon effective action

In order to have a more systematic derivation, it is wor
while to start by writing the hopping Hamiltonian for holon
Hhopp, neglecting at first the coupling to the h/s gauge fie

Restricting the holon fieldH to the two Néel sublattices,
labeled byA, to which the origin belongs, andB, we have in
momentum space

Hhopp5(
kW

„HA* ~kW ! HB* ~kW !…

3S 0 22t
1

A2
~g11 ig2!

22t
1

A2
~g12 ig2! 0

D
3S HA~kW !

HB~kW !
D , ~43!

where

g65cos~kxa!6cos~kya!, ~44!

a being the lattice spacing and the sum overkW running in the
reduced Brillouin zone. The eigenvalues ofHhopp are given
by

e6~kW !562tAcos~kxa!21cos~kya!2; ~45!

hence they describe double cones with vertices at (6p/2,
6p/2) in the Brillouin zone.

Since the chemical potential for the holon system is po
tive, m;2td, only thee1 band of the double cones exhibi
a FS. For each of these double cones one can identi
7-10
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SPIN-CHARGE GAUGE APPROACH TO THE PSEUDOGAP . . . PHYSICAL REVIEW B 69, 024527 ~2004!
two-component, continuum, Dirac fieldca , a5↑,↓ describ-
ing the low-energy physics of the system. The continu
effective action for holonsca coupled to the h/s fieldAm can
be cast in the form

Sh~c,A!5E d3xc̄@g0~]02m2 iA0!1vFg i~] i2 iAi !#c,

~46!

wherec̄5c†g0 , g05sz , g i5(sy ,sx), andvF52ta being
the Fermi velocity. The relation betweenc,z and the original
electron fieldca in the two sublattices is found to be given—
e.g., near the (p/2,p/2) double cone—by

^ca
A~x!ca

†A~0!&;ei (p/2,p/2)•xW^@c̄↓~x!c↓~0!

2c̄↑~x!c↑~0!#za~x!za* ~0!&,

^ca
B~x!ca

†A~0!&;ei (p/2,p/2)•xW^@eip/4c̄↑~x!c↓~0!

1e2 ip/4c̄↓~x!c↑~0!#za~x!za* ~0!&.

~47!

Analogous relations hold near the other three dou
cones. Note that in thez correlator, the contribution of the
spin flips of the ‘‘optimal spinon configuration’’ of Ref. 47
must be taken into account.

B. Tomographic decomposition

In the previous section we evaluated the effect of ga
fluctuations on thez correlator at large scales, using the FS
path-integral representation. An analogous representatio
hard to use for theca correlator because of the finite densi
of holons. This representation would in fact contain a se
of alternating sign contributions, corresponding to an ar
trary number of closed fermion word lines, describing t
contributions of the particles in the finite-density grou
state, besides the path from 0 tox ~see, e.g., Ref. 51!. To
overcome this difficulty, we apply a dimensional reducti
by means of the tomographic decomposition introduced
Luther and Haldane.63 To treat the low-energy degrees
freedom we choose a slice of thicknessL5kF /l, with l
@1, in momentum space around the FS ofc, as shown in
Fig. 2.

To simplify the description, we assume a circular FS,
approximation reasonable for lowd ~the method applies nev
ertheless to the general case by considering a Fermi mom
tum varying along the FS!. We decompose the slice in ap
proximately square sectors; each sector corresponds
quasiparticle field in the sense of Gallavotti-Shank
renormalization64 ~see also Ref. 65!. Each sector is charac
terized by a unit vectornW (u), pointing from the center of the
FS to the center of the box, labeled by the angleu between
this direction and thekx axis. The original momentumkW
inside a given sector is written as

kW5kFnW ~u!1qW , ~48!
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whereqW spans the box; thereforeuqW •nW (u)u, uqW `nW (u)u<L.
Due to the Dirac structure ofc, to apply the tomographic
decomposition to the holon propagator, we first decomp
the freec correlator as

^c̄a~x!cb~0!&

5E d3k

~2p!3 F e2 ikx

2g0~k01kF!1gmkm2 i« sgn~ ukuW2kF!
G

ab

5E d3k

~2p!3
e2 ikx

1

k01kF2ukuW1 i« sgn~ ukuW2kF!

3F g0~k01kF!2gmkm

k01kF1ukuW2 i« sgn~ ukuW2kF!
G

ab

. ~49!

In the scaling limit the matrix in square brackets does
have a pole and, for momenta in a box labeled bynW (u), it
approaches

A~u!5
g02gW •nW ~u!

2
. ~50!

In Ref. 54 it has been shown that the tomographic deco
position is valid at large distances even in the presence
minimal coupling to a ‘‘photon’’ field. Applying the tomog-
raphic decomposition to the holon propagator in the prese
of an external h/s gauge fieldA, in the scaling limit, using
Eqs.~49! and ~50!, we derive

^c̄a~x!cb~0!&

;(
i

Aab~u i !E dq0

2p E
L

d2q

~2p!2
e2 ikFnW (u i )•xWeiq0x02 iqW •xW

3F 1

q02Hu i
1 i« sgn@qW •nW ~u!#G , ~51!

FIG. 2. Tomographic decomposition of the Fermi surface pa
with square boxes of sizeL.
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where

Hu5A01nW ~u!•~qW 2AW !1
1

2kF
@~qW 2AW !`nW ~u!#2, ~52!

and*L denotes integration over a square box of sizeL. To the Fourier transform of the term in square bracket of Eq.~51! one
can apply the FSF path representation~see also Ref. 66 for a treatment of linear dispersion!. Using manipulations analogou
to those performed in the previous section, one can rewrite Eq.~51! as

kF

L E duA~u!exp@2 ikFnW ~u!xW #expS i E
0

x

AmdxmD E dq0

2p F E
0

`

duE
L

d2q

~2p!2
Q~qi!1E

2`

0

duE
L

d2q

~2p!2
Q~2qi!G

3exp$ iq0~x02u!2 iqW @xW1nW ~u!u#%expS iq'
2

2kF
D

3H E Dw'expS i E
0

ukF

2
w'

2 ~u8!du8D expF2 i E
0

1

dttE
0

u

du8E
0

u8
du9wm~u8!wn~u9!FmnS tE

0

u8
w~u-!du-D G J , ~53!
t
a-

w
e

a

q.
l
only
xi-
hat
s

nta

e

where we use the short notationqi5qW •nW (u), q'5qW

`nW (u), and w is the velocity field of componentswm(t)
5„1,1,w'(t)…. Note that in Eq.~53! we have replaced the
original discrete summation( i with the continuum limit
(kF /L)*du. We have checked by explicit computation67

that the term in curly brackets describing the correction
Gork’ov approximation is irrelevant within the approxim
tion scheme adopted in previous section and below, so
shall drop it from now on.~This agrees with the fact that th
holon scattering time behaves like;T24/3, a posteriori a
much longer time with respect to the electron scattering tim
triggered by gauge fluctuations on spinons.! Then, theu in-
tegration can be performed exactly, after the trivialq0 inte-
gration. Theqi integration gives

E
2L

L

dqie
iq i(xi2x0vF)Q~qi!

5
1

i

eiL(xi2x0vF)21

~xi2x0vF!
; i

1

xi2x0vF

, ~54!

where the last approximation is valid~in the weak sense! in
the limit LvFx0@1. SettingL(x0)5(kF /vFx0)1/2, the q'

integration gives

E
2L

L

dq'ei [q'x'2(vF /kF)q'
2 x0]

5L~x0!E
2L/L(x0)

L/L(x0)

dyeiL(x0)x'ye2 iy2/2

;L~x0!
eix'

2 L(x0)/2

Ai
. ~55!

Collecting all pieces, the holon Green’s function in the sc
ing limit and for Lx0@1 can be written as
02452
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^c̄a~x!cb~0!&

;
L~x0!kF

L E du
eix'(u)2L(x0)/2

Ai
A~u!abeikFxi(u)

3F 1

xi~u!2x0vF

Q~x0!1
1

xi~u!1x0vF

Q~2x0!G
3expS i E

0

x

AmdxmD . ~56!

C. Electron propagator

Next, we compute the electron Green’s function using E
~47!. The Gor’kov terms in thec and z correlators cance
against each other and the gauge field fluctuations act
on the gauge-invariant spinon correlator. Within the appro
mations used in previous section, one can easily verify t
this correlator in the scaling limit inx space behaves a
square root of theV propagator~40!. We perform now the
Fourier transform of the electron propagator for mome
close to the Fermi surface, in a sector labeled by the angleh,
Ga„v,(p/2,p/2)1nW (h)kF1qW …, for smallv andqW . We inte-
grate overu using the following.

Lemma.54 Let f (u,xW ) be a smooth function; then in th
large distance limituxuW@L21 we have

E dueikF[nW (h)2nW (u)] •xW f ~u,xW !;
2p

kF
f ~h,xW !dL21„xW`nW ~h!…,

~57!

where dL21 denotes an approximated function of width
L21.

SettingxW5uxW unW (f) we approximate
7-12
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dL21„xW`nW ~h!…;
1

uxW u
@d~f2h!1d~f2h1p!#. ~58!

One can easily perform thef integration; the remaining
integration over space-time variables is done as in the pr
ous section: namely, by saddle point approximation foruxW u in
the limit x0@uxW u and by principal part evaluation and sca
renormalization forx0. The final result is

GaS v,S p

2
,
p

2 D1nW ~h!kF1qW D
;S~h!ZF eiqW •nW (h)uxc(0)u 1

v1S2vF

duxcu
dux0u ~0!qi

1e2 iqW •nW (h)uxc(0)u 1

v2S2vF

duxcu
dux0u ~0!qi

G ,

~59!

whereS(h) is the angle-dependent part of the wave funct
renormalization constant:

S~h!5
1

2 F12
1

A2
@cos~h!1sin~h!#G . ~60!

This angle-dependent spectral weight is demonstrate
Fig. 3. In Eq.~59!, Z is the wave function renormalizatio
constant averaged over the FS; writing the tomographic
mentum cutoff asL5kF /l, with l@1, and taking into ac-
count the definition ofQ0 we obtain

Z'lS Q0

kF
D 1/2S msk

J2 D 1/2

. ~61!

The renormalized electron self-energyS is given by

S5vsAms
22 ic

T

x
, ~62!

FIG. 3. Angle-dependent spectral weight of the electron pro
gator. The thick lines close to (6p/2,6p/2) represent the region o
FS with spectral weight larger than 1/2 ford;0.05.
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where we have reintroduced the spinon velocityvs previ-
ously set equal to 1. From Eq.~59! we can immediately read
off the inverse scattering timeG for the electron: G
52Im S.

D. Fermi surface and electron resonance

We now make the following assumption.
Assumption FS. The neglected short-range attraction b

tween spinon and holon renormalizes the real part ofS ex-
actly to 0, so that the electron exhibits a Fermi surface.

If assumption FS holds, one might conjecture that this
due to a mechanism somewhat analogous to the one w
renormalizes to zero the mass of the two-fermion bound s
~‘‘pion’’ ! of massless QED3, whose constituent fermions ar
dynamically massive.68 This cancellation between mass an
self-energy attractions is there triggered by a symmetry p
ciple, whose analog in our scheme would require further
vestigation. One should remark that our treatment of
problem resembles the one discussed in Ref. 23 in
SU(2)3U(1) slave boson approach and in fact it yields
similar structure for the FS, although the scattering time
rather different.

Under assumption FS, finally, forqW 50W and v.0 small
we find the structure~8! with the replacementZ→S(h)Z.

This structure shows that the gauge fluctuations are a
to bind together spinon and holon into a resonance for
energies and momenta close to the Fermi momenta, but
a wave function renormalization constant which depen
both on the point of the FS, due toS(h), and the tempera-
ture. In particularZ;T1/6, soZ vanishes if formally extrapo-
lated toT50. This implies a peculiar non-Fermi-liquid cha
acter for this system of ‘‘electron resonances.’’ However
real extrapolation toT50 cannot be done because theuxuW
saddle point is only dominant forT*xmsQ0. The system
therefore appears to fit naturally within the scheme of u
stable fixed points~UFP’s! outlined by Anderson.69 There it
is argued that in general in the renormalization group~RG!
formalism, starting at high temperature and energy and in
grating out high frequencies one derives a low-tempera
and low-frequency model. However, the system does not
ways flow smoothly under the RG toT50. It might develop
a tendency to approach at intermediate temperatures a
frared UFP. The composite holon-spinon system discus
above yielding the ‘‘electron resonance’’ might be a UFP
the temperature range of validity of our approximations. T
angular dependence of the wave-function renormaliza
S(h) yields a reduction of the spectral weight outside t
reduced Brillouin zone, in qualitative agreement wi
ARPES experiments in underdoped cuprates@see Ref. 23 for
a similar situation in the SU(2)3U(1) slave boson ap-
proach#. In fact, the intensity measured in ARPES expe
ments is proportional to ImG(v,kW )n(v); denoting byI (kW )
the integrated intensity along the ‘‘electron FS’’ we have
contribution toI due to the ‘‘electron resonance’’ given by

I ~nW ~u!kF!;S~u!Z.

-

7-13
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The factorS(u) is peaked aroundu55p/4 @for the FS
near (p/2,p/2)] and it is substantially reduced on the opp
site side~see Fig. 3!.

One might try to extend the analysis performed above
momentaqW around the holon FS in a shell of thicknessL, by
including the contributions of momentaqW outside the shell,
but still smaller than the UV cutoff of the continuum mode
If in this contribution one tentatively neglects the effect
gauge fluctuations which give rise to incoherent compon
to the ‘‘electron’’ Green function, the essential features of o
present consideration will remain; a detailed analysis is
progress.

VI. COMPARISON WITH EXPERIMENTS

A. MIC of in-plane resistivity

Let us now summarize the main results of Sec. IV, use
to derive a formula for the in-plane resistivityr, for com-
parison with the experimental data.

We have shown that~under the stated approximations! the
gauge fluctuations exhibit a typical scale, a sort of anom
lous skin penetration depth,Q0

21;d22/3T21/3. In the range
of temperature identified byms

2*T/x*msQ0 the gauge field
couples a spinon-antispinon pair into a magnon resonanc
a scale triggered byQ0

21. The resonance exhibits a comple
mass termM of ‘‘relativistic’’ structure:

M52Ams
22 ic

T

x
, ~63!

where c;3.3, whose imaginary part appears as a con
quence of the dissipative nature of gauge fluctuations
energies smaller thanT.

The residue of the complex pole in the magnon resona
correlator is alsoT dependent and behaves likeQ0

21(Mk)1/2,

wherek is the Landau damping. UsingjWs;]VW ;Q0VW and
the Kubo formula for spinon conductivity one obtains

rs;
ms

1/2

Ad

F11S j

lT
D 4G1/8

sinF1

4
arctanS j

lT
D 2G , ~64!

wherej;ud ln du21/2, lT;(x/Tc)1/2.
For the holons one can borrow a computation perform

diagrammatically in Ref. 22 for a Fermi liquid interactin
with a gauge field exhibiting a Reizer singularity. Addin
via the Matthiessen rule, the contribution of impurities o
finds

rh;dF ~eFt imp!
211S T

eF
D 4/3G . ~65!

For smalld,T/t we havers@rh , so the spinon contribu
tion dominates the physical resistivity in the Ioffe-Lark
rule. For low T, rs;1/T, thus exhibiting an insulating be
havior, for T*xms

2 one findsrs;T1/4, thus showing a me-
tallic behavior. From formula~64! a MIC is thus recovered
02452
r

nt
r
n

l

-

on

e-
r

ce

d

decreasing the temperature, as shown in the experiments
cussed in Sec. I C. This crossover is determined by the in
play between the AF correlation lengthj and the thermal de
Broglie wavelengthlT .70 WhenlT&j the ‘‘peculiar’’ local-
ization due to SRAFO is not felt and a metallic behavior
observed. In the opposite limitlT>j we find the insulating
behavior~but due to the gauge interaction ,rsÞe(D/T)a

, a
behavior found for a ‘‘standard’’ localization!. The doping
dependence is rather weak, due to a delicate cancellatio
the doping dependence of the dimensionless variable

y5S j

lT
D 2

5
Tc

xms
2;

Tc

tu ln du
, ~66!

which controlsrs ; see Eq.~64!. Our formula for rs has
essentially no free parameters except for an overall resisti
scale. The only parameterO(1) used in our numerical cal
culations is the coefficientr in the parametrization

xms
2;

t

6pd
ud ln dur ,

which one can fine-tune by using, e.g., the minimum of
sistivity for some fixed doping. The entire set of curv
r(d,T) is then completely determined. As shown in Fig. 1
Ref. 48, the agreement with experimental data is really go
and the MIC temperature goes down, as the doping incre
ing. If there were no logarithmic correction in our derive
spinon mass, there would be no doping dependenceat all for
the MIC temperature.

B. Universal normalized resistivity

Now we consider a more subtle prediction following fro
our theoretical treatment.

As mentioned in Sec. III A, an inflection pointT* has
been observed in heavily underdoped cuprates at a hi
temperature, wheredr/dT has a maximum. Such an inflec
tion point can be tentatively identified with the pseudog
temperature. Such an inflection point also appears in our
rived in-plane resistivity formula~we still denote it byT* ),
and the ‘‘relativistic’’ structure of the mass term is respo
sible for it. We find thatT* corresponds toy;3.4. More-
over, there is another inflection point in experimental data
low temperatures below which the resistivity exhibits an a
proximate logarithmic temperature dependence.41 We pro-
pose to identify these two inflection points as the upper a
lower bounds for the validity of our approximation and
approximately identify thed-T parameter region correspond
ing to the ‘‘pseudogap phase’’ of cuprates. Above the up
inflection point, the system enters the ‘‘strange metal’’ pha
to which a separate paper is devoted.58 Below the lower in-
flection point, the system also crosses over to a new ph
whose properties have to be explored.

Neglecting theT4/3 contribution, as justified at lowT,
from our formula~64! we notice that if we define the ‘‘nor-
malized resistivity’’
7-14
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rn~T!5
r~T!2r~TMIC!

r~T* !2r~TMIC!
, ~67!

this is a universal~i.e., doping-independent! function of the
variabley, Eq. ~66!, whereTMIC denotes the minimum ofrs
and one finds it corresponding toy;1.7.

This curve has been noticed in the YBCO~Ref. 35! data
and quantitatively similar ‘‘universal curves’’ have been o
served also for LSCO,29 BSLCO, and BSCO.71 ~In these last
references a different definition ofT* was used, based o
deviation from linearity ofr, not directly accessible to ou
approach and therefore not permitting a direct compari
with our formula. A rough estimate, however, gives for th
T* a value dependent on the material, but approxima
twice our definition ofT* .! Our formalism, on the othe
hand, explains in a neat way their universality character
Fig. 4 we plot the calculated normalized resistivityrn to be
compared with the corresponding experimental curve
LSCO and YBCO that we extracted from the data of Tak
et al.5 and Trappenierset al.35; see Fig. 5. We did not mak
any attempts to reconcile the calculated and observed l
tion of the MIC temperature which may depend on fact
not included in our consideration but the universal chara

FIG. 4. Calculated ‘‘normalized’’ resistivityrn vs reduced tem-
peratureT/T* ~see text for explanation!.

FIG. 5. Temperature dependence forrn in underdoped LSCO
~extracted from Ref. 5! and YBCO~extracted from Ref. 35!.
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of the normalized resistivity is an explicit prediction o
theory in agreement with experiment.

Also, the recently experimentally observeda-b asymme-
try in the conductivity of LSCO at low temperatures72,73 has
a natural explanation in our framework as due to the anis
ropy of the MIC temperature ina-b directions. A detailed
explanation will be given in a separate communication.75

C. Out-of-plane resistivity

Let us summarize the results of Sec. V needed to comp
rc . In the temperature rangems

2&T/x&msQ0, the gauge
fluctuations couple spinon and holon close to the FS into
‘‘electron’’ resonance with scattering rateG proportional to
the inverse lifetime of the magnon; hence

G52ImAms
22 ic

T

x
;5

JT

t S d

u ln du D
1/2

,
T

xms
2

!1,

JS Td

t D 1/2

,
T

xms
2
;1.

~68!

The wave-function renormalization is the product of
termS(u), varying along the FS, whereu is the angle label-
ing the direction from the center, inherited from the Dir
structure of the holon action, and aT-dependent termZ. This
in turn is a product of a term proportional to the ‘‘magnon
renormalization constantZV and a term coming from inte
gration over fluctuations of holons, Gaussian for those alo
and linear for those perpendicular to the FS, with a scale
by gauge fluctuations, hence giving a contribution;Q0

3/2:

Z;ZVQ0
3/2;AdmsQ0. ~69!

To computerc we average the angular dependence
S(u) and insert Eqs.~68! and~69! in KJ’s formula, Eq.~10!.

It follows from Eqs. ~10! and ~68! that for low T, rc
;T21, and for higher temperature, if the first term in E
~10! still dominates,rc;T21/2 with a coefficient indepen-
dent oftc . These features reproduce qualitatively the beh
ior observed experimentally in several materials~LSCO,
YBCO, etc.! in the ‘‘pseudogap phase’’ including th
rounded knee cited in Sec. III B, which corresponds to
above change of temperature dependence.

As a consequence of KJ’s approachrc at low T appears to
give a direct test for the scattering rate of the ‘‘electron’’
the pseudogap phase. The ‘‘metallic’’ contribution of the se
ond term is important only at higher temperature, where
scales asT1/6, causing a further flattening of therc(T)
curves or possibly a minimum. Apart from an overall sca
having already fixed withrab the variablexms

2 , our formula
has only one free parameter, the scale ofZ—i.e., essentially
the scalel controlling the cutoff on momenta perpendicul
to the FS,L5kF /l and weighting the ‘‘metallic’’ contribu-
tion. This parameter should be a somewhat large number
might be roughly estimated by fittingrc for one doping con-
centration. For other dopings theT-dependence behavior o
7-15
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rc is then derived and as one can see from Fig. 6, the th
retical results are in good agreement with experimen
data.59

Having an explicit theoretical dependence ond andT for
both rc andrab one can further analyze the anisotropy ra
rc /rab . The derived temperature dependence of this rati
shown in Fig. 7; this ratio clearly saturates at lowT, since
both rc andr scale as 1/T, but at higher temperature, in th
‘‘metallic’’ region for in-plane resistivity, the ratio decrease
like T21/4. Again this behavior is qualitatively consiste
with the experimental data in the ‘‘pseudogap phase,’’18,41as
shown in the inset of the same figure.

D. Hidden MIC in superconducting cuprates
and magnetoresistance

The techniques developed in previous sections are us
to compute other observables, like the transverse in-p
magnetoresistance and the63Cu spin-lattice relaxation rate
The calculation of magnetoresistance is outlined in Ref.
therefore here we only briefly review the results.

The basic underlying hypothesis is that suppressing su
conductivity by applying a magnetic field, in supercondu
ing underdoped samples one recovers the normal-s
‘‘pseudogap phase.’’

A magnetic fieldH perpendicular to the plane then mod
fies the gauge effective action in two ways:~1! Via a minimal
coupling it induces a shiftA→A2«Aem in the spinon term
and A→A1(12«)Aem in the holon term, where« is the
spinon effective charge andAem is the vector potential cor
responding to the applied uniform static magnetic fieldH. In
a mean-field treatment the effective charge should be cho
as to satisfy the Ioffe-Larkin rule for diamagnetic suscep
bility ~see Refs. 49 and 74!. Therefore«;xh /x. ~2! The
presence ofH induces a parity-breaking Chern-Simons te
in the holon action@sh(H)/2p#A0e i j ]

iAj , wheresh(H) is
the holon Hall conductivity. SinceA0 is short ranged, with a
gap g5n1vp @see Eq.~22!#, it can be integrated out first
yielding an effective renormalization of the diamagne

FIG. 6. Calculated temperature dependence of the out-of-p
resistivity ~in arbitrary units! for different doping concentrations
d50.05 ~solid line!, d50.07 ~dashed line!, and d50.09 ~dotted
line!. Inset shows experimental data on LSCO, extracted from R
77.
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susceptibility in the transverse action:x→x(H)5x
1sh

2(H)/4p2g as discussed in Ref. 74. This effect is, how
ever, subleading at lowT.

Under the approximations of Sec. IV the result of effec
~1! and ~2! can be summarized by a modification of th
‘‘relativistic’’ mass term of spinon:

M→M ~H !5Ams
22 i S cT

x~H !
2

«2H2

3Q0
2 D . ~70!

„A technical comment: the minimal coupling in the FS
path representation of G(x,0uF) produces a term

exp$i«*0
1dll*0

sds8*0
s8ds9@fi(s8)22pi#@fj(s9)22pj#eijH% @see

Eq. ~20!# and evaluating thef integral in Gaussian approxi
mation this term yields a contributioneis3upuW 2H2

to the V
correlator in Eq.~31!. This finally is responsible for the shif
of the last term in the square root in Eq.~70!…. The limits of
validity of the uxuW saddle point becomex(H)Q0uM (H)u
&T, Im@M (H)#&ms

2 , which for the range of physical pa
rameters considered here (H&100 T) gives a temperatur
range still lying between a few tens and a few hundre
degrees. Hence, to conclude, the presence ofH modifiesrs
via the cyclotron effect, by reducing the damping fromT/x
to T/x(H)2H2«2/3Q0

2.
This reduction makes the thermal de Broglie wavelen

lT longer, so the MIC occurs at a higher temperature w
respect to the system atH50. The external magnetic field
then reveals the MIC originally hidden in the supercondu
ing samples.

Furthermore, the shift of the minimum ofr causes a
strong positive transverse magnetoresistance~MR! at low T,
as in fact experimentally seen,76,77 an effect missing in pre-
vious theoretical treatments.74 At higher temperatures, in the
region where dissipation dominates, the shift of diamagn
susceptibility due to the Chern-Simons term induces a red
tion of resistivity, a tendency contrasted by the classical

FIG. 7. Calculated temperature dependence of the resistivity
isotropy ratio as a function of temperature for different doping co
centrations:d50.05 ~solid line!, d50.07 ~dashed line!, and d
50.09 ~dotted line!. Inset shows corresponding experimental da
on LSCO, extracted from Ref. 60.

ne

f.
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clotron effect on holons, taken into account in the Boltzma
equation approximation. One then has two possible type
MR curves: one is always positive but it exhibits a kn
below the crossover temperature between the mass gap
the dissipation dominated regions~see Fig. 3 in Ref. 49!.
This behavior can be compared with the one observed
LSCO reported in Ref. 76 and one finds a reasonably g
agreement. If, in contrast, the quantum effects related
sh(H) are sufficiently strong, a minimum develops, even
ally leading to a negative MR in some region around it. T
MR scales quadratically withH ~see Fig. 2 in Ref. 49! in
agreement, in particular, with data on LSCO,77 away from
the dopingd51/8 where the stripe effects dominate.„In the
explicit formula one should also take into account the mo
fication induced byH in the contribution of the Landau
damping toZj : Ak→$@T/x(H)#Q0

232c8H2Q0
25%1/2 where

c8 is a new constant; f 9(Ceip/4) in fact roughly estimated
together with a parameter coefficient ofH in s(H), by com-
parison with an experimental curve at some doping.…

Finally we notice that in Zn-doped superconducti
samples of BSLCO the MIC become observable upon
crease of Zn doping~when a magnetic field suppresses s
perconductivity! and it shifts to higher temperature as t
level of Zn doping increases.45 This effect is qualitatively
consistent with our picture. In fact, the Zn doping distur
the AF background, so making the AF correlation leng
shorter, therefore shifting the MIC temperature up, althou
we are not able, at the moment, to make a quantitative e
mate of this shift.

E. Spin-lattice relaxation rate

We turn now to the spin-lattice relaxation rate for the C
sites (1/T1) ~Ref. 63!; see Ref. 48. This can be theoretica
computed using the Kubo formula

1

T1T
5 lim

v→0
E d2quAW ~qW !u2

Im xs~qW ,v!

v
, ~71!

whereAW (qW ) is the hyperfine field andxs(qW ,v) the spin sus-
ceptibility. For the Cu sites the hyperfine fieldAW (qW ) is
peaked aroundQAF5(p,p), thus probing the AF spin fluc
tuations. The electron spin fieldSW (x)5c†(sW /2)c(x) is re-
lated to the spinon and holon fields by

SW ~x!;@12H* H~x!#eiQW AF•xWVW ~x!.

ApproximatingH* H by its mean field valued and using
the Lehmann representation one finds, for smallqW ,

lim
v→0

Im xs~QAF1qW ,v!

v

;ImE
0

`

dx0 ix0E d2x~12d!2^VW ~x!•VW ~0!&eiq•W xW.

~72!
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The uxuW andx0 integrations are performed as in Sec. IV
Assuming a cutoff for theuquW integration in Eq.~71! given by
the inverse anomalous skin depthQ0 and using the smooth
ness ofAW (qW ) at this scale we derive

E duE
uquW,Q0

duquW uquW uAW ~qW !u2eiq•W uxuW (0)cosu;Q0
2J0~Ceip/4!.

~73!

Numerically one finds ReJ0(ceip/4)[a and
Im J0(ceip/4)[b with a/b;0.1. Plugging Eqs.~73! and~40!
into Eq. ~72! one obtains, from the Kubo formula~71!,

~T1T!21;~12d!2AduM u21/2

3Fa cosS argM

2 D1b sinS argM

2 D G . ~74!

For low T, 1/T1T;a1bT, and for higherT, one finds
1/T1T;T21/4; therefore the spin lattice relaxation ra
(1/T1T) on Cu sites exhibits a maximum and an inflecti
point at higher temperature, as observed in YBCO und
doped samples.78

If a were 0, then 1/T1T would be proportional to the
spinon conductivityss , and the maximum and inflection
point would be at the same temperature of the MIC andT* ,
respectively. However, due to thea term in Eq.~74!, they are
shifted. In particular, the inflection point is found at a low
temperatureT0, in qualitative agreement with the fact tha
experimentally the pseudogap temperature deduced from
spin-lattice relaxation rate is lower than that derived from
resistivity measurements.79

We end this section by remarking that preliminary calc
lations are giving also encouraging results, when compa
with the experimental data, for the electronic ac conductiv
at small v ~Ref. 73! and the electronic specific heat~Ref.
80!.

VII. CONCLUDING REMARKS

To summarize we have presented in this paper the ca
lation of physical quantities like the in-plane and out-o
plane resistivities, spin-lattice relaxation rate, etc., within
spin-charge gauge field approach, and compared the the
ical results with experimental data in the pseudogap ph
with very good agreement. In particular, we have elucida
the origin of the MIC in the nonsuperconducting cuprates
well as the MIC in superconducting samples when a stro
magnetic field suppresses the superconductivity. In our vi
this striking phenomenon is an intrinsic property of t
pseudogap phase which can shed light on other puzzle
this regime. We are still in the process of studying the div
sified properties using our approach in this interesting pha

There is some skeptism with respect to the gauge fi
approach in general, mainly because of the strong inte
tions among the constituent particles. Our attempt in t
direction, at least, gives some encouraging signals: if
underlying physics is grasped by the treatment and appro
ate nonperturbative tools are employed, there is a fair cha
7-17
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to correctly describe the puzzling phenomena in the stron
correlated systems. The treatment is not ‘‘rigorous’’ in t
mathematical-physics sense, but still acceptable by
‘‘theoretical-physics’’ standard. Needless to say, the fi
word belongs to experiments, verifying all consequences
the theoretical interpretation.

The gauge field approach provides us with a nontriv
picture in strongly correlated two-dimensional systems. U
like the one-dimensional systems where the spin and ch
are fully separated and three-dimensional systems where
spin and charge are confined, the spin and charge in t
dimensional systems appear ‘‘separated’’ in their scatte
against gauge fluctuations, while being bound into ‘‘ele
tron’’ resonance at a low-energy—momentum scale. In p
ticular, in the ‘‘pseudogap phase’’ the presence ofp flux and
AF Néel background makes the system ‘‘relativistic’’ wit
.

ol

-

u
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linear dispersion for the holons and spinons ‘‘massive’’ d
to interaction with vortices attached to slowly moving reno
malized holons. If the system were truly ‘‘relativistic,’’ w
would have spinon-holon confinement. However, in the
tual system the presence of a finite Fermi surface breaks
‘‘bootstrap’’ symmetry and gives rise to the very peculi
Reizer singularity, producing the spinon-antispinon a
spinon-holon binding force. The physical consequences
this nontrivial picture have to be further explored.
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