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Analysis of ground states of 0-p long Josephson junctions
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We investigate analytically a long Josephson 0-p junction with several 0 andp facets which are comparable
to the Josephson penetration lengthlJ . Such junctions can be fabricated exploiting~a! the d-wave order-
parameter symmetry of cuprate superconductors;~b! the spacial oscillations of the order parameter in
superconductor-insulator-ferromagnet-superconductor structures with different thicknesses of ferromagnetic
layer to produce 0 orp coupling; or~c! the structure of the corresponding sine-Gordon equations and substi-
tuting the phasep discontinuities by the artificial current injectors. We investigate analytically the possible
ground states in such a system and show that there is a critical facet lengthac , which separates the states with
half-integer flux quanta~semifluxons! from the trivial ‘‘flat phase state’’ without magnetic flux. We analyze
different branches of the bifurcation diagram, derive a system of transcendental equations which can be
effectively solved to find the crossover distanceac ~bifurcation point!, and present the solutions for different
number of facets and the edge facets length.

DOI: 10.1103/PhysRevB.69.024515 PACS number~s!: 74.50.1r, 85.25.Cp, 74.20.Rp
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I. INTRODUCTION

Due to the recent progress in technology it is now p
sible to fabricate different types ofp Josephson junction
~JJ!: high-Tc tricrystal grain-boundary JJ,1 YBa2Cu3O7-Nb
zigzag ramp JJ,2 superconductor-ferromagne
superconductor ~SFS!,3,4 or superconductor-insulator
ferromagnet-superconductor~SIFS!.5 p junctions are very
promising elements for Josephson electronics. It was alre
suggested that they can be used in analog6 and digital7,8 cir-
cuits in classical regime and for implementation of qubits9

In this paper, we focus onlong Josephson junctions~LJJ!
consisting of several 0 andp parts~facets!. We will call such
junctions 0-p-LJJ’s. LJJ consisting of very short~and ran-
dom! 0 and p facets, which are naturally formed in 45
high-Tc grain boundaries, were studied by Mints and c
authors in a series of works~see Ref. 10 and reference
therein!. We are more interested in facets with the lengtha
comparable to the Josephson penetration depthlJ such as in
artificially prepared structures. These are the sizes which
be used in potential devices based on fractional vortex
namics, both in classical and in quantum ones.11,12

It was found13,14 that at the point where 0 andp facets
join, a new type of nonlinear excitation may appear. T
new nonlinear solution of the properly modified sine-Gord
equation looks like a vortex and contains one-half of the fl
quantum and therefore is called ‘‘semifluxon.’’ The sem
fluxon ~SF! is always pinned at the joining point between
and p facets. The presence of SF was demonstra
experimentally15 by scanning super conducting quantum
terference device microscopy on YBa2Cu3O7-Nb ramp zig-
zag LJJ in thelong facet limit, i.e., when the length of the
facetsa@lJ . SF’s were also experimentally observed in t
tricrystal grain-boundary LJJ’s.16–18
0163-1829/2004/69~2!/024515~12!/$22.50 69 0245
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In this work we study analytically the ground states
0-p-LJJ with arbitrary number of alternating 0 andp facets
and the effect of edge facets on the type of the ground st
As it was shown earlier for some particular cases, there
critical facet lengthac which separates the domains with th
two most natural lowest-energy configurations: the flat ph
state and antiferromagnetically~AFM! ordered array of
semifluxons.

The joining points between 0 andp facets we will call a
phase discontinuity points since, e.g., in YBa2Cu3O7-Nb zig-
zag LJJ, the Josephson phasef(x) is p discontinuous at
these points. In the other types of junctions, e.g., SFS
SIFS, the Josephson phase is continuous, but one can fi
arrive to the same equations making a proper substitutio
variables:f(x,t)5m(x,t)1u(x).14 Following Ref. 14 and
regardless of the LJJ type we will denote discontinuo
phase asf(x), while continuous~magnetic! component of
the phase asm(x).

In Sec. II we introduce the model and represent gene
solution m(x) for arbitrary distribution ofp-discontinuity
points and present several examples. In Sec. III, we calcu
the crossover distancesac ~corresponding to ‘‘AFM ordered
SF chain’’—‘‘flat phase state’’ transition! for N equidistantly
distributedp-discontinuity points with the arbitrary lengthb
of edge facets. Finally Sec. IV summarizes our results.

II. MODEL AND GENERAL STATIONARY SOLUTION

We consider finite length Josephson junction withN
‘‘0- p ’’ conjunction points (p-discontinuity points!. Let the
coordinates of these points bexj , j 51, . . . ,N, and the co-
ordinates of the two ends of LJJ bex0 andxN11, see Fig. 1.
We will write and solve all equations in terms of the ma
netic component of the phasem(x) which is a continuous
©2004 The American Physical Society15-1
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A. ZENCHUK AND E. GOLDOBIN PHYSICAL REVIEW B69, 024515 ~2004!
function.14 Let m j (x), j 50, . . . ,N, be the piece ofm(x),
inside j th interval xj<x<xj 11. Thus in total we haveN
11 intervals enumerated byj 50,1, . . . ,N. m2n, n
50,1, . . . correspond to ‘‘0’’ intervals, andm2n11, n
50,1, . . . correspond to ‘‘p ’’ intervals. While we use super
script j to denote a piece of the functionm(x) at j th interval,
we use the subscriptj to denote the value of the functio
m(x) at x5xj , i.e., m j5m(xj ), j 50, . . . ,N11. Since we
will look for a continuous solutionm(x), m j are uniquely
defined.

In these notations the sine-Gordon equation reads14

mxx
j 2m tt

j 5~21! jsinm j . ~1!

Later on, we will need the above time-dependent equa
for analysis of stability of some solutions. At this moment w
write only the stationary version of Eq.~1! which has the
form

mxx
j 5~21! jsinm j . ~2!

It may be integrated once

~mx
j !25Cj22~21! jcosm j , j 50,1, . . . ,N, ~3!

whereCj are integration constants forj th interval. We look
for solutions with arbitrary, but equal boundary conditio
mx(x0)5mx(xN11)5h, which correspond to the uniform ap
plied magnetic fieldh.

End pointsx0 and xN11 may be either finite or infinite.
Infinitely long JJ is considered as limit of finite JJ. First w
construct solutions for finite length LJJ.

A. General stationary solution for finite length JJ

We require that the derivativemx is continuous atx
5xj , i.e., mx

j (xj )5mx
j 11(xj ), j 51, . . . ,N. Then

C05mx
0~x0!212 cosm0 ,

Cj5Cj 2114~21! j cosm j

5mx
0~x0!212 cosm014(

i 51

j

~21! icosm i ,

j 51, . . . ,N,

CN5mx
N~xN11!212~21!NcosmN11 . ~4!

The above system involves two different expressions
CN , which produce the first relation amongm j :

FIG. 1. Sketch of the 0-p-LJJ with notations used.
02451
n
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2 cosm014(
i 51

N

~21! i cosm i52~21!N cosmN11 . ~5!

After the integration of Eq.~3! one gets inside thej th inter-
val:

x2xj* 56E
2pnj 1s jp

m dn

ACj12 cos~n1s jp!

5a jE
0

(m2s jp22pnj )/2 dn

A12a j
2sin2n

5a jF@~m j2s jp22pnj !/2,a j
2#, ~6!

a j56
2

ACj12
, ~7!

wherenj are some integers which may be different for ea
particular interval;F(x,m) is the elliptic integral of the first
kind; the lower limit of integration in the first integral i
convenient for representation of the final result in terms
elliptic functions. To write such limits of integration we us
xn* (Þxn) in the above equations. The integration consta
xj* can be expressed in terms ofm j ( j 50, . . . ,N):

xj* 5xj2a jF@~m j2s jp22pnj !/2,a j
2#, ~8!

where the sign ofa j is taken from the condition thatx in-
creases when one goes along the junction. It is altering
each extremum of the functionm(x); the variables is such
thats2n51, s2n1150, n50,1, . . . ,N. Functionsm j (x) can
be expressed in terms of elliptic functions from Eq.~6!:

m j52pnj1s jp12 amFx2xj*

a j
,a j

2G , ~9!

where am(x,m) is the Jacobi amplitude. The valuesm j , j
50, . . . ,N11, are the solutions of the following system o
N11 equations (j 50, . . . ,N):

m j 1152pnj1s jp12 amFxj 112xj*

a j
,a j

2G , ~10!

and Eq.~5!.
Below we will need extremum values ofm j ~if any!,

mex
j 56arccosS ~21! jCj

2 D12pnj . ~11!

Remember that the behavior of the functionm j (x) is de-
fined by the value of the constantCj , namely,

uCj u,2: m j~x! is nonmonotonic function, ~12!

uCj u>2: m j~x! is monotonic function. ~13!

From the above one can get the following restriction
the possible values of the parametersnj : if mx

j (xj ).0, then
nj 11>nj ; if mx

j (xj ),0, thennj 11<nj .
5-2
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ANALYSIS OF GROUND STATES OF 0-p LONG JOSEPHSON JUNCTIONS PHYSICAL REVIEW B69, 024515 ~2004!
Thus Eq.~9! together with Eqs.~8! and ~10! represents
general formulas for all possible ground states in 0-p-LJJ of
finite length with arbitrary number of discontinuity poin
and uniform magnetic field. Each particular ground state
characterized by the parametersnj and m j . The later are
solutions of the system~10!. We emphasize that this syste
may be either solvable or not, which depends on valuesnj
and positions of discontinuity pointsxj .

B. General stationary solution for infinitely long JJ

In this section we give some remarks regarding station
solutions for infinitely long JJ. The main difference betwe
finite and infinite length is related to the edge facets. Let
consider the limitx0→2`, xN11→`, i.e., the number of
facets is still finite and equal toN, but the edge facets ar
infinitely long.

The boundary conditions assume that magnetic fieldmx
disappears atx→6`. Since the first and the last facets ha
infinite length, the value of the phase at6` should be such
that the system has zero energy per unit of the facet len
Otherwise the total energy of the system is infinite.19 To have
finite energy the phase should be equal to 2pk ~if the edge
facet is a 0 facet! or to k(2p11) ~if the edge facet is ap
facet!. Thus, we admit the following boundary conditions:

lim
x→6`

mx50, ~14a!

lim
x→2`

m50, ~14b!

lim
x→1`

m52pnN1~12sN!p. ~14c!

Equations~4! now have the form

C05CN52,

Cj5Cj 2114~21! j cosm j 215214(
i 51

j

~21! i cosm i ,

j 51, . . . ,N. ~15!

Equation~5! is reduced to the following one:

(
i 51

N

~21! i cosm i50. ~16!

Expression~11! for mex
j as well as Eqs.~8!–~10! stay the

same for the inner intervals. But for the edge facetsj
50,N), Eqs.~9!, should be replaced with

m0~x!54 arctan@G0 exp~x s1!#, ~17a!

mN~x!5~12sN!p14 arctan@GN exp~xsN!#12pnN ,
~17b!

where parameterss1 and sN may be either 1 or (21) de-
pending on boundary conditions at infinities~14!. They de-
fine whether the function is increasing or decreasing. In
gration constantsG0 andGN are defined by the equations
02451
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m0~x1!54 arctan@G0 exp~x1 s1!#, ~18a!

mN~xN!5~12sN!p14 arctan@GN exp~xNsN!#12pnN .
~18b!

C. Examples of particular solutions

The problem to construct solutions is reduced to solv
the system~5! and~10!. We consider examples of two type
of solutions: the so-called AFM state↑↓↑↓ and the state
↑↑↓↓ for LJJ with equidistant distribution of discontinuit
pointsxj ,19 zero-field boundary conditions

mx~x0!5mx~xN11!50 ~19!

andnj50 for all j. Thus 0,m,2p,

mex
j 5arccosS ~21! jCj

2 D . ~20!

In this case expression fora j in Eqs.~6!–~13! can be given
in the following form:

a j5
2 sgnmx~xj !

ACj12
, j 51, . . . ,N, a052

2

AC012
.

~21!

Following Ref. 19, we consider equidistant distribution
discontinuity pointsxj5a( j 21), j 51, . . . ,N, but with end
points x052b and xN115a(N21)1b, where b is the
length of the edge facets which may be different froma, as
shown in Fig. 1. Due to the symmetry one has

For even N, j 50, . . . ,N/2: m j5mN112 j , ~22a!

For odd N, j 50, . . . ,~N21!/2:

m j5p2mN112 j , m (N11)/25p/2. ~22b!

a. AFM state in finite length LJJ.For AFM state,m j

should have extremum value inside its interval, which,
cording to Eq.~12!, means thatCj,2 for all j. The plots of
f(x), m(x), mx(x) for a52, b55 and two different values
of N (N53 andN54) are shown in Fig. 2.

b. ↑↑↓↓ state in infinite LJJ.Let us consider infinitely
long JJ withN54. For this statem j should have extremum
value inside the middle interval:C1 ,C3.2; C05C452,
and 0,C2,2. Parameters in Eqs.~17! and~18! are defined
as follows: sN51, s151, s2521. The plots off(x),
m(x), mx(x) are shown in Fig. 3

III. CROSSOVER DISTANCE

In this section we study the transition between flat ph
state and AFM ordered SF state in 0-p-LJJ with equidistant
distribution of p-discontinuity points uxj 112xj u5a, j
51, . . . ,N21 expressing the length of the edge facets
terms ofa: b5ba. For this case 0<m<p.

In Sec. III A we study the stability of the flat phase sol
tion and derive the system of algebraic equations for ca
lation of ac . In Sec. III B we study the existence of AFM
5-3
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FIG. 2. The state with AFM
ordered SF’s. Graphs off(x),
m(x), and mx(x) for a52, b
55; ~a! N53, m050.0172, m1

51.2371 and ~b! N54, m0

50.016, m151.1569, m2

51.3775.
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solution and derive another system of equations definingac .

A. Stability of flat phase state

We study solutions of the time-dependent equation~1!
which have small amplitude oscillations around the flat st
mc . As it follows from Eq. ~2!, the value of phasem(x)
5mc in the flat phase state can be either 0 orp. Note that
for oddN the symmetry conditions~22b! result inm5p/2 at
the middle pointx5xN/2 . Since m(x)5const in the flat
phase state,m should be equal top/2, but this is not a
solution of Eq.~1!. Thus, we conclude that for oddN the flat
phase state cannot be realized, so we formally takeac50.
Below we consider only evenN.

Let us introduce a new functionm̃5m2mc!1 for which
Eq. ~1! has one of the forms given below

m̃xx
j 2m̃ tt

j 5~21! j m̃, mc50, ~23a!

m̃xx
j 2m̃ tt

j 5~21! j 11m̃, mc5p ~23b!

for all j 50, . . . ,N11.
First, we study only Eq.~23a! corresponding tomc50. To

study the stability we look for the solution in the followin
form:

m̃ j5eAEtn j , ~24!

FIG. 3. The state↑↑↓↓. Graphs off(x), m(x), andmx(x) for
infinitely long JJ witha54 andN54; m151.6165,m254.6086.
02451
e

whereE is considered aroundE50, because this is the poin
where the stability of solution changes. Hereafter we u
21,E,1. Then Eq.~23a! gets the form

nxx
j 5@E1~21! j #n j , j 50, . . . ,N11. ~25!

There are two solutions of the correspondent character
equation:k56k1 for even intervals andk56 ik2 for odd
intervals, wherek15A11E and k25A12E are both real.
The solutions of Eqs.~25! can be represented by the follow
ing system:

n05A0 cosh~k1x1b0!, ~26a!

n j5Aj cosh@k1$x2a~ j 21!%1b j #, j 52,4, . . . ,
~26b!

n j5Aj cos@k2$x2a~ j 21!%1b j #, j 51,3, . . . .
~26c!

The zero-field boundary conditionmx(2ba)50 gives the
formula for b0 : b05ba. Due to the symmetry~22b!, it is
enough to consider only half of the whole LJJ. We have
the middle intervalmN/25mN/211, which gives expressions
for bN/2 : bN/252k1a/2 for evenN/2 or bN/252k2a/2 for
odd N/2. Continuity of the functionsm imposes the follow-
ing relations among parametersAj andb j :

A0 cosh~ba!5A1 cos~b1!, ~27a!

Aj cos~k2a1b j !5Aj 11 cosh~b j 11!, j 51,3, . . . ,
~27b!

Aj cosh~k1a1b j !5Aj 11 cos~b j 11!, j 52,4, . . . .
~27c!

To provide continuity ofmx , one needs to impose add
tional relations among the parametersb j :

k1 tanh~ba!52k2 tan~b1!, ~28a!

k2 tan~k2a1b j !52k1 tanh~b j 11!, j 51,3, . . . ,
~28b!

k1 tanh~k1a1b j !52k2 tan~b j 11!, j 52,4, . . . ,
~28c!
5-4
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ANALYSIS OF GROUND STATES OF 0-p LONG JOSEPHSON JUNCTIONS PHYSICAL REVIEW B69, 024515 ~2004!
where j ,N/2. Equations~27! define the amplitudesAj , j
.0, in terms ofA0 andbn , n50, . . . ,N/2. Equation~28a!
establishes relation betweena and E, while Eqs.~28b! and
~28c! define parametersb j .

The solution~24! is stable ifE<0. We define crossove
distanceac the distance for whichE50 and, consequently
k15k251, i.e., the system of Eqs.~28a!–~28c! definingac
is

tanh~bac!52tan~b1!, ~29a!

tan~ac1b j !52tanh~b j 11!, j 51,3, . . . , ~29b!

tanh~ac1b j !52tan~b j 11!, j 52,4, . . . , ~29c!

bN/252
ac

2
. ~29d!

Note that this system of equations is rather easy to so
consequently excludingb j . At the end one gets a transce
dental equation~29a! for ac , with given parameterb and
functionb1(ac). It is clear thatac50 and allb j50 is solu-
tion of the system~29!. Instead, we are interested to find th
first nonzero solutionac of Eq. ~29!.

Nonzero solution to this transcendental equation does
exists for anyb. To derive the existence conditions we an
lyze the behavior of the functionb1(a) in Appendix B,
where it is proven thatb1(ac) is a decreasing and conve
function within the interval fromac50 to the first disconti-
nuity. Thus, tan@2b1(ac)# is increasing and concave, so th
Eqs.~29! have nontrivial solution only if

tanh8~bac!uac→0.tan8@2b1~ac!#uac→0 ,

i.e., if b.1/2. Using Eq.~28a! we have

AE11

12E
5

tan@2b1~a!#

tanh~ba!
<1 ~30!

and, consequently,E<0 inside the interval 0<a<ac .
We have found that for anyb.1/2 there is an interva

0,a,ac where the flat phase statemc50 is stable. Ifb
,1/2, thenE.0 and the flat phase statemc50 is unstable.
Thus,b51/2 is a threshold value, for whichE50 and Eq.
~29! has only trivial solution.

In a similar way, one can show that the flat phase s
mc5p, corresponding to Eq.~23b!, is stable inside the in-
terval 0,a,ac , if b,1/2. The appropriate system definin
ac is

tan~bac!52tanh~b1!, ~31a!

tanh~ac1b j !52tan~b j 11!, j 51,3, . . . , ~31b!

tan~ac1b j !52tanh~b j 11!, j 52,4, . . . , ~31c!

bN/252
ac

2
. ~31d!
02451
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The consideration of this system is similar to that giv
for Eq. ~29! in Appendix B. Again the solvability of the
whole system~31! depends on the existence of the nontriv
solution of Eq.~31a!. Now the functionsb j (ac) with evenj
are decreasing and convex. Expression forb1 comes from
Eq. ~31b!,

b1~ac!52ac2arctanh tanb2~ac!.

This function is concave, which is enough to arrive to t
conclusion that the first equation of Eq.~31! has nonzero
solution in the subdomain fromac50 to the first discontinu-
ity providedb,1/2.

The values ofac corresponding to the instability of th
flat phase state are calculated using Eqs.~29! and ~31! for
b5 1

4 ,1,2,̀ , and summarized in Table I. One can check th
the values in this table are in accordance with those obta
earlier by direct numerical simulation19 for b51/2,1. The
result forN52 andb5` coincides with the one calculate
earlier analytically.11,20We stress here that our present resu
are obtained for arbitrary edge facet lengthb ~arbitrary b)
and have much higher accuracy~can be calculated much
faster!.

The plotac
(N)(b) for differentN can be seen in Fig. 4. As

b→0, ac
(2)→` while for N.2 ac

(N) approaches some finit
value. Also note the following natural property which can
seen in Fig. 4:ac

(N)(1)5ac
(N12)(0). The fact thatac

(2)→`
for b→0 means that 0-p-0 LJJ approaches the limit of all
p LJJ, where vortex solutions are unstable and flat ph
state wins.

1. Behavior of instability point at largeN

Using the systems~29! and~31! its possible to determine
a ground state of a very large LJJ, i.e., whenN→`.

First, let us consider the caseb,1/2. As we saw above
according to the system~31! whenac→0, the values ofb j
;ac . We write b j5acc j , where c j;1. In this case we
expand the equations of the system~31! in Taylor series for
small ac and discard all the terms smaller thanO(ac

3):

b'2c11
2

3
ac

2c1
3 ,

c j'212c j 112
2

3
ac

2c j 11
3 , j 51,3, . . . ,

TABLE I. The values ofac
(N) for b51/4,1,2,̀ corresponding to

instability of flat phase state~accuracy of calculation is60.0001).

ac

N b51/4 b51 b52 b5`

2 2.92771 1.4639 1.5670 p/2
4 1.25461 1.1772 1.2989 1.3063
6 0.98327 1.0060 1.1245 1.1343
8 0.83438 0.8914 1.0032 1.0146
10 0.73731 0.8082 0.9134 0.9259
5-5
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A. ZENCHUK AND E. GOLDOBIN PHYSICAL REVIEW B69, 024515 ~2004!
c j'212c j 111
2

3
ac

2c j 11
3 , j 52,4, . . . ,

cN/2521/2. ~32!

Substituting expressions forc j one by one starting with the
last equation and discarding all the terms smaller thanO(ac

2)
we result in the final expressions forc j ,

c j52
1

2
1~21! j 11S N

2
2 j D ac

2

12
. ~33!

Thus, the first equation of the system~32! now reads

b'
1

2
2

ac
2

24
N. ~34!

Finally, the expression forac is

ac'AS 1

2
2b D 24

N
. ~35!

FIG. 4. The dependences of crossover distancesac
(2) , ac

(4) , and
ac

(6) on b. These curves can be obtained by solving either stab
problem @Eqs. ~29! for b.a/2 or Eqs.~31! for b,a/2] or AFM
solution existence problem@Eqs.~46! for b.a/2 and Eqs.~47! for
b,a/2].
02451
It is valid for N@24(1/22b).
Second, forfinite b.1/2 the reasoning is similar, and w

get

ac'AS b2
1

2D 24

N
. ~36!

This approximation is valid forN@24(b21/2)max(1,b2).
In the caseb→` ~infinitely long edge facets!, tanh(bac)

→1 and our approximation does not work. The reason is t
b j does not vanishes with increase ofN in this case. Alter-
native, more complex but also more exact, derivation
asymptotic behavior ofac for N→` and any finite as well as
infinite b is presented in Appendix C.

B. Existence of AFM ordered solution

In this section we apply the general formulas derived
Sec. II to calculate the crossover distance for AFM state
the LJJ with equidistant distribution ofp-discontinuity
points.

If one chooses a domain of parameters where AFM
dered SF chain is present, varya and plot the solutionsm(x),
he may notice that the amplitude of spatial oscillations
m(x) decreases asa decreases, see Fig. 5. It may happen,
we show below, that the amplitude ofm(x) vanishes at some
a5ac which may be larger than zero.

In this section we reintroduce the crossover distanceac as
a distance at which the amplitude of oscillations ofm(x)
vanishes, i.e.,m(x)→mc for a→ac10. In fact the limiting
value of the phasemc can have only three different values:
p/2, p. To prove this, we refer to Eq.~6! and write the set of
expressions for the distancea5ux(m j11)2x(m j )u ( j
51, . . . ,N21) between discontinuity points

a5~21! j 11S E
m j

mex
j dn

ACj22~21! jcosn

2E
mex

j

m j 11 dn

ACj22~21! jcosn
D , ~37!

j 51, . . . ,N. For the left edge interval it reads

y

FIG. 5. Graphs ofm(x), amplitude decreases with decrease ofa: ~a! b5a/2,N54; a53/2,1,1/2, mc5p/2; ~b! b5a,N54; a
53/2,1.25,1.2,mc50; ~c! b5a/4,N54; a53/2,1.3,1.27,mc5p.
5-6
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ba5E
m0

m1 dn

AC022cosn
. ~38!

Due to the symmetry conditions~22! we consider here only
the left half of the junction. Note that in spite of indexj, both
sides of the expression~37! do not depend on the facet num
ber j, since we consider equidistantly distributed discontin
ity points. Consider the limita→ac10, which means

m j'mc1em̃ j , ~39!

wheree→0. The integration intervals are proportional toe.
The denominator can be approximated usingn5mc1eñ as

A22eKs sinmc2e2Kc cosmc,

whereKs andKc do not depend neither onmc nor one. If
mc50 or mc5p, the denominator in Eq.~37! is }e, which
results inac.0. Otherwise the denominator is}Ae, so that
ac50.

For all other values ofmcÞ0 andmcÞp, the denomina-
tor in Eq. ~37! is constant and integral vanishes, i.e.,ac
50. It is interesting that ‘‘all other values ofmc’’ essentially
meanmc5p/2, see Appendix A for details. This also allow
us to make a quick conclusion thatac50 for oddN. Indeed,
for odd N, due to the symmetry conditions~22b! m (N11)/2
5p/2 for any a. Therefore,m(x)→mc5p/2 when a de-
creases. This automatically means thatac50.

Summarizing our findings, one can get the following po
sible values ofmc depending onac andb.

~1! mc5p/2 for oddN, Fig. 5~a!; in this caseac50.
~2! mc50 for evenN andb.1/2, Fig. 5~b!; in this case

ac.0.
~3! mc5p for evenN andb,1/2, Fig. 5~c!; in this case

ac.0.
Since, for oddN ac50 is already known, we calculateac

only for the last two cases.
Since for AFM state one has the symmetry~22a!, it is

enough to considerj 50, . . . ,N/2 with condition m(aN/2)
5m(aN/221).

Even N, b.1/2, mc50. Using Eq.~39! with mc50 Eqs.
~4! and ~20! can be approximated as follows:

Cj'2~21! j1e2S j , ~40!

mex
j 'eA~21! j 11S j5em̃ex

j , ~41!

where we definedS j as

S j522(
i 51

j

~21! im̃ i
22m̃0

2 . ~42!

It follows from Eqs.~12! and ~40! that S j.0 for odd j and
S j,0 for evenj.

In the limit e→0 Eqs.~37! and ~38! become
02451
-

-

ac
(N)5~21! j 11S E

m̃ j

m̃ex
j dñ

AS j1~21! j ñ2

2E
m̃ex

j

m̃ j 11 dñ

AS j1~21! j ñ2D , j 51, . . . ,N/2.

~43!

bac
(N)5E

m̃0

m̃1 dñ

Añ22m̃0
2

. ~44!

For the sake of simplicity we introduce new variablesj j

5m̃ j /m̃1 , j151, and

S̃ j5
A~21! j 11S j

m̃1

5A2~21! j 11S 2(
i 52

j

~21! ij i
2112

j0
2

2 D . ~45!

The integration of Eq.~43! separately for oddj ,N/2,
even j ,N/2 and the integration of Eq.~44! give the system
of equations forac

(N) and miscellaneous variablesj j :

ac
(N)5p2arcsin

j j 11

S̃ j

2arcsin
j j

S̃ j

, odd j ,
N

2
,

~46a!

ac
(N)5 lnF ~j j1Aj j

22S̃ j
2!~j j 111Aj j 11

2 2S̃ j
2!

S̃ j
2 G

even j ,
N

2
, ~46b!

bac
(N)5 ln~j0

211Aj0
2221!. ~46c!

Even N, b,1/2, mc5p. Using Eq.~39! with mc5p and
following the same procedure, we arrive to the followin
system of transcendental equations which defineac :

bac
(N)5

p

2
2arcsinS 1

j0
D , ~47a!

ac
(N)5p2arcsin

j j 11

S̃ j

2arcsin
j j

S̃ j

for even j ,N/2,

~47b!

ac
(N)5 lnF ~j j1Aj j

22S̃ j
2!~j j 111Aj j 11

2 2S̃ j
2!

S̃ j
2 G

for odd j ,N/2. ~47c!
Now we consider infinitely long JJ. Similar to the finit

LJJ, ac is not zero only for evenN. For calculation of the
5-7
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crossover distance in this case we use Eqs.~46!, with limit
b→` andm050. This modifies Eq.~46a! for j 51,

ac
(N)5

3

4
p2arcsin

j2

A2
. ~48!

The rest of equations from the system~46! remain the
same.

To give an example, the values ofac
(N) calculated forb

51, b51/4, andb5` are presented in Table II, Table II
and Table IV, respectively, and are in accordance with Ta
I. This technique of solving numerically a system of tra
scendental equations is rather effective and can be use
obtain the plotsac

(N)(b) shown in Fig. 4. Note that thes
plots exactly coincide with the ones obtained in Sec. II
using stability analysis for flat phase state.

The coincidence of the crossover distances obtained
two different ways implies that the transition between AF
state and flat phase state ata5ac happens because AFM
solution just cease to exist. It was believed before19 that tran-
sition takes place because one of the states has lower en
Now it is also clear why in Ref. 19 the hysteresis aroundac
was never seen. Hysteresis usually takes place when on
two stable solutions having different energies.

We can draw possible states of the system as a pitch
bifurcation diagram shown schematically in Fig. 6. At sm
a,ac the flat state is the only solution and it is stable.
a5ac the flat phase solution looses its stability, and it
unstable ata.ac as indicated by the dotted line. At the sam
time, ata5ac two new solutions appear. Both correspond
AFM ordered chain of semifluxons but with different sign

IV. CONCLUSIONS

We have studied analytically the ground states in
0-p-LJJ with different number of facets of the lengtha
;lJ . We have shown that in the general case there
crossover distanceac

(N) such that if the facet lengtha
,ac

(N) , the system is in the flat phase state (m5const) and
contains no magnetic flux. In contrast, ifa.ac

(N) , the

TABLE II. The values ofac
(N) for b51 ~accuracy of calculation

is 60.0001).

N ac
N Solution of Eq.~46!

2 1.4639 j050.4392
4 1.1772 j050.5628,j251.1469
6 1.0060 j050.6451,j251.1807,j351.3141

TABLE III. The values ofac
(N) for b51/4 ~accuracy of calcu-

lation is 60.0001).

N ac
N Solution of Eq.~47!

2 2.9277 j051.34429
4 1.2546 j051.0513,j251.3734
6 0.9833 j051.0310,j251.2352,j351.3233
02451
le
-
to

in

rgy.

has

rk
l
t

a

a

ground state consists of fractional vortices, each pinned
the phase discontinuity point. There may be more than
such state, especially for largeN, but we focus our attention
on the most natural one—AFM ordered chain of semiflu
ons. The system chooses between flat phase state and
ordered chain of semifluxons not because of the energy c
petition as it was suggested earlier,19 but because there i
only one stable solution for givena, as shown in the bifur-
cation diagram Fig. 6: fora,ac

(N) AFM ordered semifluxon
solution does not exist, while a flat phase state exists an
stable; fora.ac

(N) flat phase solutionm5const exists but is
unstable, so the state is AFM ordered semifluxon chain.
have calculated the crossover distancesac

(N) and summarize
our results as follows.

~a! For oddN, ac50, semifluxons are always present.
~b! For evenN ac>0. The dependences ofac

(2) , ac
(4) , and

ac
(6) on b are shown in Fig. 4. In particular, forb5a/2,

ac
(N)50 and semifluxons are always present, for all otherb,

ac.0.
Our calculations ofac agree with previous numerical an

analytical results,11,19,20but cover also the cases of largerN,
arbitrary edge facets lengthb and have much higher accu
racy. We also show that in many cases the size of the e
facetsb can drastically affect the state of the whole syste
especially whenb'a/2 or b→0 andN52, as can be seen
from Fig. 4.

We stress that we derived the position of bifurcation po
ac approaching it from both flat phase state~from the left in

TABLE IV. The values ofac
(N) for b5` ~accuracy of calcula-

tion is 60.0001).

N ac
N Solution of Eqs.~46! and ~48!

2 p/2
4 1.3063 j251.2266
6 1.1343 j251.3290,j351.6058
8 1.0146 j251.3772,j351.7641,j451.9065

FIG. 6. The sketch of the bifurcation diagram which shows
transition from flat phase state to the state with AFM ordered se
fluxon chain.
5-8
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Fig. 6! and from the state with AFM ordered chain of sem
fluxons ~from the right in Fig. 6!, and we got the same re
sults. In the first approach, the system of equations@Eqs.~29!
for b.a/2 or Eqs.~31! for b,a/2], that describe the~in!sta-
bility of the flat phase state, is particularly easy to so
numerically and the reader is encouraged to do so for his
favorite values ofN andb just setting proper seed value fo
ac . Nevertheless, our derivation of more complex equati
~46! for b.a/2 and Eqs.~47! for b,a/2, which describes
the disappearance of AFM ordered semifluxon chain
gives the same values ofac , is not useless. This approac
although more complex, allows us to find the existence
gion for more complex semifluxon states such as↑↑↓↓,
which will be discussed elsewhere using the results obta
here.

We have also found that the crossover distanceac

}1/AN for largeN, see Eqs.~35! and ~36! or Eqs.~C9! and
~C10! of Appendix C. Havinga fixed, the longer 0-p-LJJ
~largerN) favors configurations with semifluxons and, ther
fore, with magnetic flux, while shorter LJJ~smallerN) fa-
vors the state without flux. Instead, if we fix the total L
length, the LJJ with smallera ~largeN) will favor flat phase
state, while the LJJ with largera ~small N) will favor the
state with semifluxons.

In the future, it is quite interesting to consider the pos
bility to have less natural states such as↑↑↓↓. This will
correspond to the additional branches on the bifurcation
gram and there will be clearly a minimum distan
ac(↑↑↓↓).ac(↑↓↑↓) @ac(↑↓↑↓) is the one found here# for
which such a state is stable. Fora.ac(↑↑↓↓) there will be
energy competition between various states, e.g., betw
↑↓↑↓ and ↑↑↓↓. Next, in terms of studying classical an
quantum tunneling between various states such as↑↑↓↓ and
↑↓↑↓, it is interesting to consider howac depends on the
applied magnetic field and bias current.
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APPENDIX A: THE ONLY ‘‘OTHER’’ VALUE OF µcÄpÕ2

Now we show that ifac50, thenmc5p/2. Let us sub-
tract expression~9! for two end values ofm in the nth odd
interval: m5mn and m5mn11. For them xn112xn'Ae,
an'6A2, x2n* are defined by Eq.~8!. Having this, we re-
ceive

e~m̃n112m̃n!52 am@~xn112xn* !/an ,mn#

22 am@~xn2xn* !/an ,mn#

'
2Ae

an
dnS xn2xn*

an
,an

2D 1O~e!,
02451
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where dn(x,m)5A12m sin2 am(x,m) is the Jacobi elliptic
function. There is only one term of the order ofAe in this
expression. Thus this term equals zero. Using expression~8!
for xn* @xn* 5xn2anF(mn/2,mn)# with substitutionmn'2
and we get dn@F(mc/2,2),2#50, which has the only solution
inside the interval 0,m,p: mc5p/2.

APPENDIX B: BEHAVIOR OF THE FUNCTION b1„ac…

Let us consider Eqs.~29! for odd N/2. EvenN/2 can be
considered similarly. We show thatb1(ac) is a decreasing
convex function within the interval fromac50 to the first
discontinuity.

Let us derive the system of equations forb j with odd j.
Due to the specific domains for tan(x) and arctanh(x) one
concludes from Eqs.~29! that for oddj,

0<ac,
p

2
, ~B1a!

2
p

4
,b j,

p

4
, ~B1b!

2
p

4
,ac1b j,

p

4
. ~B1c!

We eliminateb j with even j from Eq. ~29b! using Eq.
~29c!.

b2n1152ac1arctan@ tanh~ac1arctanh tanb2n13!#,
~B2!

bN/252
ac

2
. ~B3!

Hereafter in this sectionn50,1, . . . ,(N26)/4, unless other-
wise specified.

Using these equations and induction method we prove
following inequalities:

b2n21<b2n11 , ~B4!

b2n118 ,0, ~B5!

b2n119 ,0. ~B6!

Proofs.Let us start with inequality~B4!. We find directly
from the plots thatbN/224<bN/222<bN/2 . Assume that
b2k11<b2k13 for arbitrary k and consider the expressio
tan(b2n212b2n11). Using Eq.~B2! we get sgn@ tan(b2k21
2b2k11)#5sgn@sin(b2k112b2k13)#<0, i.e.,

b2k21<b2k11 ~B7!

for all possiblek.
To prove the inequality~B5! let us differentiate Eq.~B2!

with respect toac ,

b2n118 5
b2n138 22 cos~2b2n13!sinh2Z

cos~2b2n13!cosh~2Z!
, ~B8!
5-9
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where Z5ac1arctanh tan(b2n13). Using Eqs. ~B3! and
~B8! we see from the graph ofbN/2228 that bN/2228 <0. Sup-
pose thatb2k138 <0 for arbitraryk.0. Then we have from
Eq. ~B8! due to the restrictions~B1! thatb2k118 ,0 for all k.
The second statement is proven. We need the following th
simple consequences from this inequality.

~1! Sinceb2k11(0)50 ~which can be checked directly!,
we obtain thatb2k11(ac)<0 for all k. Thus Eq.~B1! be-
comes

0<ac,
p

2
, 2

p

4
,b2n11<0. ~B9!

~2! Similarly to the proof of Eq.~B7! we can prove that
t o

ld
si
e
os

E
he

ha

02451
ee

b2n218 <b2n118 . ~B10!

~3! Using Eqs.~B3! and~B10! one obtains the restriction
for derivatives:

b2n118 <2
1

2
. ~B11!

To represent the simplest proof of the last inequality~B6!
we rewrite Eq.~B2! in symbolic form

f ~ac1b2n11!2ac5 f ~b2n13!, ~B12!

where f (x)5arctanh@ tan(x)#. We differentiate this equation
twice with respect toac and solve forb2n119 ,
b2n119 5
2 f 9~ac1b2n11!~b2n118 11!21 f 9~b2n13!~b2n138 !21 f 8~b2n13!b2n139

f 8~ac1b2n11!
, ~B13!
n-
lv-
where prime means derivative with respect to argumen
the function@remember thatb j5b j (ac)]. Now the statement
can be proven by induction using the facts thatbN/29 50, f
(2x)52 f (x), f 8(x).0, sgn@ f 9(x)#5sgn(x).

If ac1b2n11>0, all terms in the numerator of Eq.~B13!
are nonpositive and we immediately conclude that~B6! is
true.

If ac1b2n11,0, the first term is positive and one shou
demonstrate that the whole expression on the right-hand
~rhs! of Eq. ~B13! stays nonpositive anyway. For this w
show that the sum of the first and second terms is nonp
tive. First, since

b2n13,b2n11,b2n111ac,0,

we can write that

ub2n13u.ub2n111acu. ~B14!

Second, sinceb2n138 ,b2n118 ~B10! and b2n11,2 1
2 ~B11!

we have

ub2n138 u.ub2n118 11u. ~B15!

Taking into account~B14! and thatf-(x).0, we have

f 9~ac1b2n11!< f 9~b2n13!. ~B16!

Consequently from Eqs.~B15! and ~B16! we see that the
absolute value of the second term in the numerator of
~B13! is larger in comparison with the absolute value of t
first term, which leads to the nonpositive rhs of Eq.~B13!.

APPENDIX C: BEHAVIOR OF INSTABILITY POINT AT
LARGE N; ASYMPTOTIC RELATION FOR ARBITRARY b

The analysis in this section is based on the fact t
(b j 122b j )/b j!1 for N→`. This allows us to approximate
the functionb j of discrete parameterj by the pair of con-
f

de

i-

q.

t

tinuous functions and derive the first-order ordinary differe
tial equation with boundary conditions for one of them. So
ing it one gets the implicit relation betweenac and N.
Without loss of generality we assume thatN/4 is odd in this
section.

First, we consider the caseb.1/2. Let us introduce two
functions, corresponding to odd and even intervals:A(n)
5b2n21 , B(n)5b2n , n51,2, . . . ,N/4 and rewrite the sys-
tem ~29! in the following form:

A~1!52arctan@ tanh~bac!#, ~C1!

tan@ac1A~n!#52tanh@B~n!#, ~C2!

tanh@ac1B~n!#52tan@A~n11!#, ~C3!

A~N/422!'A~N/4!52
ac

2
. ~C4!

The index n51,2 . . . ,N/422 in Eq. ~C2! and n
51,2 . . . ,N/421 in Eq. ~C3!.

Now we may write A(n11)'A(n)1A8(n), A8(n)
!A(n), where by definition

A8~n!5 lim
Dn→0

A~n1Dn!2A~n!

Dn
.

ExpressB(n) in terms ofA(n) using Eq.~C2! and expand
the rhs of Eq.~C3! in series with respect toA8 keeping only
linear term inA8. Then we have~we now write ‘‘5 ’’ instead
of ‘‘ ' ’’ !

A85 f ~A!5
cosA@sinac2cos~ac12A!tanhac#

cos~ac1A!2sin~ac1A!tanhac
, ~C5!

A~1!52arctan@ tanh~bac!#, A~N/4!52ac/2, ~C6!
5-10
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ANALYSIS OF GROUND STATES OF 0-p LONG JOSEPHSON JUNCTIONS PHYSICAL REVIEW B69, 024515 ~2004!
where A8 is positive, sinceA(n11).A(n). The latter is
consequence of Eqs.~C2!, ~C3!, and the property of the in
creasing convex functionf: f (x11x2), f (x1)1 f (x2). Thus
the above equation may be formally integrated

E
A(1)

2ac/2 db

f ~b!
5S N

4
23D . ~C7!

Although integration can be done explicitly, we stay wi
this symbolic form for the sake of simplicity.

Similarly, for b,1/2 we get the same Eq.~C7! with dif-
ferent function f and boundary condition A(1)
52arctanh@ tan(bac)#:

f ~A!5
coshA@sinh ac2cosh~ac12A!tanac#

cosh~ac1A!1sinh~ac1A!tanac
. ~C8!

with negativeA8.
Equation~C7! gives us essentially functionN(ac) rather

then desirableac(N). FortunatelyN(ac) may be simply in-
verted sinceac!1 everywhere in these calculations. In fa
one can expand left-handside of Eq.~C7! in powers ofac ,
keeping only the leading term, which is of the order ofac

22 .
Thus

ac'2Ag~b!

N
, ~C9!

where

g~b!5A3 arctan@A3~2b21!#, b.
1

2
, ~C10a!

g~b!5A3 arctan@A3~122b!#, b,
1

2
. ~C10b!

In particular, forb→` we haveg5pA3/2 ~see Fig. 7!.
Thus for largeN and any lengthb5ba of the end facets

we have derived asymptotic relationac;N21/2, which is in
agreement with equations of Sec. III A 1.

Now we derive applicability condition for the equation
of this section. Equation~C7! can be used forN such that

Umax A8

A U!1. ~C11!
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