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Charged two-dimensional quantum gas in a uniform magnetic field at finite temperature
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We present closed-form, analytical expressions for the thermodynamic properties of an ideal, two-
dimensional~2D! charged Fermi or Bose gas in the presence of a uniform magnetic field of arbitrary strength.
We consider both the homogeneous quantum gas~in which case our expressions areexact! and the inhomo-
geneous gas within the local-density approximation. Our results for the Fermi gas are relevant to the current-
density-functional theory of low-dimensional electronic systems in magnetic fields. For a 2D charged Bose gas
~CBG! in a homogeneous magnetic field, we show that the uniform system undergoes a sharp transition at a
critical temperatureTc

! , below which there is a macroscopic occupation of the lowest Landau level. An
examination of the one-body density matrix, however, reveals the absence of long-range order, thereby indi-
cating that the transition cannot be interpreted to a Bose-Einstein condensate. Nevertheless, forT,Tc

! and
weak magnetic fields, the system still exhibits magnetic properties which are practically indistinguishable from
those of a condensed, superconducting CBG. We therefore conclude that while a condensate is a sufficient
condition for the ideal CBG to exhibit a superconducting state, it may not be a necessary condition.

DOI: 10.1103/PhysRevB.69.024520 PACS number~s!: 05.30.Jp, 05.30.Fk
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I. INTRODUCTION

In a series of recent papers, we have calculated clo
form, analytical expressions for the single-particle and n
local properties of a harmonically confined, ideal gas of f
mions ~bosons! at both zero and finite temperatures
arbitrary dimensions.1–3These analytical results have alrea
provided some insight into the role of dimensionality, inte
actions, and the quantum statistics of ultracold Fermi a
Bose gases, which have recently been created in
laboratory.4,5 The central theoretical tool used in these stu
ies is the Bloch density matrix, which is related to the on
body density matrix~1DM! through an inverse Laplac
transform~ILT !.6 The ILT method yields,in a single calcu-
lation, the finite-temperature 1DM for both fermions an
bosons without having to resort to the single-particle wa
functions of the associated trapping potential; one only
quires a knowledge of the Bloch density matrix, which
independent of the quantum statistics of the gas. Owing
the current topical interest in these systems@e.g., Bose-
Einstein condensation~BEC! in the trapped Bose gas and th
possibility of a BCS-BEC crossover in the trapped Fer
gas#, our applications of the ILT method have focused exc
sively on the harmonically trapped quantum gases.

It is also well known that the uniform quantum gases c
exhibit remarkable physical properties, particularly in lo
dimensions, where the strong quantum confinement in on
more directions can result in new phenomena associated
the reduced dimensionality~see Secs. II and III for details!.
Motivated by the success of the ILT method in the trapp
quantum gases, this paper then is devoted to applying
same technique to study the thermodynamic and magn
properties of the uniform quantum gases. Specifically,
two systems that we wish to investigate are the unifo
ideal two-dimensional electron gas~2DEG! and the ideal
charged Bose gas~CBG!. While our approach is valid in any
0163-1829/2004/69~2!/024520~13!/$22.50 69 0245
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dimension, we will focus our attention on the case of 2D
the following reasons:~i! the 2D calculation is the mos
transparent application of the ILT technique and~ii ! the low-
dimensional systems display physical properties not foun
their higher-dimensional counterparts. Moreover, the I
method provides a powerful, alternative approach to wha
usually found in the literature, and readily yields analytic
results for both Fermi and Bose systems which are otherw
very difficult ~if not impossible! to obtain using the standar
wave-function based approaches~see, e.g., Ref. 7!. Indeed,
the beauty of the ILT method is that it simultaneously yiel
universal, finite-temperature results for both Fermi and Bo
statistics with very little effort. Thus, many of the analytic
expressions for the uniform quantum gases, found previou
by other authors, will be seen to be special cases of our m
general results, which to our knowledge, have not appea
in the literature.

The rest of our paper is organized as follows. In Sec. I
exact, closed-form expressions for the finite-temperature
zero-temperature 1DM are provided. Then, in Sec. II B,
make use of the local-density approximation~LDA ! to ex-
tend the exact results of the uniform gas to inhomogene
Fermi systems. Using the 1DM, we will provide in Sec. II
explicit energy density functionals for the 2DEG in a ma
netic field, which should be useful in the current-dens
functional theory ~CDFT! of inhomogeneous Ferm
systems.8,9 We conclude our investigation of the 2DEG b
presenting some analytical results for the magnetic prope
in Sec. II D.

The thermodynamic and magnetic properties of the
CBG are then considered in Sec. III. Sections III A and III
focus on the thermodynamics of the 2D CBG in both ze
and finite magnetic fields, respectively. The finit
temperature magnetic properties of the 2D CBG are t
considered in Sec. III C, with particular emphasis on the p
sibility of a superconducting transition at sufficiently lo
©2004 The American Physical Society20-1
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temperatures. Finally, in Sec. IV, we will present our closi
remarks.

II. FERMI GAS

The 2DEG that we consider is made up of a system oN
independent electrons of chargee and massm in a uniform
magnetic field perpendicular to the plane of confineme
The 2DEG is immersed in a background medium with
uniform positive charge, so that the total system is cha
neutral. Consequently, we assume that screening effects
der the Coulomb interactions short ranged, and the gas
be treated as being approximately noninteracting. The 2D
itself is typically fabricated using the electronic properties
III-V semiconductor heterostructures~e.g., GaAs-AlGaAs!.
The use of a ‘‘layer-by-layer’’ molecular-beam epitaxi
growth processes results in atomically smooth heterost
ture interfaces which contain the 2D gas.

This low-dimensional Fermi system has associated wit
a number of interesting phenomena, such as the integer
fractional quantum Hall effect,10 de Haas–van Alphen
oscillations,11 and the fractal energy spectrum of the Ho
tadter butterfly,12 to name a few. Moreover, using highly con
trollable lithographic and/or metallic gate technologies,
2DEG’s dimensionality can be further lowered to quasi-
~i.e., quantum wires! or quasi-0D~i.e., quantum dots!, with
additional dimensionally dependent properties manifes
themselves in the form of, e.g., collective excitations13 and
magnetoresitivity oscillations.14

We begin this section by evaluating the exact fini
temperature 1DM for the 2DEG subjected to an extern
homogeneous magnetic field. From the 1DM, we will co
struct explicit energy density functionals which may then
used to formulate a state-of-the-art CDFT of low
dimensional Fermi systems. As all of our calculations
done at finite temperatures, the important low-tempera
properties of the gas~i.e., T50) are readily obtained as
special case of the finite-temperature results.

A. Uniform 2DEG

Without loss of generality, we choose the symmet
gauge, where the vector potential readsA5
(2By/2,Bx/2,0). Under these conditions, the zer
temperature Bloch density matrix is known to be given b15

C0~r1 ,r2 ;b!5
mvc

4p\

1

sinh~\vcb/2!

3expS 2 i
mvc

2\
~x2y12y2x1! DexpS 2

mvc

4\

3Ur12r2U2coth~\vcb/2! D , ~1!

wherevc5eB/mc is the cyclotron frequency andb is to be
interpreted as a mathematical variable which in genera
02452
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taken to be complex, andnot the inverse temperature 1/kBT.
For later convenience, we introduce the center-of-mass
relative coordinates:

r5 1
2 ~r11r2!, s5r12r2 , ~2!

which allow us to write the Bloch density matrix as

C0S r1
s

2
,r2

s

2
;b D5

mvc

4p\

1

sinh~\vcb/2!

3expS 2 i
mvc

2\
~x2y12y2x1! D

3expS 2
mvc

4\
s2coth~\vcb/2! D .

~3!

At finite temperature, the~spin-averaged! one-body density
matrix can be obtained from the zero-temperature Bloch d
sity matrix by using the relation6

r1~r1 ,r2 ;T!5L m
21F 2

b
CT~r1 ,r2 ;b!G , ~4!

where

CT~r1 ,r2 ;b!5C0~r1 ,r2 ;b!
pbkBT

sin~pbkBT!
~ fermions!

~5!

is the finite-temperature Bloch density matrix,m is the
chemical potential, andkB is the Boltzmann constant. In Eq
~4!, the ILT is two sided, thereby allowingm to take on
negative values. Making use of the identity2

exp$2ycoth~\vcb/2!%5 (
n50

`

Ln~2y!e2y$e2n\vcb

2e2(n11)\vcb%, ~6!

with y[mvcs
2/4\, leads to the following expression for th

zero-temperature Bloch density matrix:

C0Sr1
s

2
,r2

s

2
;b D5

mvc

4p\

1

sinh~\vcb/2!
e2 i (mvc/2\)(x2y12y2x1)

3 (
n50

`

Ln~2y!e2y$e2n\vcb2e2(n11)\vcb%. ~7!

The finite-temperature 1DM is then given by taking the IL
as given by Eq.~4!. Combining Eq.~7! with Eq. ~5! gives

r1Sr1
s

2
,r2

s

2
;TD

5
mvc

2p\
e2 i (mvc/2\)(x2y12y2x1)(

n50

`

e2yLn~2y!

3Lm
21F ~e2n\vcb2e2(n11)\vcb!

sinh~\vcb/2!

pkBT

sin~pkBTb!G . ~8!
0-2
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Making the change of variablesm̃52m/\vc , T̃

52kBT/\vc , b̃5\vcb/2, and applying the convolution
theorem for two-sided ILT’s, we obtain
e

r1S r1
s

2
,r2

s

2
;TD5

mvc

2p\
e2 i (mvc/2\)(x2y12y2x1) (

n50

`

e2yLn~2y!L m̃
21F ~e22nb̃2e22(n11)b̃!

sinh~ b̃ !

pT̃

sin~pb̃T̃!
G

5
mvc

p\
e2 i (mvc/2\)(x2y12y2x1) (

n50

`

e2yLn~2y! (
,50

` H E
2`

`

dtd„t2~2,11!22n…
1

e(t2m̃)/T̃11

2E
2`

`

dtd„t2~2,11!22~n11!…
1

e(t2m̃)/T̃11
J . ~9!

In going from the first to second line in Eq.~9!, we have made use of the following two-sided ILT’s:2

L h
21F e2nb

sinh~b!G52(
k50

`

d„h2~2k11!2n…Q~h!, ~10!

L m
21F pkBT

sin~pbkBT!G5
1

FexpS 2
m

kBTD11G . ~11!

Now, all but the first term arising from the,50 sum give vanishing contributions to Eq.~9!. Therefore, upon restoring th
original units, the finite-temperature 1DM reduces to

r1S r1
s

2
,r2

s

2
;TD5

mvc

p\
e2 i (mvc/2\)(x2y12y2x1)e2(mvc/4\)s2

(
n50

`

LnS mvc

2\
s2D 1

e(«n2m)/kBT11

5
mvc

p\
e2 i (mvc/2\)(x2y12y2x1)e2(mvc/4\)s2

(
n50

`

Fn~m!LnS mvc

2\
s2D , ~12!
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where«n5\vc(n11/2) are the discrete Landau-level ene
gies arising from the applied magnetic field,n denotes the
Landau-level index, and

Fn~m!5
1

e(«n2m)/kBT11
~ fermions!. ~13!

Equation ~12! represents the exact spin-averaged fin
temperature 1DM for a homogeneous 2DEG in the prese
of a magnetic field of arbitrary strength. The single-parti
density is immediately obtained by settings50. Note that,
for higher dimensions, the functional form for the 1DM
identical to Eq.~12!, but with the thermal factorFn(m),
being replaced by a more complicated function which c
tains the dimensional and temperature dependencies. T
02452
-
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-
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while Eq. ~12! may appear to be rather obvious, i.e., it loo
as if we have simply included by hand the Fermi-Dirac d
tribution function, thisis not the case. Indeed, it is a highl
nontrivial task to show that the finite-temperature 1DM h
the form of Eq.~12! ~in any dimension!, if one starts from
the single-particle wave functions.2 The main difficulty lies
in the fact that, unlike the Bose-Einstein distribution fun
tion, the Fermi-Dirac occupation factor cannot be expand
as a power series for arbitrary temperatures. Conseque
the summation over the Landau-level index is exceedin
difficult to execute in closed form.

It is instructive to also consider theT→0 limit of Eq.
~12!, in which case the Fermi distribution function goes ov
to the Heaviside step function, viz.,
0-3
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1

e(«n2m)/kBT11
→Q~«F2«n!. ~14!

In a magnetic field at zero temperature, one hasn
50,1,2, . . . ,nF21 Landau levels fully occupied withr
5mvc /p\ electrons; thenF level will only be partially oc-
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cupied withlr electrons (0,l,1). If we focus on the case
of closed shells, we then obtain

«F5\vc~nF2111/2!5\vc~nF21/2! ~15!

for the Fermi energy. As a result, Eq.~12! in the zero-
temperature limit reduces to the simple expression
r1S r1
s

2
,r2

s

2D5
mvc

p\
e2 i (mvc/2\)(x2y12y2x1)e2(mvc/4\)s2

(
n50

nF21

LnS mvc

2\
s2D

5
mvc

p\
e2 i (mvc/2\)(x2y12y2x1)e2(mvc/4\)s2

LnF21
(1) S mvc

2\
s2D . ~16!
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The last line in Eq.~16! has been obtained by making use
the summation relation(n50

m Ln
(a)(x)5Lm

(a11)(x). Note that
while the 1DM depends on the chosen gauge, all phys
observables are manifestly gauge invariant. We point out
Ghosh and Dhara,16 have also obtained an expression ide
tical to Eq. ~16!, but through an entirely different approac
@see their Eq.~13!#. Indeed, their zero-temperature result
seen to be a special case of our more general, fin
temperature 1DM given by Eq.~12!.

The zero-temperature single-particle density is readily
tained by settings50 in Eq. ~16!, giving

r5
mvc

p\
nF5

mvc

p\ F «F

\vc
1

1

2G , ~17!

where in the last line of Eq.~17!, @•# denotes taking the
integer part, with a floor of unity. In particular, asvc→`,
r→mvc /p\ @see also Eq.~19! below#.

It is not difficult to examine the two limiting cases of th
T50 1DM, viz., the vanishing and high-field limits. In th
former case, we note that asvc→0, nF'«F /\vc→`.
Therefore, for a vanishing magnetic field, Eq.~16! behaves
asymptotically as

r1S r1
s

2
,r2

s

2D;
m«F

p\2

1

nF
LnF

(1)S s2

nF

m«F

2\2 D ~nF→`!

5
1

ps
A2m«F

\2
J1SA2m«F

\2
sD , ~18!

whereJ1(x) is a cylindrical Bessel function. Equation~18! is
just the 1DM for a uniform 2DEG withB50. For extremely
high magnetic fields, only the lowest Landau level is occ
pied, and we immediately get from Eq.~16! ~i.e., retaining
only then50 term!

r1S r1
s

2
,r2

s

2D5
mvc

p\
e2 i (mvc/2\)(x2y12y2x1)e2(mvc/4\)s2

.

~19!
al
at
-
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Thus, at low-temperatures and high magnetic fields,
Fermi gas ‘‘condenses’’ into the lowest Landau level,n50.
However, it is important to realize that this is not a conde
sate in the sense of the phase transition that takes place i
trapped or uniform Bose gases. The easiest way to see th
to note that the highly degenerate lowest Landau level d
not represent aunique quantum stateinto which all of the
fermions have condensed. Indeed, it is well known since
early work of Penrose and Onsager17 that for a homogeneou
system, the phenomenon of a condensate is intimately rel
to the presence of long-range order~LRO! in the 1DM,
namely,

lim
s→`

r1S r1
s

2
,r2

s

2D5
N0

V
, ~20!

whereV is the volume of the system andN0 is the number of
particles in the ground state. Thus, we see immediately fr
Eq. ~19! that even atT50, there is no LRO, and the syste
continues to behave as a normal Fermi gas. We will co
back to the issue of LRO in Sec. III during our discussion
BEC in the 2D CBG.

B. Inhomogeneous 2DEG: Local-density-approximation

In the case where the 2DEG is further confined by a o
body potentialV(r ) ~i.e., the potential energy determined b
a self-consistent field theory!, one can make use of the LDA
in order to obtain the Bloch density matrix for the inhom
geneous gas. The essential simplification is that the same
electron wave functions are used locally so that the ene
levels are all shifted uniformly byV(r ). As a result, the
zero-temperature Bloch density matrix within the LDA
simply given by6

C0
LDAS r1

s

2
,r2

s

2
;b D5C0S r1

s

2
,r2

s

2
;b Dexp@2bV~r !#,

~21!

whereC0 is given by Eq.~7!. As in the uniform case, an ILT
of Eq. ~21! yields the LDA to the 1DM, namely,
0-4
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r1
LDAS r1

s

2
,r2

s

2
;TD

5
mvc

p\
e2 i (mvc/2\)(x2y12y2x1)e2(mvc/4\)s2

3 (
n50

`

LnS mvc

2\
s2D 1

e[«n2m(r )]/kBT11
. ~22!

As expected, the only modification from Eq.~12! is that the
chemical potential is replaced bym→m(r )5m2V(r ). It
should be pointed out that Pfalzner and March18 have previ-
ously attempted to find analytical, closed-form expressi
for the 1DM of the inhomogeneous electron gas in a m
netic field within the LDA~i.e., Thomas-Fermi approxima
tion! at zero temperature. However, they were unable to ex
plicitly perform the ILT of the Bloch density matrix fo
arbitrary magnetic fields, and in contrast to the present w
their analysis was limited to a numerical implementation
the ILT method.

C. Energy density functionals

1. Exchange energy density

Armed with the knowledge of the 1DM it is now possib
to evaluate in closed form the exchange energy den
«ex(r ) at any temperature and magnetic-field strength. Si
the calculation of«ex(r ) is essentially the same as in th
LDA and uniform gas limits, we will focus our attention o
the uniform 2DEG, where our analytical expressions are
act.

For simplicity, let us first consider theT50 case for
which the exact 1DM is given by Eq.~16!. The exchange
energy is then given by

«ex52
e2

4 E 1

s UrS r1
s

2
,r2

s

2D U2

ds

52e2
p

2 S mvc

p\ D 2E e2(mvc/2\)s2FLnF21
(1) S mvc

2\
s2D G2

ds

52
e2

p S mvc

2\ D 3/2E x21/2e2x@LnF21
(1) ~x!#2dx, ~23!

where in the last line, we have changed over to the varia
x5mvcs

2/2\. We now make use of the integral3

I m,n~a,b,g!5E
0

`

xae2xLm
b ~x!Ln

g~x!dx

5
G~11a!G~n1g11!G~b2a1m!

G~m11!G~n11!G~11g!G~b2a!

33F2@11a2b,2n,11a;11g,1

1a2b2m;1#, ~24!

where pFq@a,b,c;d,e;z# is the generalized hypergeome
ric function,19 to obtain
02452
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«ex52
e2

A2p
S mvc

\ D 3/2

nF

G~nF11/2!

G~nF!

33F2F2
1

2
,12nF ,

1

2
;2,

1

2
2nF ;1G . ~25!

Once again, we point out that the authors of Ref. 16 h
also calculated the exchange energy density atT50 ~see also
Refs. 20–22 for earlier related work on this problem!. How-
ever, a direct comparison of our Eq.~25! with their Eq.~19!
suggests that the two expressions are not in agreement.
is quite surprising since our respective expressions for
T50 1DM were found to be mathematically identical. Und
the assumption that none of us have made any trivial alge
mistakes, the apparent discrepancy between the two re
must be a consequence of our different analytical
proaches. In fact, this is entirely the case, and we have
solved the issue by proving the following exact finite su
mation relation:23

(
k50

nF21

$G~nF1k11!G~2k1 1
2 !/@G~nF2k!G~2k12!

3G~k12!G~k11!#% 2F1@2nF1k11,2k1 1
2 ;2k

12;2#

52
G~nF1 1

2 !

G~nF! 3F2F2
1

2
,12nF ,

1

2
;2,

1

2
2nF ;1G . ~26!

Using this identity in Eq.~19! of Ref. 16 establishes that ou
zero-temperature expressions for the exchange energy
sity are completely equivalent. A plot of the zero-temperat
exchange energy can be found in Fig. 1 of Ref. 16.

The finite-temperature calculation is analogous to theT
50 case, with the 1DM now being given by Eq.~12!. The
central difference between the zero- and finite-tempera
calculations is that we have to evaluate the integralI n,k
(21/2,0,0). From Eq.~24!, we readily obtain the finite-
temperature exchange energy density, viz.,

«ex~T!52
e2

p S mvc

2\ D 3/2

(
n50

`

(
k50

`

Fn~m!Fk~m!
G~n11/2!

G~n11!

33F2F1

2
,2k,

1

2
;1,

1

2
2n;1G . ~27!

To our knowledge, Eq.~27! is a new result, which is valid a
all temperatures and magnetic-field strengths. It is w
known from numerical investigations that the sharp ‘‘sa
tooth’’ oscillations found in theT50 thermodynamic prop-
erties of the 2DEG in a magnetic field are smoothed ou
finite temperatures.6

2. Kinetic-energy density

The kinetic-energy density at zero or finite temperature
also readily evaluated from the 1DM. Specifically, in th
symmetric gauge, the kinetic-energy density is evalua
from the expression
0-5
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«kin5
1

2m H S 2 i\
]

]x
1

eBy

2c D 2

1S 2 i\
]

]y
2

eBx

2c D 2J r1~r1 ,r2 ;T!ur15r2
. ~28!

At low temperature, the magnetic-field-dependent osci
tions ~associated with the filling of the Landau levels! are
most pronounced. Thus, the zero-temperature kinetic en
is of particular interest, and from Eq.~28!, we immediately
obtain

«kin5
mvc

2

2p
nF

2 . ~29!

Using Eq.~17! for the single-particle density, we obtain th
zero-temperature kinetic-energy density functional

«kin@r#5p
\2

2m
r2. ~30!

The above kinetic-energy density has the same functio
form as that of the free 2DEG in the absence of a magn
field, but here, the magnetic-field dependence is implic
contained in the densityr. This interesting result is unique t
2D, since in 3D, the form of the kinetic-energy function
depends explicitly on the strength of the magnetic field. F
example, in the strong-field regime one has24

«kin
3D@r#5

\vc

2
r1

2p4\4

3m3vc
2
r3, ~31!

which is very different from the zero-field kinetic-energ
functional.6

Note that the functionals derived here, which are forma
exact in the uniform case, can also be used in the CDFT
inhomogeneous electron systems~i.e., within the LDA!. The
outline for such an implementation can be found in Refs
and 16.

D. Finite-temperature magnetization: Landau diamagnetism

To close our investigation of the 2DEG, we now briefl
consider some analytical results for the finite-temperat
magnetization. In keeping with our previous calculations,
do not consider the Pauli paramagnetism associated with
electron spin interacting with the magnetic field in this se
tion.

The magnetization is evaluated from the thermodyna
identity,

M ~B,T!52
1

V S ]V~B!

]B D
m,T

52
e

mcVS ]V~vc!

]vc
D

m,T

,

~32!

where the grand canonical partition function~spin averaged,
per unit volume! for the 2DEG is given by the well-known
expression
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V~B!

V
52kBT

mvc

p\2 (
n50

`

ln$11exp@~m2«n!/kBT#%.

~33!

In the above,vc and «n have the same meaning as befo
From Eq.~32!, we immediately obtain

M5
e

pc\2
kBTF (

n50

`

ln~11e(m2«n)/kBT!

2
1

kBT (
n50

`

«n

1

exp@~«n2m!/kBT#11G . ~34!

Equation ~34! is an exact result. At zero temperature w
readily find that it reduces to

M ~B,T50!5
e

pc\2
kBTF (

n50

nF21
~«F2«n!

kBT
2

1

kBT (
n50

nF21

«nG
5

e

pc\2
@nF«F2nF

2\vc#. ~35!

Equation~35! is in agreement with the results found in Re
25 @i.e., see their Eq.~32b!#, where the magnetic propertie
of the 2DEG were considered only at zero temperature.
temperatures for whichm,«05\vc/2, the Fermi-Dirac oc-
cupation factor can be expanded as a power series, and
density of fermions can be written as

r5
mvc

2p\ (
j 51

`

~21! j 11
ej m/kBT

sinh~ j \vc/2kBT!
~m,«0!.

~36!

Equation~36! is related to the grand canonical partition fun
tion through the thermodynamic identity,

r52
1

V

]V~B!

]m
. ~37!

An integration of Eq.~37! with respect tom then yields
~again, only form,«0)

V~B!

V
52

mvc

2p\
kBT(

j 51

`

~21! j 11
ej m/kBT

j sinh~ j \vc/2kBT!

52
mvc

p\
kBTH ln~11e(m2«0)/kBT!

1
1

2 (
j 51

`

~21! j 11
ej (m2\vc)/kBT

j sinh~ j \vc/2kBT!J . ~38!

A direct application of Eq.~32! gives
0-6
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M5
e

pc\
kBTF ln~11e(m2\vc/2)/kBT!1

1

2 (
j 51

`

~21! j 11

3
ej (m2\vc)/kBT

j sinh~ j \vc/2kBT!G1
evc

2pc F2
z

11z
2(

j 51

`

~21! j 11

3H ej (m2\vc)/kBT

sinh~ j \vc/2kBT!
1

1

2

3
ej (m2\vc)/kBTcosh~ j \vc/2kBT!

@sinh~ j \vc/2kBT!#2 J G , ~39!

wherez[exp@(m2«0)/kBT)]. To our knowledge, this expres
sion forM (B,T) has not appeared in the literature. Equati
~39! will prove to be useful in our discussion of the magne
properties of the 2D CBG.

III. CHARGED BOSE GAS

The Bose analog of the uniform 2DEG is the 2D CBG.
its simplest incarnation, the CBG consists of a gas of sp
less, charged bosons, coupled to an external, homogen
magnetic field. In analogy with the 2DEG, the bosons
assumed to have a chargee, massm, and are noninteracting
The 2D CBG may be realized from a 3D system with a sm
thicknessdz . If dz is much smaller than the thermal wav
length dz!(2mkBT/4p\2)21/2, the kz momentum will be
frozen in the ground statekz50 and the system may b
considered as a 2D Bose gas. In this light, it has rece
been suggested that the 2D CBG may have some relev
to the theory of superconductivity in the high-temperatu
cuprates where preformed electron pairs~i.e., composite,
spinless, charged bosons! are conjectured to exist.26

The CBG was first investigated in 3D by Osborne,27 and
then substantially improved upon by Schafroth,28 who
showed that itdoes nothave a BEC at any finite temperatu
in the presence of a homogeneous magnetic field, altho
the system does exhibit the essential equilibrium feature
a superconductor@e.g, the Meissner-Ochsenfeld~M-O! ef-
fect#. Following this work, May29 then considered the supe
conductivity of the 2D CBG, and showed that even thou
the system exhibits an essentially perfect M-O effect~as in
3D!, it does not undergo a BEC phase transition at any fin
temperature. Some time later, May30 further generalized
Schafroth’s 3D results to arbitrary dimensions, and poin
out that BEC in the CBG can take place only ifd>5.
Toms31 has subsequently argued that BEC cannot occu
the CBG in any spatial dimensiond, whereas Rojas32 has
suggested that BEC may occur, although the transition
diffuse ~i.e., there is no sharp critical temperature at wh
condensation begins!. Daicic and Frankel33 have also exam-
ined the statistical mechanics of the 2D CBG within the co
text of Mellin integral transforms, thereby confirming an
extending the earlier work of May.29 More recently, Bayindir
and Tanatar34 have used a semiclassical approach to c
cluded that BEC can take place in the CBG in a magn
field, but only in the presence of a crossed electric fie
Thus, irrespective of its current experimental feasibility, t
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issue of BEC in the CBG is still clearly an interesting pro
lem in its own right, and is certainly worthy of further inves
tigation.

Before we go on to discuss the issue of BEC in the
CBG, we would first like to demonstrate how the ILT metho
describes the uniform, ideal 2D Bose gas when the app
magnetic field is switched off. After this brief orientation, w
will in Sec. III B extend these results to the case of a nonz
magnetic field. Then, in Sec. III C, we will consider the ma
netic properties of the system, with particular emphasis
the possibility of a superconducting phase transition be
some critical temperatureTc

! . We once again stress that oth
dimensions are readily studied by using the same proce
outlined below.

A. 2D CBG: BÄ0

When the magnetic field is absent, the ideal CBG is f
mally identical to the well-known neutral, ideal Bose ga
The zero-temperature Bloch density matrix for the trans
tionally invariant 2D system is obtained as follows:

C0S r1
s

2
,r2

s

2
;b D5

1

V (
k

eik•se2b\2k2/2m

5S 1

2p D 2E
0

`

2pkeik•se2b\2k2/2mdk

5
m

2p\2b
expS 2

m

2p\2b
s2D . ~40!

The quantum statistics of the gas are encoded in the the
Bloch density matrix, which for bosons reads@compare with
Eq. ~5!#

CT~r1 ,r2 ;b!5C0~r1 ,r2 ;b!
2pbkBT

tan~pbkBT!
~bosons!.

~41!

It is important to realize here that in obtaining Eq.~40!, we
are assigningzero weightto thek50 term ~i.e., the ground
state!. Therefore, any finite-temperature properties we der
from Eq. ~41! will only describe the thermally excited~i.e.,
normal! state of the gas; the ground state must be trea
separately. Using Eq.~4! ~without the factor of 2 since the
bosons are taken to be spinless!, along with the following
two-sided ILT’s ~Ref. 35!

L «
21Fe2k/b

b G5J0~2Ak«!Q~«!, ~42!

L m
21F2

pkBT

tan~pbkBT!G5
1

FexpS 2
m

kBTD21G , ~43!

we obtain for the thermal part of the 1DM
0-7
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r1S r1
s

2
,r2

s

2
;TD

5
m

2p\2E0

`

J0SA2m«

\2
sD 1

expS ~«2m!

kBT D21

d«

5
m

2p\2 (
j 51

`

ej m/kBTE
0

`

J0SA2m«

\2
sD e2 j «/kBTd«.

~44!

Making the change of variables«5\2x2/(2ms2) and g
5 j \2b/(2ms2), we obtain

r1S r1
s

2
,r2

s

2
;TD5

1

2ps2 (
j 51

`

ej m/kBTE
0

`

xJ0~x!e2gx2
dx

5kBT
m

2p\2 (
j 51

`
ej m/kBT

j
e2kBTms2/(2 j \2).

~45!

Settings50 in Eq. ~45! then yields the normal-state densi
of particles, which we denote byr. , viz.,

r.~T!5
m

2p\2
kBT(

j 51

`
ej m/kBT

j

52
m

2p\2
kBT ln~12em/kBT!. ~46!

At high temperatures, Eq.~46! describes the density ofall of
the particles in the gas. However, as the gas is cooled, it
happen that at some critical temperatureTc

(0) , the excited
states cannot accommodate all of the particles. We have
the superscript on the critical temperature to emphasize
we are in the field-free case. In this scenario, the ground s
of the system must become populated, and the system un
goes what is known as a BEC phase transition. The crit
temperature is then formally defined as the highest temp
ture at which the macroscopic occupation of the lowe
energy state appears. In the homogeneous Bose gas, thi
responds tom(T<Tc

(0))50, and from Eq.~46! we find

Tc
(0)5 lim

m→02

22p\2

mkB

r

ln~12em/kBT!
50. ~47!

Thus, for the uniform 2D Bose gas, there is no BEC tran
tion at any finite temperature. In other words, forTÞ0, Eq.
~46! can accommodate all of the bosons, and we do not h
to invoke the population of the ground state.36 Of course, at
identically T50, Eq. ~46! vanishes, implying that all of the
particles are in the ground state.

Finally, we observe from Eq.~45! that for anyTÞ0, we
have

lim
s→`

r1~s;T!50, ~48!
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thereby reaffirming that at finiteT, there is no BEC becaus
we have no LRO.

B. 2D CBG: BÅ0

Extending the results of Sec. III A to the case of a CB
coupled to an external magnetic field can be done in one
two ways. In the first instance, a brute force calculation p
alleling the field-free case can be performed by replacing
~40! with Eq. ~1!, and then evaluating all of the require
ILT’s. The second, more elegant approach~and the one
which highlights the power of the ILT method! is to simply
note that the Bose and Fermi calculations only differ by
temperature dependence introduced via the thermal B
density matrix. Specifically, we observe that the Bose sta
tics serve only to change the behavior of the functionFn(m),
viz.,

Fn~m!5
1

FexpS «n2m

kBT D21G ~bosons!, ~49!

which was introduced in Sec. II C in the context of the Fer
gas@see Eq.~13!#. As a result,without any further calcula-
tion, we can write down the finite-temperature 1DM for th
charged~spinless! 2D Bose gas in a magnetic field:

r1S r1
s

2
,r2

s

2
;TD

5
mvc

2p\
e2 i

mvc

2\ (x2y12y2x1)e2
mvc

4\ s2

3 (
n50

`

Fn~m!LnS mvc

2\
s2D

5
mvc

4p\
e2 i

mvc

2\ (x2y12y2x1)e2
mvc

4\ s2

3(
j 51

`
ej m/kBT

sinh~ j \vc/2kBT!

3expF2
mvc

2\

s2

~ej \vc /kBT21!
G , ~50!

where in obtaining the last line of Eq.~50!, we have used the
identity19

(
n50

`

Ln~x!zn5
1

12z
expF xz

z21G , uzu,1. ~51!

We reemphasize that Eq.~50! is not an obvious finite-
temperature generalization of Eq.~12!. In higher dimensions,
Fn(m) is a more complicated function of temperature a
dimensionality, and the simple replacement of the Fermi f
tor with a Bose occupation factor will not give correct r
sults.

Settings50 in Eq. ~50! gives the finite-temperature den
sity of the CBG in a magnetic field of arbitrary strength:
0-8
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r~T!5
mvc

4p\ (
j 51

`
ej m/kBT

sinh~ j \vc/2kBT!

5
mvc

2p\ (
n50

`
1

e(«n2m)/kBT21
. ~52!

Note that asvc→0, Eq.~52! reduces to Eq.~46!. Thus, as in
the field-free case,r(T) above represents only the remainin
bosons outside of the single ground state. Following S
III A, the critical temperatureTc is defined bym→\vc/2.
However, in this limit, the sum in Eq.~52! has no upper
bound, and we once again find that the 2D CBG does
condense in a fixed homogeneous magnetic field.

We now wish to consider the temperature dependenc
the number density of bosons in the presence of a finite m
netic field. In this section only, we takeb[1/(kBT). Starting
with the second line of Eq.~52!, we have

r~T!5
mvc

2p\ (
n50

`

(
j 51

`

ej b(m2\vc/2)e2 jnb\vc

5
mvc

2p\ (
j 51

`
ej b(m2\vc/2)

12e2 j b\vc
, ~53!

Defining z5exp@b(m2\vc/2)# andx5exp(2b\vc) yields

r~T!5
mvc

2p\ (
j 51

`
zj

12xj
5

mvc

2p\ (
j 51

`

zj (
,50

`

~xj !,

5
mvc

2p\ F z

12z
1(

j 51

`
zjxj

12xj G
5

mvc

2p\ F z

12z
1(

j 51

`

zj
e2 j b\vc/2

2sinh~ j \vcb/2!G . ~54!

Making the approximationb\vc!1, we can now write
r(T) as

r~T!5
mvc

2p\ F z

12z
1

kBT

\vc
(
j 51

`
zje2 j b\vc/2

j G
5

mvc

2p\ F z

12z
2

kBT

\vc
ln~12ze2b\vc/2!G . ~55!

The first term in the square brackets of Eq.~55! is immedi-
ately recognized as the density of bosons,r0(T), in the low-
est Landau leveln50. We can therefore define a critica
temperatureTc

! , at which thelowest Landau levelbecomes
macroscopically populated. Puttingr0(Tc

!)50 and m
5\vc/2 in Eq. ~55! gives
02452
c.
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r~Tc![r.5
mvc

2p\ F2
kBTc

!

\vc
ln~12e2bc\vc/2!G

'
mvc

2p\ FkBTc
!

\vc
lnS 2kBTc

!

\vc
D G , ~56!

where,r. denotes the density of bosons outside of then
50 state. The fractional density of particles in the lowe
Landau level is then simply given by

r0

r
512

T

Tc
!

lnS 2kBT

\vc
D

lnS 2kBTc
!

\vc
D 512

T

Tc
!

~N,V→`, N/V5constant!. ~57!

Let us now turn briefly to the BEC of a finite number o
ideal bosons in a 1D harmonic trap. This system was rece
discussed by Ketterle and van Druten~KvD!,37 where it was
suggested that BEC exists, contrary to previo
predictions.38 Their criterion for BEC was the presence of
macroscopic occupation of the lowest oscillator state be
some temperatureTc

(0) .39 Specifically, they showed that th
temperature dependence on the number of particles is g
by

N5
z

12z
2

kBT

\v0
lnF12zexpS 2

\v0

2kBTD G , ~58!

where v0 is the trap frequency,z5exp@(m2\v0/2)/kBT#,
and N05z/(12z) are the number of bosons in the lowes
lying energy state. It is readily shown however, that there
no thermodynamic signature for the presence of a BEC ph
transition ~i.e., in the behavior of the specific heat! for the
ideal 1D trapped Bose gas.40 Therefore, the strict identifica
tion of Tc

(0) with a BEC phase-transition temperature is i
correct. Nevertheless, Eq.~58! is equivalent to Eq.~55! un-
der the replacementvc→v0. In addition, we now see an
obvious formal connection between the critical temperat
Tc

(0) , of the 1D ideal harmonically trapped Bose gas, and
critical temperatureTc

! , which defines the transition to
macroscopic occupation of the lowest Landau level in the
CBG. Similarly, the ‘‘condensate’’ fraction obtained by KvD
is identical to our Eq.~57!, provided we replacevc by v0.
An illustration of the sharpness of the transition belowTc

!

can be found in Fig. 4 of Ref. 37.
The clear similarities between our results for the 2D CB

and those of KvD are in fact not so surprising. Recall that
uniform 2D gas in the presence of a homogeneous magn
field has a quantum Hamiltonian whose structure is forma
identical to that of a 1D harmonic oscillator, with the ‘‘tra
frequency’’ being identified with the cyclotron frequenc
vc .41 Therefore, it is entirely reasonable that we should o
tain analogous expressions for the fractional occupancy
critical temperature, since both systems have identical eig
value spectrums, viz.,«n5\v(n11/2), with v5vc or v0,
in the 2D CBG and 1D harmonic trap, respectively.
0-9
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In spite of the similarities, however, the interpretation th
we must give to our results is quite different. Specifica
while KvD characterize their system as exhibiting a BE
phase forT!Tc

(0) , our condensation phenomenon is clea
not a BEC. This fact is made rigorous by examining t
asymptotic spatial behavior of the 1DM. We can quite ar
trarily set r250 in Eq. ~50! to obtain

lim
r→`

r1~r ;T<Tc
!!5 lim

r→`

mvc

4p\
e2(mvc/4\)r 2

3(
j 51

`
ej \vc/2kBT

sinh~ j \vc/2kBT!

3expF2
mvc

2\

r 2

~ej \vc /kBT21!
G50.

~59!

Therefore, while we have a sharp, macroscopic occupatio
the lowest Landau level forT<Tc

! , the system exhibits no
LRO in the Penrose-Onsager sense, meaning that we ca
call the statistical accumulation of bosons a BEC. Equat
~59! also serves as an unambiguous definition of BEC in
2D CBG, as it clearly distinguishes the macroscopic occu
tion of then50 state from the BEC phenomenon, which
associated with the condensation into a single quantum s
and the presence of LRO. The absence of LRO at any fi
temperature is illustrated in Fig. 1, where we present
normalized 1DM at various temperatures. The key point
be taken from this figure is that the 1DM decays rapidly
zero after only a few magnetic lengths, and thus the ideal
CBG does not possess LRO belowTc

! .

C. Magnetization and the Meissner-Ochsenfeld effect

In Sec. III B above, we have argued that the 2D CBG d
not undergo a transition to the BEC state forT<Tc

! . Rather,

FIG. 1. The normalized 1DM@see Eq.~50! with r250] at vari-
ous temperatures. From left to right, the curves correspond
T/Tc

!51.1,0.9,0.7,0.5,0.3,0.1. All lengths and energies have b
scaled byA\/mvc and\vc , respectively. Note that while there i
a marked increase in the length scale over which the 1DM deca
low temperatures, the ideal 2D CBG clearly does not exhibit LR
as defined by Eq.~20!.
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this critical temperature reflects a sharp transition of the s
tem to a state in which there is a macroscopic occupation
the lowest Landau level. Even though there is no fini
temperature condensation for the 2D CBG, it is still intere
ing to examine what effect the large occupation of then
50 state has on the magnetic properties of the system
this end, we will now consider the evaluation of the finit
temperature magnetization of the 2D CBG, and subseque
discuss its connection to the M-O effect~see also Ref. 33 for
related work!. Although the magnetization of the ideal 2
CBG has already been considered by May,29 we feel that our
derivation is more transparent in that it avoids the introd
tion of the ‘‘formal’’ temperatures and magnetic fields foun
in his earlier work. Moreover, our approach clearly hig
lights the role of the bosons in the lowest Landau level w
respect to the magnetization of the system forT,Tc

! .
We begin by considering the 2D CBG in an ‘‘acting

homogeneous magnetic fieldB8, which is related to the ap
plied external fieldB and the magnetizationM by the relation

B85B12pM . ~60!

The acting field is then to be identified with the avera
microscopic field in the gas. As in the Fermi gas case,
magnetization is evaluated from Eq.~32! with the cyclotron
frequency now given byvc5eB8/mc. The grand canonica
partition function is once again related to the density of
gas by Eq.~37!, and we readily obtain

V~B8!

V
52kBT

mvc

4p\ (
j 51

`
ej m/kBT

j sinh~ j \vc/2kBT!

52
mvc

2p\
kBTH 2 ln~12e(m2\vc/2)/kBT!

1
1

2 (
j 51

`
ej (m2\vc)/kBT

j sinh~ j \vc/2kBT!J . ~61!

Using Eq.~32!, we obtain for the finite-temperature magn
tization

M5
e

2p\c
kBTF2 ln~12e(m2\vc/2)/kBT!

1
1

2 (
j 51

`
ej (m2\vc)/kBT

j sinh~ j \vc/2kBT!G1
evc

4pc F2
z

12z

2(
j 51

` H ej (m2\vc)/kBT

sinh~ j \vc/2kBT!

1
1

2

ej (m2\vc)/kBTcosh~ j \vc/2kBT!

@sinh~ j \vc/2kBT!#2 J G . ~62!

Equation~62! is an exact result valid for all temperatures a
magnetic-field strengths. Notice that Eq.~62! also bears a
striking similarity to the Fermi gas result given by Eq.~39!.
Indeed, Eq.~62! could have been written down immediate

to
n
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CHARGED TWO-DIMENSIONAL QUANTUM GAS IN A . . . PHYSICAL REVIEW B69, 024520 ~2004!
from Eq. ~38! ~which is valid only for m,«0) by simply
removing the (21) j 11 coefficient in thej sum of the Fermi
grand canonical potential.

In the limit \vc /kBT!1 ~i.e., weak acting homogeneou
magnetic field!, we find that the second term in Eq.~62!
exactly cancels the last term, leaving (T,Tc

!)

M52
evc

4pc

z

12z
1

e

2p\c
kBTlnF 12e(m2\vc)/kBT

12e(m2\vc/2)/kBTG .

~63!

The logarithmic term in Eq.~63! is negligible compared to
the first term, and with the aid of Eq.~55!, we may write

M52m0r052m0rF 12
T

Tc
!

lnS 2kBT

\vc
D

lnS 2kBTc
!

\vc
D G

52m0rS 12
T

Tc
!D ~N→`,V→`, N/V5constant!,

~64!

wherem05e\/2mc is the Bohr magneton. May29 has earlier
obtained an expression similar to Eq.~64!, but using a very
different analysis. Our approach clearly illustrates that be
Tc

! , the macroscopic occupation of the lowest Landau le
leads to a magnetization that is analogous to the result
tained in the condensed CBG, even though here, ther
strictly no BEC. It is important to note that because there
no BEC phase, we haveM (B8→0)50, so that the system
does not exhibit a spontaneous magnetization. The abs
of a spontaneous magnetization is sufficient to show that
system does not exhibit a complete field expulsion forT
,Tc

! ~i.e., there is no perfect M-O effect!. Nevertheless, a
identically T50, the gas does have a nonzero spontane
magnetization and consequently, exhibits a perfect M-O
fect, characterized by Eq.~64! ~at T50) but with r inter-
preted as thecondensatedensity.

Returning now to the case ofT,Tc
! , we have from Eq.

~64!

M ~B8!52B8
m0e

2p\c

z

12z
, ~65!

and we recall that the factorz/(12z)@1 in this regime.
From Eq.~60!, we immediately obtain

B85kB, ~66!

where

k5S 11m0

e

c\

z

12zD
21

. ~67!

Thus, for weak magnetic fields andT,Tc
! , k'0, indicating

that there is a nearly complete expulsion of the magn
field from the gas. As a result, we can define a critical m
netic field
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Bc
!52pm0rS 12

T

Tc
!D , ~68!

such that forB.Bc
! , the applied field will penetrate the ga

with a magnetic inductionB8'B2Bc
! . Below Bc

! , the field
is almost entirely expelled, which can be viewed as an ‘‘i
perfect’’ M-O effect. In other words, forT,Tc

! , the macro-
scopic occupation of the lowest Landau level leads to a n
perfect M-O effect, and the magnetic properties of the
CBG are essentially those of a superconductor, in spite of
absence of a BEC phase transition. We reemphasize here
our results are for a noninteracting gas. Thus, it is surpris
that one can have a~near perfect! M-O effect in the absence
of a BEC. Although one could make the argument that
neutral 2D Bose gas can also exhibit a superfluid phase w
out the presence of a BEC, it should be recalled that in t
system, the presence of interactions is crucial for the onse
the superfluidity~such a transition is sometimes called ady-
namical phase transition!. This is not the case for the idea
2D CBG in a magnetic field, where the M-O effect has
purely kinematical origin associated with the statistical ac
mulation of bosons into the lowest Landau level~i.e., the
M-O effect occurs even in the absence of interparticle int
actions!.

Finally, we wish to point out that the finite-T behavior of
the magnetization of the 2D CBG above is not the same a
the case of a perfect diamagnet. Specifically, a perfect
magnet in afixed homogeneous magnetic field has no fie
expulsion as the system is cooled to lower temperatu
However, when the magnetic field changes in time, the
duced currents in the metal generate a magnetic field th
directly opposed to the applied field, and one obtains per
field expulsion~i.e., as dictated by Lenz’s law for a perfe
diamagnet!.

IV. SUMMARY AND CONCLUSIONS

We have investigated the thermodynamic and magn
properties of the ideal 2DEG and 2D CBG from the point
view of the ILT method, which is not widely used in th
literature. Although the technique is valid in arbitrary dime
sions, we have focused ond52. In the case of the 2DEG
we were able to obtain a closed-form, analytical express
for the 1DM which is valid at any temperature and arbitra
magnetic-field strengths. The 1DM was then used to exam
explicit energy density functionals for the 2DEG in a ma
netic field, and extended to the inhomogeneous electron
through the LDA. The zero-temperature analytical results
tained previously by other authors, e.g., Refs. 16,18 and
were shown to be special cases of our more general anal

When applied to the CBG, the ILT also gave an exa
closed-form expression for the 1DM at arbitrary tempe
tures and magnetic-field strengths. One particularly notew
thy consequence of the method is theuniversal functional
form of the 1DM for both the Bose and Fermi gases. T
result is nontrivial, and we have highlighted that it is ve
difficult to establish using the standard wave-function ba
approaches.
0-11
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We have also illustrated that the thermodynamic prop
ties of the 2D CBG in a magnetic field are formally identic
to the ‘‘BEC-like’’ transition recently shown to take place
the ideal Bose gas in 1D harmonic trap.37 In spite of the
similarities, however, the 2D CBG does not condense be
Tc

! , but rather undergoes a transition to which there i
macroscopic occupation of the lowest Landau level. In t
way, we were able to connect the critical temperature
BEC in the 1D harmonically confined Bose gas to the criti
temperatureTc

! for the macroscopic occupation of the lowe
Landau level in the 2D CBG. The absence of the BEC tr
sition was made more rigorous by establishing the lack
LRO in the asymptotic spatial behavior of the 1DM. Th
macroscopic occupation of the lowest Landau level belowTc

!

was subsequently shown to have a profound effect on
magnetic properties of the system. In particular, the la
number of bosons in then50 state were unambiguousl
related to the onset of an~essentially! perfect M-O effect for
T,Tc

! , just as in the condensed, superconducting CBG28

Therefore, our results for the 2D CBG clearly show th
there is asharp transition ~i.e., a well-defined critical tem-
peratureTc

!) below which the gas exhibits the essential eq
librium features of a superconductor. This naturally leads
the conclusion that while a condensed phase is a suffic
condition for the CBG to exhibit a superconducting state
may not be a necessary condition~at least for weak homo
v

n

,

,

02452
r-
l

w
a
s
r
l

-
f

e
e

t

-
o
nt
it

geneous magnetic fields!, as we have illustrated here in th
case of a 2D CBG.

Of course, all of the above results for the CBG in a ma
netic field have been obtained for the ideal case. It would
of great interest to also include the Coulomb interactio
between the charged bosons and examine the possibilit
LRO and BEC in this situation. To this end, we mention th
Davoudi et al.42 have recently considered the ground-sta
properties~i.e., T50) of the 2D CBG interacting via a loga
rithmic potential, while Strepparolaet al.43 have investigated
the 2D CBG interacting via ae2/r potential at finite tempera
tures. In the latter study, the authors found strong evide
for quasi-LRO, characterized by the 1DM exhibiting a
asymptotic algebraic power-law decay. However, neit
Refs. 42 and 43 have considered the consequences of in
ing an external magnetic field for the interacting 2D CB
We plan on presenting the results of such an investigatio
a future publication.
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~2000!; M. Hochgräfe, B.P. van Zyl, Ch. Heyn, D. Heitmann
and E. Zaremba,ibid. 63, 033316~2001!.

14M. Brack and R.K. Bhaduri,Semiclassical Physics~Ref. 6!, pp.
36 and references therein.
.

d

15E.H. Sondheimer and A.H. Wilson, Proc. R. Soc. London, Se
210, 173 ~1951!.

16S.K. Ghosh and A.K. Dhara, Phys. Rev. A40, 6103~1989!.
17O. Penrose and L. Onsager, Phys. Rev.104, 576 ~1956!.
18S. Pfalzner and N.H. March, J. Math. Phys.34, 539 ~1993!.
19I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series, and

Products, 4th ed.~Academic Press, New York, 1994!.
20M.L. Glasser, Phys. Rev.162, 558 ~1967!.
21Y. Shiwa and A. Isiharak, Phys. Rev. B27, 4743~1983!.
22M.L. Glasser and N.J.M. Horing, Phys. Rev. B31, 4603~1985!.
23We have proved this identity using the mathematical softw

packageMAPLE ©.
24B. Banerjee, D.H. Constantinescu, and P. Reha´k, Phys. Rev. D10,

2384 ~1974!.
25N.J. Morgenstern Horing and M.L. Glasser, Nuovo Cimento D4,

113 ~1984!.
26Polarons and Bipolarons in High Tc Superconductors and Re

lated Materials, edited by E.K.H. Salje, A.S. Alexandrov, an
W.Y. Liand ~Cambridge University Press, Cambridge, 1995!.

27M.F.M. Osborne, Phys. Rev.76, 400 ~1949!.
28R. Schafroth, Phys. Rev.100, 463 ~1955!.
29R.M. May, Phys. Rev.115, 254 ~1959!.
30R.M. May, J. Math. Phys.6, 1462~1965!.
31D.J. Toms, Phys. Lett. B343, 259 ~1995!.
32H.P. Rojas, Phys. Lett. B379, 148 ~1996!.
33J. Daicic and N.E. Frankel, Phys. Rev. B55, 2760~1997!.
34M. Bayindir and B. Tanatar, Physica B293, 283 ~2001!.
35B. van der Pol and H. Bremmer,Operational Calculus, 2nd ed.
0-12



e
o

w
se

s
h
v,

pped

an

ev.

CHARGED TWO-DIMENSIONAL QUANTUM GAS IN A . . . PHYSICAL REVIEW B69, 024520 ~2004!
~Cambridge University Press, Cambridge, UK, 1955!.
36This result is of course already standard textbook material. N

ertheless, our derivation utilizes the ILT method, which is n
widely known in the BEC community

37W. Ketterle and N.J. van Druten, Phys. Rev. A54, 656 ~1996!.
38V. Bagnato and D. Kleppner, Phys. Rev. A44, 7439~1991!.
39Of course, one should also look for the presence of LRO. Ho

ever, in confined systems, LRO in the Penrose-Onsager sen
only approximate because the system isfinite. Nevertheless, one
can define a meaningful measure of LRO for the trapped ga
as discussed in, e. g., M. Naraschewski and R.J. Glauber, P
Rev. A59, 4595~1999!; see also D.S. Petrov, G.V. Shlyapniko
02452
v-
t

-
is

es
ys.

and J.T.M. Walraven, Phys. Rev. Lett.85, 3745 ~2000!, for a
discussion of condensation and quasicondensation in the tra
1D gases.

40J. Sigetich, M.Sc. thesis, McMaster University, 2002; B. P. v
Zyl ~unpublished!.

41C. Kittel, Quantum Theory of Solids~Wiley, New York, 1987!,
pp. 217.

42B. Davoudi, E. Strepparola, B. Tanatar, and M.P. Tosi, Phys. R
B 63, 104505~2001!.

43E. Strepparola, A. Minguzzi, and M.P. Tosi, Phys. Rev. B63,
104509~2001!.
0-13


