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Supercurrent in long SFFS junctions with antiparallel domain configuration
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We calculate the current-phase relation of a long Josephson junction consisting of two ferromagnetic do-
mains with an equal but opposite magnetizationh, sandwiched between two superconductors. In the clean
limit, the current-phase relation is obtained with the help of the Eilenberger equation. In general, the super-
current oscillations are nonsinusoidal and their amplitude decays algebraically when the exchange field is
increased. If the two domains have the same size, the amplitude is independent ofh, due to an exact cancel-
lation of the phases acquired in each ferromagnetic domain. These results change drastically in the presence of
disorder. We explicitly study two cases: fluctuations of the domain size~in the framework of the Eilenberger
equation! and impurity scattering~using the Usadel equation!. In both cases, the current-phase relation be-
comes sinusoidal and the amplitude of the supercurrent oscillations is exponentially suppressed withh, even if
the domains are identical on average.

DOI: 10.1103/PhysRevB.69.024525 PACS number~s!: 74.45.1c, 74.50.1r
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I. INTRODUCTION

Hybrid systems containing superconducting and fer
magnetic elements recently gained a lot of attention due
experimental progress as well as possible applications
magnetoelectronics and quantum information. Theoret
studies are revealing a variety of interesting features, mak
these system generators of theoretical concepts.

It is a common knowledge that current in hybrid norm
metal–superconductor~NS! systems flows by means of An
dreev reflections: an electron in N is reflected from the
interface as a hole with the opposite charge and veloc
Imagine first that the piece of a normal metal is ballistic. A
electron at the Fermi surface is reflected as a hole at
Fermi surface, and they propagate in the normal metal w
the same phase. If the electron is taken at a finite energE
~counted from the Fermi surface!, a momentum mismatch
dp52E/vF between this electron and the reflected hole
pears,vF being the Fermi velocity.

Now consider an interface between an (s-wave! supercon-
ductor and a ferromagnet. The electron and hole have op
site spin directions, and the exchange fieldh in the ferromag-
net leads to a Zeeman splitting of energies of the t
different spin projections. Thus, even an electron and a h
at the Fermi surface acquire the momentum misma
2h/vF ; hence their relative phase grows asdw
52hx/(\vF), where x is the distance from the interface
This affects phase-sensitive physical quantities like the
percurrent in superconductor-ferromagnet-supercondu
~SFS! junctions: It becomes an oscillating function of th
thicknessd of the ferromagnetic layer, with a period\vF/2h.
If, furthermore, the ferromagnet is diffusive, the oscillatin
behavior is accompanied by an exponential de
}exp@2(h/\D)1/2d#, where D is the diffusion coefficient.
Typically, h is much larger than the superconducting gapD,
and thus the length scales related to the magnetic field
much shorter than the superconducting coherence lengtj,
\vF /D and (\D/D)1/2 in the clean and diffusive cases, r
0163-1829/2004/69~2!/024525~7!/$22.50 69 0245
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spectively. In other words, the proximity effect is suppress
in the ferromagnet.

This qualitative discussion suggests that the main ef
observed in SFS contacts is oscillations of the supercur
with the thickness of the ferromagnetic layer—the transit
from a so-called 0 state~energy of the contact is minimum
for zero phase difference between the superconductors! to a
p state~energy is minimum for a phase differencep). This
topic was at the focus of attention since early explorations
the field.1 Theoretically, thep state was predicted in a var
ety of SFS junctions: Ballistic,2–5 short diffusive,6,7 long
diffusive,5,6,8 ferromagnetic insulating barrier,1,9,10

ballistic,11–13 and diffusive5,14–18 junctions with a barrier
separating two ferromagnetic layers, and ballistic19 and
diffusive18 with two tunnel barriers. The transition to th
p-state was recently observed experimentally in S
junctions.20–23 All these observations are limited to a sma
thickness of the ferromagnetic layer~s!, d&(\D/h)1/2. For
thicker layers, supercurrent does not exist.

In this situation, it is useful to understand how one c
enhance the proximity effect. Several options have rece
been discussed in the literature. First, the above qualita
argument assumes that the pairing between an electron a
hole participating in the Andreev reflection issinglet—they
have opposite spin projections. Obviously, if the superc
ductor allows for a nontrivial symmetry of the order param
eter, this need not be the case, andtriplet pairing between an
electron and a hole with the same spin projection can ar
Since a triplet-paired electron and hole at the Fermi surf
have no momentum difference, they can propagate with
same phase and enhance the proximity effect. The coup
of two d-wave superconductors via a ferromagnetic lay
was considered in Ref. 24. Moreover, triplet pairing can ev
appear in a contact of ans-wave superconductor and a fe
romagnet, provided the magnetization in the latter
nonuniform.25–27In this case, the proximity effect survives a
the same distancej from the interface as in nonmagnet
metals. Indeed, the supercurrent in SFS junctions with n
©2004 The American Physical Society25-1
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uniform magnetization is considerably enhanced.5 We also
mention that the supercurrent in a long diffusive SFS ju
tion is exponentially suppressed onlyon average; phenom-
ena related to the proximity effect still occur in such a jun
tion as a result ofmesoscopic fluctuationsaround average
quantities.28 Finally, if the ferromagnetic layer is split into
domains, the coherence can be preserved if an electron a
hole propagate between the superconducting electro
along the two sides of a domain wall.29

In this paper, we explore a different way to enhance
supercurrent in SFS junctions. Imagine first that the junct
is ballistic and the ferromagnetic layer consists of two d
mains with opposite directions of the magnetization,
shown in Fig. 1. Triplet pairing is not generated in this g
ometry. Consider an electron and an Andreev-reflected h
propagating from left to right between the superconduct
electrodes. They first acquire the relative phasedw1
52hx1 /(\vF), x1 being the distance traversed in the fir
ferromagnetic layer. However, in the second layer the
change field has the opposite sign, and the phase gaindw2
522hx2 /(\vF) partially compensates fordw1. For x1
5x2 we have full compensation: The ferromagnetic bilay
behaves as a piece of normal~not ferromagnetic! metal, and
the proximity effect is fully restored. Indeed, previous stu
ies of SFS contacts, where two ferromagnetic domains w
separated by a barrier, found that the supercurrent in
antiparallel domain configuration is enhanced with respec
the parallel one.11,13,15,18If the domains are identical, there
no transition to thep state in the antiparallel configuration

Below, we consider such a situation quantitatively. S
tion II treats a ballistic SFFS junction with two ferroma
netic domains parallel to the superconducting interfaces.
show that this system behaves as a ballistic SFS junc
with an effectiveexchange field. If the widths of the tw
domains are the same, this effective field vanishes. In
next two sections, we study the effect of disorder in the sa
system and show that supercurrent in diffusive SFFS ju
tions decays exponentially with their width, similarly to SF
contacts without domains. We consider long junctionsd
@j, and assume that the superconducting electrodes do
influence the magnetic structure of the contact.

II. CLEAN SFFS CONTACT

We consider first a system of two clean ferromagne
strips30 with the thicknessesd1 and d2 and antiparallel ori-

FIG. 1. Setup with two ferromagnetic domains with antipara
configurations.
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entations located between two superconductors~Fig. 1!. The
dynamics of quasiparticles in this system are described
the Eilenberger equation31

2 ivFn“ğs~r,n!5@~ ivn7hs!t̆31D̆,ğs~r,n!#2 , ~1!

which is applicable in situations where the Fermi wavelen
is the shortest length scale of the problem. Here the se
classical Green’s functionğs is a matrix in Nambu space,

ğs5S gs f s

f s
1 2gs

D ,

which describes the singlet pairing~the triplet component is
not generated in our geometry!, and the spin indexs
561. The exchange fieldh is zero in the superconductin
banks, and has antiparallel orientations in the ferromagn
The upper/lower signs in Eq.~1! corresponds to the left/righ
ferromagnet (h.0). To stay in the framework of the sem
classical consideration, we have assumed that the Zee
splitting h is much weaker than the Fermi energy, but can
arbitrary in comparison with the superconducting gapD. The
variablesr andn describe the coordinate and the direction
momentum of the quasiparticles;vn5(2n11)pT are Mat-
subara frequencies~the indexn50,61,62, . . . is dropped
for brevity in the rest of the paper!. We put the constants\
5kB51; they will be restored in the final results.

In this paper, we consider the case of along contact: The
thicknesses of both ferromagnetic layers are much lar
than the superconducting coherence length,d1,2@\vF /D.
Then the matrixD̆ can be taken in a piecewise approxim
tion: It is zero in both ferromagnets, and

D̆5S 0 Deix

2De2 ix 0 D
in the superconductors. Herex52w/2 and x5w/2 in the
left and right superconducting banks, respectively. We dis
gard the corrections of ordervF /Dd1,2, which could origi-
nate from the smooth profile of the order parameter.

In the bulk superconductor far from the contacts t
Green’s function is isotropic and equals, foruvu,D,

ğs
bulk5

1

AD21v2 S v 2 iDeix

iDe2 ix 2v
D . ~2!

In addition, the Green’s function and its derivative must
continuous at each interface.

We introduce the coordinatex parallel ton and directed
from left to right. Let us choosex50 at the boundary of the
left superconductor; thenx5d1 /cosu at the interface of the
two ferromagnets, andx5(d11d2)/cosu at the boundary of
the right superconductor. The quasiparticles in the clean
tem move along a straight line~Fig. 1!. It follows from Eq.
~1! that the normal componentgs(r,n) is constant along the
trajectory inside the ferromagnets. The calculation gives

gs~n!5
AD21v2 sina1 iv~11cosa!

v sina1 iAD21v2~11cosa!
, ~3!

l
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where the phasea accumulated along the trajectory is

a5
2iv

vF

d11d2

cosu
1

2hs

vF

d12d2

cosu
2nxw, nx561. ~4!

The supercurrent density is expressed as follows:

j 52 ipevFn(
s

T(
v

E dngnn, ~5!

wheren is the density of states. Forh50 Eq. ~5! gives the
supercurrent of a long clean SNS~nonferromagnetic! junc-
tion, as considered in Ref. 32, which we follow in the ge
eral case. The expression is even inv; for zero temperature
~the case of interest here! the summation can be replaced b
an integration over frequencies. We subsequently introdu
new integration variablev5D sinhu and arrive at the inter-
mediate expression

j 52evFnD(
s

E
0

`

du coshuE
0

p/2

du

3cosu Im tanhFu1D sinhu
d11d2

vFcosu

1 ihs
d12d2

vFcosu
1 i

w

2G . ~6!

For long contacts,Dd1,2@\vF , the first term~u! in the ar-
gument of the hyperbolic tangent can be disregarded. U
the identity

Im tanhy52(
k51

`

~21!kIm e22ky,

we obtain the final expression for the supercurrent:

j 5
4evF

2n\

d11d2
(
k51

`
~21!k11

k
sinkw

3E
1

` dx

x3Ax221
cos

2kh~d12d2!x

vF\
. ~7!

For h50, we return to the clean long SNS contact,

j 5 j 0(
k51

`
~21!k11

k
sinkw, ~8!

where j 05pevF
2n\/(d11d2). This describes the well

known sawtooth current-phase relation found earlier in R
33.

For strong magnetic fields,h@\vF /ud12d2u, the integral
over dx in Eq. ~7!, which corresponds to summing over a
possible trajectories in the ferromagnets, contains a rap
oscillating function. Therefore, the integral can be calcula
in the stationary phase approximation and as a result we
the current-phase relation
02452
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j '2 j 0A vF\

phud12d2u(k51

`
~21!k11

k3/2

3cosS 2khud12d2u
vF\

1
p

4 D sinkw. ~9!

We note, first of all, that theamplitudeof the supercurrent
oscillations as a function ofw decreases algebraically wit
the exchange field, as

A\vF /hud12d2u. ~10!

This is a direct consequence of the fact that we summed o
all possible trajectories, and hence averaged over the di
ent phases acquired during propagation in the ferromagn
domains along these trajectories. Second, as far as thephase
dependenceof the supercurrent is concerned, it is in gene
neither sinusoidal, nor sawtoothlike. In Fig. 2, we plotj (w)
for various values ofhud12d2u/\vF;10, such that the sta
tionary phase approximation is reasonable. We see that,
function of the exchange field, the supercurrent changes
at a given phase difference. In particular for 0,w,p, de-
pending on the parameterhud12d2u/\vF , the junction either
favors a 0 state (j .0) or ap state (j ,0). We finally note
that for d250, Eqs.~7! and ~9! give the supercurrent for a
~single-domain! clean long SFS junction. This is, to ou
knowledge, a new result as well. It implies in particular th
a clean SFS junction can also be ap junction, in accordance
with previous results for different types of SFS hybrid stru
tures.

The important conclusion for the general case is that fo
two-domain contact the result is exactly the same as fo
SFS junction with the thicknessd11d2 and theeffectiveex-
change fieldhe f5hud12d2u/(d11d2). In particular, if the
thicknesses are the same,d15d2, the magnetic field drops
out—we obtain the sawtooth current-phase relation~8!, as
for a SNS contact. In the language of Eilenberger equatio
this statement is obvious: Indeed, the only quantity sensi
to the magnetic field is the phasea accumulated along the
trajectory. Since each trajectory is a straight line, each la
contributes with a weight proportional to its thickness a
with the sign depending on the direction of the exchan
field. This result is readily generalized to the case of ma
ferromagnetic layers in the antiparallel configuration.34

FIG. 2. Supercurrentj in units of j 0 as a function ofw for
various values ofh: hud12d2u/\vF510.0~solid line!, 12.0~dashed
line!, and 14.0~dashed-dotted line!.
5-3
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III. DISORDER AVERAGING

Now we discuss how our two main observations for t
supercurrent—power-law decay with magnetic field and
independence on the magnetic field in the symmetric c
d15d2—react to the presence of disorder. Before perform
this difficult task in Sec. IV by solving the Usadel equation
we try to use an easy way to understand the effect of im
rities in this section. We introduce randomness in the thi
nesses of the layers~surface randomness!. This simple and
transparent calculation provides us with results which
clear qualitative predictions to be compared with the conc
sions extracted from a more complicated analysis of the
adel equations.

We start from Eq.~7!, and imagine that the interfaces a
presented in Fig. 1 are not straight, but exhibit small fluct
tions in position. Since there is no scattering at the interfa
~see the discussion below!, the only effect of such fluctua
tions is that the thicknesses of the layers become ran
variables, and the supercurrent~7! must be averaged with
respect to this randomness. Let us take a Gaussian dist
tion for the differenced12d2,

P~d12d2!5
1

Apa
expS 2

~d12d22d̄11d̄2!2

a2 D , ~11!

where a!d̄1 ,d̄2 has the meaning of a typical scale of th
interface fluctuations, andd̄i are the averaged values of bo
thicknesses. Averaging Eq.~7!, we obtain

j̄ 5
4 j̄ 0

p (
k51

`
~21!k11

k
sinkwE

1

` dx

x3Ax221

3expS 2
k2h2a2x2

vF
2\2 D cos

2kh~ d̄12d̄2!x

vF\
, ~12!

where j̄ 05pevF
2n\/(d̄11d̄2).

In strong fields,h@\vF /a@\vF /(d̄12d̄2), the behavior
of the integral is determined by the rapidly decaying exp
nential function. Employing the saddle-point approximatio
we find that only the term withk51 survives:

j '̄22 j̄ 0A vF\

phud̄12d̄2u
expS 2

h2a2

vF
2\2D

3cosS 2h~ d̄12d̄2!

vF\
1

p

4
D sinw. ~13!

Thus, the averaging procedure brings out two, qualitativ
new features:~i! at high fields, the current-phase relatio
becomes sinusoidal; and~ii ! the amplitude of the supercur
rent oscillations decays exponentially, rather than algeb
ically with h. In addition, the exchange field still modulate
the phase of the oscillations, and can drive the contact top
state. The property~i! stems from phase-averaging over d
fusive trajectories and is a common feature of all long dis
dered SNS junctions~cf. Ref. 35!.
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Equation~13! does not apply to the symmetric cased̄1

5d̄2. In this situation, forh@vF /a, we have

j '̄2
2 j̄ 0

Ap

vF\

ha
expS 2

h2a2

vF
2\2D sinw. ~14!

We see that even for the symmetric case the expone
dependence on magnetic field persists. This reflects the
that a quasiparticle moving along a single trajectory spen
in general, unequal times in both layers, and thus the con
bution of each trajectory is magnetic field dependent. Ho
ever, there is no additional oscillating factor due to the m
netic field: a symmetric junction is never in thep state.
These features are confirmed qualitatively in the next S
tion, where we analyze the behavior of a symmetric diffus
SFFS junction, using the Usadel equations.

The results obtained in this section are illustrated in F
3, where the maximum supercurrent according to Eq.~12! is
plotted as a function of the differenced̄12d̄2 and the fluc-
tuation scalea. The junction periodically changes from a
state to ap state as a function ofd̄12d̄2, whereas increasing
a leads to an overall suppression of the supercurrent.

IV. DISORDERED SFFS CONTACT FROM USADEL
EQUATIONS

We now consider a diffusive SFFS junction in the sym
metric cased15d25d/2. The junction is again assumed
be long,d@(\D/D)1/2, with D being the diffusion coeffi-
cient.

If the exchange magnetic energy does not exceed the
verse elastic scattering time,h!\/t, the Green’s function is
almost isotropic, and the system can be described by Us
equations,36

D]z@Fs]zFs
12Fs

1]zFs#52~D̃Fs
12D̃* Fs!,

D]z@Gs]zFs2Fs]zGs#52~v6 ihs!Fs22D̃Gs ,
~15!

with the constraintGs
21FsFs

151. Here, as usual,35

FIG. 3. Absolute value of the maximum supercurrentj̄ in units

of 4 j̄ 0 /p as a function ofhud̄12d̄2u/\vF and ha/\vF . Regions
where the 0-state orp-state occur are indicated.
5-4
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Ğs~r!5E dnğs~r,n!,

and it actually only depends on the distancez from the
ferromagnet-ferromagnet interface~Fig. 1!. The upper/lower
signs describe the regions2d/2,z,0 and 0,z,d/2, re-
spectively, andD̃5 iD exp(ix) in the superconductors. In th
following, we suppress the spin indexs where it does not
lead to ambiguities.

Following Ref. 32, we solve the constraint by introduci
two complex-valued fieldsu andh:

G5cosu, F5sinueih, F15sinue2 ih. ~16!

The equation forh in the ferromagnets becomes

]z~h8sin2u!50, ~17!

with the boundary conditionsh(6d/2)57w/2. The first in-
tegral yields

h85
I

sin2u
, ~18!

whereI is an unknown constant. The current is expressed
this constant,

j 5
ipeDn

2 (
s

T(
v

@Fs]zFs
12Fs

1]zFs#

5peDn(
s

T(
v

I s . ~19!

To ensure the current conservation,I must be the same in
both ferromagnetic layers. It is important, however, that
do not assume that the current is conserving – it follo
naturally from the consistency of our solution.

Using Eq.~17!, we also write the equation foru in ferro-
magnets,

Du95DI 2
cosu

sin3u
12~v6 ihs!sinu, ~20!

with the first integral

Du8252
DI 2

sin2u
24~v6 ihs!sinu1const. ~21!

Now, for the long junctions, the boundary conditions foru at
z56d/2 are essentially the same as they would be at
interface between a semi-infinite superconductor and a s
infinite ferromagnet. To find these boundary conditions,
write the corresponding equation for the superconductor

Du82524v sinu24D cosu1const.

Taking into account that in the bulk superconductoru
5p/2, in the bulk ferromagnetu50, and requiring the con
tinuity of u andu8 at the interface, we obtain the bounda
conditions
02452
ia

e
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v6 ihs~12cosu!1D~12sinu!1
I 2

sin2u
50,

at z57d/2. Our equations describe the behavior of a SF
junction for an arbitrary relation betweenh andD. However,
they must be analyzed differently for different limiting case
We only aim at illustrating the general features of the beh
ior of the supercurrent, and restrict ourselves to the simp
situationT,h!D. As we show below, in this case the curre
I is exponentially small, and the boundary condition foru
reduce tou(z56d/2)5p/2. Since the Usadel equation
possess obvious symmetriesus(v)5u2s(v)1p, hs(v)
5h2s(v)1p, in the sequel we only considerv.0.

The fieldu must rapidly decay away from superconduc
ors and stay exponentially small within the ferromagnets.
start first solving Eq.~21! at z!d, where u!1, and the
trigonometric functions can be expanded. Then Eq.~21! can
be integrated. The solution is too cumbersome to be writ
down here, its asymptotics foruzu@@D/max(v,h)#1/2 are

u'
1

2AFu01A Dg2

2~v6 ihs!
G2

1
DI 2

2u0
2~v6 ihs!

3expSA2

D
~a1 ibs!uzu D , ~22!

with the notationsu05u(z50), g5u8(z50), and

a5
1

A2
AAv21h21v; b56

1

A2
AAv21h22v.

Next, we solve Eq.~21! close to the interfaces,uz2d/2u
!d. We assume thatI /u0 , g are both exponentially small~to
be checked later! and obtain

tan
u

4
5tan

p

8
expFA2

D
~a1 ibs!S uzu2

d

2D G . ~23!

Far from the interface,u!1, the solution has the same e
ponential asymptotic behavior as Eq.~22!. Matching the two
asymptotic expressions, we obtain the condition

Fu0
27A Dg2

2~v6 ihs!
G2

1
DI 2

2u0
2~v6 ihs!

564 tan2
p

8
expS 2A2

D
~a1 ibs!dD . ~24!

We now integrate Eq.~18!. Sinceu(x) grows exponen-
tially away from x50, the sine in the denominator can b
replaced by its argument. We then find

A DI 2

2~v6 ihs!
5u0S u07A Dg2

2~v1 ihs!
D tanS w

2
6h0D ,

~25!

with h05h(0). Of thefour quantitiesI, u0 , h0, andg, we
only needI to calculate the supercurrent. The result is
5-5
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I 5
64~A221!2

AD
A v21h2

Av21h21v
expS 2A2

D
adD sinw.

~26!

Note thatI does not depend ons. It can be easily checked
that I /u0 and g are exponentially small, which justifies th
approximations we have made to arrive at Eq.~26!.

Now we calculate the supercurrent according to Eq.~19!.
In order to get the complete dependence of the supercu
as a function of temperature and exchange field, a di
calculation of the sum over Matsubara frequencies in
~19! is needed. This can only be done numerically; in Fig
we plot the results for the amplitude of the supercurrent a
function of the dimensionless quantitiespkBTd2/\D and
hd2/\D.

For high temperaturesT@\D/d2,h only the term with
the first Matsubara frequency,v5pT, is important, and we
obtain

j 'A2 j 0,diffS pkBTd2

\D
D 3/2

expS 2
d

A\D

3ApkBT1Ah21p2kB
2T2D sinw, ~27!

where we introducedj 0,diff5128(A221)2en\D2/d3. In
high magnetic fieldsh@T,\D/d2 the terms withv,h con-
tribute:

j ' j 0,diffS hd2

\D D 3/2

expS 2A h

\D
dD sinw. ~28!

We note the two main features of the solution in the diffus
case. First, the current-phase relation is sinusoidal. This
responds to the result for the long diffusive SNS contac35

Then, the supercurrent decays exponentially with magn
field, in contrast to the power-law decay in the clean cas

Similarly, we can treat a single-layer SFS junction of
thicknessd. The result forh@\D/d2,T reads

j 5 j 0,diffS hd2

\D D 3/2

expS 2A h

\D
dD sinSA h

\D
dD sinw.

~29!

FIG. 4. Amplitude of the supercurrentj in units of j 0,diff as a
function of pkBTd2/\D andhd2/\D.
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Thus, comparing Eq.~29! with Eq. ~28! we see that a long
diffusive SFS contact can be ap-junction, depending on the
thickness of the ferromagnet, whereas a similar symme
SFFS contact with anti-parallel configuration of the doma
is not ap junction.

V. DISCUSSION

We considered the behavior of the supercurrent in lo
SFS junctions. We obtained expressions for single-dom
ballistic and diffusive contacts and confirmed that the 0 top
transition can be induced in these systems. However,
main focus is on the situation when the ferromagnetic reg
is split into two ferromagnetic domains with equal but opp
site magnetization. In the ballistic case, this system beha
as a single-domain SFS junction, with the effective excha
field he f5hud12d2u/(d11d2). Such a system exhibits
non-sinusoidal current-phase relation, and a power-law
cay of the supercurrent with thickness and exchange field
the thicknesses of the both domains are the same, the e
tive field vanishes. Disorder, considered both as geometr
fluctuations of the thickness, or randomly positioned impu
ties, restores exponential decay and sinusoidal phase de
dence of the supercurrent. A system with two domains of
same width is never in thep state.

To obtain these results, we made a number of simplify
assumptions. The superconductor-ferromagnet interface37

as well as the boundary between the two ferromagnetic
mains, are assumed to be ideal~no scattering! and sharp.
This can be realized in multilayered structures, where
ferromagnetic layers can be artificially constructed and k
very clean. Another, more attractive option, is real ferroma
netic domains. A domain wall has a finite width, typically
the order of the mean free path, or wider. This induces
flection of electrons from the domain wall, and additiona
generates the triplet pairing between electrons and ho
These factors need to be taken into account for a quantita
comparison between theory and experiment. However, we
not expect them to add qualitatively new features into
picture we presented.

Note added in proof.Recently, an idea of compensatin
the phase in two ferromagnetic layers with opposite mag
tizations was discussed in Ref. 38 for the case of norm
metal–ferromagnetic devices.
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19Z. Radović, N. Lazarides, and N. Flytzanis, Phys. Rev. B68,
014501~2003!.

20V.V. Ryazanov, V.A. Oboznov, A.Yu. Rusanov, A.V. Veretenniko
A.A. Golubov, and J. Aarts, Phys. Rev. Lett.86, 2427~2001!.
02452
,

21T. Kontos, M. Aprili, J. Lesueur, F. Geneˆt, B. Stephanidis, and R
Boursier, Phys. Rev. Lett.89, 137007~2002!.

22W. Guichard, M. Aprili, O. Bourgeois, T. Kontos, J. Lesueur, a
P. Gandit, Phys. Rev. Lett.90, 167001~2003!.

23Y. Blum, A. Tsukernik, M. Karpovski, and A. Palevski, Phys. Re
Lett. 89, 187004~2002!.
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