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We investigate analytically a long Josephsom Qunction with several 0 ané facets which are comparable
to the Josephson penetration length. Such junctions can be fabricated exploitife the d-wave order-
parameter symmetry of cuprate superconductdp$;the spacial oscillations of the order parameter in
superconductor-insulator-ferromagnet-superconductor structures with different thicknesses of ferromagnetic
layer to produce 0 otr coupling; or(c) the structure of the corresponding sine-Gordon equations and substi-
tuting the phaser discontinuities by the artificial current injectors. We investigate analytically the possible
ground states in such a system and show that there is a critical facet &engtlhich separates the states with
half-integer flux quantdasemifluxon$ from the trivial “flat phase state” without magnetic flux. We analyze
different branches of the bifurcation diagram, derive a system of transcendental equations which can be
effectively solved to find the crossover distaraze(bifurcation poini, and present the solutions for different
number of facets and the edge facets length.
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[. INTRODUCTION In this work we study analytically the ground states of
0-7-LJJ with arbitrary number of alternating 0 amdfacets
Due to the recent progress in technology it is now pos-and the effect of edge facets on the type of the ground state.
sible to fabricate different types of Josephson junctions As it was shown earlier for some particular cases, there is a
(3): high-T tricrystal grain-boundary JJYBa,Cu;O,-Nb critical facet lengtha, which separates the domains with the
zigzag ramp J3, superconductor-ferromagnet- two most natural lowest-energy configurations: the flat phase
superconductor (SFS.®* or superconductor-insulator- state and antiferromagneticallyAFM) ordered array of
ferromagnet-superconduct@8IFS.> 7 junctions are very semifluxons.
promising elements for Josephson electronics. It was already The joining points between 0 and facets we will call a
suggested that they can be used in arfatowl digital® cir-  phase discontinuity points since, e.g., in ¥Ba;O,-Nb zig-
cuits in classical regime and for implementation of quBits. zag LJJ, the Josephson phagéx) is 7 discontinuous at
In this paper, we focus olong Josephson junctiondJJ)  these points. In the other types of junctions, e.g., SFS and
consisting of several 0 and parts(facetg. We will call such ~ SIFS, the Josephson phase is continuous, but one can finally
junctions 047-LJJ’s. LJJ consisting of very shotand ran-  arrive to the same equations making a proper substitution of
dom O and 7 facets, which are naturally formed in 45° variables:¢(x,t)=u(x,t) + 6(x).** Following Ref. 14 and
high-T. grain boundaries, were studied by Mints and co-regardless of the LJJ type we will denote discontinuous
authors in a series of work&see Ref. 10 and references phase asp(x), while continuous(magneti¢ component of
therein. We are more interested in facets with the length the phase ag.(x).
comparable to the Josephson penetration deptuch as in In Sec. Il we introduce the model and represent general
artificially prepared structures. These are the sizes which wilsolution w(x) for arbitrary distribution ofr-discontinuity
be used in potential devices based on fractional vortex dypoints and present several examples. In Sec. I, we calculate
namics, both in classical and in quantum ohes. the crossover distances (corresponding to “AFM ordered
It was found®!*that at the point where 0 and facets SF chain”—*flat phase state” transitigrfor N equidistantly
join, a new type of nonlinear excitation may appear. Thisdistributedw-discontinuity points with the arbitrary length
new nonlinear solution of the properly modified sine-Gordonof edge facets. Finally Sec. IV summarizes our results.
equation looks like a vortex and contains one-half of the flux
guantum and thereforg is called “;gmifluxon.” The semi- || MODEL AND GENERAL STATIONARY SOLUTION
fluxon (SP is always pinned at the joining point between 0
and 7 facets. The presence of SF was demonstrated We consider finite length Josephson junction with
experimentally® by scanning super conducting quantum in- “0- 7" conjunction points ¢r-discontinuity points Let the
terference device microscopy on YR2u;0,-Nb ramp zig-  coordinates of these points e, j=1,... N, and the co-
zag LJJ in thdong facet limif i.e., when the length of the ordinates of the two ends of LJJ kg andxy. 1, see Fig. 1.
facetsa>\ ;. SF’'s were also experimentally observed in theWe will write and solve all equations in terms of the mag-
tricrystal grain-boundary LJJ¥%~18 netic component of the phage(x) which is a continuous
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N
x, x, x, Xy 2 cos,uo+4i_2l (—1)" cosu;=2(—1)N cosup.i. (5)
0 1 2
AL s HE 4 After the integration of Eq(3) one gets inside thgth inter-
T |l 3 — Val:
b a a a a a b
FIG. 1. Sketch of the G=-LJJ with notations used. X—XF==+ fﬂ dv
! 2mn;+ojm \/CJ--I-Z cogv+aojm)
function* Let uJ(x), j=0,... N, be the piece ofu(x),
inside jth interval x;<x=<xX;,;. Thus in total we ?r:a\ve\l :ajf(wojw—zwnj)/z dv
+1 intervals enumerated byj=0,1,...N. ", n 0 J1— aZsir?
=0,1,... correspond to “0” intervals, andu®"*!, n _ Sy
=0,1, ... correspond to %" intervals. While we use super- = OZJ'F[(,MJ_O'J'W_Z’TTHJ)/Z,C(J-Z], (6)
scriptj to denote a piece of the functign(x) at jth interval,
we use the subscrigtto denote the value of the function 2 @
m(x) atx=x;, i.e., ui=u(x;), j=0,... N+1. Since we aj=*r——,
will look for Ja contin{Jous sJqutioru(x), wj are uniquely Cj+2
defined. wheren; are some integers which may be different for each
In these notations the sine-Gordon equation réads particular interval;F (x,m) is the elliptic integral of the first
j j S kind; the lower limit of integration in the first integral is
Mo~ = (— 1)Isinpl. (1) convenient for representation of the final result in terms of

Later on, we will need the above time-dependent equatior?”'ptlc functions. To write such limits of integration we use

* . . . .
for analysis of stability of some solutions. At this moment weXn (#Xy) in the above equations. The integration constants

* H R .
write only the stationary version of Eql) which has the Xj €an be expressed in termspf (j=0,... N):
form
XJ*=Xj—ajF[(,uJ-—a'j77—27'rnj)/2,aj2], (8
M= (— 1) sinpl. (2 where the sign ofy; is taken from the condition that in-

creases when one goes along the junction. It is altering in
each extremum of the functiom(x); the variableo is such
thato,,=1, 05,,1=0,n=0,1, ... N. Functionsu!(x) can

be expressed in terms of elliptic functions from E6):

It may be integrated once
(uh)?=Cj—2(-1)cosy), j=01,...N, (3

*

whereC; are integration constants fgth interval. We look KX
for solutions with arbitrary, but equal boundary conditions wW=2mn+om+2 ar{ L a2
x(X0) = ux(Xn+ 1) =h, which correspond to the uniform ap- o aj '
plied magnetic fielch.

End pointsxy and Xy 1 may be either finite or infinite.
Infinitely long JJ is considered as limit of finite JJ. First we
construct solutions for finite length LJJ.

: ©

where amg,m) is the Jacobi amplitude. The valugs, j
=0,... N+1, are the solutions of the following system of
N+1 equations (=0, ... N):

. (10

X
_ i1 % 2
A. General stationary solution for finite length JJ Mj+1= 277”] tojm+ 2 a”{—a. 1 &
j

We require that the derivative., is continuous atx
j+1

—x;, e ud(x) =l (), j=1,... N. Then and Eq.(5).

Below we will need extremum values of (if any),

Co=ux(Xo)®+2 cOspo, (—1)ig;

=+ arcco% —

CJ = Cj*l+4( — 1)J COS/.LJ'
j Remember that the behavior of the functiah(x) is de-

= 10(x0)2+ 2 cOSpo+ 4>, (—1)icosu;, fined by the value of the consta@}, namely,
=1 )
o N |CJ-|<2: u(X) is nonmonotonic function, (12)
i=1,... N,
N |Cj|>2: w1 (x) is monotonic function. (13
Cn= ity (Xn+1)%+2(— 1)Ncosuy 1. 4

From the above one can get the following restriction on
The above system involves two different expressions fothe possible values of the parameteys if w,(x;)>0, then
Cn ., which produce the first relation among : N 1=n;; if M{((xj)<0, thenn;;<n;.

024515-2



ANALYSIS OF GROUND STATES OF 07 LONG JOSEPHSON JUNCTIONS

Thus Eq.(9) together with Eqs(8) and (10) represents
general formulas for all possible ground states ifr-QJJ of
finite length with arbitrary number of discontinuity points

and uniform magnetic field. Each particular ground states is

characterized by the parameters and w;. The later are
solutions of the systerfll0). We emphasize that this system
may be either solvable or not, which depends on vahyes
and positions of discontinuity points .

B. General stationary solution for infinitely long JJ

PHYSICAL REVIEW &9, 024515 (2004

u2(xq)=4 arctafG, exp(x; $;)], (18a
uN(xy) =(1— o) m+4 arctafGy exp(XySy) ]+ 27Ny .
(18b)

C. Examples of particular solutions

The problem to construct solutions is reduced to solving
the system(5) and(10). We consider examples of two types
of solutions: the so-called AFM statg| 7| and the state
1111 for LIJ with equidistant distribution of discontinuity

In this section we give some remarks regarding stationarpoimsxj .12 zero-field boundary conditions

solutions for infinitely long JJ. The main difference between
finite and infinite length is related to the edge facets. Let us

consider the limitxg— —©, Xy;1—0, i.e., the number of
facets is still finite and equal tbl, but the edge facets are
infinitely long.

The boundary conditions assume that magnetic field

disappears at— * . Since the first and the last facets have

infinite length, the value of the phasete should be such

Hx(Xo) = py(Xn+1) =0 (19
andn;=0 for all j. Thus 0<u <2,
. -1)ic,
UL = arcco% %) . (20)

In this case expression far; in Egs.(6)—(13) can be given

that the system has zero energy per unit of the facet lengthn the following form:

Otherwise the total energy of the system is infifitdo have
finite energy the phase should be equal tek2(if the edge
facet s a 0 facetor to k(27+1) (if the edge facet is ar

faced. Thus, we admit the following boundary conditions:

lim uy=0, (149
X— *+oo
lim u=0, (14b)
X— — 00
lIim u=2mny+(1—oy) 7. (140

X— + oo
Equations(4) now have the form
C(): CN: 2,

j
C;=Cj_1+4(—1) cos,uj,1=2+4zl (—1)" cosu;,
“

ji=1,...N. (15)
Equation(5) is reduced to the following one:
N
> (—1)' cosu;=0. (16)
=1

Expression(11) for ,U%X as well as Eqgs(8)—(10) stay the
same for the inner intervals. But for the edge facets (
=0,N), Egs.(9), should be replaced with

1O(x)=4 arctafiG, exp(x s;)], (17a
uN(X)=(1—oy)m+4 arctafGy exp(xsy) ]+ 27Ny,
(17b

where parameters; and sy may be either 1 or {1) de-
pending on boundary conditions at infiniti€s4). They de-

Q2SI 2

(21)

Following Ref. 19, we consider equidistant distribution of
discontinuity pointsx;=a(j—1), j=1,... N, but with end
points xo=—b and xy.1=a(N—1)+b, whereb is the
length of the edge facets which may be different frajras
shown in Fig. 1. Due to the symmetry one has

ForevenN, j=0,... N/2: uj=puni1-j, (2239
Forodd N, j=0,...,(N-1)/2:
Mi=T—fNr1-j,  M(N+1)= T2 (22b

a. AFM state in finite length LJJFor AFM state, u/
should have extremum value inside its interval, which, ac-
cording to Eq.(12), means thaC;<2 for all j. The plots of
d(X), (X)), uy(x) fora=2, b=5 and two different values
of N (N=3 andN=4) are shown in Fig. 2.

b. 77]] state in infinite LJJ.Let us consider infinitely
long JJ withN=4. For this stateu' should have extremum
value inside the middle intervalC,,C3>2; Cy=C,=2,
and 0<C,<2. Parameters in Eq§l7) and(18) are defined
as follows: oy=1, s;=1, s,=—1. The plots of $(x),
m(X), uy(x) are shown in Fig. 3

IIl. CROSSOVER DISTANCE

In this section we study the transition between flat phase
state and AFM ordered SF state in®8LJJ with equidistant
distribution of r-discontinuity points |x,—+l—xj|=a, ]
=1,... N—1 expressing the length of the edge facets in
terms ofa: b= Ba. For this case &u=<.

In Sec. Il A we study the stability of the flat phase solu-

fine whether the function is increasing or decreasing. Intetion and derive the system of algebraic equations for calcu-

gration constant§&, and Gy are defined by the equations

lation of a.. In Sec. Il B we study the existence of AFM
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o z

< 2 FIG. 2. The state with AFM
"Z, ? ordered SF’s. Graphs ofp(x),
o o u(x), and uu(x) for a=2, b
e e =5; (@ N=3, uy=0.0172, u;
] & =1.2371 and (b) N=4, u,
s 3 =0.016, w,=1.1569, .

N N N , o] =1.3775.
-4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10
coordinate, x coordinate, x

solution and derive another system of equations defiajng  whereE is considered around=0, because this is the point
where the stability of solution changes. Hereafter we use
A. Stability of flat phase state —1<E<1. Then Eq.(233 gets the form

We study solutions of the time-dependent equatibn
which have small amplitude oscillations around the flat state

te- As it follows from Eq. (2), the value of phas@(X)  There are two solutions of the correspondent characteristic
= uc in the flat phase state can be either OmorNote that  equation:k=+k; for even intervals and= *+ik, for odd

for oddN the symmetry condition€2b) resultinu=m/2 at  jntervals, wherek,= 1+ E andk,=+1—E are both real.

the middle pointx=xy;,. Since u(x)=const in the flat The solutions of Eq25) can be represented by the follow-
phase statep should be equal tar/2, but this is not a jng system:

solution of Eq.(1). Thus, we conclude that for odd the flat

W =[E+(~1)]¥), j=0,...N+1. (25

phase state cannot be realized, so we formally &ke0. 0=A, coshikyx+ Bo), (263
Below we consider only eveN.
Let us introduce a new function= u — u.<1 for which ,,i:A]. cosliky{x—a(j—1}+Bj], j=24,...,
Eg. (1) has one of the forms given below (26h)
o= = (=1, =0, (233 vi=A cogk{x—a(j—1)}+B], j=13,....
(260
~) T 1\it1T —
Mox~ M= (=D, pe= (23b

The zero-field boundary conditiqua,(— Ba) =0 gives the
forall j=0,... N+1. formula for By: Bo=Ba. Due to the symmetry22b), it is
First, we study only Eq.233 corresponding tae.,=0. To  enough to consider only half of the whole LJJ. We have for
study the stability we look for the solution in the following the middle intervaluy,= N1, Which gives expressions

form: for Bniz: Bne= —kia/2 for evenN/2 or By= —ksal2 for
’ - odd N/2. Continuity of the functiongt imposes the follow-
w=eFyl (24)  ing relations among parameteks and 3; :
6] T T T T T T T T T T T T ] AO COSKBa):Al Coiﬂl), (273)
| $3 ] .
3 5] O AR ] A; coskoa+B))=Aj 1 cosiBi1), 1=13,...,
[ 4_ ............. ” (x) f é o (27b)
8 L] | A® 1 .
2 ] i § ] A coshik;a+B))=Aj 1 COYBj1), [=2/4,....
2 A R B ] (279
E 1 ; ; ;| 1
3;' 1'_ ] To provide continuity ofu,, one needs to impose addi-
8 o 4 tional relations among the parametgts
S ]
-1 4
] ki tanh(Ba)=—k; tan(By), (28a
-2 ]
6 4 2 0 2 4 6 8 10 12 14 16 18 kp tan(k,a+ Bj)=—k; tanh(Bj.4), [j=13,...,
coordinate, x (280
FIG. 3. The statg ] |. Graphs of¢(x), u(x), and u,(x) for ki tani(kja+B))=—k, tan(Bj;1), j=2,4,...,
infinitely long JJ witha=4 andN=4; x,=1.6165, u,=4.6086. (280
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where j <N/2. Equations(27) define the amplitudes,, j TABLE I. The values ofa{) for 8=1/4,1,2% corresponding to
>0, in terms ofAy andB,,, n=0, ... N/2. Equation(283 instability of flat phase stat@ccuracy of calculation is 0.0001).
establishes relation betweenand E, while Egs.(28b and
(280 define parameters; . ac

The solution(24) is stable ifE<0. We define crossover N B=14 B=1 B=2 B=
distancea, the distance for whicfE=0 and, consequently, 292771 1.4639 15670 /2
}<1=k2=1, i.e., the system of Eq$288—(28¢) defininga, 125461 11772 1.2989 1.3063
IS 6 0.98327 1.0060 1.1245 1.1343

8 0.83438 0.8914 1.0032 1.0146
tanh(Ba;) = —ta , 29
f(Bac) A (299 10 0.73731 0.8082 0.9134 0.9259
tan(a.+B))=—tanh(B;.1), j=13,..., (29
. The consideration of this system is similar to that given
tani(ac+ g =—tanBj+1), j=24,..., (299 ¢4 Eqg. (29) in Appendix B. Again the solvability of the
whole systen{31) depends on the existence of the nontrivial
Brja= — ac (29d) solution of Eq.(318. Now the functions;(a.) with evenj
N/2 2° are decreasing and convex. Expression figrcomes from
Eq. (31b),

Note that this system of equations is rather easy to solve

consequently excluding; . At the end one gets a transcen- B1(a,)=—a.—arctanhtaB,(a,).

dental equation(29a for a., with given parametep3 and

function 8;(a.). Itis clear thata,=0 and all;=0 is solu-  This function is concave, which is enough to arrive to the

tion of the systen{29). Instead, we are interested to find the conclusion that the first equation of E(B1) has nonzero

first nonzero solutiora. of Eq. (29). solution in the subdomain from.= 0 to the first discontinu-
Nonzero solution to this transcendental equation does naty provided 8<1/2.

exists for anyB. To derive the existence conditions we ana- The values ofa, corresponding to the instability of the

lyze the behavior of the functio,(a) in Appendix B, flat phase state are calculated using ES) and (31) for

where it is proven thaB;(a.) is a decreasing and convex B=3,1,2,, and summarized in Table I. One can check that

function within the interval froma.=0 to the first disconti- the values in this table are in accordance with those obtained

nuity. Thus, tah— 3;(a.)] is increasing and concave, so that earlier by direct numerical simulatibhfor =1/2,1. The

Egs.(29) have nontrivial solution only if result forN=2 andB=c coincides with the one calculated

earlier analytically"**We stress here that our present results
tanH(ﬁaC)|aC_,o>tan’[—ﬁl(ac)]lacﬁo, are obtained for arbitrary edge facet lendgharbitrary 8)
and have much higher accura¢gan be calculated much
i.e., if 8>1/2. Using Eq.(283 we have fastey.

The plota™(B) for differentN can be seen in Fig. 4. As

[E+1 tar—pi(a)] —1 B—0, al®)— o while for N>2 a{™ approaches some finite
1-E  tanHpBa) (30 value. Also note the following natural property which can be

- . seen in Fig. 4aM(1)=a"*2(0). Thefact thata®—
and, consequenti{ <0 inside the interval &:a<a. for 3—0 means that G#-0 LJJ approaches the limit of all-

We have found that for any>1/2 there is an interval ;| 33 where vortex solutions are unstable and flat phase
0<a<a, where the flat phase staje,=0 is stable. If 3 state wins.

<1/2, thenE>0 and the flat phase state.=0 is unstable.
z-zhgl)lsr,]ﬂ: 1/I2 is a tlhreTh(')ld value, for which=0 and Eq. 1. Behavior of instability point at largeN
as only trivial solution. _ _ _ .
In a similar way, one can show that the flat phase state USing the system&29) and(31) its possible to determine
we=, corresponding to Eq23b), is stable inside the in- & 9round state of a very large LJJ, i.e., whén .

terval O<a<a,, if B<1/2. The appropriate system defining  First, et us consider the cage<1/2. As we saw above,
a. is according to the systerf81) whena.—0, the values of;

~a.. We write Bj=acy;, where ¢5;~1. In this case we
tan( Ba.) = — tanh( 3;) (319  expand the equations of the syste®d) in Taylor series for
smalla. and discard all the terms smaller th@{a’):

tanf'(ac+,8]-)=—tar(,3j+l), j:1,3, ey (Slb) 5
- £,2,3
tana.+Bj)=—tanh(Bj 1), j=2,4,..., (310 B ot 3a°¢1’
ac 2 , 5 )
Brni== % (310 Yi~—1-dj— 384, 15138,
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crossover distance, a

0.0 —

I ! I ! I
0.2 04 0.6 0.8 1.0

relative size of the edge facet, p=b/a

0.0

FIG. 4. The dependences of crossover distam¢es a*), and
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It is valid for N>24(1/2- ).
Second, foffinite B>1/2 the reasoning is similar, and we

get
_ 1) 24
8N (ﬂ‘z N

This approximation is valid foN>24(8— 1/2) max(13?).

In the caseB— <« (infinitely long edge facetstanh(Ba.)
—1 and our approximation does not work. The reason is that
B; does not vanishes with increase dfin this case. Alter-
native, more complex but also more exact, derivation of
asymptotic behavior ddi. for N—o and any finite as well as
infinite B is presented in Appendix C.

(36)

B. Existence of AFM ordered solution

In this section we apply the general formulas derived in

al® on B. These curves can be obtained by solving either stabilitySec. Il to calculate the crossover distance for AFM state in

problem[Egs. (29) for b>a/2 or Egs.(31) for b<a/2] or AFM
solution existence problefiEgs. (46) for b>a/2 and Eqs(47) for
b<a/2].

2 2,3 H
l//j%_l_(v[/j-%—l—i_gacl/lj-%—l' J:214!"'!

Inp=—1/2. (32

Substituting expressions faf; one by one starting with the
last equation and discarding all the terms smaller tbéa?)
we result in the final expressions fgr

2

the LJJ with equidistant distribution ofr-discontinuity
points.

If one chooses a domain of parameters where AFM or-
dered SF chain is present, varyand plot the solutiong.(x),
he may notice that the amplitude of spatial oscillations of
n(X) decreases amdecreases, see Fig. 5. It may happen, as
we show below, that the amplitude afx) vanishes at some
a=a. which may be larger than zero.

In this section we reintroduce the crossover distamcas
a distance at which the amplitude of oscillations ofx)
vanishes, i.e.u(X)— u. for a—a.+0. In fact the limiting
value of the phasg can have only three different values: 0,
/2, 7. To prove this, we refer to Eq46) and write the set of

o £+ _1)i+t N ac 33 expressions for the distance=|x(u;+1)—x(x;)| (i
= 2 (=1) 2 J 12° (33 =1,... N—1) between discontinuity points
Thus, the first equation of the systdB82) now reads
2 a=( 1)”1( o v
1 ag == \/
~_-_c i VCi—2(—1)!cosv
B~5— 5N (34) ri NCj—2(
Finally, the expression foa, is — f&”l dv ) , (37)
uh Cj—2(—1)'cosy
1 24 35
&~ V|27 8\ (35 j=1,... N. For the left edge interval it reads
2.0 T T T T
p=rl2 (a) = (b) 3l © |
18- - . /\ T~
1 i
x g : /\/\
g 18 {1 8 g
5 | // \/\\\ -
2 0 2 4 0% 0 2 4 6 z 0 2 4

coordinate, x

FIG. 5. Graphs ofu(x), amplitude decreases with decreaseaof(a) b=a/l2N=4;

=3/2,1.25,1.2,4.=0; (c) b=a/4N=4; a=3/2,1.3,1.27 u.= .

coordinate, x

coordinate, x

a=3/2,1,1/2, u.=/2; (b) b=a,N=4; a
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(39

M1 14
a=| —.
P LO VCp—2cosv

Due to the symmetry condition®2) we consider here only

the left half of the junction. Note that in spite of indg»oth

sides of the expressidi37) do not depend on the facet num-
berj, since we consider equidistantly distributed discontinu-

ity points. Consider the limia—a.+0, which means

i~ et €, (39

wheree— 0. The integration intervals are proportionaldo
The denominator can be approximated usirgu.+ €v as

V—2€K, sinu.— e’K, cosu,,

whereKg andK, do not depend neither om. nor one. If
me=0 or u.=m, the denominator in Eq37) is <€, which
results ina,>0. Otherwise the denominator is\/e, so that
a.=0.

For all other values oft.#0 andu.# 7, the denomina-
tor in Eq. (37) is constant and integral vanishes, i.a,
=0. Itis interesting that “all other values qf.” essentially
meanu.=
us to make a quick conclusion that=0 for oddN. Indeed,
for odd N, due to the symmetry condition@2b) i+ 1)
= /2 for any a. Therefore,u(X)— u.=m/2 whena de-
creases. This automatically means tagt 0.

/2, see Appendix A for details. This also allows
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(N) _ 1 j+1 MPex =~
el (J VEi+ (- 1)1
f”’“ . N/2
b VZjH(—1)172 T
(43)
,Ba(N)— (44)
\/v —pg

For the sake of simplicity we introduce new variablgs
:/“Lj//“Lli gl:lv and

/( 1)]+12

Ml

=

| gz
= \/2<—1)J+1<—2 (-D'gfr1-3
i=2

The integration of Eq(43) separately for odd <N/2,
evenj<N/2 and the integration of Eq44) give the system
of equations fom{") and miscellaneous variabls:

(45

) ' N
agN):W_arcsingLLl—arcsin‘g—J, odd i<§a
EJ- 2j
(463

Summarizing our findings, one can get the following pos-

sible values ofu. depending ora. and .

(1) ue=m/2 for oddN, Fig. 5a); in this casea.=0.
(2) u.=0 for evenN and 8>1/2, Fig. 8b); in this case
a.>0.

(3) ue=m for evenN and 8<1/2, Fig. 5c¢); in this case
a.>0.

Since, for oddN a.=0 is already known, we calculagg
only for the last two cases.

Since for AFM state one has the symmet@2a), it is
enough to considef=0, ... N/2 with condition wx(ay)

= u(anp-1)-

Even N B>1/2, u.=0. Using Eq.(39) with u.=0 Egs.
(4) and (20) can be approximated as follows:
Ci=2(-1)+€%,, (40)
M!ex%e\/(_l)ﬁlzjzfﬁiexv (41)
where we defined; as
j .~ ~
=—23 (—1)uP-ud. (42)

It follows from Egs.(12) and(40) that;>0 for oddj and
3;<0 for even;.
In the limit e—0 Eqgs.(37) and(38) become

a™=|n itV sz_ijz)(fﬁﬁ' M)
C EJZ
N

even j<-,

5 (46b)

BaM=In(¢&; +\E 2 1).

Even N B<1/2, u.=m. Using Eq.(39) with .= and
following the same procedure, we arrive to the following
system of transcendental equations which dedine

(460

,Ba(N)z —arcsi ! (479
© 2 &)
™ 41 £ |
as '=m— arcsm— arcsm— foreven [j<N/2,
5 3
(47b)
oy EENEEDE Ve -5
ag’=In 32
J
for odd j<<N/2. (470

Now we consider infinitely long JJ. Similar to the finite
LJJ, a; is not zero only for everN. For calculation of the
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TABLE II. The values ofal for 8=1 (accuracy of calculation TABLE IV. The values ofal) for = (accuracy of calcula-
is £0.0001). tion is =0.0001).
N al Solution of Eq.(46) N ay Solution of Eqgs.(46) and (48)
2 1.4639 £0=0.4392 2 2
4 1.1772 £0,=0.5628,¢£,=1.1469 4 1.3063 £,=1.2266
6 1.0060 £,=0.6451,¢,=1.1807, £,= 1.3141 6 1.1343 £,=1.3290,¢,=1.6058
8 1.0146 £,=1.3772,63=1.7641,£,=1.9065

crossover distance in this case we use E46), with limit

B—o andpuo=0. This modifies Eq(46a for j=1, ground state consists of fractional vortices, each pinned at
the phase discontinuity point. There may be more than one
a(N)=§w—arcsiné (48) such state, especially for largé& but we focus our attention
¢ 4 J2 on the most natural one—AFM ordered chain of semiflux-
ons. The system chooses between flat phase state and AFM
The rest of equations from the syste6) remain the ordered chain of semifluxons not because of the energy com-
same. petition as it was suggested earftérbut because there is
To give an example, the values af\‘) calculated fors only one stable solution for givea, as shown in the bifur-
=1, B=1/4, andB=c are presented in Table Il, Table lll, cation diagram Fig. 6: foa<af:N) AFM ordered semifluxon
and Table 1V, respectively, and are in accordance with Tableolution does not exist, while a flat phase state exists and is
I. This technique of solving numerically a system of tran-stable; fora> a(CN) flat phase solutionw = const exists but is
scendental equations is rather effective and can be used tmstable, so the state is AFM ordered semifluxon chain. We
obtain the plotsa{™(B8) shown in Fig. 4. Note that these have calculated the crossover distanaf¥ and summarize
plots exactly coincide with the ones obtained in Sec. Ill Aour results as follows.
using stability analysis for flat phase state. (a) For oddN, a,=0, semifluxons are always present.
The coincidence of the crossover distances obtained in (b) For everN a,=0. The dependences af?), al®), and
two different ways implies that the transition between AFM 3(®) on by are shown in Fig. 4. In particular, fdo=a/2,
state and flat phase state @ta. happens because AFM 3N —( and semifluxons are always present, for all otier
solution just cease to exist. It was believed befdtieat tran- a.>0.
sition_ta_lkes place becaus_e one of the states has_ lower energy. our calculations o, agree with previous numerical and
Now it is also clear why in Ref. 19 the hysteresis aroapd analytical resultd*%2%hut cover also the cases of larger
was never seen. Hystere_S|s u_sually takes place when one hét%itrary edge facets length and have much higher accu-
two stable solutions having different energies. racy. We also show that in many cases the size of the edge

_We can draw possible states of the system as a pitchforig cetsp can drastically affect the state of the whole system,
bifurcation diagram shown schematically in Fig. 6. At Sma”especially wherb~a/2 or b—0 andN=2. as can be seen
a<a, the flat state is the only solution and it is stable. At o, Fig. 4. '

a=a, the flat phase solution looses its stability, and it is e stress that we derived the position of bifurcation point
qnstable ab>a. as |nd|cateq by the dotted line. At the same a, approaching it from both flat phase stéem the left in
time, ata=a, two new solutions appear. Both correspond to

AFM ordered chain of semifluxons but with different sign. -

IV. CONCLUSIONS

he field

We have studied analytically the ground states in a=
0-7-LJJ with different number of facets of the lengéh
~\;. We have shown that in the general case there is eo

e of

crossover distanca{V such that if the facet lengtha % flat phase state
<a™V, the system is in the flat phase staje{const) and £ a,
contains no magnetic flux. In contrast, #>alV, the g
=

TABLE lIl. The values ofa) for B=1/4 (accuracy of calcu- >§<
lation is =0.0001). g
N al Solution of Eq.(47) y T ; T ; ' y 1

facet length, a
2 2.9277 £0=1.34429
4 1.2546 £0=1.0513,£,=1.3734 FIG. 6. The sketch of the bifurcation diagram which shows the
6 0.9833 £,=1.0310,¢£,=1.2352,£,=1.3233 transition from flat phase state to the state with AFM ordered semi-
fluxon chain.
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Fig. 6) and from the state with AFM ordered chain of semi- where dnk,m)=+/1—m sir® am(x,m) is the Jacobi elliptic
fluxons (from the right in Fig. 6, and we got the same re- function. There is only one term of the order ¢ in this
sults. In the first approach, the system of equat|@&®s.(29)  expression. Thus this term equals zero. Using expres8ion
for b>a/2 or Egs.(31) for b<<a/2], that describe thén)sta-  for x* [x* =X,— anF (us/2,m,)] with substitutionm,~2

bility of the flat phase state, is particularly easy to solvegnd we get diF (u/2,2),2]=0, which has the only solution
numerically and the reader is encouraged to do so for his/hgpside the interval & p<m: uc= /2.

favorite values olN andb just setting proper seed value for

a.. Nevertheless, our derivation of more co_mplex quations APPENDIX B: BEHAVIOR OF THE FUNCTION  B,(a,)
(46) for b>a/2 and Eqgs(47) for b<a/2, which describes

the disappearance of AFM ordered semifluxon chain and Let us consider Eqg29) for odd N/2. EvenN/2 can be
gives the same values af., is not useless. This approach, considered similarly. We show that;(a;) is a decreasing
although more complex, allows us to find the existence reeonvex function within the interval frona.=0 to the first

gion for more complex semifluxon states such {ds| |, discontinuity.
which will be discussed elsewhere using the results obtained Let us derive the system of equations & with odd j.
here. Due to the specific domains for taf)(and arctanh) one

We have also found that the crossover distarscge concludes from Eqs29) that for oddj,
«1/y/N for large N, see Eqgs(35) and(36) or Egs.(C9) and
(C10 of Appendix C. Havinga fixed, the longer O#-LJJ
(largerN) favors configurations with semifluxons and, there-
fore, with magnetic flux, while shorter LI$3mallerN) fa-
vors the state without flux. Instead, if we fix the total LJJ ™ ™
length, the LJJ with smallea (largeN) will favor flat phase — 2= 'BJ<Z’ (B1b)
state, while the LJJ with largea (small N) will favor the
state with semifluxons. T s

In the future, it is quite interesting to consider the possi- T At Bi<7 (Blo
bility to have less natural states such fs| |. This will
correspond to the additional branches on the bifurcation dia- e eliminate 8; with evenj from Eg. (29b) using Eg.
gram and there will be clearly a minimum distance (29¢).
ac(11lh)>ac(T111) [ac(T11]) is the one found hefeor

K
0$ac<5, (Bla)

which such a state is stable. Far-a.(17]]) there will be Boni1= —actarctan tanh(a.+arctanh taB,, . 3) 1,
energy competition between various states, e.g., between (B2
7171 and T1/]. Next, in terms of studying classical and

guantum tunneling between various states suchfdg and _ & (B3)
7111, it is interesting to consider how, depends on the Pniz 2"

applied magnetic field and bias current.

Hereafter in this section=0,1, ... ,(N—6)/4, unless other-
wise specified.
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Ban+1<0. (B6)

APPENDIX A: THE ONLY “OTHER” VALUE OF p.=ma/2

, Proofs.Let us start with inequalityB4). We find directly
Now we show that ifa.=0, thenﬂc=w/2. Let us sub- o the plots that B 4= Bro 2= Brjz. Assume that
fcract expressiori9) for two end values ofx in the nth odd Bos 1= Baxs for arbitrary k and consider the expression
interval: u=u, and w=pun,1. FOr themx, ;—Xx,=~ e, tan(Ban_ 1— Bans1). Using Eq.(B2) we get sghtan(By._ 1
anét 2, x5, are defined by Eq(8). Having this, we re- — Borer 1) 1= 591 SINBocs 1~ Bocs 2)]<0, i.e.,

ceive

Bak-1=Bok+1 (B7)
€(Tns1— ) =2 anf (Xns 1 — X5 ) @y ,m. ] for all possiblek. _ . _
Hne1 ™ fn L A e To prove the inequalityB5) let us differentiate Eq(B2)
—2anf (Xp—X5)/ an,m,] with respect taa,,
2Je [Xxa—x¥ I .—2C0%2 sini’z
- dn( n n 'aﬁ +O(6), ,8§n+1=ﬁzn+3 9{ ﬁ2n+3) ' (B8)
n n c0g285,.3)C0SH22)
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where Z=a.+arctanhtang,,.3). Using Egs.(B3) and Bho1=Bhi1- (B10)
(B8) we see from the graph @} ,_, that By,,_,<0. Sup-

pose thatBy,, ;=<0 for arbitraryk>0. Then we have from  (3) Using Egs.(B3) and(B10) one obtains the restriction
Eq. (B8) due to the restrictionéB1) that 85, , ;<0 for all k.~ for derivatives:
The second statement is proven. We need the following three

simple consequences from this inequality. Bons1=<— 1 (B11)
(1) Since B4 1(0)=0 (which can be checked direcily 2
we obtain thatf,.1(ac)<0 for all k- Thus Eq.(B1) be- To represent the simplest proof of the last inequaBg)
comes ' : '
we rewrite Eq.(B2) in symbolic form
0<ac<g, —g<32n+1s0. (B9) f(act+ Ban+1) —ac=f(Ban+3), (B12)

wheref(x) =arctanftan(x)]. We differentiate this equation
(2) Similarly to the proof of Eq(B7) we can prove that twice with respect t@. and solve forg, . ;,

—1"(ac+ Ban+1) (Bons 1+ 1)+ (Ban+3) (Boni3)°+ ' (Ban+3) Bans
B L= Bon+1)(Ban+1 , Bon+3)(Ban+s Ban+3) B2 3 (B13
f (ac+:82n+1)

where prime means derivative with respect to argument ofinuous functions and derive the first-order ordinary differen-
the function[remember thag; = 8;(a.)]. Now the statement tial equation with boundary conditions for one of them. Solv-
can be proven by induction using the facts tigd,=0, f ing it one gets the implicit relation betweesm. and N.

(=x)=—1f(x), f'(x)>0, sgnf”(x)]=sgn). Without loss of generality we assume tiN#4 is odd in this
If ac+ Bons1=0, all terms in the numerator of EB13) section.

are nonpositive and we immediately conclude ttB®) is First, we consider the cagg>1/2. Let us introduce two

true. functions, corresponding to odd and even interv#ién)

If a+ Bon+1<0, the first term is positive and one should =B2,-1, B(N)=B2,, n=1,2,... N/4 and rewrite the sys-
demonstrate that the whole expression on the right-hand sidem (29) in the following form:
(rhg of Eq. (B13) stays nonpositive anyway. For this we
show that the sum of the first and second terms is nonposi- A(1)=—arctaftani(Ba.)], (Cy
tive. First, since

tafa;,+A(n)]=—tanjB(n)], (C2
:82n+3<:82n+1<:82n+1+ac<01 B A 1 c3
we can write that tanfa. +B(n)]=—tarfAln+1)], €3
|Ban+3l>Ban+1+ 2. (B14) A(N/4—2)~A(N/4) = — %_ (C4)
Second, sinced,,,, 3<Ban.1 (B10) and By, 1<—3 (B1l)
we have The index n=1,2...N/4-2 in Eqg. (C2 and n
/ / =1,2...N/4-1in Eq.(C3).
|Ban+sl>1B2ns 111, (B19) Now we may write A(n+1)~A(n)+A’(n), A’'(n)
Taking into accountB14) and thatf”(x)>0, we have <A(n), where by definition
f"(ac+ Ban+1)<t"(Ban+3)- (B16) A(n)= lim A(n+An)—A(n)
Consequently from Eq9B15) and (B16) we see that the An—0 An '

absolute value of the second term in the numerator of Eg. . ¢ )
(B13) is larger in comparison with the absolute value of theEXPressB(n) in terms of A(n) using Eq.(C2) and expand

first term, which leads to the nonpositive rhs of Eg13).  (he rhs of EQ(C3) in series with respect t&" keeping only
linear term inA’. Then we havéwe now write “=" instead

APPENDIX C: BEHAVIOR OF INSTABILITY POINT AT of "~

LARGE N; ASYMPTOTIC RELATION FOR ARBITRARY @ cosA[sina.— coga.+ 2A)tanha,]
c c C

The analysis in this section is based on the fact that A'=T(A)= coga,+A)—sin(a;+A)tanha, ’ (€5
(Bj+2—B;) Bj<<1 for N—oo. This allows us to approximate
the functiong; of discrete parametgrby the pair of con- A(1)=—arctafitani(Ba)], A(N/4)=—a./2, (C6)
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where A’ is positive, sinceA(n+1)>A(n). The latter is ] T T T ]
consequence of Eq$C2), (C3), and the property of the in- :
creasing convex functiofi f(x;+X,)<f(x1)+f(x,). Thus
the above equation may be formally integrated

ffaclz dg
A f(B)
Although integration can be done explicitly, we stay with
this symbolic form for the sake of simplicity.
Similarly, for 8<1/2 we get the same E¢C7) with dif-

ferent function f and boundary condition A(1)
= —arctanfitan(Ba.) :

-

N
2—3). (C7)

critical facet length, ac

0.1 . —— . ——r
coshA[sinh a,— cost{a,+ 2A)tana,] 1 10 100

cosia.+A)+sinha.+ A)tana, €8 number of facets, N

f(A)=

with negativeA’. FIG. 7. Asymptotic behavior ddi.(N) for 8=1. Solid bold line

Equation(C7) gives us essentially functioN(a.) rather s received using Eq(C7); dotted line corresponds to EGC);
then desirable,(N). FortunatelyN(a;) may be simply in-  solid thin line is result of numerical solution of the systé29).
verted sincea.<1 everywhere in these calculations. In fact,

one can expand left-handside of EG7) in powers ofa,, Investigation of the series ia, of the ratio (maxA’)/A
keeping only the leading term, which is of the ordem@f.  shows that it does not have local extremum. Thus its maxi-
Thus mum value can be taken only at the end points of the inte-
gration interval:A= —a./2 or A=A(1). One carshow that
a %2\/@ (C9) this point isA(1) for all finite values ofB as well as for
C l . « .
N infinite .
Where Using leading(linean term of the series oA’ in a, we
get from Eqgs(C5) and(C8):
1
9(8)=\3 arctaii\3(26-1)], >3, (C103 A'~+2a, SiR(A), B>1/2, (C12
g(B)= 3 arctafiy3(1-28)], ,8<; (C10b A'~—2a sintf(A), B<1/2. (C13
In particular, forg—oc we haveg=3/2 (see Fig. 7. Together with relation(C9) and the fact thatA(1)
Thus for largeN and any lengttb=ga of the end facets ~ _ga_ for Ba,<1, —w/4<A(1)<0 for Ba,=1 and
we have derived asymptotic relatia~N~"? which isin  A(1)=— #/4 for B—, we arrive to
agreement with equations of Sec. IIl A 1.
Now we derive applicability condition for the equations
of this section. EquatiofiC7) can be used foN such that N>8g, pac<l, (C14
max A’
‘ A <L (C11) N>2\2g, B—« or Ba.=1. (C195
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