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Latent heat of vortex lattice melting in two-dimensional superconductors
under high magnetic fields
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The latent heat of vortex lattice melting transition in a two-dimensional superconductor at high perpendicu-
lar magnetic field is calculated within the framework of the Ginzburg-Landau functional integral approach. The
result is found to be smaller than that obtained from various numerical simulations, which tend to overestimate
the latent heat due to finite-size effect.
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Phase fluctuations of the superconducting order parameter ) , 1 .
play a crucial role in controlling the stability of the vortex H= FGL:j d*| —al )"+ 5 Bly(0*], (2
lattice and its possible melting processes. In two-dimensional
(2D) systems the energy scale of these fluctuations is muclyhere y(x) is restricted to the lowest Landau level
smaller than the superconductif§C) condensation energy, (LLL) subspace: () =2 Cqdg(X,y), With  g(x,y)
implying melting temperatur@, well below the mean field  _ jigx-(y+a/2)? Here, unless otherwise explicitly stated, all
T..! However, the nature of the vortex lattice melting tran- lengths are measured in units of the magnetic lerath

sition in 2D superconductors is, at present, not yet fully un-_ 7——— } .
derstood. A weak first-order melting transition was predicte ch/eH, The_plane wave factor of the Landau orbital
LO) wave functiongg(x,y) is selected to propagate along

lsne\tre]?arrl?ﬂrgr?g O(r:l;r?; ;Triu?aigég_gg:aagdaﬁh) tR?cr)g)r?er some arbitrary axig, whereas the Gaussian factor attenuates
: > y g hig in the perpendicular direction over the smallest length scale
perturbation expansioff It has been shown recentlyhat :
: ; e in the problemay, . The number of terms in the sum should
shear motions of Bragg chains along the principal crystallo;

raphic axes of the vortex lattice cost a very small fraction ofb e equal to number of vortices in the systdinThe range of
grap y the spatial integration in Eq2) is the total 2D volumeV of

the SC condensation energy and are responsible for the Iov¥— -
: . he superconductor, that i¥,= 7N.
temperature vortex lattice melting. . ’ T
In our previous work® we were mainly interested in de- It is well known that minimization of the GL energy func-

- : : tional leads to a state in which vortices form a periodic tri-
termining the melting temperature and the jump of the sheaén ular lattice—the Abrikosov lattice. It can be described as
modulus at the melting point. These could be reasonabl 9 '

achieved without resort to explicitly calculating the entropy i linear superposition of discrete set of the LLL wave func-

associated with fluctuating vortices, which is a very subtle ons with
matter. Here we make the additional, nontrivial technical ef-
fort, and calculate the vortex state entropy in order to evalu- 2m i 7n?/2
’ . Py : . d—=0qn=—7"N; Cq‘“:n:COe”Tn ) ()
ate the latent heat of the melting transition. This requires ay

careful examination of the statistical ensembles appropriate ) ]
for such a calculation, especially since within the GL func-wheren=—N/2+1, ... JN/2. In this representation there

tional integral approach used the connection between thare only N LO's, so that every LO, labeled hy, embodies
continuous set of SC fluctuations accessible at high tempera/N frozen internal degrees of freedom, correspondingito
tures, and the highly restricted, discrete set of fluctuationguiding centers having the same projectignon they axis.
controlling the vortex lattice at low temperatures, is very The parametea, determines the interguiding center distance
poorly understood. in the x direction.

Within the framework of the GL functional integral ap-  The positions of vortices distributed near such a LO are
proach the vortex state at finite temperature can be describgtgtermined by the interference among LO's located in a tube
by the partition function of radius~ay around it. For a selectexiaxis along a crys-

tallographic direction with a distanagay between vortices
the number of LO’s contributing significantly to this interfer-
_ * ence is proportional tay . It is clear that vortex chains along
Z:J 1:[ Dy(x)Dy* (x)e~ Frrtveo.vm ), (1) the principal crystallographic axes are formed by the mini-
mal numberi.e., two of widely separated LO’¢see Fig. L
The ground(ordered vortex state is strongly anisotropic
where the effective “Hamiltonian”H{¢(x),¢*(x)} is a  with respect to shear deformations: the shear stiffness is
functional of the condensate wave functiorder param-  strongly suppressed in directions of the principal axes. The
eter”) #(x). In the phenomenological GL model of a 2D reason for the anisotropy can be clearly understood from the
superconductor under a strong magnetic field, perpendiculdrO picture of the vortex state. It arises from the short-range
to the 2D layerH{#(x),¢* (x)} has a simple, local form (i.e., of the order magnetic lengtbharacter of the LO inter-
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frozen internal degrees of freedom. It depends on the choice
of the family of chains, that is, on the parametgr.

The thermodynamic properties of the fluctuating system
can be derived from the free energy functidqT,a,)
=—Ins/Brm/N (computed per unit argawhich may be
separated into an internal energy u(T,a,)=
—dlIns/m/NdBT and a contribution associated with the en-
tropy S(T,a,) arising from thermal motion of sliding vortex

O O O O & O chains:

a, f(T,a)=u(T,a)—TYT,a,). (6)

In the nearest-neighbor approximation of interaction between
chainsu(T,a,) has been calculated in Ref. 1 for Bragg chain
o © © © o o families parallel to a principal axis. Here, to increase the
FIG. 1. \ortices(circles and two Bragg families of Landau &ccuracy of calculations, we use the next-nearest-neighbor
orbitals (dashed linesin the Abrikosov lattice. approximation, which incorporates terms in the energy ex-
pansion up to\°. The result can be written as

action. The strength of the interaction is proportional to the

overlap integral between orbitals, which attenuates exponen- 7u(T,a)=—¢ Ba @

tially with distance between LO’s. Thus, the shear deforma- X °84(T,a)’

tion in an arbitrary direction involves several closely packed

LO’s along this axis. The corresponding shear energy has a s

scale of the condensation energy per unit vortex, Br(T,a,)= \[;[1+47\—4>\277( 7) 4N+ 8\ ()],

=ma?l2BBA, When the overlap integral is of the order of

unity. In contrast, for shear stress along the principal axesyhere 7(7)=1,(7)/1o(7), T=4N%/(1+4\)Breo=Tcm/T,

only three LO’s separated by a relatively large distanceandl(7) is modified Bessel function.

~la, are involved in the distortion. The energy of such a The function »(7), which is proportional to the shear

deformation is of the ordex?e,, wherex=exp(-s), with  modulus of the vortex lattice along the selected axisder-

s=m?/a2, being a small parametex<1. For a shear stress goes a rather sharp drop at-1 , i.e., at the temperature

along the short diagonal of the unit cell, corresponding to~T.m Which strongly depends on the interchain distance

ai:zw/\@, A~0.066, whereas along the long diagonal, 7/ax. The strong suppression of the shear modulu§ at

with a2,=23m, A~0.16. ~T¢m is a rough indication for the melting of the vcz)rtex
Thus, the partition function, Eq1), at low temperatures 'attice. The parametea, (or more convenientiys= m°lay) .

can be very well approximated by exploiting the former My be regarded as an order parameter for the corresponding

chain representation, and to a lesser extent the latter one. TR!d-liquid transition®” Strictly speaking, the partition func-

corresponding GL free energy is given by t|o_n, Eg. (5), should include summation over all posgible
(discrete values ofa, , corresponding to the various families
Feu=mNf(cy,c*);  f(c,,cl) of Bragg chains in the vortex lattice. However, due to the

factor \N in the exponent, and the finite energy difference

1 E — E between states with different valuesagf, the partition func-
_\/_N . —alcy| ts tion in the thermodynamic limiN—o is dominated by a
single term in this sum corresponding to the minimum of
—s2(n°+n2) * * f(Cn’C:)' - . L .
x> e L 2Ch4n,+n,Cn Cntn Oy [ 4 The prevailing Bragg family of sliding vortex chains de-
nq,ny

pends on temperature. Below some finite temperaiyye

LO embodiesyN frozen internal degrees of freedom, the chains along the large diagonal of the unit call @xis), for
partition function can be written &=<'N where the func- which the mean deviation of vortices from their ground-state

tional integral positions is very small. Abovg,, the dominant Bragg family
consists of vortex chains along the short diagonal of the unit
cell (x axis). Due to larger interchain distance betweensthe
9=€of IT de,dcyexd — BrmyNf(ca.c)] (5 chains, their shear fluctuations are much stronger than those
" . of thex’ chains! so that the vortex state abo¥g, is essen-
is carried out over all possible values of=|c,/e'¢n, in tially disordered. It should be stressed, however, that on both
which the fluctuating phaseg, correspond to all possible sides of this “melting” transition the average vortex posi-
sliding chains configuration along the selected principal crystions constitute a periodic lattice. The rotational symmetry of
tallographic axis. The prefactors, is an unknown param- this lattice aboveT, is significantly reduced with respect to
eter, which takes into account the statistical weight of thdts symmetry belowT,,, which is very close to the ideal
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N systems can be determined up to constants of integraion

1\ f(T.a) and 7., which should satisfy the limiting condition
k S(T,a,)—S(T,a,)—0, asT—0, or

0134

lim 7 f(7,7,)—u(r,a)—f(7,70)+U(7,a,)]—0. (9)

T— %

Due to the classical nature of the vortex fluctuations under
study here, the entropy obtained from E8). diverges loga-
rithmically with T—0. However, using the expansidn) of
the internal energy, up to second ordeminwhich is given
by U(7,a)=(Tem/eo)[1—1o(7)/1:(7)], in the integrals,

7 Eqg. (8), one finds that the divergent term in the entropy
oM T T T S(T,a,)~ 3In 7 does not depend on,. Under these circum-
o m e e e stances condition(9) is satisfied whenr,= r,, = 7,~0.3.

FIG. 2. Dependence of the free enefggshed-dotted lingsnd ~ Taking into account, however, higher-order corrections ,in
internal energy (dashed lines on the inverse temperature it is possible to cancel the divergent terms only for
=Tm/T for the two principal chain systemsandx’ in the canoni-  # 7, , namely, with r,~0.3 and r,,~0.31 in the present
cal ensemble. The solid line depicts the internal energy at equilibapproximation.
rium with a discontinuous jump at the crossing poifit: T,,, of The temperature dependence of the thermodynamic func-

thex andx’ free energies. tions calculated per single vortek(T,a,) (dash-dot lines

hexagonal symmetry of the Abrikosov lattice. In contrast toand_u(T,ax) (dashe.d Ime)s IS shown, in Fig. 2 fqr vortex
this positional ordering, SC order aboVg, exists only along chains along the principal axesandx’. The crossing point
the chain direction, reflecting a strong orientation anisotropy?f the free energies, whef¢T,a,)=f(T,a,:), determines a

of the liquid state just above the melting transition. The de-discontinuous(first orde) transition from a strongly corre-
struction of the nematic structure and gradual transition tdated array of vortex chains, characterized by the order pa-
rotationally invariant liquid with increasing temperature haverametera,, into a weakly correlated array of vortex chains
been discussed in Ref. 10. with an order parametes, .*!

The calculation of the entrop$(T,a,) is a very subtle Note that the crossing of the GL energies, where
problem since the density of states factgiin Eq.(5), which ~ u(T,a,)=u(T,a.), takes place at a temperatufeorre-
determines the zero-temperature entr@y=0,a,)=Sy, is  sponding tor~0.5) slightly above the melting point,,
not known to us, as it includes contribution associated with~1.2T,,, ensuring that the sign of the jump in the internal
the collapse of the continuum of vortex degrees of freedonenergy is consistent with the endothermic nature of the melt-
into the discrete system of chains. However, for computatioring. Thus, our calculation yields a latent heat'e,
of the entropy contribution to the melting transition we need_(T . a )—U(T,,,a,)~2.2x10"3 (or L=0.1T,) per
to know only the difference between the entropies corresingle vortex.

sponding to thex and x’' chain systems,(T,ay) In the MCE the entropy of vortex configurations,
—$(T,a,), which does not depend d&. This will be done 5T a.), is determined by the number of states with a given
in both the canonical ensemhbl€E) and the microcanonical energyu(T,a,). It can be derived from the expression
ensemblg MCE).

In the CE the entropy can be obtained indirectly from the
free energy, which is evaluated by integrating the internal f H deydck 8(f(c,,cf)—u(T,ay))
energy over temperature. For the sake of convenience we ; NgTa)_ a7/Ng, > "
consider the thermal increase of the free energy calculate —€

per single vortex¥(T,a,)= [ f(T,a,)—f(0.2,) /ey, as a f 1;[ deadey 8(f(cn cn) —u(0a,)
function of . Denotingu(T,a,)=7[u(T,a,) —u(0,a) /e, (10
and using the relations

005

where the entropy af—0 is assumed to be independent of

= T~ L, TTx the chain representation.
f(r )= ;fTXU(T 2y)d7'+ T’ Expanding the energy functiong{c,,,c}), written in the
nearest-neighbor approximation, in the small-amplitude fluc-
~ 1(7 Ty tuations about their mean-field valueé,: al BB, One may
f(r, Txf)=;f u(kr',ay)dr' + ——, (8 rewrite the integral in the numerator of EJ.0) as

Tx'

where the last terms on the right-hand side arise from
integration of the ground-state energy, and f

c2—c2\* T
I1 dcndc::a(E {( i °> — —[cosy,— 7]
=Tem(ax )/ Tem(ay) =21.8, the free energies of the chain c o

n n 0

|
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FIG. 3. Dependence of the entropy calculated in the microca- FIG. 4. The same as in Fig. 2 but for the microcanonical
nonical ont=T,,/T. ensemble.

- — - with the latent heat obtained in the CE. Note that the form of
where xn=¢ni1ten-1=2¢n, @n=@n—¢on, and ¢on  the curves for the MCE and CE is different because of the
= m/2n? is the mean-field value of the corresponding phasegifferent zero-temperature entropig used. While it is se-

It should be stressed that the calculation of the entropy isected to be zero in the MCE, it diverges logarithmicallydo
restricted to the nearest-neighbor approximati@®e., to  in our CE calculation.
terms up to second order N) since the entropy contribution The present calculation of the free energy has been carried
to free energy is multiplied byl ~T,,~\?e,. Introducing out including terms~\° (next-nearest-neighbor approxima-
the new variables of integratioyy,= 20,(Xx,— o), With x,  tion with respect to the phase-dependent interaction between
=¥ (c2—c2)/c2], and o2=T CoSy.— (7 . the mul- \{ortex chains Such accuracy is rgquired because of the relg-
tiplg Z[iEnggra(I)) 02131 be renvvrittcenr;[ asf)(ﬁndncﬁn)jxnﬁ(in(xﬁ tively large value of the expansion parameter for the chain
2 system along the’ principal axis,\(a,)=0.4. Invoking
—on))=Jly(den/207)dy,(2ny,), where second-order o poyi nearest-neighbor approximation shifts the crossing
terms in the small-amplitude fluctuations are neglected. NOtpoint of the GL energies fromt=—16.5 (Ref. 1) to t
ing that the multiple mte_gratlon over, yields a tempgraturg— =—12.8 , where is defined byt=—2\/Baeo/T. Due to the
independent constatwhile recalling that the denominator in g0y contribution, the free-energy crossing point occurs at
Eq. (10) is also a constajtand changing phase variables of t,.=—15.4 for MCE andt,,=—16.6 for CE. These values

integration toy,, we find that are within the range of melting temperatures obtained in the
_ various numerical simulations, i.e¢,,=—(14—17).27° The
1 V2 Yo dxn latent heat obtained in our chain model, i:e2x 10 3¢, is
S(T,ax)—soz—E In _f | smaller than that found in Refs. 2 and 3, which 45
myYN " T 29 Neosy,— n(7) X 10 3g,. The discrepancy seems to arise from finite-size

(11) effect of the vortex system employed in the numerical simu-
— T lations. The results of Ref. 3 clearly show that the numeri-
where COS(OE”.(T)' Here the' normal|zat|on in Eq10) was cally computed melting temperature decreases with the
selected 1o satisfy the conditid(T—04a,) — S. . sample sizeN. It is therefore plausible that the latent heat

. The .plot of Fhe entropy§(T) ~ S, as a funct|lon of the 5150 reduces with the increasing sample size, suggesting that
dimensionless inverse temperature T.(ay)/T is shown the internal energy jump calculated It 256 may be con-
inFig. 3. Itis seen that wh_ile the e.ntro.py sharply increases ir%:idered as an upper bound for the latent heat of a macro-
the crossover regior;~1, its contribution to the free energy gqqnic sample. It is therefore interesting to note that our re-
is 0.03¢n(ay) at 7=1, which should be compared with g1 —0 1T, | is in a considerably better agreement with
relatively large increase of the internal energy there,that calculated within the frustratedY model,L=0.15T,,

u(T,a,) —u(0.ax) =Tem(@x) (1= 7(1))/m~0.18¢p,. in which a significantly larger sample was employed in the
The resulting dependence of the GL energy and free eng;., ,jationl2

ergy is demonstrated in Fig. 4. Within the accuracy of our

calculations, the crossing point of the free-energy curves for This research was supported by a grant from the Israel
thex andx’ chain systems, found at,=0.71, close to that Science Foundation founded by the Academy of Sciences
obtained in the CHEsee Fig. 2 The latent heat found in the and Humanities and by the fund from the promotion of re-

MCE is estimated ad/e,~2x10 3, which agrees well search at the Technion.

024522-4



LATENT HEAT OF VORTEX LATTICE MELTING IN . ..

1V. Zhuravlev and T. Maniv, Phys. Rev. &), 4277(1999.

27. Tesanovic and I.F. Herbut, Phys. Rev5B, 10389(1994); Z.
Tesanovic and L. Xing, Phys. Rev. Le®7, 2729(1991).

3Y. Kato and N. Nagaosa, Phys. Rev.4B, 7383(1993.

4Jun Hu and A.H. MacDonald, Phys. Rev. Léti, 432(1993.

SR. Sasik and D. Stroud, Phys. Rev4B, 16074(1994).

R. Sasik, D. Stroud, and Z. Tesanovic, Phys. Re\61B 3042
(1995

S, Hikami, A. Fujita, and A.l. Larkin, Phys. Rev. 84, 10 400
(1991

PHYSICAL REVIEW B 69, 024522 (2004

8D. Li and B. Rosenstein, Phys. Rev.@5, 220504R) (2002.

9T. Maniv, V. Zhuravlev, I.D. Vagner, and P. Wyder, Rev. Mod.
Phys.73, 867 (200)).

10y, zhuravlev and T. Maniv, Phys. Rev. &, 014529(2002.

11\ Zhuravlev and T. Maniv, inRecent Trends in Theory of
Physical Phenomena in High Magnetic Field=dited by 1.D.
Vagner, P. Wyder, and T. ManiiKluwer Academic Publishers,
Dordrecht, 2008

12X. Hu, S. Miyasita, and M. Tachiki, Physica £82-287, 2057
(1997.

024522-5



