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Charged two-dimensional quantum gas in a uniform magnetic field at finite temperature
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We present closed-form, analytical expressions for the thermodynamic properties of an ideal, two-
dimensional2D) charged Fermi or Bose gas in the presence of a uniform magnetic field of arbitrary strength.
We consider both the homogeneous quantum(gmawhich case our expressions a®ac) and the inhomo-
geneous gas within the local-density approximation. Our results for the Fermi gas are relevant to the current-
density-functional theory of low-dimensional electronic systems in magnetic fields. For a 2D charged Bose gas
(CBG) in a homogeneous magnetic field, we show that the uniform system undergoes a sharp transition at a
critical temperaturel, below which there is a macroscopic occupation of the lowest Landau level. An
examination of the one-body density matrix, however, reveals the absence of long-range order, thereby indi-
cating that the transition cannot be interpreted to a Bose-Einstein condensate. NeverthelEssT faand
weak magnetic fields, the system still exhibits magnetic properties which are practically indistinguishable from
those of a condensed, superconducting CBG. We therefore conclude that while a condensate is a sufficient
condition for the ideal CBG to exhibit a superconducting state, it may not be a necessary condition.
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[. INTRODUCTION dimension, we will focus our attention on the case of 2D for
the following reasons(i) the 2D calculation is the most

In a series of recent papers, we have calculated closedransparent application of the ILT technique diiglthe low-
form, analytical expressions for the single-particle and nondimensional systems display physical properties not found in
local properties of a harmonically confined, ideal gas of fertheir higher-dimensional counterparts. Moreover, the ILT
mions (boson$ at both zero and finite temperatures in method provides a powerful, alternative approach to what is
arbitrary dimension$-3 These analytical results have already usually found in the literature, and readily yields analytical
provided some insight into the role of dimensionality, inter-results for both Fermi and Bose systems which are otherwise
actions, and the quantum statistics of ultracold Fermi andery difficult (if not impossible to obtain using the standard
Bose gases, which have recently been created in theave-function based approachese, e.g., Ref.)7 Indeed,
laboratory*® The central theoretical tool used in these stud-the beauty of the ILT method is that it simultaneously yields
ies is the Bloch density matrix, which is related to the one-universal finite-temperature results for both Fermi and Bose
body density matrix(1LDM) through an inverse Laplace statistics with very little effort. Thus, many of the analytical
transform(ILT).® The ILT method yieldsjn a single calcu- expressions for the uniform quantum gases, found previously
lation, the finite-temperature 1DM for both fermions and by other authors, will be seen to be special cases of our more
bosons without having to resort to the single-particle wavegeneral results, which to our knowledge, have not appeared
functions of the associated trapping potential; one only rein the literature.
quires a knowledge of the Bloch density matrix, which is The rest of our paper is organized as follows. In Sec. Il A
independent of the quantum statistics of the gas. Owing texact, closed-form expressions for the finite-temperature and
the current topical interest in these systefesy., Bose- zero-temperature 1DM are provided. Then, in Sec. II B, we
Einstein condensatiofBEC) in the trapped Bose gas and the make use of the local-density approximatitDA) to ex-
possibility of a BCS-BEC crossover in the trapped Fermitend the exact results of the uniform gas to inhomogeneous
gad, our applications of the ILT method have focused exclu-Fermi systems. Using the 1DM, we will provide in Sec. Il C
sively on the harmonically trapped quantum gases. explicit energy density functionals for the 2DEG in a mag-

It is also well known that the uniform quantum gases cametic field, which should be useful in the current-density
exhibit remarkable physical properties, particularly in low functional theory (CDFT) of inhomogeneous Fermi
dimensions, where the strong quantum confinement in one @ystems:° We conclude our investigation of the 2DEG by
more directions can result in new phenomena associated witbresenting some analytical results for the magnetic properties
the reduced dimensionalitisee Secs. Il and Il for detajls in Sec. IID.
Motivated by the success of the ILT method in the trapped The thermodynamic and magnetic properties of the 2D
guantum gases, this paper then is devoted to applying th€éBG are then considered in Sec. Ill. Sections Ill A and 11l B
same technique to study the thermodynamic and magnetfocus on the thermodynamics of the 2D CBG in both zero
properties of the uniform quantum gases. Specifically, theand finite magnetic fields, respectively. The finite-
two systems that we wish to investigate are the uniformfemperature magnetic properties of the 2D CBG are then
ideal two-dimensional electron gd@DEG and the ideal considered in Sec. lll C, with particular emphasis on the pos-
charged Bose gad£BG). While our approach is valid in any sibility of a superconducting transition at sufficiently low
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temperatures. Finally, in Sec. 1V, we will present our closingtaken to be complex, amibt the inverse temperaturekyT.
remarks. For later convenience, we introduce the center-of-mass and
relative coordinates:

r=3(ry+ry), s=ri—ry, (2

Il. FERMI GAS . . . .
which allow us to write the Bloch density matrix as

The 2DEG that we consider is made up of a syster\ of
independent electrons of chargeand massn in a uniform
magnetic field perpendicular to the plane of confinement.
The 2DEG is immersed in a background medium with a
uniform positive charge, so that the total system is charge <exd —i %(x —yoXy)
neutral. Consequently, we assume that screening effects ren- 25, 1Y
der the Coulomb interactions short ranged, and the gas can

Co

S Mo, 1
21

S
"2 2B T 4k sinhheol2)

be treated as being approximately noninteracting. The 2DEG Xex;{ _ mwcszcotr'(ﬁw 6/2))
itself is typically fabricated using the electronic properties of 4h ¢ '
[1I-V semiconductor heterostructurds.g., GaAs-AlGaAs 3

The use of a “layer-by-layer” molecular-beam epitaxial

growth processes results in atomically smooth heterostrudAt finite temperature, théspin-averagedone-body density

ture interfaces which contain the 2D gas. matrix can be obtained from the zero-temperature Bloch den-
This low-dimensional Fermi system has associated with isity matrix by using the relatién

a number of interesting phenomena, such as the integer and

fractional quantum Hall effec® de Haas—van Alphen N | E .

oscillations!* and the fractal energy spectrum of the Hofs- pullir2i D=L, BCT(rl’rz’ﬁ)}’ “@
tadter butterfly;? to name a few. Moreover, using highly con- where

trollable lithographic and/or metallic gate technologies, the

2DEG’s dimensionality can be further lowered to quasi-1D 7 BKeT

(i.e., quantum wirgsor quasi-0D(i.e., quantum dojs with C1(rq,ry;B)=Cq(rq,r2;8)= (fermiong
additional dimensionally dependent properties manifesting sin(7BksT)

themselves in the form of, e.g., collective excitatithand ®)
magnetoresitivity oscillation¥* is the finite-temperature Bloch density matriyg, is the

We begin this section by evaluating the exact finite-chemical potential, anklg is the Boltzmann constant. In Eq.
temperature 1DM for the 2DEG subjected to an external(4), the ILT is two sided, thereby allowing. to take on
homogeneous magnetic field. From the 1DM, we will con-negative values. Making use of the idenity
struct explicit energy density functionals which may then be
used to formulate a state-of-the-art CDFT of low- e nho
dimensional Fermi systems. As all of our calculations are exp{—ycotr(ﬁwcﬂIZ)}zngo Ln(2y)e e "we
done at finite temperatures, the important low-temperature
properties of the gaé.e., T=0) are readily obtained as a —e (Mt Dhwch) (6)
special case of the finite-temperature results.

[’

with y=mw.s%/4%, leads to the following expression for the
zero-temperature Bloch density matrix:
A. Uniform 2DEG

Without loss of generality, we choose the symmetric C r+§ r—f- B _Mae ! e~ i (Mog/2h)(Xpy1~YoX1)
’ - o0 T2 2 47t sinh(hw.Bl2)
gauge, where the vector potential read®\= c
(—By/2Bx/2,0). Under these conditions, the zSero- o
temperature Bloch density matrix is known to be giver®by XnZo L,(2y)e Y{e Moch— g~ (n+Diwch) )
Co(r 1,122 ) = Mo, 1 The finite-temperature 1DM is then given by taking the ILT
o2 A7t sinh(hw B12) as given by Eq(4). Combining Eq.(7) with Eq. (5) gives
. Moe Mo, S S
xXex _'W(Xzyl_yle) eXH ~ 7 p1r+§,r—§;T)
X|ry—r,2cothhwcBl2) |, (1) :%e—i(mwc/Zh)(nyl—yle)i e YL, (2y)
27Th n=0 n
wherew,=eB/mc is the cyclotron frequency anfé is to be -1 (e Moch_g- (Do) T ®
interpreted as a mathematical variable which in general is © sinh(w.B/2) sin(wkgTRB) |’
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Making the change of variablesu=2ulfiw,, T

=2kgT/hw,, B=hwBl2, and applying the convolution
theorem for two-sided ILT’s, we obtain

o
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—2nB_ A—2(n+1)B =
Py r+5,r—E:T)=—mw°e“‘“‘”C’Zﬁ)“ﬂ””ﬁE ey & T T
2" 2' ] 2mh = g sinh(B) sin(7BT)
Mo ” *

wh

e imoc2n)0ay1-y2x) S g7y (2y
n=0

) >

=0

[ f_wd75(7— (2¢+1)— Zﬂ)m

_JloodT(S(T—(Zf'i‘l)—Z(n—F 1))m+—1] 9)
In going from the first to second line in E(P), we have made use of the following two-sided IL¥’s:
AR
L =5 |=22, 8(p—(2k+1)—n , 10
7| s B)| = 2%, (7—( )—n)BO(7) (10
kgT 1

i G L (11)

® o sin(wBkgT) m i1

R keT

Now, all but the first term arising from thé=0 sum give vanishing contributions to E@). Therefore, upon restoring the

original units, the finite-temperature 1DM reduces to

g3

B
r 2,I’ 5

Th

M,

Th

wheree,=hw (n+1/2) are the discrete Landau-level ener-
gies arising from the applied magnetic fiell denotes the
Landau-level index, and

Folw)= (fermions. (13

e(snfﬂ)/kBT-f— 1

Mo ) *
= C o i(Mwg/2h) (Xay1~Y2X1) g~ (Mwc/dh)s? S,

e~ 1(Mwg/28) (Xpy1—Yox1) g~ (me/4ﬁ)serO Fo(u)L n(

1
e(enfﬂ)/kBTﬁ- 1

Mo
20 °

5]

Mo ,

ZﬁS)’

n=0

©

(12

while Eq.(12) may appear to be rather obvious, i.e., it looks
as if we have simply included by hand the Fermi-Dirac dis-
tribution function, thisis notthe case. Indeed, it is a highly
nontrivial task to show that the finite-temperature 1DM has
the form of Eq.(12) (in any dimensioj if one starts from
the single-particle wave functiosThe main difficulty lies

in the fact that, unlike the Bose-Einstein distribution func-

Equation (12) represents the exact spin-averaged finite+jo the Fermi-Dirac occupation factor cannot be expanded

temperature 1DM for a homogeneous 2DEG in the presen

of a magnetic field of arbitrary strength. The single-particle

density is immediately obtained by settisg-0. Note that,
for higher dimensions, the functional form for the 1DM is
identical to Eq.(12), but with the thermal factoF,(u),
being replaced by a more complicated function which con

C

& a power series for arbitrary temperatures. Consequently,
the summation over the Landau-level index is exceedingly
difficult to execute in closed form.

It is instructive to also consider th€—0 limit of Eq.

(12), in which case the Fermi distribution function goes over

tains the dimensional and temperature dependencies. ThJQ, the Heaviside step function, viz.,
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ekt g O(erTen).

14
In a magnetic field at zero temperature, one has
=0,1,2... ng—1 Landau levels fully occupied wittp
=mw./7h electrons; theng level will only be partially oc-
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cupied withA p electrons (<A <1). If we focus on the case
of closed shells, we then obtain
ep=hw(nNg—1+1/12)=fhw(ng—1/2) (15

for the Fermi energy. As a result, E12) in the zero-
temperature limit reduces to the simple expression

ne—1
S S Mo, . 2 Mo,
=)= e~ (Moc/2h)(Xy1-Y2X1) @ = (Mwc/4h)s E L s
P1 2 2) wh i=o "\ 2A
m . m
= _WZC e 1 (Mwgl2i)(Xoy1—Yox1) @~ (m“’c/‘m)szL%:), 1( % 52) . (16

The last line in Eq(16) has been obtained by making use of Thus, at low-temperatures and high magnetic fields, the

the summation relatio® ,L{(x)=L{*"Y(x). Note that

Fermi gas “condenses” into the lowest Landau levek 0.

while the 1DM depends on the chosen gauge, all physicaowever, it is important to realize that this is not a conden-

observables are manifestly gauge invariant. We point out thegate in the sense of the phase transition that takes place in the
Ghosh and Dhar¥, have also obtained an expression iden-trapped or uniform Bose gases. The easiest way to see this is
tical to Eq.(16), but through an entirely different approach to note that the highly degenerate lowest Landau level does
[see their Eq(13)]. Indeed, their zero-temperature result is not represent ainique quantum stat@to which all of the
seen to be a special case of our more general, finitefermions have condensed. Indeed, it is well known since the

temperature 1DM given by Eq12).

early work of Penrose and Onsatfehat for a homogeneous

The zero-temperature single-particle density is readily obsystem, the phenomenon of a condensate is intimately related

tained by settingg=0 in Eq. (16), giving

1
2

Mo,

Mo,
= —n =
P h F

T oah

EF

. 7

hwe

where in the last line of Eq(l7), [-] denotes taking the
integer part, with a floor of unity. In particular, as,— o,
p—Mmw./7h [see also Eq(19) below.

It is not difficult to examine the two limiting cases of the
T=0 1DM, viz., the vanishing and high-field limits. In the
former case, we note that as.—0, ng~ep/hw,—».
Therefore, for a vanishing magnetic field, EG6) behaves
asymptotically as

N S S| meg 1 L) S° Megp

I i i - 7F 0

P+ 5.I=5 52 Ng F\ np 272 (NE—)
. 1 ZmSFJ 2m8|: 18
"N 2 1 el (18)

whereJ;(x) is a cylindrical Bessel function. Equatigh8) is
just the 1DM for a uniform 2DEG witlB=0. For extremely
high magnetic fields, only the lowest Landau level is occu
pied, and we immediately get from E(L6) (i.e., retaining

only then=0 term
S S| _MOc i (mwg/2h) (xoy1 — yox) o (Mwg/dh)s?
p1 r+_'r__>:_e (Mg 2Y17Y2X1) @~ (Mac/ah)s®
2 2 Th

(19

to the presence of long-range ord@&RO) in the 1DM,
namely,

S

2

whereV is the volume of the system am, is the number of
particles in the ground state. Thus, we see immediately from
Eq. (19) that even aff =0, there is no LRO, and the system
continues to behave as a normal Fermi gas. We will come
back to the issue of LRO in Sec. lll during our discussion of
BEC in the 2D CBG.

S
r+5,r
2

No

S0

B. Inhomogeneous 2DEG: Local-density-approximation

In the case where the 2DEG is further confined by a one-
body potentiaN(r) (i.e., the potential energy determined by
a self-consistent field theoryone can make use of the LDA
in order to obtain the Bloch density matrix for the inhomo-
geneous gas. The essential simplification is that the same free
electron wave functions are used locally so that the energy
levels are all shifted uniformly byw(r). As a result, the
zero-temperature Bloch density matrix within the LDA is
simply given by

S
r+5,r

s s
r+5.0r—5;
2

CI6DA 2 2

—g;ﬂ)exq—ﬁwm,
@

ﬁ)zco

whereCy is given by Eq(7). As in the uniform case, an ILT
of Eq. (21) yields the LDA to the 1DM, namely,
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s s 2 3
PIiDA(r+§-r_§;T) A e (mwc) FI‘(n,:+ 1/2)
\/577 h I'(ng)
MO 0 128) (Xoy 1 — Yox1) e (Mo /dh)$2 1
San © T Teve T XaFg ~51-Ne, 525 -Neill. (29

Once again, we point out that the authors of Ref. 16 have
also calculated the exchange energy densifly=a0 (see also
Refs. 20—22 for earlier related work on this probjeidow-

As expected, the only modification from E@.2) is that the  ever, a direct comparison of our E@5) with their Eq.(19)
chemical potential is replaced by— u(r)=u—V(r). It  suggests that the two expressions are not in agreement. This
should be pointed out that Pfalzner and Mafdhave previ- IS quite surprising since our respective expressions for the
ously attempted to find analytical, closed-form expressiond =0 1DM were found to be mathematically identical. Under
for the 1DM of the inhomogeneous electron gas in a magthe assumption that none of us have made any trivial algebra
netic field within the LDA(i.e., Thomas-Fermi approxima- mistakes, the apparent discrepancy between the two results
tion) at zero temperatureHowever, they were unable to ex- must be a consequence of our different analytical ap-
plicitly perform the ILT of the Bloch density matrix for proaches. In fact, this is entirely the case, and we have re-
arbitrary magnetic fields, and in contrast to the present worksolved the issue by proving the following exact finite sum-
their analysis was limited to a numerical implementation ofmation relatior?

the ILT method.

- Moe ,
Xngo Ln( 2h S )e[sn#(r)]/kBT+1. (22)

ng—1
> {T(ng+k+1)T'(2k+ 3)/[T(ng—Kk)T'(2k+2)
C. Energy density functionals k=0
1. Exchange energy density XT(k+2)T(k+1)]} oF [ —ne+k+1,%+ 3;2k
Armed with the knowledge of the 1DM it is now possible +2:2]
to evaluate in closed form the exchange energy density
ee(r) at any temperature and magnetic-field strength. Since I'(ng+3) 1
the calculation ofe.(r) is essentially the same as in the =ZW3F2 —5,1—nF,§;2,§—nF;1 . (26
F

LDA and uniform gas limits, we will focus our attention on
the uniform 2DEG, where our analytical expressions are extJsing this identity in Eq(19) of Ref. 16 establishes that our
act. zero-temperature expressions for the exchange energy den-
For simplicity, let us first consider th&=0 case for sity are completely equivalent. A plot of the zero-temperature
which the exact 1DM is given by Ed16). The exchange exchange energy can be found in Fig. 1 of Ref. 16.
energy is then given by The finite-temperature calculation is analogous to The
=0 case, with the 1DM now being given by Ed.2). The

B e(1 S s\|? central difference between the zero- and finite-temperature
ca= 4 | S|Pl TH 5= 5] ds calculations is that we have to evaluate the intedral
) ) (—1/2,0,0). From Eq.(24), we readily obtain the finite-
_ —ezf Mo, f o (Mugl2n)s? Lo Mo, 2| ds temperature exchange energy density, viz.,
2\ wh F 2h , p
e’ (Mo I'(n+1/2)
2 3/2 — ¢
e /m T)=—— F F —_—
T (%) [ e worax @3 welT) w< 2 ) & & PP T
where in the last line, we have changed over to the variable Xng{E,— K, E;l’i_n;l . (27
X=mMmw.s*/2%. We now make use of the integtal
To our knowledge, Eq.27) is a new result, which is valid at
© o all temperatures and magnetic-field strengths. It is well
— a B
tmnn( e, 8,7)= fo x“e Ln()La(x)dx known from numerical investigations that the sharp “saw-
tooth” oscillations found in theT=0 thermodynamic prop-
3 ri+o)'in+y+1LH)I'(B—a+m) erties of the 2DEG in a magnetic field are smoothed out at
"T(m+)I(n+ DT (1+y)T(B—a) finite temperature$.
XsFo[1+a—B,—nl+a;1+vy,1 2. Kinetic-energy density
+a—B-m;1], (24) The kinetic-energy density at zero or finite temperature is

also readily evaluated from the 1DM. Specifically, in the
where F[a,b,c;d,e;z] is the generalized hypergeomet- symmetric gauge, the kinetic-energy density is evaluated
ric function!® to obtain from the expression
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1 ([ 4 eBy? Q(B) Mo <
Skin_ﬁ - ox = 2c Vv :_kBTﬂ'ﬁz n§=:o In{1+exd (u—en)/KgT]}.
9 eBx? >
+1 =1 W_% Pl(rl,rz;T)|r1:r2- (28

In the abovew. ande,, have the same meaning as before.

At low temperature, the magnetic-field-dependent oscillafrom Eq.(32), we immediately obtain
tions (associated with the filling of the Landau leveksre

most pronounced. Thus, the zero-temperature kinetic energy e *
is of particular interest, and from E¢28), we immediately M= SkeT > In(1+el#enlkeT)
obtain mCh n=0
) I 1
M - . (34
Skinzz_ﬂ_cnlzz' (29) kBT n§=:O SneXF[(Sn_/.L)/kBT]+1 ( )

Using Eq.(17) for the single-particle density, we obtain the Equation (34) is an exact result. At zero temperature we
zero-temperature kinetic-energy density functional readily find that it reduces to

[ ] ﬁZ ) (30) e ng—1 (SF_Sn) 1 ng—1
EnLPI=T 5P M(B.T=0)= kaT —_—
2m ( , ) WCﬁZ B ngo kBT kBT nZO €n
The above kinetic-energy density has the same functional
form as that of the free 2DEG in the absence of a magnetic _ N [Nes “Mho ] (35)
. . L _ SLIFER FltWc].
field, but here, the magnetic-field dependence is implicitly wCh
contained in the density. This interesting result is unique to
2D, since in 3D, the form of the kinetic-energy functional Equation(35) is in agreement with the results found in Ref.
depends explicitly on the strength of the magnetic field. Fors5je., see their Eq(32h)], where the magnetic properties

example, in the strong-field regime one Has of the 2DEG were considered only at zero temperature. At
temperatures for whiclh<eg=7% w./2, the Fermi-Dirac oc-
3 Lo 274 cupation factor can be expanded as a power series, and the
Dr =S+ —— 8 (31) . . X
einlpPl=——p a2’ density of fermions can be written as
C

which is Xery different from the zero-field kinetic-energy Mo, § i julkgT
functionalS p= (D" e (u<eq).
. . . 2mh = sinh(jAw/2kgT
Note that the functionals derived here, which are formally =l Inf(j# we/2keT)
exact in the uniform case, can also be used in the CDFT of
inhomogeneous electron systefns., within the LDA). The
outline for such an implementation can be found in Refs.

(36)

9Equation(36) is related to the grand canonical partition func-

and 16. tion through the thermodynamic identity,
D. Finite-temperature magnetization: Landau diamagnetism p=— i Q) (B) 37)
V. du

To close our investigation of the 2DEG, we now briefly
consider some analytical results for the finite-temperature
magnetization. In keeping with our previous calculations, weAn integration of Eq.(37) with respect tou then yields
do not consider the Pauli paramagnetism associated with tH@gain, only foru<eg)
electron spin interacting with the magnetic field in this sec-

tion. o - Q(B) M, * _ ein/kgT
The magnetization is evaluated from the thermodynamic ——=— Sk, T>, (—1)it1——
identity, \Y 27h i=1 J smMﬁwC/ZkBT)
M(B.T)= 1(9Q(B) B e [dQ(w) :_%kBT In(1+ e(#~=0)/keT)
BD=-g| 78 . meVl dwc ’ h
wr (32 > j(n—fiwg)/kgT
1 . ellu—hoc)ikg
o> (—1)it . (39
where the grand canonical partition functispin averaged, 2= J sinf(jfwc/2kgT)
per unit volume for the 2DEG is given by the well-known
expression A direct application of Eq(32) gives
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e 12 _ issue of BEC in the CBG is still clearly an interesting prob-
M= —ﬁkBT In(1+ elr~7ec2)/kgT) > > (—1)itt lem in its own right, and is certainly worthy of further inves-
me =1 tigation.
B kaT ® Before we go on to discuss the issue of BEC in the 2D
e](# o)k ew Z . .
K +_—C| = — E (—1)i+1 CBG, we would first like to demonstrate how the ILT method
jsin(jliwc/2kgT) | 2mwc| 1+z (=1 describes the uniform, ideal 2D Bose gas when the applied

i(a—thofkaT magnetic field is switched off. After this brief orientation, we
x[ CA N 1 will in Sec. 11l B extend these results to the case of a nonzero
sinhjhw/2kgT) 2 magnetic field. Then, in Sec. lll C, we will consider the mag-
netic properties of the system, with particular emphasis on
the possibility of a superconducting phase transition below
' (39) some critical temperatufE; . We once again stress that other
dimensions are readily studied by using the same procedure
wherez=exy (1—zg)/ksT)]. To our knowledge, this expres- Outlined below.
sion forM (B, T) has not appeared in the literature. Equation
(39) will prove to be useful in our discussion of the magnetic A. 2D CBG: B=0
properties of the 2D CBG.

" el (r=modkeTeosh w2k T)
[sinh(jA w/2kgT)]?

When the magnetic field is absent, the ideal CBG is for-
mally identical to the well-known neutral, ideal Bose gas.
IIll. CHARGED BOSE GAS The zero-temperature Bloch density matrix for the transla-

The Bose analog of the uniform 2DEG is the 2D CBG. |ntionally invariant 2D system is obtained as follows:
its simplest incarnation, the CBG consists of a gas of spin-
less, charged bosons, coupled to an external, homogeneous
magnetic field. In analogy with the 2DEG, the bosons are
assumed to have a chargemassm, and are noninteracting.
The 2D CBG may be realized from a 3D system with a small 1
thicknessé,. If &, is much smaller than the thermal wave- = (E)
length 8,<(2mkgT/47%2) "2, the k, momentum will be

S S 1 . 2.2
R — — ik-sn— Br“ke/2m
o| T+ 5. z,ﬂ) V;e e

2 o0
f 2 rkek: se—ﬁh2k2/2md K
0

frozen in the ground statk,=0 and the system may be m
considered as a 2D Bose gas. In this light, it has recently = S exp — 5 s2|. (40
been suggested that the 2D CBG may have some relevance 2mwh*p 2mh*p

to the theory of superconductivity in the high-temperature o )
cuprates where preformed electron pair®., composite, The quantum statistics of the gas are encoded in the thermal

spinless, charged bosgrare conjectured to exié?. Bloch density matrix, which for bosons reg@®mpare with
The CBG was first investigated in 3D by Osbofi@and  Eq. (5)]
then substantially improved upon by Schafréthwho

showed that idoes nothave a BEC at any finite temperature — 7Bk T
in the presence of a homogeneous magnetic field, although CT(fl,rz;ﬂ)ZCo(fl,fz;ﬂ)m (bosons.
the system does exhibit the essential equilibrium features of B (41)

a superconductofe.g, the Meissner-Ochsenfe(1-O) ef-

fect]. Following this work, May® then considered the super- ¢ ig important to realize here that in obtaining E40), we
conductivity of the 2D CBG, and showed that even thoughy e assigningero weightto thek=0 term (i.e., the ground
the system exhibits an essentially perfect M-O eff@stin  g¢a19 Therefore, any finite-temperature properties we derive
3D), it does not undergo a BEC phase transition at any finitgom £q. (41) will only describe the thermally excite@.e.,
temperature. Some time later, Méyfurther generalized norma) state of the gas; the ground state must be treated
Schafroth’s 3D results to arbitrary dimensions, and po'nte%eparately. Using Eq4) (without the factor of 2 since the

out thlat BEC in the CBG can take place onlyd®=5.  pogons are taken to be spinlgsalong with the following
Toms™ has subsequently argued that BEC cannot occur IRyo-sided ILT's (Ref. 35

the CBG in any spatial dimensiot, whereas Roja$ has
suggested that BEC may occur, although the transition is

—kiB
diffuse (i.e., there is no sharp critical temperature at which -1/ ® _
condensation beginsDaicic and Frankéf have also exam- £ [ B } Jo(2Vke) O (e), 42
ined the statistical mechanics of the 2D CBG within the con-
text of Mellin integral transforms, thereby confirming and kT 1
extending the earlier work of M&.More recently, Bayindir oY — B }: . (43
and Tanataf have used a semiclassical approach to con- g tan(mSkgT) {ex;{ _ L) _1}
cluded that BEC can take place in the CBG in a magnetic kgT

field, but only in the presence of a crossed electric field.
Thus, irrespective of its current experimental feasibility, thewe obtain for the thermal part of the 1DM
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s S'T
P1 r+ E,r—z,

m fo 2me 1 q
= S €
2mp2Jo ™\ N w2 7] | [(e=m)|

kgT
_.m D ej,u,/kBfoJo( \ /sts)e jelkaTgle.
2ah? =1 0 K2

(44)

Making the change of variables=7%2x?/(2ms’) and y
=j%?pl/(2m<), we obtain

0% ) w [ <o 7
r+—-,r— xJo(X)e X
P 2 2’ 27s? = 0 0
* ginlkgT
—kaT e—kBTm§/(2m2)_
. 27h? Z
(45

Settings=0 in Eq.(45) then yields the normal-state density
of particles, which we denote hy. , viz.,

*  @lun/ksT

kBE

=

p=(T)= ﬁz

m
P kgT In(1—ex/ksT). (46)

At high temperatures, E@46) describes the density afl of
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thereby reaffirming that at finit&, there is no BEC because
we have no LRO.

B. 2D CBG: B#0

Extending the results of Sec. Il A to the case of a CBG
coupled to an external magnetic field can be done in one of
two ways. In the first instance, a brute force calculation par-
alleling the field-free case can be performed by replacing Eg.
(40) with Eq. (1), and then evaluating all of the required
ILT's. The second, more elegant approat@nd the one
which highlights the power of the ILT methpds to simply
note that the Bose and Fermi calculations only differ by the
temperature dependence introduced via the thermal Bloch
density matrix. Specifically, we observe that the Bose statis-
tics serve only to change the behavior of the functgfiw),

viz.,
o

which was introduced in Sec. Il C in the context of the Fermi
gas[see Eq.13)]. As a resultwithout any further calcula-
tion, we can write down the finite-temperature 1DM for the
charged(spinles$ 2D Bose gas in a magnetic field:

Fo(p)= (bosons, (49

En— M
keT )_1

+ ° ° T
r+-,0r—5;
P1 2 2
Mo Mg 2
:m _27_(X2y1 YoX1)a~ g7 S

the particles in the gas. However, as the gas is cooled, it may
happen that at some critical temperatdi’, the excited
states cannot accommodate all of the particles. We have used

C
sz)

- Mo
X nZO Fn(#)'—n( 2%

moc
the superscript on the critical temperature to emphasize that = ne" T(Xzyl e 75 S
we are in the field-free case. In this scenario, the ground state ™

of the system must become populated, and the system under- el u/kT

goes what is known as a BEC phase transition. The critical
temperature is then formally defined as the highest tempera-
ture at which the macroscopic occupation of the lowest-
energy state appears. In the homogeneous Bose gas, this cor-
responds tqu(T<T{?)=0, and from Eq(46) we find

Z Sinh(jh w /2kgT)

o

where in obtaining the last line of E€p0), we have used the
identity'®

Mo, s?

2h (ejﬁwC/kBT_ 1) !

(50

—2mh?
mkg
Thus, for the uniform 2D Bose gas, there is no BEC transi-

tion at any finite temperature. In other words, fo¥ 0, Eq.
(46) can accommodate all of the bosons, and we do not have

p =
In(1—e~/keT)

TO= |im
u—0"

(47)

1 Xz
E L,(x)z =—exr{z_l ,

lzl<1. (51

to invoke the population of the ground stdteOf course, at
identically T=0, Eq.(46) vanishes, implying that all of the
particles are in the ground state.

Finally, we observe from Eq45) that for anyT#0, we
have

lim py(s;T)=0,

S—®

(48)

We reemphasize that Eq50) is not an obvious finite-
temperature generalization of H42). In higher dimensions,
F.(x) is a more complicated function of temperature and
dimensionality, and the simple replacement of the Fermi fac-
tor with a Bose occupation factor will not give correct re-
sults.

Settings=0 in Eq. (50) gives the finite-temperature den-
sity of the CBG in a magnetic field of arbitrary strength:
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o

ainlkgT
PD= 1 & sin(jhwd2KkgT)

Mo - 1

T 27k & aen—mikgT_ 1" (52

Note that asv.— 0, EQq.(52) reduces to Eq46). Thus, as in
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M keT;
T.)= = — In 1_e—,8cﬁwc/2
p( C) P> 27Th ﬁwc ( )
Mo | KgTe [ 2kgTs
o (56)
27h | hog hwe

where, p-. denotes the density of bosons outside of the
=0 state. The fractional density of particles in the lowest

the field-free casen(T) above represents only the remaining | andau level is then simply given by
bosons outside of the single ground state. Following Sec.

[ITA, the critical temperaturel . is defined byu—fw./2. 2kgT

However, in this limit, the sum in Eq52) has no upper T In( 7o ) T

bound, and we once again find that the 2D CBG does not @:1_ _ = —1-—

condense in a fixed homogeneous magnetic field. p T In(ZKBTc) TS
We now wish to consider the temperature dependence of hwe

the number density of bosons in the presence of a finite mag-

netic field. In this section only, we takg=1/(kgT). Starting
with the second line of Eq52), we have

ej Blu— hwclz)efjnﬂhwc

ej Blp—tiwcl2)

(53

N
S|
=N o
M s

1 1_e_j,3ﬁwc '

Defining z=exd B(u—fwJ2)] andx=exp(—phw.) yields

Moe <@ 2 Moe -
T)= = 7zl x) ¢
p( ) 2mh jzl 1—x 2mh 1'21 {Zo( )
Mo.| z < 2zIx
= + :
27Th 1-z 1'21 1_X]
mo,| z & e lhed?
- < i -
2 1—z+j212 ssnGhopn) | Y

Making the approximation8fiw.<1, we can now write
p(T) as

Mog| z  kgT — Ze 1Ahed?
p(T)= 27h|1—z +ﬁwc jgl ]
mwc V4 kBT _
L _ e Bhogl2
2| T-2 g 28 )}- ©9

The first term in the square brackets of E§5) is immedi-
ately recognized as the density of bosgng.T), in the low-
est Landau leveh=0. We can therefore define a critical
temperaturel;, at which thelowest Landau levebecomes
macroscopically populated. Putting(T;)=0 and u
=hwJ2 in Eq. (55 gives

(N,V—o, N/V=constan}. (57)

Let us now turn briefly to the BEC of a finite number of
ideal bosons in a 1D harmonic trap. This system was recently
discussed by Ketterle and van DrutéfvD),>” where it was
suggested that BEC exists, contrary to previous
predictions®® Their criterion for BEC was the presence of a
macroscopic occupation of the lowest oscillator state below
some temperaturg) .>® Specifically, they showed that the
temperature dependence on the number of particles is given

by
1 ﬁ(,()o
TEOB T oT

where wq is the trap frequencyz=exd (u—fwy/2)/kgT],
andNy=2/(1—-2) are the number of bosons in the lowest-
lying energy state. It is readily shown however, that there is
no thermodynamic signature for the presence of a BEC phase
transition (i.e., in the behavior of the specific hgdor the
ideal 1D trapped Bose g4%Therefore, the strict identifica-
tion of T(CO) with a BEC phase-transition temperature is in-
correct. Nevertheless, E8) is equivalent to Eq(55) un-

der the replacemenb.— wg. In addition, we now see an
obvious formal connection between the critical temperature
T of the 1D ideal harmonically trapped Bose gas, and the
critical temperatureT;, which defines the transition to a
macroscopic occupation of the lowest Landau level in the 2D
CBG. Similarly, the “condensate” fraction obtained by KvD
is identical to our Eq(57), provided we replace. by w,.

An illustration of the sharpness of the transition bel@yy
can be found in Fig. 4 of Ref. 37.

The clear similarities between our results for the 2D CBG
and those of KvD are in fact not so surprising. Recall that the
uniform 2D gas in the presence of a homogeneous magnetic
field has a quantum Hamiltonian whose structure is formally
identical to that of a 1D harmonic oscillator, with the “trap
frequency” being identified with the cyclotron frequency
w..* Therefore, it is entirely reasonable that we should ob-
tain analogous expressions for the fractional occupancy and
critical temperature, since both systems have identical eigen-
value spectrums, vizg,=ho(n+1/2), with o= w. Or wg,
in the 2D CBG and 1D harmonic trap, respectively.

z kgT

2

1-z ﬁwo

, (58)
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1.0 this critical temperature reflects a sharp transition of the sys-
tem to a state in which there is a macroscopic occupation of
0.8 the lowest Landau level. Even though there is no finite-
temperature condensation for the 2D CBG, it is still interest-
™ 0.6 ing to examine what effect the large occupation of the
£ =0 state has on the magnetic properties of the system. To
Q 04 this end, we will now consider the evaluation of the finite-
temperature magnetization of the 2D CBG, and subsequently
0.2 discuss its connection to the M-O effdste also Ref. 33 for
related worl. Although the magnetization of the ideal 2D
0.0 : , : CBG has already been considered by Mawe feel that our
0 ; 2 3 4 derivation is more transparent in that it avoids the introduc-
r tion of the “formal” temperatures and magnetic fields found
in his earlier work. Moreover, our approach clearly high-
FIG. 1. The normalized 1DNisee Eq(50) with r,=0] at vari-  lights the role of the bosons in the lowest Landau level with

ous temperatures. From left to right, the curves correspond téespect to the magnetization of the systemTer T .
T/T;=1.1,0.9,0.7,0.5,0.3,0.1. All lengths and energies have been We begin by considering the 2D CBG in an *acting”
scaled byy#/mo, and7w,, respectively. Note that while there is homogeneous magnetic fieRl', which is related to the ap-
a marked increase in the length scale over which the 1DM decays glied external field8 and the magnetizatiod by the relation
low temperatures, the ideal 2D CBG clearly does not exhibit LRO

as defined by Eq20). B'=B+27M. (60)

In spite of the similarities, however, the interpretation thatThe acting field is then to be identified with the average
we must give to our results is quite different. Specifically, microscopic field in the gas. As in the Fermi gas case, the
while KvD characterize their system as exhibiting a BECMagnetization is evaluated from E@2) with the cyclotron
phase forT<T{, our condensation phenomenon is clearly féquency now given by, =eB'/mc. The grand canonical
not a BEC. This fact is made rigorous by examining the Partition function is once again relafced to the density of the
asymptotic spatial behavior of the 1DM. We can quite arbi-92S by Eq(37), and we readily obtain
trarily setr,=0 in Eg. (50) to obtain

QB) Mo i el#/keT
lim p,(r;T<TZ)=lim M g (Mog/4n)r? v ° 4mh {54 jsinh(jfiwl2keT)
oo (o ATh
* jfiwg/2kgT __ Mo —hiwg/2)/kgT
ws e =5 kel —In(1—el#hoc2)/keT)
& sin(jhwd2KkgT) 7
2 » o
M, r 1 i(u—fiwg)lkgT
xXexp — . =0. +—= —— .
;{ 2fi (gifhwclkeT 1) 2 J-Z‘l jsinh(jzw/2kgT) (62)

(59 Using Eq.(32), we obtain for the finite-temperature magne-

Therefore, while we have a sharp, macroscopic occupation dfzation
the lowest Landau level fof <T;, the system exhibits no

LRO in the Ee_nrose-Onsage_r sense, meaning that we cannot _ ¢ K T{ —In(1— el fiac2)/keT)

call the statistical accumulation of bosons a BEC. Equation 2mhe B

(59) also serves as an unambiguous definition of BEC in the .

2D CBG, as it clearly distinguishes the macroscopic occupa- 1« erfedkeT ew, z
tion of then=0 state from the BEC phenomenon, which is + 2 =1 j sinh(jhwd/2kgT) + dmcl 1—-z

associated with the condensation into a single quantum state

and the presence of LRO. The absence of LRO at any finite *
temperature is illustrated in Fig. 1, where we present the —2 [
normalized 1DM at various temperatures. The key point to =1
be taken from this figure is that the 1DM decays rapidly to o kaT .
zero after only a few magnetic lengths, and thus the ideal 2D + } gln feolte COSK]ﬁwC/ZkBT)}
CBG does not possess LRO beldy . 2 [sinhjAw/2kgT)]?

Equation(62) is an exact result valid for all temperatures and

magnetic-field strengths. Notice that E§2) also bears a
In Sec. Il B above, we have argued that the 2D CBG doestriking similarity to the Fermi gas result given by H89).

not undergo a transition to the BEC state Tox T . Rather, Indeed, Eq(62) could have been written down immediately

ej (n=hawc)/kgT

SinM(j % wJ/2kgT)

(62

C. Magnetization and the Meissner-Ochsenfeld effect
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from Eq. (38) (which is valid only for u<eg) by simply
removing the 1) " coefficient in thej sum of the Fermi
grand canonical potential.

In the limitZw./kgT<1 (i.e., weak acting homogeneous
magnetic field, we find that the second term in E¢(62)
exactly cancels the last term, leavinG<T)

ew, z e 1—elr—hoc)lkgT
=— +
4mc 1—z

kgTIn

1— e(,u,—ﬁwc/Z)/kBT ’
(63)

The logarithmic term in Eq(63) is negligible compared to
the first term, and with the aid of E¢55), we may write

| 2kBT)
T N Fwg

M= B 1 hwe
=~ MoPo™ — MoP T (ZkBT:)

€In

hwe

= MopP

-
1‘;) (N—o, V-, N/V=constant,
C

(64)

whereu=e#f/2mcis the Bohr magneton. M&Yhas earlier
obtained an expression similar to E§4), but using a very
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T
T

such that foB>B;, the applied field will penetrate the gas
with a magnetic inductioB’~B— B} . Below B, the field
is almost entirely expelled, which can be viewed as an “im-
perfect” M-O effect. In other words, fof <T;, the macro-
scopic occupation of the lowest Landau level leads to a near
perfect M-O effect, and the magnetic properties of the 2D
CBG are essentially those of a superconductor, in spite of the
absence of a BEC phase transition. We reemphasize here that
our results are for a noninteracting gas. Thus, it is surprising
that one can have @ear perfegtM-O effect in the absence
of a BEC. Although one could make the argument that the
neutral 2D Bose gas can also exhibit a superfluid phase with-
out the presence of a BEC, it should be recalled that in that
system, the presence of interactions is crucial for the onset of
the superfluidity(such a transition is sometimes calledy
namical phase transition This is not the case for the ideal
2D CBG in a magnetic field, where the M-O effect has a
purely kinematical origin associated with the statistical accu-
mulation of bosons into the lowest Landau levee., the
M-O effect occurs even in the absence of interparticle inter-
actions.

Finally, we wish to point out that the finit€-behavior of

Be=2muop| 1- (68)

different analysis. Our approach clearly illustrates that belowthe magnetization of the 2D CBG above is not the same as in
T, the macroscopic occupation of the lowest Landau levethe case of a perfect diamagnet. Specifically, a perfect dia-
leads to a magnetization that is analogous to the result olmagnet in afixed homogeneous magnetic field has no field
tained in the condensed CBG, even though here, there iexpulsion as the system is cooled to lower temperatures.
strictly no BEC. It is important to note that because there isHowever, when the magnetic field changes in time, the in-
no BEC phase, we havd (B’'—0)=0, so that the system duced currents in the metal generate a magnetic field that is
does not exhibit a spontaneous magnetization. The absend&ectly opposed to the applied field, and one obtains perfect
of a spontaneous magnetization is sufficient to show that théeld expulsion(i.e., as dictated by Lenz’s law for a perfect
system does not exhibit a complete field expulsion Tor diamagnet
<T; (i.e., there is no perfect M-O effectNevertheless, at
identically T=0, the gas does have a nonzero spontaneous
magnetization and consequently, exhibits a perfect M-O ef-
fect, characterized by Ed64) (at T=0) but with p inter-
preted as theondensatelensity.

Returning now to the case di<TZ, we have from Eq.
(64)

IV. SUMMARY AND CONCLUSIONS

We have investigated the thermodynamic and magnetic
properties of the ideal 2DEG and 2D CBG from the point of
view of the ILT method, which is not widely used in the
literature. Although the technique is valid in arbitrary dimen-
sions, we have focused ah=2. In the case of the 2DEG,
we were able to obtain a closed-form, analytical expression
for the 1DM which is valid at any temperature and arbitrary
magnetic-field strengths. The 1DM was then used to examine
explicit energy density functionals for the 2DEG in a mag-
netic field, and extended to the inhomogeneous electron gas
through the LDA. The zero-temperature analytical results ob-

, Mo€
2mhc 1—2’

M(B')=—B (65)

and we recall that the factar/(1—z)>1 in this regime.
From Eq.(60), we immediately obtain

B’=«B, 66 tained previously by other authors, e.g., Refs. 16,18 and 25,

where were shown to be special cases of our more general analysis.
When applied to the CBG, the ILT also gave an exact,
e z ! closed-form expression for the 1DM at arbitrary tempera-

K= ( 1+Moa E) . 67 tures and magnetic-field strengths. One particularly notewor-

thy consequence of the method is thmeiversal functional
Thus, for weak magnetic fields ada<T;, k~0, indicating  form of the 1DM for both the Bose and Fermi gases. This
that there is a nearly complete expulsion of the magneticesult is nontrivial, and we have highlighted that it is very
field from the gas. As a result, we can define a critical magdifficult to establish using the standard wave-function based
netic field approaches.
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We have also illustrated that the thermodynamic propergeneous magnetic fielgjsas we have illustrated here in the
ties of the 2D CBG in a magnetic field are formally identical case of a 2D CBG.
to the “BEC-like” transition recently shown to take place in  Of course, all of the above results for the CBG in a mag-
the ideal Bose gas in 1D harmonic tr¥{pln spite of the netic field have been obtained for the ideal case. It would be
similarities, however, the 2D CBG does not condense belovef great interest to also include the Coulomb interactions
T:, but rather undergoes a transition to which there is &etween the charged bosons and examine the possibility of
macroscopic occupation of the lowest Landau level. In thid-RO and BEC in this situation. To this end, we mention that
way, we were able to connect the critical temperature foDavoudi et al*> have recently considered the ground-state
BEC in the 1D harmonically confined Bose gas to the criticalproperties(i.e., T=0) of the 2D CBG interacting via a loga-
temperaturd; for the macroscopic occupation of the lowest fithmic potential, while Strepparolet al*® have investigated
Landau level in the 2D CBG. The absence of the BEC tranthe 2D CBG interacting via e’/r potential at finite tempera-
sition was made more rigorous by establishing the lack ofures. In the latter study, the authors found strong evidence
LRO in the asymptotic spatial behavior of the 1DM. The for quasi-LRO, characterized by the 1DM exhibiting an
macroscopic occupation of the lowest Landau level belgw asymptotic algebraic power-law decay. However, neither
was subsequently shown to have a profound effect on thBefs. 42 and 43 have considered the consequences of includ-
magnetic properties of the system. In particular, the largénd an external magnetic field for the interacting 2D CBG.
number of bosons in the=0 state were unambiguously We plan on presenting the results of such an investigation in
related to the onset of aessentially perfect M-O effect for @ future publication.
T<TZ, just as in the condensed, superconducting CBG.
Therefore, our results for the 2D CBG clearly show that
there is asharp transition (i.e., a well-defined critical tem-
peratureT ;) below which the gas exhibits the essential equi- B.V.Z. and D.A.W.H. would like to acknowledge financial
librium features of a superconductor. This naturally leads tesupport from a University of Otago Research Grant and the
the conclusion that while a condensed phase is a sufficienSAT Linkages Fund of the Royal Society of New Zealand.
condition for the CBG to exhibit a superconducting state, itB.V.Z. would also like to thank Professor Dr. R. K. Bhaduri
may not be a necessary conditi¢at least for weak homo- for useful comments and suggestions.
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