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Bernoulli potential in type-I and weak type-II superconductors: I. Surface charge
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The electrostatic potential close to the surface of superconductors in the Meissner state is discussed. We
show that beside the Bernoulli potential, the quasiparticle screening, and the thermodynamic contribution due
to Rickayzen, there is a non-local contribution which is large for both type-I and weak type-II superconductors.
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I. HISTORICAL REVIEW

The electrostatic potential in superconductors has b
known already for seven decades. Within the pre-Lond
approaches based on the ideal charged liquid, the ele
static potential was assumed to balance the Lorentz and
inertial forces acting on diamagnetic currents.1 The current
j5env flows along the surface and its amplitude falls o
exponentially from the surface into the bulk. Similarly th
screened magnetic field decays. The balancing electros
potential was found to be of the Bernoulli type,ew5
2 1

2 mv,2 therefore it falls off on the scale of half the Londo
penetration depth. From the Poisson equation,

2e0¹2w5r, ~1!

one finds that this corresponds to a charge accumulated in
layer penetrated by the magnetic field. To maintain
charge neutrality, the accumulated bulk charge has to be
companied by the opposite surface charge. This picture
been confirmed by the London theory.2

A. Advanced London-type approaches

The electrostatic potential equals the Bernoulli poten
only at zero temperature when all electrons are in the su
conducting condensate. At finite temperatures, a partnn of
electrons remains in the normal state, while the restns5n
2nn contributes to the supercurrent,j5ensv. The electric
force acting on normal electrons is transferred to the cond
sate via a mechanism which reminds one of the foun
effect in superfluid helium. As a consequence, the elec

static potential reduces toew52(ns /n) 1
2 mv2. This reduc-

tion of the potential derived by van Vijfeijken and Staas3 has
a somehow confusing name: quasiparticle screening
should be noted that the electrostatic potential caused
currents in superconductors is traditionally called the B
noulli potential in spite of the quasiparticle screening a
other non-Bernoulli contributions found later.

Jakeman and Pike recovered the result of van Vijfeijk
and Staas from the static and classical limits of the tim
dependent Ginzburg-Landau~GL! theory.4 Unlike previous
0163-1829/2004/69~2!/024524~7!/$22.50 69 0245
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studies, their approach includes the real screening du
spatial distribution of the charge, therefore it describes
surface charge as a space charge localized on the scale o
Thomas-Fermi screening length. This picture of the surf
charge was accepted for a long time as it looks natural
seems to be justified from the semi-microscopic theory.

Later studies of the electrostatic potential did not
address the question of the surface charge but attempte
overcome the hydrodynamic picture common to all t
above mentioned studies. Naturally, they focused on a
tailed description of the Bernoulli potential on the scale
the London penetration depth.

Adkins and Waldram recovered the Bernoulli potent
from the BCS theory for the system at zero temperatu5

They also indicated that at finite temperatures one sho
expect a contribution which depends on the band structu

The predicted contribution has been evaluated
Rickayzen.6 He used a thermodynamic approach whi
yields

ew52
]ns

]n

1

2
mv2. ~2!

The density dependence of the condensate density ca
evaluated either from the BCS theory leading to the resul
Adkins and Waldram or from the two-fluid relationns

'n@12(T4/Tc
4)#. The latter gives a simple formula

ew52
ns

n

1

2
mv224

nn

n

] ln Tc

] ln n

1

2
mv2. ~3!

The first term balances the Lorentz and inertial forces, wh
the second reflects the pairing. We will call terms prop
tional to ] ln Tc/] ln n the thermodynamic correction.

In the next decade, the interest in the electrostatic po
tial in superconductors shifted towards nonequilibrium si
ations; see, e.g., Ref. 7. It should be noted that the Berno
potential introduced within the theory of nonequilibrium sy
tems is not the same as the one we discuss. Within the n
equilibrium theory the term ‘‘Bernoulli potential’’ is used fo
the velocity-dependent part of the energy of Cooper pa
Only in equilibrium, the velocity-dependent energy agre
with the electrostatic potential we discuss here.
©2004 The American Physical Society24-1
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B. GL approaches—local

New studies of the Bernoulli potential in equilibrium hav
been stimulated by the question of the vortex charge. Kho
skii and co-workers8,9 have used the idea of van der Mare10

to derive a simple estimate of the electrostatic potentia
terms of the superconducting gap. The obtained formula
responds to the thermodynamic correction of Rickayzen w
the original balance term being omitted. While the validity
the approach is restricted to temperatures close toTc , it has
the advantage, however, that it can be applied within the
theory. Blatteret al.11 have employed this estimate to pred
a possible electrostatic field above the surface of the su
conductor with the vortex lattice perpendicular to it.

An opposite limit represents the treatment of the vor
charge by LeBlanc.12 He considers only the balance ter
omitting the thermodynamic correction completely. As o
can see from Rickayzen’s formula, this approximation is li
ited to the region of low temperatures.

C. GL approaches—nonlocal

All the above mentioned theories have in common t
the electrostatic potential is a local function of the classi
kinetic energy or of the gap. In other words, they neglect
gradient of the condensate. The non-local corrections wi
the GL theory have been proposed in Ref. 13. It turned
that the non-local corrections are taken into account if
classical kinetic energy in the balance equation is repla
by its quantum-mechanical counterpart.

For our next discussion it is important that the non-lo
contributions can be rearranged into a local form.13 Indeed,
within the GL theory the sum of the kinetic energy and t
GL potential is zero which allows us to express the bala
term via the local GL potential. Note that this rearrangem
is possible only within the non-local theory, because gra
ents of the condensate densityns52ucu2, wherec is the GL
wave function, provide important contributions to the qua
tum kinetic energy, in particular close to the surface.

In Ref. 13, the quasiparticle screening and the thermo
namic correction have been neglected, the complete th
has been presented in Ref. 14. The detailed derivation
gether with estimates of material parameters and the num
cal treatment of the Abrikosov vortex lattice in niobium
various temperatures can be found in Ref. 15. Again,
contributions including the kinetic energy can be expres
in a local relationw@ ucu2#.

The nonlocal form of the Bernoulli potential requires th
one reconsider the picture of surface charges. It is parad
cal that the possibility to rearrange the non-local correcti
into a local function plays the crucial role. As noticed alrea
by Yampolskiiet al.,16 if the electrostatic potential is of th
form w@ ucu2#, the GL boundary condition,¹c50 in the
direction normal to the surface, implies that no surfa
charge is needed. Indeed, at the surface¹w5(]w/]c)¹c
50. The electric field thus vanishes at the surface, whic
a sufficient condition for the charge neutrality.

D. Plan of the paper

Apparently, there is no surface charge on the scale of
Thomas-Fermi screening length. The electric field due to
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dipole between the surface charge and the bulk charge
supposed to balance the Lorentz force; therefore, one ha
ask how the balance of forces looks if the surface charg
absent.

The charge profile in the vicinity of the surface has be
numerically studied in Ref. 17. This study was limited to th
slabs and type-II superconductors; its results indicate, h
ever, that the charge profile at the surface tends to orga
into two layers—a narrow surface charge and a thicker b
charge.

In this paper we discuss the charge and potential profil
the surface of a semi-infinite superconductor in the Meiss
state. In Sec. II we shortly describe the surface charge wi
the GL theory. In Sec. III we discuss the limit of a wea
magnetic field, where all results can be derived analytica
We will show that the Bernoulli potential at the surface d
fers from the value predicted by Rickayzen. The correct
has the form of a multiplicative factor that approaches un
for the extreme type-II superconductor. Numerical results
strong magnetic fields are presented in Sec. IV revealin
nonlinear mechanism which, however, is found to be v
small. The conclusions and outlook are presented in Sec

II. SURFACE CHARGE WITHIN THE GINZBURG-
LANDAU TYPE THEORY

A typical profile with the charge distribution close to th
planar surface and homogeneous external magnetic field
shown in Fig. 1. The profile has been obtained by a num
cal solution of the GL equation

2
\2¹2

2m*
c1

e* 2A2

2m*
c2

gTc
2

2n S 12
t2

A12
2

n
c2D c50,

~4!

FIG. 1. The charge profile close to the surface for four differe
magnetic fields. The magnetic field is given in dimensionless u
proportional to the magnetic flux quanta,B05F0 /(2pl0

2)
5em0n\/2m. The coordinatex is measured in units of the Londo
penetration depthl0 at zero temperature. The assumed tempera
t5T/Tc50.9 yields the penetration depthl51.7l0. The charge is
scaled withB2 so that the two lowest magnetic fieldsB50.01B0

and B50.1B0 give nearly identical curves. The magnetic fieldB
50.34B0 is close to the critical value. The GL parameterkGL51
corresponds to weak type-II superconductors.
4-2
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wheren is the density of pairable electrons,g is the linear
coefficient of the specific heat,m* 52m ande* 52e are the
mass and charge of the Cooper pair, andt5T/Tc is the tem-
perature on the scale of the critical temperature. In the
sumed geometry one can use the London gauge in which
GL wave function is real.

Equation~4! has been proposed by Bardeen as an ex
sion to low temperatures.18 In fact, Bardeen arrived at thi
equation independently by adding the quantum kinetic
ergy to the Gorter-Casimir two-fluid model. Close to t
critical temperature the GL function has a small magnitu
2c2!n which allows one to expand the square-ro

1/A12
2
n

c2'11(1/n)c2, and one finds the customary G

equation with parametersa5gTc
2(t221)/2n and b

5gTc
2t2/(2n2).

The vector potentialA is given by the Maxwell equation

¹3¹3A5m0

e* 2

m*
c2A. ~5!

Equations~4! and~5! are solved together withg andTc kept
constant.

From the GL wave functionc we evaluate the Bernoull
potential15

ew2lTF
2 ¹2ew52

gTc
2

2n2S 12
t2

A12
2

n
c2D c21

c2

2n

]gTc
2

]n

1
t2Tc

2

2

]g

]n
A12

2

n
c2. ~6!

The density dependence ofg andTc has been estimated from
the experimental specific heat, theoretical free-electron d
sity of states, and the McMillan formula19; see the appendix
in Ref. 15. The Thomas-Fermi screening length,lTF

2

5p2kB
2e0 /ge2, is very small and its contribution can b

neglected, because the general integral which is proporti
to exp(2x/lTF) is zero since no surface charge forms on t
scale. In the final step the charge profile is evaluated from
Poisson equation~1!.

III. LOW MAGNETIC FIELDS

In weak magnetic fields the GL wave function is on
little perturbed from its bulk valuec5c`1dc with dc
!c` . In this limit the charge profile can be solved analy
cally.

In the Maxwell equation~5! the vector potential is a sma
quantity so that the perturbation of the wave does not c
tribute in lowest order. The vector potential can thus
solved takingc'c`5An(12t4)/2. For both types of su-
perconductors, this results in a simple exponential deca
the vector potential,

Ax'Ble2x/l, ~7!
02452
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on the scale of the London penetration depthl
5l0 /A12t4, with l0

252m* /(m0e* 2n). HereB is the value
of the magnetic field at the surface atx50.

A. GL wave function

The linear approximation of the GL equation~4! reads

\2¹2

2m*
dc2

gTc
2t2

n2 S 12
2

n
c`

2 D 23/2

c`
2 dc5

e* 2A2

2m*
c` , ~8!

which can be expressed in terms of the GL coherence len
j252\2nt4/@m* gTc

2(12t4)# as

¹2dc2
2

j2 dc5
e* 2

\2
c`l2B2e22x/l. ~9!

The solution of Eq.~9! is composed from the particula
integral with the decay on the scale of the London pene
tion depth and the general integral decaying on the scal
the GL coherence length,

dc5cle22x/l1cje
2A2x/j. ~10!

The general integral of Eq.~9! can also include a growing
term }exp(A2x/j). This term is excluded, because the pe
turbation asymptotically vanishes in the bulk,dc→0 for x
→`.

From the GL boundary condition,¹dc50 at x50, we
find that the two amplitudes are linked by

cj52
A2

k
cl , ~11!

wherek5l/j. We note that within Bardeen’s extension
the GL theory, the ratiol/j depends on the temperature,k
5kGL /t2, wherekGL5(m* Tc /ne* \)Ag/m0 is the ordinary
GL parameter defined atTc . The diverging effective GL pa-
rameter at low temperatures shows that within Bardeen’s
proximation any system behaves as a type-II supercondu
at sufficiently low temperatures. This feature contrasts w
the linearly decreasing effective GL parameter one fin
close to the upper critical magnetic field.15. Of course, the
strong temperature dependence ofk is rather an artifact of
the model. Sincek is the most important quantity of the G
theory, one can simply takel andk as input parameters.

The amplitude of the particular integral is obtained fro
the GL equation~9! as

cl5c`

e* 2

\2
l2B2

4

l2 2
2

j2

5c`

e* 2l4B2

2\2

1

22k2 . ~12!

The GL wave function from Eqs.~10!–~12! results in

dc5
c`

22k2

e* 2l4B2

2\2 S e22x/l2
A2

k
e2A2x/jD . ~13!
4-3
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B. Bernoulli potential

Finally, we take the linear approximation of the Bernou
potential~6! in dc. Since the asymptotic value of the pote
tial w`5w@ uc`u2# is not essential, we focus on the perturb
tion caused by the magnetic field

edw2lTF
2 ¹2edw5Cdc. ~14!

In terms ofl andk the coefficientC reads

C5
\2k2

2m* l2c`
S 12t414t4

] ln Tc

] ln n D . ~15!

A general integral which decays into the bulk is of the fo

edw5edwTFe
2x/lTF1Clcle22x/l1Cjcje

2A2x/j. ~16!

From Eq.~14! one finds the amplitudes

Cl5
C

124
lTF

2

l2

, ~17!

Cj5
C

122
lTF

2

j2

. ~18!

The amplitude of the general integral is given by t
charge neutrality, which requires¹dw50 at x50. From
~16! follows

edwTF522
lTF

l
Clcl2A2

lTF

j
Cjcj . ~19!

The relative amplitudes proportional tolTF /l andlTF /j are
not sufficiently small to be neglected. The charge densit
given by the second derivatives so that one obtains rela
amplitudes of the charge density at the surface proportio
to l/lTF or to j/lTF . The surface charge is an integral, i.e
the contribution in question is proportional to the amplitu
at the surface multiplied with the Thomas-Fermi length. A
cording to condition~19! all charges can have comparab
values.

To prove that the screening on the scale of the Thom
Fermi lengthlTF and the related surface charge can be
glected, one has to employ the GL boundary condit
¹dc50 at x50. Using Eq.~11! one obtains

edwTF52
lTF

3

l3

4~22k2!

122k2lTF
2 /l2

Clcl , ~20!

so that the general integral is proportional to the cube of
small ratiolTF /l. Accordingly, the charge due to the gene
integral is smaller by a factorlTF

2 /l2 than the charge create
by the particular integral. In the following we neglect th
contribution for simplicity of notation. Within the same lev
of accuracy we takeCl5C andCj5C.

Now we are ready to evaluate the electrostatic poten
Using Eqs.~11! and ~12! we obtain from Eq.~16!:
02452
-

is
e
al
,

-

s-
-

n

e
l

l.

edw52
B2

2m0n S 11
4t4

12t4

] ln Tc

] ln n D
3

1

12
2

k2

S e22x/l2
A2

k
e2A2x/jD . ~21!

This linearized relation extends Rickayzen’s formula
type-I and weak type-II superconductors.

Let us first take a look at the extreme type-II superco
ductor, k@1, for which Rickayzen’s formula is recovered
For the assumed real GL wave function, the current is p
portional to the vector potential j5(e* 2/m* )c`

2 A
5(e2/m)nsA. With the velocity defined via the current,j
5e* c`

2 v5ensv, one finds from Eq.~7! the relation between
the magnetic pressure and the kinetic ene

e22x/l(B2/2m0n)5(ns /n) 1
2 mv2. Equation~21! then yields

the Bernoulli potential as

edw52
1

2
mv2S ns

n
14

nn

n

] ln Tc

] ln n D
3

1

11
A2

k
S 11

e(12k/A2)2x/l21

12
k

A2
D . ~22!

We have usedns5n(12t4) andnn5nt4 to express the tem
perature dependence in terms of the condensate fraction

One can see that Rickayzen’s formula~3! holds for ex-
treme type-II superconductors,k→`. In this limit the gen-
eral integral has a vanishingly small amplitude and the fac
1/(11 A2/k) goes to unity. For finitek the general integra
deforms the profile of the potential and the particular integ
has a reduced amplitude.

Within Bardeen’s extension of the GL theory, Rickayzen
formula is always recovered at low temperatures ask di-
verges with 1/t2. Since Rickayzen’s formula approaches t
plain Bernoulli potential fort→0, the presented derivatio
also reproduces London’s result.

C. Behavior for finite k

As already shown, for the extreme type-II superconduc
k→`, the general integral vanishes as 1/k and far from the
surface it decays faster than the particular integral. The B
noulli potential thus extends on the scalel/2.

For the finite GL parameter in the regionk.A2 the over-
all picture is rather similar. The general integral is app
ciable only close to the surface so that the scale on which
Bernoulli potential extends is stilll/2. In addition, the am-
plitude of the particular integral is enhanced by the fac
1/(122/k2).

For the regionk,A2, the role of the general and particu
lar integrals are reversed. First of all, the amplitude of
general integral is larger than the amplitude of the particu
integral. Since the general integral also decays more slo
in this case, the Bernoulli potential is dominated by the g
eral integral and extends on the scalej/A2. The reversed
4-4
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role is also supported by the fact that the signs of both p
are opposite as compared to the casek.A2. This sign re-
versal appears due to the enhancement factor 1/(122/k2).

Apparently, both components ofdw diverge ask ap-
proachesA2. Their sum remains regular, however. For th
particular case the scale of both contributions is identic
namely, l/2. It is advantageous to use expression~21! to
obtain the asymptotic form of the Bernoulli potential

lim
k→A2

edw52
m

4
v2S ns

n
14

nn

n

] ln Tc

] ln n D S 11
2x

l D . ~23!

The Bernoulli potentials for different values of the ma
netic field are shown in Fig. 2. The limit of low magnet
fields agrees with the analytical formula~22!, of course. One
can see that for the two lowest fieldsB50.01 andB50.1,
the potential keeps its profile while its magnitude scales w
B2. For magnetic fields close to the critical valueBc2
'0.34, the linear theory does not apply.

D. Charge profile

The charge density results from the Bernoulli poten
~21! and the Poisson equation~1! as

r5
2ee0B2

mS 12
2

k2D S ns

n
14

nn

n

] ln Tc

] ln n D S e22x/l2
k

A2
e2A2x/jD .

~24!

Note that the relative amplitude of the two contributions
reciprocal to the relative amplitude of the potentials. In
grating from zero to infinity one can check that the to
charge is zero, as it is required by the charge neutrality.

The resulting charge density is small compared to the t
density of electronsen. The ratio of the amplitude of Eq
~24! to the total electron density can be written as

r

en
'

e0B2

mn
5

B2

m0n

1

mc2 . ~25!

FIG. 2. Bernoulli potential as a function of the distance from t
surface for four different magnetic fields. The parameters are
same as in Fig. 1.
02452
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Even for upper estimates of the magnetic field by the criti
value, B'Bc , the factor~25! is extremely small. For nio-
bium B2/m05 1

2 gTc
253.23104 J/m3, while mc2'10213 J.

This suggests that the maximum charge density will be of
order of 1018 electrons per cubic meter. This is by ten orde
of magnitude smaller than the electron density of niobiu
n52.231028 m23. This small value of the accumulated o
depleted charge justifies to ignore the charge profile in
Maxwell equation~5! and the change of material paramete
like g, n, andTc in the GL equation~4!.

Similarly to the potential, the charge profile reflects tw
scales,l/2 andj/A2. Before we analyze its properties fo
various values of the GL parameterk, we want to discuss a
few general features. First, the surface value of the cha
obtained forx50 in Eq. ~24!, is always negative, i.e., the
charge carriers are depleted. We call the layer of the nega
charge the surface charge. Second, in the bulk sufficiently
from the surface the charge is positive, i.e., the charge ca
ers are accumulated. We call the region of positive charge
bulk charge. Third, the widthw of the surface is given by
r(w)50. From Eq.~24! it follows that

w5
l

2

ln k
&

k
&21

. ~26!

In the extreme type-II superconductor,k→`, the surface
charge is formed by the contribution on the scale of the
coherence lengthj. The width of the surface goes to a valu
w→(j/A2)ln(k/A2). The bulk charge extends on the sca
of the London penetration depth as it is known from t
classical picture.

For the limiting casek→A2 the width of the surface
charge isl/2. The charge density has the profile

r52
ee0B2

m S ns

n
14

nn

n

] ln Tc

] ln n De22x/lS 12
2x

l D . ~27!

Note the different sign inside the last parentheses comp
to the Bernoulli potential~23!. Sincel/25j/A2 one cannot
associate the surface and the bulk charge to the GL co
ence lengthj or to l.

For k,A2, the surface charge is formed by the contrib
tion on the scale of the London penetration depth. Fork
!A2, the width of the surface charge isw
→(l/2)ln(A2/k). The bulk charge extends on the scale
the GL coherence lengthj as one can see from Eq.~24!.

IV. STRONG MAGNETIC FIELD

In strong magnetic fields the GL wave function is su
pressed in the vicinity of the surface which has to be
counted for in the Maxwell equation. In this case one has
face the fact that the system of equations~4! and~5! is non-
linear. We present only a few numerical solutions to point o
some features typical for strong magnetic fields.

The nonlinear effects in strong magnetic fields follo
from a deviation of the wave function from its bulk value.
the dimensionless representation used in Fig. 3 the b
value is c`5An/2A12t4'0.6. For the lowest fieldB

e

4-5
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50.01, the deviation is nearly zero on the scale of the gra
Also, for B50.1 the approximationudcu!c` is justified.
For higher fields the deviation becomes appreciable.

The suppression of the wave function at the surfa
shown in Fig. 3 affects the Bernoulli potential by two diffe
ent mechanisms. First, the screening current is reduced a
surface so that the magnetic field penetrates deeper into
superconductor. This feature can be seen in Fig. 2; howe
it is better visible in the profile of the charge density sho
in Fig. 1, as a widening of the surface layer.

Second, the thermodynamic contributions to the Berno
potential are nonlinear in the wave function; see Eq.~6!. In
contrast, the linearized approximation of the Bernoulli pote
tial ~21! or ~22! does not depend on the density derivative
the linear coefficient of the specific heat,]g/]n, included in
the derivative of the condensation energy1

4 gTc
2 . Beyond the

linearized approximation, this derivative contributes as de
onstrated in Fig. 4 for parameters of niobium.

Comparing the contribution of]g/]n with the total
charge density shown in Fig. 1, one can see that this par
lar nonlinear mechanism is rather small, giving less than
of the total charge density. This small value justifies t
approximations8,9,11 using only the term proportional to
]Tc /]n.

V. CONCLUSIONS

In conclusion, we have shown that the Bernoulli poten
in superconductors can be discussed by the charge buil
in the region between the surface and max@j/A2,l/2#. The
thinner depleted charge region carries the surface charg
contrast to former theories which assumed that the sur
charge is localized on the scale of Thomas-Fermi scree
length lTF , we find that the surface charge extends ove
rangeL5min@j/A2,l/2#. In fact, there is a nonzero contr
bution on the scale oflTF , but of a negligibly small ampli-
tude proportional tolTF

2 /L2.

FIG. 3. The deviation of the wave function from its bulk valu
c`5An(12t4)/2'0.6 as a function of the distance from the su
face. The parameters are the same as in Fig. 1.
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For extreme type-II superconductors we have confirm
the picture known already from London with the thermod
namic corrections by Rickayzen. The bulk charge extends
the scale of the London penetration depthl/2. The surface
charge is localized on the scale of the GL coherence len
j/A2 which is negligible in this limit anyway. This is in
agreement with the classical treatment which neglects
gradient contributions.

In type-I or weak type-II superconductors, i.e., for the G
parameterk,A2, one finds the opposite situation. The su
face charge is localized on the scale of the London pene
tion depthl while the bulk extends on the scale of the G
coherence lengthj/A2. In this case the gradient contribu
tions are dominant and local London-type theories natur
fail.

In strong magnetic fields the Bernoulli potential becom
a nonquadratic function of the magnetic field. This featu
parallels the nonlinear susceptibility as it is dominated by
enhanced penetration of strong magnetic fields into su
conductors. There is an additional thermodynamic correc
absent in low magnetic fields, however, for realistic mate
parameters~like for niobium! it accounts for less than 3% o
the charge density. Thus the approximations used in R
8,9, and 11 are justified.

Finally we remind the reader that the potentialf dis-
cussed here does not include the surface dipole which aff
the potential seen outside the sample. We will discuss
contribution in a forthcoming paper.
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FIG. 4. The charge density which is proportional to the dens
dependence of the linear coefficient of the specific heat versus
tance from the surface. We use the value for niobium,] ln g/] ln n
50.42, which is close to the parabolic band approximationgpar

}n1/3, i.e., ] ln gpar/] ln n51/3.
4-6



.

,

BERNOULLI POTENTIAL IN TYPE-I AND WEAK . . . PHYSICAL REVIEW B 69, 024524 ~2004!
1F. Bopp, Z. Phys.107, 623 ~1937!.
2F. London,Superfluids~Wiley, New York, 1950!, Vol. I, Sec. 8.
3A.G. van Vijfeijken and F.A. Staas, Phys. Lett.12, 175 ~1964!.
4E. Jakeman and E.R. Pike, Proc. Phys. Soc. London91, 422

~1967!.
5C.J. Adkins and J.R. Waldram, Phys. Rev. Lett.21, 76 ~1968!.
6G. Rickayzen, J. Phys. C2, 1334~1969!.
7Nonequilibrium Superconductivity, Phonons, and Kapitza Bound-

aries, edited by K.E. Gray~Plenum New York, 1981!
8D.I. Khomskii and F.V. Kusmartsev, Phys. Rev. B46, 14245

~1992!.
9D.I. Khomskii and A. Freimuth, Phys. Rev. Lett.75, 1384~1995!.

10D. van der Marel, Physica C165, 35 ~1990!.
11G. Blatteret al., Phys. Rev. Lett.77, 566 ~1996!.
02452
12M.A.R. LeBlanc, Supercond. Sci. Technol.10, 929 ~1997!.
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14J. Koláček and P. Lipavsky´, Physica C364-365, 138 ~2001!.
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