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Bernoulli potential in type-l and weak type-Il superconductors: 1. Surface charge

P. Lipavsky? K. Morawetz>* J. Kolatek! J. J. Marég E. H. Brandt and M. Schreibéer
Ynstitute of Physics, Academy of Sciences, Cukrovarnltkal6253 Prague 6, Czech Republic
2Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
3Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
“Max-Planck-Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden, Germany
SMax-Planck-Institute for Metal Research, D-70506 Stuttgart, Germany
(Received 29 July 2003; published 30 January 2004

The electrostatic potential close to the surface of superconductors in the Meissner state is discussed. We
show that beside the Bernoulli potential, the quasiparticle screening, and the thermodynamic contribution due
to Rickayzen, there is a non-local contribution which is large for both type-l and weak type-Il superconductors.
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I. HISTORICAL REVIEW studies, their approach includes the real screening due to
spatial distribution of the charge, therefore it describes the
The electrostatic potential in superconductors has beesurface charge as a space charge localized on the scale of the
known already for seven decades. Within the pre-LondonThomas-Fermi screening length. This picture of the surface
approaches based on the ideal charged liquid, the electreharge was accepted for a long time as it looks natural and
static potential was assumed to balance the Lorentz and trseems to be justified from the semi-microscopic theory.
inertial forces acting on diamagnetic currehfShe current Later studies of the electrostatic potential did not re-
j=env flows along the surface and its amplitude falls off address the question of the surface charge but attempted to
exponentially from the surface into the bulk. Similarly the overcome the hydrodynamic picture common to all the
screened magnetic field decays. The balancing electrostatabove mentioned studies. Naturally, they focused on a de-

potential was found to be of the Bernoulli typep= tailed description of the Bernoulli potential on the scale of
—3mo,? therefore it falls off on the scale of half the London the London penetration depth.
penetration depth. From the Poisson equation, Adkins and Waldram recovered the Bernoulli potential
from the BCS theory for the system at zero temperature.
—eV2e=p, (1) They also indicated that at finite temperatures one should

expect a contribution which depends on the band structure.
one finds that this corresponds to a charge accumulated in the The predicted contribution has been evaluated by
layer penetrated by the magnetic field. To maintain theRickayzer’ He used a thermodynamic approach which
charge neutrality, the accumulated bulk charge has to be agields
companied by the opposite surface charge. This picture has

: ong 1
been confirmed by the London thedry. ep=— — —mp2. )
on 2
A. Advanced London-type approaches The density dependence of the condensate density can be

The electrostatic potential equals the Bernoulli potentialvaluated either from the BCS theory leading to the result of
only at zero temperature when all electrons are in the supeAdkins and Waldram or from the two-fluid relations

. .. ~ 4114 H H
conducting condensate. At finite temperatures, a parof ~ ~N[1—(T"/T)]. The latter gives a simple formula
electrons remains in the normal state, while the restn n 1 N anT. 1
—n, contributes to the supercurrent-eny. The electric =— " mv2-4-2" 2 3
. i s ep mou mo“. 3
force acting on normal electrons is transferred to the conden- n2 n dinn 2

sate via a mechanism which reminds one of the fountaiRrhe first term balances the Lorentz and inertial forces, while
effect in superfluid helium. As a consequence, the electroge second reflects the pairing. We will call terms propor-
static potential reduces ®@p=—(ns/n)3mv?. This reduc- tional to 3 In T/dIn n the thermodynamic correction.
tion of the potential derived by van Vijfeijken and Sthass In the next decade, the interest in the electrostatic poten-
a somehow confusing name: quasiparticle screening. Hial in superconductors shifted towards nonequilibrium situ-
should be noted that the electrostatic potential caused bagtions; see, e.g., Ref. 7. It should be noted that the Bernoulli
currents in superconductors is traditionally called the Berjpotential introduced within the theory of nonequilibrium sys-
noulli potential in spite of the quasiparticle screening andtems is not the same as the one we discuss. Within the non-
other non-Bernoulli contributions found later. equilibrium theory the term “Bernoulli potential” is used for
Jakeman and Pike recovered the result of van Vijfeijkerthe velocity-dependent part of the energy of Cooper pairs.
and Staas from the static and classical limits of the timeOnly in equilibrium, the velocity-dependent energy agrees
dependent Ginzburg-LanddGL) theory? Unlike previous  with the electrostatic potential we discuss here.
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B. GL approaches—Iocal

New studies of the Bernoulli potential in equilibrium have aen
been stimulated by the question of the vortex charge. Khom- o/
skii and co-workerd® have used the idea of van der Mdfel
to derive a simple estimate of the electrostatic potential in
terms of the superconducting gap. The obtained formula cor-
responds to the thermodynamic correction of Rickayzen with
the original balance term being omitted. While the validity of
the approach is restricted to temperatures closE.toit has
the advantage, however, that it can be applied within the GL
theory. Blatteret al!! have employed this estimate to predict - ‘ ,
a possible electrostatic field above the surface of the super- 0 2 4 6 8 10
conductor with the vortex lattice perpendicular to it. X/hy

An opposite limit represents the treatment of the vortex
charge by LeBlané? He considers only the balance term
omitting the thgrmodyn?mlc Correctlpn Comp!etely. A.S qneproportional to the magnetic flux quantaBy=®,/(27\2)
can see from Rlckayzens formula, this approximation is “m':e,uonhIZm. The coordinates is measured in units of the London
ited to the region of low temperatures. penetration depth at zero temperature. The assumed temperature
t=T/T.=0.9 yields the penetration depih=1.7\,. The charge is
scaled withB? so that the two lowest magnetic fieldls=0.01B,

All the above mentioned theories have in common thatind B=0.1B, give nearly identical curves. The magnetic fi&d
the electrostatic potential is a local function of the classical=0.34B, is close to the critical value. The GL parametes =1
kinetic energy or of the gap. In other words, they neglect thecorresponds to weak type-Il superconductors.
gradient of the condensate. The non-local corrections within
the GL theory have been proposed in Ref. 13. It turned ouglipole between the surface charge and the bulk charge was
that the non-local corrections are taken into account if thesupposed to balance the Lorentz force; therefore, one has to
classical kinetic energy in the balance equation is replacedsk how the balance of forces looks if the surface charge is
by its quantum-mechanical counterpart. absent.

For our next discussion it is important that the non-local The charge profile in the vicinity of the surface has been
contributions can be rearranged into a local fdﬁ'ﬂndeed7 numerically studied in Ref. 17. This study was limited to thin
within the GL theory the sum of the kinetic energy and theslabs and type-Il superconductors; its results indicate, how-
GL potential is zero which allows us to express the balanc&Vver, that the charge profile at the surface tends to organize
term via the local GL potential. Note that this rearrangemeninto two layers—a narrow surface charge and a thicker bulk
is possible only within the non-local theory, because gradicharge.

p/B [eg,/4m]

FIG. 1. The charge profile close to the surface for four different
magnetic fields. The magnetic field is given in dimensionless units

C. GL approaches—nonlocal

ents of the condensate density= 2| 4|2, wherey is the GL In this paper we discuss the charge and potential profile at
wave function, provide important contributions to the quan_the surface of a semi-infinite superconductor in the Meissner
tum kinetic energy, in particular close to the surface. state. In Sec. Il we shortly describe the surface charge within

In Ref. 13, the quasiparticle screening and the thermodythe GL theory. In Sec. Ill we discuss the limit of a weak
namic correction have been neglected, the complete theofjpagnetic field, where all results can be derived analytically.
has been presented in Ref. 14. The detailed derivation toMe will show that the Bernoulli potential at the surface dif-
gether with estimates of material parameters and the numeriers from the value predicted by Rickayzen. The correction
cal treatment of the Abrikosov vortex lattice in niobium at has the form of a multiplicative factor that approaches unity
various temperatures can be found in Ref. 15. Again, alfor the extreme type-Il superconductor. Numerical results on
contributions including the kinetic energy can be expressegtrong magnetic fields are presented in Sec. IV revealing a
in a local relationg[ | /2] nonlinear mechanism which, however, is found to be very

The nonlocal form of the Bernoulli potential requires that Small. The conclusions and outlook are presented in Sec. V.
one reconsider the picture of surface charges. It is paradoxi-
cal that the possibility to rearrange the non-local corrections 1. SURFACE CHARGE WITHIN THE GINZBURG-
into a local function plays the crucial role. As noticed already LANDAU TYPE THEORY
by Yampolskiiet al.,® if the electrostatic potential is of the
form ¢[|#|?], the GL boundary conditiony /=0 in the
direction normal to the surface, implies that no surfac
charge is needed. Indeed, at the surf&e=(de/dh)V ¢
=0. The electric field thus vanishes at the surface, which i
a sufficient condition for the charge neutrality.

A typical profile with the charge distribution close to the
eplanar surface and homogeneous external magnetic fields is
shown in Fig. 1. The profile has been obtained by a numeri-
gal solution of the GL equation

n2v2 s 2A2  yTe ) t? o
D. Plan of the paper 2m* v om* v 2n /l 2, ¥=0.
Apparently, there is no surface charge on the scale of the n v
Thomas-Fermi screening length. The electric field due to the (4)
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wheren is the density of pairable electrong,is the linear on the scale of the London penetration depth

coefficient of the specific heaty* =2m ande* =2e are the  =\q/\/1—t*, with \3=2m*/(uqe*?n). HereB is the value

mass and charge of the Cooper pair, &dl/ T, is the tem-  of the magnetic field at the surfaceat0.

perature on the scale of the critical temperature. In the as-

sumed geometry one can use the London gauge in which the A. GL wave function

GL wave function is real. . . )
Equation(4) has been proposed by Bardeen as an exten- 1he linear approximation of the GL equatioh) reads

sion to low temperature$. In fact, Bardeen arrived at this 5 2,2 L3 w22

equation independently by adding the quantum kinetic en- h°v -~ YTt /1_ E 2 2 5 _EA

ergy to the Gorter-Casimir two-fluid model. Close to the  2m* Uz " n v Ve 09= om*

critical temperature the GL function has a small magnitude )
24%<n which allows one to expand the square-rootWhich can be expressed in terms of the GL coherence length

2 E=2n%nt"[m* yT2(1-t%] as
1/+/1— - ?~1+(1/n)y?, and one finds the customary GL
* 2

equation with parametersa= yTﬁ(tZ— 1)/2n and pB V25— _22 Sy= e Y. \2B2e" 2N, 9)
= yT2t?/(2n?). 3 h?
The vector potentiah is given by the Maxwell equation

e, (8)

The solution of Eq.9) is composed from the particular

*2 integral with the decay on the scale of the London penetra-
VXVXA=po— i)?A. (5)  tion depth and the general integral decaying on the scale of
m* the GL coherence length,
Equationg4) and(5) are solved together witly and T kept Sip= e XN ¢ e V2x/E (10)
constant.
From the GL wave functiony we evaluate the Bernoulli The general integral of E¢9) can also include a growing
potential® term ccexp(y2x/£). This term is excluded, because the per-
turbation asymptotically vanishes in the bulk/—0 for x
T2 t2 2 5yT? .
eg— N2 V2ep=— y 5| 1-——— | ¥ vt From the GL boundary conditior¥ §i/=0 atx=0, we
2n 1— zwz 2n on find that the two amplitudes are linked by
n
V2
CTeay [1- 2, ©) Ve = an
2 dn n v

where k=\/&. We note that within Bardeen’s extension of

The density dependence pfandT. has been estimated from the GL theory, the ratio./¢ depends on the temperature,
the experimental specific heat, theoretical free-electron den= kg, /t2, wherexg, = (m* To/ne* %)yl uq is the ordinary
sity of states, and the McMillan formufy see the appendix GL parameter defined &, . The diverging effective GL pa-
in Ref. 15. The Thomas-Fermi screening length?-  rameter at low temperatures shows that within Bardeen'’s ap-
=wzk§eo/ ye?, is very small and its contribution can be proximation any system behaves as a type-Il superconductor
neglected, because the general integral which is proportionait sufficiently low temperatures. This feature contrasts with
to exp(—x/\rp) is zero since no surface charge forms on thisthe linearly decreasing effective GL parameter one finds
scale. In the final step the charge profile is evaluated from thelose to the upper critical magnetic fiefd. Of course, the
Poisson equatiofl). strong temperature dependencexofs rather an artifact of
the model. Sincex is the most important quantity of the GL
theory, one can simply take and « as input parameters.

The amplitude of the particular integral is obtained from

In weak magnetic fields the GL wave function is only the GL equation9) as
little perturbed from its bulk valuey= .+ 8y with Sy

Ill. LOW MAGNETIC FIELDS

<., . In this limit the charge profile can be solved analyti- ex? -
cally. e B2 1
In the Maxwell equatiori5) the vector potential is a small U= =i (12)
K . A * 4 2 el 2 2 2
quantity so that the perturbation of the wave does not con- a4 2h K
tribute in lowest order. The vector potential can thus be A2 &2

solved takingy~ i..= n(1—t%)/2. For both types of su-
perconductors, this results in a simple exponential decay

the vector potential,

O'Fhe GL wave function from Eq€10)—(12) results in

2y 4p2
&sz l’b“’ e*“\"B e*ZX/%_Ee*\QX/é:
2— K> 9p2 K '

A,~Bre M, 7) (13
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B. Bernoulli potential B2 4t* 9InT,
Finally, we take the linear approximation of the Bernoulli edp= Z#On( 1t Jinn )
potential(6) in 8. Since the asymptotic value of the poten-
tial ¢..= ¢[|..|?] is not essential, we focus on the perturba- 1 PN V2 e
tion caused by the magnetic field K| e : (22)
1-=
edp—\3V2esp=Céoy. (14) K

This linearized relation extends Rickayzen's formula to

In terms of\ and k the coefficientC reads
type-l and weak type-Il superconductors.

#1122 . 4am T, Let us first take a look at the extreme type-ll supercon-
C= 2m N2y 1=+ at’— ). (19  ductor, k>1, for which Rickayzen's formula is recovered.

For the assumed real GL wave function, the current is pro-
A general integral which decays into the bulk is of the formportional to the vector potentialj=(e*2/m*)y2A
=(e?’/m)nsA. With the velocity defined via the currerit,

— —X/\ —2x/\ —V2x/ ¢ ) )
edp=edpre TP Cyhe TN+ Cyfe - (16 e y2v=eny, one finds from Eq(7) the relation between

From Eq.(14) one finds the amplitudes the magnetic pressure and the kinetic energy
e 2N(B2/2uon) = (ng/n)2muv2. Equation(21) then yields
C = C)\2 , 17 the Bernoulli potential as
TF
1-4— 1 Ns Nn,adlnT,
2 =__ 2> -
A ede 2 Mo n * n dinn
C 1 1= wlV2)2N _ 1
Cemry (18 X 1+ . (22)
ATe 2 K
1-2— 1+— 1— —
3 K 2

The amplitude of the general integral is given by theWe have used=n(1-t%) andn,=nt*to express the tem-
charge neutrality, which require§ ¢=0 at x=0. From perature dependence in terms of the condensate fraction.
(16) follows One can see that Rickayzen’s formy@ holds for ex-

treme type-Il superconductorg;— . In this limit the gen-
RS NE eral integral has a vanishingly small amplitude and the factor
edpre=—27"Chih V2 ?Cfl/lf' 19 1)1+ \2/x) goes to unity. For finitec the general integral

) ) i deforms the profile of the potential and the particular integral
The relative amplitudes proportional kge/N and\re/é are pas a reduced amplitude.

not sufficiently small to b_e n'eglected. The charge'density_is Within Bardeen’s extension of the GL theory, Rickayzen's
given by the second derivatives so that one obtains relativg, muia is always recovered at low temperatureskadi-

amplitudes of the charge density at the surface proportionz\qer(‘:}es with 1t?. Since Rickayzen’s formula approaches the

to Mg Or to §/N . The surface charge is an integral, i.€., yi5in Bernoulli potential fort— 0, the presented derivation
the contribution in question is proportional to the amplitude, g, reproduces London's result.

at the surface multiplied with the Thomas-Fermi length. Ac-
cording to condition(19) all charges can have comparable
values.

To prove that the screening on the scale of the Thomas- As already shown, for the extreme type-Il superconductor,
Fermi lengthhr and the related surface charge can be nex— o, the general integral vanishes ag Hnd far from the
glected, one has to employ the GL boundary conditionsurface it decays faster than the particular integral. The Ber-

C. Behavior for finite x

Véy=0 atx=0. Using Eq.(11) one obtains noulli potential thus extends on the scalg.
For the finite GL parameter in the regian> /2 the over-
)\%F 4(2—k?) all picture is rather similar. The general integral is appre-
edprr=— F mcx% ’ (20 ciable only close to the surface so that the scale on which the

Bernoulli potential extends is stiN/2. In addition, the am-
so that the general integral is proportional to the cube of thelitude of the particular integral is enhanced by the factor
small ratiohte/\. Accordingly, the charge due to the general 1/(1— 2/x?).
integral is smaller by a factOr%F/)\Z than the charge created For the regionk< /2, the role of the general and particu-
by the particular integral. In the following we neglect this lar integrals are reversed. First of all, the amplitude of the
contribution for simplicity of notation. Within the same level general integral is larger than the amplitude of the particular

of accuracy we tak€,=C andC,=C. integral. Since the general integral also decays more slowly
Now we are ready to evaluate the electrostatic potentialin this case, the Bernoulli potential is dominated by the gen-
Using Eqgs.(11) and(12) we obtain from Eq(16): eral integral and extends on the scglg/2. The reversed
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Even for upper estimates of the magnetic field by the critical
value, B~B_, the factor(25) is extremely small. For nio-
bium B2/ uo=3yT2=3.2x 10" J/n?, while mc@=~10"J.
This suggests that the maximum charge density will be of the
order of 13 electrons per cubic meter. This is by ten orders
of magnitude smaller than the electron density of niobium
n=2.2x10?® m~3. This small value of the accumulated or
depleted charge justifies to ignore the charge profile in the
Maxwell equation(5) and the change of material parameters
like v, n, andT, in the GL equatior(4).
. . ‘ . Similarly to the potential, the charge profile reflects two
0 2 4 6 8 10 scales)\/2 and ¢/\/2. Before we analyze its properties for
x/h, various values of the GL parameter we want to discuss a
few general features. First, the surface value of the charge,
obtained forx=0 in Eqg. (24), is always negative, i.e., the
%harge carriers are depleted. We call the layer of the negative
charge the surface charge. Second, in the bulk sufficiently far

from the surface the charge is positive, i.e., the charge carri-

role is alsq supported by the fact that th\/e_sign_s Of_bOth Pa&rs are accumulated. We call the region of positive charge the
are opposite as compared to the casey2. This SI9N € bulk charge. Third, the widthv of the surface is given by
versal appears due to the enhancement factor12(&<). p(W)=0. From Eq.(24) it follows that

Apparently, both components afe diverge ask ap- ' '

proachesy2. Their sum remains regular, however. For this A
particular case the scale of both contributions is identical, W= -
namely, \/2. It is advantageous to use expressi@i) to 2
obtain the asymptotic form of the Bernoulli potential

FIG. 2. Bernoulli potential as a function of the distance from the
surface for four different magnetic fields. The parameters are th
same as in Fig. 1.

In
2_1.

Si=

(26)

S

In the extreme type-Il superconductat;— o0, the surface

charge is formed by the contribution on the scale of the GL

1+ %) . (23 coherence length. The width of the surface goes to a value
A w— (&/\2)In(x/\/2). The bulk charge extends on the scale

of the London penetration depth as it is known from the
The Bernoulli potentials for different values of the mag- classical picture.

netic field are shown in Fig. 2. The limit of low magnetic ~ For the limiting casex— /2 the width of the surface

fields agrees with the analytical formul22), of course. One charge is\/2. The charge density has the profile

can see that for the two lowest fieltls=0.01 andB=0.1, )

the potential keeps its profile while its magnitude scales with __eeB7fng  n,dln Tc) PN

B2. For magnetic fields close to the critical vallR, P T\ % ainn /€

~0.34, the linear theory does not apply.

m n n,dInT
lim e5<p=—zv2(f+4?n o nc)

k=2

2X

1- T) (27)

Note the different sign inside the last parentheses compared
to the Bernoulli potentia(23). Since\/2= &/+/2 one cannot

D. Charge profile associate the surface and the bulk charge to the GL coher-
The charge density results from the Bernoulli potentialence lengthé or to .
(21) and the Poisson equatigh) as For k<2, the surface charge is formed by the contribu-
tion on the scale of the London penetration depth. kor
2eeB2 (ng N, dlnT, o K e <2, the width of the surface charge isw
P="T o7 F+4F ainn ) - Ee X . —(M2)In(y2/x). The bulk charge extends on the scale of
m( 1— 7) the GL coherence length as one can see from E(R4).

(24) IV. STRONG MAGNETIC FIELD

Note that the relative amplitude of the two contributions is In strong magnetic fields the GL wave function is sup-
reciprocal to the relative amplitude of the potentials. '”te'pressed in the vicinity of the surface which has to be ac-
grating from zero to infinity one can check that the total .o nted for in the Maxwell equation. In this case one has to
charge is zero, as it is required by the charge neutrality.  ¢50e the fact that the system of equati¢dsand (5) is non-

The resulting charge density is small compared to the 0tgfe4r. wWe present only a few numerical solutions to point out
density of electronen. The ratio of the amplitude of EQ. gyme features typical for strong magnetic fields.

(24) to the total electron density can be written as The nonlinear effects in strong magnetic fields follow
5 5 from a deviation of the wave function from its bulk value. In
P eB” B° 1 (25 the dimensionless representation used in Fig. 3 the bulk

en mn _ﬁm_cz' value is ¢, =+n/2{y1—-1t"~0.6. For the lowest fieldB
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FIG. 3. The deviation of the wave function from its bulk value = FIG. 4. The charge density which is proportional to the density

.= n(1—t5/2~0.6 as a function of the distance from the sur- dependence of the linear coefficient of the specific heat versus dis-
face. The parameters are the same as in Fig. 1. tance from the surface. We use the value for niobiarm y/dlnn
=0.42, which is close to the parabolic band approximatigg,

—0.01, the deviation is nearly zero on the scale of the grapten™, i-e.,d1n ypa/dInn=1/3.

Also, for B=0.1 the approximationdy|< .. is justified. _
For higher fields the deviation becomes appreciable. For extreme type-Il superconductors we have confirmed

The suppression of the wave function at the surfacéhe picture known already from London with the thermody-
shown in Fig. 3 affects the Bernoulli potential by two differ- namic corrections by Rickayzen. The bulk charge extends on
ent mechanisms. First, the screening current is reduced at titee scale of the London penetration dept2. The surface
surface so that the magnetic field penetrates deeper into tiidarge is localized on the scale of the GL coherence length
superconductor. This feature can be seen in Fig. 2; howeveg/\2 which is negligible in this limit anyway. This is in
it is better visible in the profile of the charge density shownagreement with the classical treatment which neglects all
in Fig. 1, as a widening of the surface layer. gradient contributions.

Second, the thermodynamic contributions to the Bernoulli  In type-I or weak type-Il superconductors, i.e., for the GL
potential are nonlinear in the wave function; see ). In  paramete</2, one finds the opposite situation. The sur-
contrast, the linearized approximation of the Bernoulli potenface charge is localized on the scale of the London penetra-
tial (21) or (22) does not depend on the density derivative oftion depth\ while the bulk extends on the scale of the GL
the linear coefficient of the specific heaty/dn, included in  coherence length/+/2. In this case the gradient contribu-
the derivative of the condensation enefgyT2. Beyond the tions are dominant and local London-type theories naturally
linearized approximation, this derivative contributes as demfail.
onstrated in Fig. 4 for parameters of niobium. In strong magnetic fields the Bernoulli potential becomes

Comparing the contribution ofy/dn with the total a nonquadratic function of the magnetic field. This feature
charge density shown in Fig. 1, one can see that this particyparallels the nonlinear susceptibility as it is dominated by the
lar nonlinear mechanism is rather small, giving less than 3%nhanced penetration of strong magnetic fields into super-
of the total charge density. This small value justifies theconductors. There is an additional thermodynamic correction
approximation$®!! using only the term proportional to absent in low magnetic fields, however, for realistic material

aTlan. parametersglike for niobium) it accounts for less than 3% of
the charge density. Thus the approximations used in Refs.
V. CONCLUSIONS 8,9, and 11 are justified.
Finally we remind the reader that the potential dis-

In conclusion, we have shown that the Bernoulli potentialcussed here does not include the surface dipole which affects
in superconductors can be discussed by the charge build upe potential seen outside the sample. We will discuss this
in the region between the surface and fig&2,\/2]. The  contribution in a forthcoming paper.
thinner depleted charge region carries the surface charge. In
contrast to former theories which assumed that the surface ACKNOWLEDGMENTS

charge is localized on the scale of Thomas-Fermi screening 3
length A r¢, we find that the surface charge extends over a This work was supported by M&T program Kontakt

rangeL =min[ &/2,\/2]. In fact, there is a nonzero contri- ME601 and GA®R 202/03/0410, GAAV A1010312 grants.
bution on the scale af ¢, but of a negligibly small ampli- The EuropeanESH program VORTEX is also acknowl-

tude proportional toZ-/L 2. edged.

024524-6



BERNOULLI POTENTIAL IN TYPE-I AND WEAK . ..

1F. Bopp, Z. Phys107, 623(1937.

2F. London,SuperfluidsWiley, New York, 1950, Vol. I, Sec. 8.

3A.G. van Vijfeijken and F.A. Staas, Phys. Let2, 175(1964.

4E. Jakeman and E.R. Pike, Proc. Phys. Soc. Lon@ibn422
(1967.

5C.J. Adkins and J.R. Waldram, Phys. Rev. L&tt, 76 (1968.

6G. Rickayzen, J. Phys. €, 1334(1969.

"Nonequilibrium SuperconductivitPhononsand Kapitza Bound-
aries edited by K.E. GrayPlenum New York, 19811

8D.l. Khomskii and F.V. Kusmartsev, Phys. Rev. 45, 14245
(1992.

9D.1. Khomskii and A. Freimuth, Phys. Rev. Left5, 1384(1995.

10D, van der Marel, Physica @65, 35 (1990.

11G. Blatteret al, Phys. Rev. Lett77, 566 (1996.

PHYSICAL REVIEW B 69, 024524 (2004

2M.AR. LeBlanc, Supercond. Sci. Techndb, 929 (1997).

133, Kolatek, P. Lipavskyand E.H. Brandt, Phys. Rev. Le®6, 312
(2002).

143, Kolatek and P. LipavskyPhysica C364-365 138 (2001).

15p. Lipavsky J. Kolaek, K. Morawetz, and E.H. Brandt, Phys.
Rev. B65, 144511(2002.

1635.V. Yampolskii, B.J. Baelus, F.M. Peeters, and J."Keka Phys.
Rev. B64, 144511(2001).

173, Kolatek, P. Lipavsky and E.H. Brandt, Physica 369, 55
(2002.

183 BardeenTheory of Superconductivitin Handbuch der Physik,
Bd. XV, 274 (Springer, Berlin, 1956

19¢.C. Koch, J.0. Scarbrough, and D.M. Kroeger, Phys. Re9, B
888(1974.

024524-7



