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Latent heat of vortex lattice melting in two-dimensional superconductors
under high magnetic fields

V. Zhuravlev and T. Maniv
Chemistry Department, Technion-Israel Institute of Technology, 32000 Haifa, Israel

~Received 28 July 2003; published 29 January 2004!

The latent heat of vortex lattice melting transition in a two-dimensional superconductor at high perpendicu-
lar magnetic field is calculated within the framework of the Ginzburg-Landau functional integral approach. The
result is found to be smaller than that obtained from various numerical simulations, which tend to overestimate
the latent heat due to finite-size effect.
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Phase fluctuations of the superconducting order param
play a crucial role in controlling the stability of the vorte
lattice and its possible melting processes. In two-dimensio
~2D! systems the energy scale of these fluctuations is m
smaller than the superconducting~SC! condensation energy
implying melting temperatureTm well below the mean field
Tc .1 However, the nature of the vortex lattice melting tra
sition in 2D superconductors is, at present, not yet fully u
derstood. A weak first-order melting transition was predic
in the framework of the Ginzburg-Landau~GL! theory by
several Monte Carlo simulations2–6 and by using high-orde
perturbation expansion.7,8 It has been shown recently1 that
shear motions of Bragg chains along the principal crysta
graphic axes of the vortex lattice cost a very small fraction
the SC condensation energy and are responsible for the
temperature vortex lattice melting.

In our previous work1,9 we were mainly interested in de
termining the melting temperature and the jump of the sh
modulus at the melting point. These could be reasona
achieved without resort to explicitly calculating the entro
associated with fluctuating vortices, which is a very sub
matter. Here we make the additional, nontrivial technical
fort, and calculate the vortex state entropy in order to eva
ate the latent heat of the melting transition. This requi
careful examination of the statistical ensembles appropr
for such a calculation, especially since within the GL fun
tional integral approach used the connection between
continuous set of SC fluctuations accessible at high temp
tures, and the highly restricted, discrete set of fluctuati
controlling the vortex lattice at low temperatures, is ve
poorly understood.

Within the framework of the GL functional integral ap
proach the vortex state at finite temperature can be descr
by the partition function

Z5E )
x

Dc~x!Dc* ~x!e2bTH$c(x),c* (x)%, ~1!

where the effective ‘‘Hamiltonian’’H$c(x),c* (x)% is a
functional of the condensate wave function~‘‘order param-
eter’’! c(x). In the phenomenological GL model of a 2
superconductor under a strong magnetic field, perpendic
to the 2D layer,H$c(x),c* (x)% has a simple, local form
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H5FGL5E d2xS 2auc~x!u21
1

2
buc~x!u4D , ~2!

where c(x) is restricted to the lowest Landau lev
~LLL ! subspace: c(x)5(qcqfq(x,y), with fq(x,y)
5eiqx2(y1q/2)2. Here, unless otherwise explicitly stated, a
lengths are measured in units of the magnetic lengthaH

5Ac\/eH. The plane-wave factor of the Landau orbit
~LO! wave functionfq(x,y) is selected to propagate alon
some arbitrary axisx, whereas the Gaussian factor attenua
in the perpendicular direction over the smallest length sc
in the problem,aH . The number of terms in the sum shou
be equal to number of vortices in the system,N. The range of
the spatial integration in Eq.~2! is the total 2D volumeV of
the superconductor, that is,V5pN.

It is well known that minimization of the GL energy func
tional leads to a state in which vortices form a periodic t
angular lattice—the Abrikosov lattice. It can be described
a linear superposition of discrete set of the LLL wave fun
tions with

q→qn5
2p

ax
n; cq→cn5c0eipn2/2, ~3!

wheren52AN/211, . . . ,AN/2. In this representation ther
are onlyAN LO’s, so that every LO, labeled byn, embodies
AN frozen internal degrees of freedom, corresponding toAN
guiding centers having the same projectionqn on they axis.
The parameterax determines the interguiding center distan
in the x direction.

The positions of vortices distributed near such a LO
determined by the interference among LO’s located in a t
of radius;aH around it. For a selectedx axis along a crys-
tallographic direction with a distanceaxaH between vortices
the number of LO’s contributing significantly to this interfe
ence is proportional toax . It is clear that vortex chains alon
the principal crystallographic axes are formed by the mi
mal number~i.e., two! of widely separated LO’s~see Fig. 1!.

The ground~ordered! vortex state is strongly anisotropi
with respect to shear deformations: the shear stiffnes
strongly suppressed in directions of the principal axes. T
reason for the anisotropy can be clearly understood from
LO picture of the vortex state. It arises from the short-ran
~i.e., of the order magnetic length! character of the LO inter-
©2004 The American Physical Society22-1
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action. The strength of the interaction is proportional to
overlap integral between orbitals, which attenuates expon
tially with distance between LO’s. Thus, the shear deform
tion in an arbitrary direction involves several closely pack
LO’s along this axis. The corresponding shear energy ha
scale of the condensation energy per unit vortex,«0
5pa2/2bbA , when the overlap integral is of the order
unity. In contrast, for shear stress along the principal ax
only three LO’s separated by a relatively large distan
;p/ax are involved in the distortion. The energy of such
deformation is of the orderl2«0, wherel5exp(2s), with
s5p2/ax

2 , being a small parameter,l!1. For a shear stres
along the short diagonal of the unit cell, corresponding
ax

252p/A3, l'0.066, whereas along the long diagon
with ax8

2
52A3p, l'0.16.

Thus, the partition function, Eq.~1!, at low temperatures
can be very well approximated by exploiting the form
chain representation, and to a lesser extent the latter one
corresponding GL free energy is given by

FGL5pN f~cn ,cn* !; f ~cn ,cn* !

5
1

AN
(

n
H 2āucnu21

b̄

2

3 (
n1 ,n2

e2s2(n1
2
1n2

2)cn1n11n2
* cn* cn1n1

cn1n2J , ~4!

where ā5axa/A2p and b̄5axb/A4p. Recalling that any
LO embodiesAN frozen internal degrees of freedom, th
partition function can be written asZ5§AN, where the func-
tional integral

§5§0E )
n

dcndcn* exp@2bTpAN f~cn ,cn* !# ~5!

is carried out over all possible values ofcn5ucnueiwn, in
which the fluctuating phaseswn correspond to all possible
sliding chains configuration along the selected principal cr
tallographic axis.1 The prefactor§0 is an unknown param
eter, which takes into account the statistical weight of

FIG. 1. Vortices~circles! and two Bragg families of Landau
orbitals ~dashed lines! in the Abrikosov lattice.
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frozen internal degrees of freedom. It depends on the ch
of the family of chains, that is, on the parameterax .

The thermodynamic properties of the fluctuating syst
can be derived from the free energy functionf (T,ax)
52 ln §/bTpAN ~computed per unit area!, which may be
separated into an internal energy u(T,ax)5
2] ln §/pAN]bT and a contribution associated with the e
tropy S(T,ax) arising from thermal motion of sliding vortex
chains:

f ~T,ax!5u~T,ax!2TS~T,ax!. ~6!

In the nearest-neighbor approximation of interaction betw
chainsu(T,ax) has been calculated in Ref. 1 for Bragg cha
families parallel to a principal axis. Here, to increase t
accuracy of calculations, we use the next-nearest-neigh
approximation, which incorporates terms in the energy
pansion up tol5. The result can be written as

pu~T,ax!52«0

bA

b f l~T,ax!
, ~7!

b f l~T,ax!.As

p
@114l24l2h~t!14l418l5h~t!2#,

where h(t)5I 1(t)/I 0(t), t[4l2/(114l)bT«0[Tcm /T,
and I k(t) is modified Bessel function.

The function h(t), which is proportional to the shea
modulus of the vortex lattice along the selected axis,1 under-
goes a rather sharp drop att;1 , i.e., at the temperatureT
;Tcm which strongly depends on the interchain distan
p/ax . The strong suppression of the shear modulus aT
;Tcm is a rough indication for the melting of the vorte
lattice. The parameterax ~or more convenientlys5p2/ax

2)
may be regarded as an order parameter for the correspon
solid-liquid transition.10 Strictly speaking, the partition func
tion, Eq. ~5!, should include summation over all possib
~discrete! values ofax , corresponding to the various familie
of Bragg chains in the vortex lattice. However, due to t
factor AN in the exponent, and the finite energy differen
between states with different values ofax , the partition func-
tion in the thermodynamic limitN→` is dominated by a
single term in this sum corresponding to the minimum
f (cn ,cn* ).

The prevailing Bragg family of sliding vortex chains de
pends on temperature. Below some finite temperatureTm
;Tcm the partition function is dominated by fluctuations
chains along the large diagonal of the unit cell (x8 axis!, for
which the mean deviation of vortices from their ground-st
positions is very small. AboveTm the dominant Bragg family
consists of vortex chains along the short diagonal of the u
cell (x axis!. Due to larger interchain distance between thx
chains, their shear fluctuations are much stronger than th
of the x8 chains,1 so that the vortex state aboveTm is essen-
tially disordered. It should be stressed, however, that on b
sides of this ‘‘melting’’ transition the average vortex pos
tions constitute a periodic lattice. The rotational symmetry
this lattice aboveTm is significantly reduced with respect t
its symmetry belowTm , which is very close to the idea
2-2
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hexagonal symmetry of the Abrikosov lattice. In contrast
this positional ordering, SC order aboveTm exists only along
the chain direction, reflecting a strong orientation anisotro
of the liquid state just above the melting transition. The d
struction of the nematic structure and gradual transition
rotationally invariant liquid with increasing temperature ha
been discussed in Ref. 10.

The calculation of the entropyS(T,ax) is a very subtle
problem since the density of states factor§0 in Eq. ~5!, which
determines the zero-temperature entropyS(T50,ax)[S0, is
not known to us, as it includes contribution associated w
the collapse of the continuum of vortex degrees of freed
into the discrete system of chains. However, for computa
of the entropy contribution to the melting transition we ne
to know only the difference between the entropies cor
sponding to the x and x8 chain systems,S(T,ax8)
2S(T,ax), which does not depend onS0. This will be done
in both the canonical ensemble~CE! and the microcanonica
ensemble~MCE!.

In the CE the entropy can be obtained indirectly from t
free energy, which is evaluated by integrating the inter
energy over temperature. For the sake of convenience
consider the thermal increase of the free energy calcul
per single vortex,f̃ (T,ax)[p@ f (T,ax)2 f (0,ax)#/«0, as a
function of t. Denotingũ(T,ax)[p@u(T,ax)2u(0,ax)#/«0
and using the relations

f̃ ~t,tx!5
1

tEtx

t

ũ~t8,ax!dt81
ptx

t
,

f̃ ~t,tx8!5
1

tEtx8

t

ũ~kt8,ax8!dt81
ptx8

t
, ~8!

where the last terms on the right-hand side arise fr
integration of the ground-state energy, andk
5Tcm(ax8)/Tcm(ax)'21.8, the free energies of the cha

FIG. 2. Dependence of the free energy~dashed-dotted lines! and
internal energy ~dashed lines! on the inverse temperaturet
5Tcm /T for the two principal chain systemsx andx8 in the canoni-
cal ensemble. The solid line depicts the internal energy at equ
rium with a discontinuous jump at the crossing point,T5Tm , of
the x andx8 free energies.
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systems can be determined up to constants of integratiotx
and tx8 , which should satisfy the limiting condition
S(T,ax)2S(T,ax8)→0, asT→0, or

lim
t→`

t@ f̃ ~t,tx!2ũ~t,ax!2 f̃ ~t,tx8!1ũ~t,ax8!#→0. ~9!

Due to the classical nature of the vortex fluctuations un
study here, the entropy obtained from Eq.~8! diverges loga-
rithmically with T→0. However, using the expansion~7! of
the internal energy, up to second order inl, which is given
by ũ(t,ax)5(Tcm /«0)@12I 0(t)/I 1(t)#, in the integrals,
Eq. ~8!, one finds that the divergent term in the entro
S(T,ax);

1
2 ln t does not depend ontx . Under these circum-

stances condition~9! is satisfied whentx5tx85t0'0.3.
Taking into account, however, higher-order corrections inl,
it is possible to cancel the divergent terms only fortx
Þtx8 , namely, with tx'0.3 andtx8'0.31 in the present
approximation.

The temperature dependence of the thermodynamic fu
tions calculated per single vortex,f̃ (T,ax) ~dash-dot lines!
and ũ(T,ax) ~dashed lines!, is shown in Fig. 2 for vortex
chains along the principal axesx andx8. The crossing point
of the free energies, wheref̃ (T,ax)5 f̃ (T,ax8), determines a
discontinuous~first order! transition from a strongly corre
lated array of vortex chains, characterized by the order
rameterax , into a weakly correlated array of vortex chain
with an order parameterax8 .11

Note that the crossing of the GL energies, whe
ũ(T,ax)5ũ(T,ax8), takes place at a temperature~corre-
sponding tot'0.5) slightly above the melting pointTm
'1.2Tcm , ensuring that the sign of the jump in the intern
energy is consistent with the endothermic nature of the m
ing. Thus, our calculation yields a latent heatL/«0

5ũ(Tm ,ax)2ũ(Tm ,ax8)'2.231023 ~or L.0.1Tm) per
single vortex.

In the MCE the entropy of vortex configuration
S(T,ax), is determined by the number of states with a giv
energyu(T,ax). It can be derived from the expression

epANS(T,ax)5epANS0

E )
n

dcndcn* d„f ~cn ,cn* !2u~T,ax!…

E )
n

dcndcn* d„f ~cn ,cn* !2u~0,ax!…

,

~10!

where the entropy atT→0 is assumed to be independent
the chain representation.

Expanding the energy functionalf (cn ,cn* ), written in the
nearest-neighbor approximation, in the small-amplitude fl
tuations about their mean-field values,c0

25a/bbA , one may
rewrite the integral in the numerator of Eq.~10! as

E )
n

dcndcn* dS (
n

F S cn
22c0

2

c0
2 D 2

2
Tcm

«0
@cosx̄n2h#G D ,

-

2-3
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where x̄n5w̄n111w̄n2122w̄n , w̄n5wn2w0n , and w0n
5p/2n2 is the mean-field value of the corresponding pha
It should be stressed that the calculation of the entrop
restricted to the nearest-neighbor approximation~i.e., to
terms up to second order inl) since the entropy contribution
to free energy is multiplied byT;Tm;l2«0. Introducing
the new variables of integrationyn52sn(xn2sn), with xn

5«0
1/2@(cn

22c0
2)/c0

2#, and sn
25Tcm@cosx̄n2h(t)#, the mul-

tiple integral can be rewritten as*)ndwndxnd„(n(xn
2

2sn
2)….*)n(dwn/2sn)dynd((nyn), where second-orde

terms in the small-amplitude fluctuations are neglected. N
ing that the multiple integration overyn yields a temperature
independent constant~while recalling that the denominator i
Eq. ~10! is also a constant!, and changing phase variables
integration tox̄n , we find that

S~T,ax!2S05
1

pAN
(

n
lnFA2

p
E

0

x̄0
dx̄n

Acosx̄n2h~t!
G ,

~11!

where cosx̄0[h(t). Here the normalization in Eq.~10! was
selected to satisfy the conditionS(T→0,ax)→S0.

The plot of the entropyS(T)2S0 as a function of the
dimensionless inverse temperaturet5Tcm(ax)/T is shown
in Fig. 3. It is seen that while the entropy sharply increase
the crossover region,t;1, its contribution to the free energ
is 0.03Tcm(ax) at t51, which should be compared wit
relatively large increase of the internal energy the
u(T,ax)2u(0,ax)5Tcm(ax)(12h(1))/p'0.18Tcm .

The resulting dependence of the GL energy and free
ergy is demonstrated in Fig. 4. Within the accuracy of o
calculations, the crossing point of the free-energy curves
the x andx8 chain systems, found attm50.71, close to that
obtained in the CE~see Fig. 2!. The latent heat found in the
MCE is estimated asL/«0'231023, which agrees well

FIG. 3. Dependence of the entropy calculated in the micro
nonical ont5Tcm /T.
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with the latent heat obtained in the CE. Note that the form
the curves for the MCE and CE is different because of
different zero-temperature entropiesS0 used. While it is se-
lected to be zero in the MCE, it diverges logarithmically to`
in our CE calculation.

The present calculation of the free energy has been car
out including terms;l5 ~next-nearest-neighbor approxima
tion with respect to the phase-dependent interaction betw
vortex chains!. Such accuracy is required because of the re
tively large value of the expansion parameter for the ch
system along thex8 principal axis,l(ax8)50.4. Invoking
the next-nearest-neighbor approximation shifts the cross
point of the GL energies fromt5216.5 ~Ref. 1! to t
5212.8 , wheret is defined byt522AbA«0 /T. Due to the
entropy contribution, the free-energy crossing point occur
tm5215.4 for MCE andtm5216.6 for CE. These value
are within the range of melting temperatures obtained in
various numerical simulations, i.e.,tm52(14217).2–6 The
latent heat obtained in our chain model, i.e.,;231023«0, is
smaller than that found in Refs. 2 and 3, which is;6
31023«0. The discrepancy seems to arise from finite-s
effect of the vortex system employed in the numerical sim
lations. The results of Ref. 3 clearly show that the nume
cally computed melting temperature decreases with
sample sizeN. It is therefore plausible that the latent he
also reduces with the increasing sample size, suggesting
the internal energy jump calculated atN5256 may be con-
sidered as an upper bound for the latent heat of a ma
scopic sample. It is therefore interesting to note that our
sult, L.0.1Tm , is in a considerably better agreement wi
that calculated within the frustratedXY model,L.0.15Tm ,
in which a significantly larger sample was employed in t
simulation.12

This research was supported by a grant from the Is
Science Foundation founded by the Academy of Scien
and Humanities and by the fund from the promotion of
search at the Technion.

- FIG. 4. The same as in Fig. 2 but for the microcanonic
ensemble.
2-4



d.

f

,

LATENT HEAT OF VORTEX LATTICE MELTING IN . . . PHYSICAL REVIEW B 69, 024522 ~2004!
1V. Zhuravlev and T. Maniv, Phys. Rev. B60, 4277~1999!.
2Z. Tesanovic and I.F. Herbut, Phys. Rev. B50, 10389~1994!; Z.

Tesanovic and L. Xing, Phys. Rev. Lett.67, 2729~1991!.
3Y. Kato and N. Nagaosa, Phys. Rev. B48, 7383~1993!.
4Jun Hu and A.H. MacDonald, Phys. Rev. Lett.71, 432 ~1993!.
5R. Sasik and D. Stroud, Phys. Rev. B49, 16074~1994!.
6R. Sasik, D. Stroud, and Z. Tesanovic, Phys. Rev. B51, 3042

~1995!
7S. Hikami, A. Fujita, and A.I. Larkin, Phys. Rev. B44, 10 400

~1991!.
02452
8D. Li and B. Rosenstein, Phys. Rev. B65, 220504~R! ~2002!.
9T. Maniv, V. Zhuravlev, I.D. Vagner, and P. Wyder, Rev. Mo

Phys.73, 867 ~2001!.
10V. Zhuravlev and T. Maniv, Phys. Rev. B66, 014529~2002!.
11V. Zhuravlev and T. Maniv, inRecent Trends in Theory o

Physical Phenomena in High Magnetic Fields, edited by I.D.
Vagner, P. Wyder, and T. Maniv~Kluwer Academic Publishers
Dordrecht, 2003!.

12X. Hu, S. Miyasita, and M. Tachiki, Physica C282–287, 2057
~1997!.
2-5


