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Field-induced non-Fermi-liquid behavior in Ce,lrin g

J. S. Kim! N. O. Morend? J. L. Sarrad,J. D. Thompsor,and G. R. Stewatt
1Department of Physics, University of Florida, Gainesville, Florida 32611-8440, USA
2Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 2 December 2002; revised manuscript received 16 June 2003; published 13 Janyary 2004

In zero field, Celrlng obeys Landau’s Fermi-liquid model, with a const&4f of about 700 mJ/Ce molkK
below 0.7 K and a susceptibility that is constanttd% below 4 K. In applied magnetic field, however,
Celring shows definite non-Fermi-liquithFl) behavior at~13 T, with C/T~InT between 0.3 and 6 Ky
~InT, andp=py+AT:. At fields of 17 T and higher there is a strong divergent uptur@if below 0.7 K
that is approximately field independent and the susceptibility becomes again cdRetamitliquid like) below
6 K and decreases in magnitude at low temperature comparedl® T). These results imply that a quantum
critical point may exist in Cgdring at ~13 T. The magnetization at low temperature as a function of field of
Celring between 0.1 and 30 T shows no sign of an increase, or jump, near 13 T, but rather a change from
M~H at lower fields to a more saturated behavior above 13 T. Thus, unlike previous field-induced nFlI
behavior, where the magnetic interactions responsible for the nFl behavior eithefitattee fieldH meamag
where the magnetization showed a step at a metamagnetic trarisitipnin UPj or in S5RW,05), or (ii) at
the field whereT g, in an antiferromagnet wasuppressedo T=0 by the field(e.g., in CeCg_,Ag,), the
present measurements point to a different kind of behavior. Thus the nFl behaviofimgmay be describ-
able as due to quantum criticality at the point in the phase diagram wherénfikldesmagnetism. Compari-
sons to other nFl systems, both field-induced and those which display an anomalous upiuihah low
temperatures, are made.
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[. INTRODUCTION perpendicular to, as well as in, the basal plane. Data in 0, 13,
and 24.5 T(corrected for the lattice contribution as well as
Recently, a new family of Ce-based heavy fermion com-the magnetic field and quadrupolar moment splitting of the
pounds, including two heavy fermion superconductorsnuclear level® for H1 basal plane are shown in Fig. @/T
(Celrins and CeColg), have been discoverédThese s approximately constarfie., Fermi-liquid like at low tem-
Ce TNz, 1 2m compounds grow with a tetragonal unit cell peratures in zero field, but follow@/T~InT in 13 T (13-T
that is made fronm layers of Celg arranged along theaxis  data forHl/basal plane, not shown, are identical within the
followed bym layers ofTIn,. Celring has been reportédo  error bars between 0.3 and 6 K—a standdrgmperature
have a specific heat (defined as the specific he@tdivided dependence observed in many non-Fermi-liguiBll) mate-
by the temperaturd@ asT—0) of 700 mJ/CemolR quali-_rgls. Specific-heat data taken in 10(fot shown over the
fying it to be classified as a heavy fermion system. Thesame temperature range in both field directions show ap-
present work was initially planned around specific-heat meag oximately the same standard deviation for a fit of the data
surements up to 25 T and down to 0.3 K in order to detery, 4 |nT pehavior, i.e., the critical field for nFI behavior is in
mine the y(H) behavior of this new heavy fermion com- he 10_13-T field range in both field directions. In contrast to
pound (as has been done for a number of heavy fermion,e ghservelf behavior in UPY, whereC/T at low tempera-
system&?) and to look for possible new behavior. Our initial y,res decrease? for fields aboveH netamagafter following
high-field specific heat results fOI: gdng led to addlt!onal CIT~INT at Hyperamag(=20.5 T for UP), C/T at low tem-
measurements of the magnetization, the ac magnetic SUSC&Rsratures for Caring increases strongly above theTirbe-
tibility, and the resistivity in high fields to further character- payior for higher fields as shown in Fig. 1. In order to better
1z€ t_he behaylor revealed l_ay the spe_C|f|c-heat data. follow the strong upturn irC/T for fields above 13 T, field
High quality (as determined by single-crystal structural data forH1 basal plane for 13, 17, 20, and 24.5 T and, for
a.nalysi§ of similar samples grown in the same laborajory comparison, foH| basal planel-i =2'4.5 :I'(corrected for th’e
S|_ngle crystal_s of Cgring were grown using an In flux tech- lattice contribution and the magnetic field and quadrupolar
nique described elsewheteSpecific-heat measurements oo splitting of the nuclear lev&lsare shown in Fig. 2.

dowglltoho.d3 K aﬁdéé??hi%q magpe_tig fields were made USinghather than higher fields inducing a transition that then in-
established methodS ™ while resistivity measurements Were . . qeq in size and transition temperature with increasing

made using a standarq four-wire techn!que. The magnetizeh—eld as observed in Celrlng, the upturn inC/T in Ce,lring
Ell_gna\;]v:;reneeasured using the VSM facility at the NHMFL, for fields aboveH, , appears to be almost field independent.
' To further examine this field-induced upturn in &g,
we examined the temperature dependence of the upturn in
C/T above the log behavior in 24.5 T and below 0.7 K in
The specific heat of single-crystal £#ng was measured Fig. 2. This upturn is extremely divergent and is fit reason-
in 0 and applied magnetic fields with the field oriented bothably well by C/T~T L This is much more divergent than,

Il. RESULTS AND DISCUSSION
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FIG. 1. (Color online Specific heaC divided by temperaturé& FIG. 3. Magnetization as a function of field up to 30 T measured

of Ce,lring corrected(see, e.g., Ref.)8or the contributions to the at 1.7 K for field perpendicular to the basal plane inl@ag. There
specific heat from the lattice specific hdapproximated from the is no sign of a metamagnetic jump anywhere in these data, rather
lattice specific heatRef. 8 of Celrlrg), as well as the quadrupolar the data behave linearly with field up tel4 T and then show a
and magnetic field splittingRef. 8 of the nuclear energy levels, vs slight tendency towards saturation at higher fields. Data for field in
logy T for H=0, 13, and 24.5 T applied perpendicular to the basalthe basal plan¢not shown show essentially the same result.
plane. The quadrupolar contribution to the specific heat is essen-
tially negligible in the measured t_emperature range; the contrlbutlon._ in Celrln shows a strong field dependence, in stark con-
to C/T from the nuclear hyperfine Schottky anomaly due to the : ) : L
: o . trast to the behavior shown in Fig. 2. The quasi-field-
field splitting behaves as T7 and is less than 6% at the lowest . o

independent naturéonce it is induced foH>17 T) of the

temperature of measurement in 24.5 T and is only 1.5% at th o A,
transition shown in Fig. 2 for Gé&rlng would be more con-

lowest temperature in 13 T. The lattice contribution-i20% of the ) . X . .
total measured specific heat at 7 K. Note that the 13-T data followsiStent with a field-induced crossing of energy levels than of

the fit of C/T to InT quite well between 0.3 and 6 K and that the & Single-particle field alignment of spins picture. Thus above

divergence ofC/T below 0.7 K in 24.5 T is quite rapid. a certain field a state that is magnetically ordered-@t7 K
becomes the ground state in fBéng. Further, this field-

induced ordered state has an ordering temperature that is, as

e.g., the upturhin C/T for Ug Y o Pds below 0.25 K, which
g P 0208 bserved? e.g., for antiferromagnetic Cep®i,, rather un-

approximately fits the temperature dependence of a Scott e
anomaly, C/T~T"3, or the upturn inC/T on the high- ffectgd by gpphgd field. . .
To investigate if Cgring has an increase, or jump, M

temperature side of the field-induced transition in Celrin vsH (the defining property for “metamagnetismat around
Additionally, the field-induced t iti hich starts-a26 .
tonatly, the Tield-incticed transition which starts 13T, as do both URtand SgRW,0, at the field(20.5 and 7.7

T, respectively whereC/T~InT, we measured vs H at
1.7 K up to 30 T. The data are shown in Fig. 3, and show

1200 .
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the field-induced transition in Celdras regards its magne-
tization as a function of field, we would have to measMre
. vs H for Celring below its ordering temperature of 0.7 K
which is below the lowest measurement temperature for the
- VSM at the NHMFL)
wr - i, Thus, in order to gain some further knowledge of the
AC/T = C/T - nuclear splitting !
T magnetic transition, we measurgg. for Ce,lring in 0- and
200 e wowoaa ; VT 24.5-T applied dc fields down to 0.6 K; the data are shown in
: e Fig. 4. Although there is no clear indication of a transition at
T 0.7 K, by plotting the difference between the 24.5- and O-T
FIG. 2. (Color onling C/T vs log,,T of Celring (corrected as ~ data in the lower part of the figure on an expanded vertical
in Fig. 1) for 13, 17, 20, and 24.5 T applied perpendicular to theScale we see that there may be, obscured by the scatter in the
basal plane, as well as for 24.5 T applied in the basal plepen  high-field data, a feature at around 0.7 Kjg.. Certainly,
squares Note the essentially field independe®tT upturn forH there is no strong magnetic indication where the specific-heat

=17 T below 0.7 K, and the good agreement between the 24.5-Bnomaly occurs, which is consistent with a rather field-
data in the two field directions. independent antiferromagnetic transition and definitely in-

. Ce:kh;; ;rysm 1 merely a decrease below linelst~H, or saturation behav-
oo e v 1T i ior, above~14 T. Thus the field-induced nFl behavior in the
& A 20T ; specific heat of Cdring at 13 T is unlike similar behavior
v m 25T observed in URtand SgRu,O;. (In order to compare with
@

600 |-
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FIG. 4. ac susceptibility at Ofilled circles and 24.5 T(open . @)

circles applied dc field between 0.5, 0.6 and 2 K, respectively. The FIG. 6. (Color onling Resistivity vs temperature in 0, 13, 20
slight feature in 24.5 T around 0.7 K is shown accentuated on an 445 T applied perpendicular to the basal plane iE’Ir(hé '

expanded scale in the lower part of the figure by plotting the dif’with current in the basal plane. Fits of the datapte o+ AT® for
ference(open trianglesbetween the 0- and the 24.5-T data. There P y P00

may be a slight feature at 0.7 K, however, this is mostly obscure(?a

by scatter in the high-field data.

consistent with a ferromagnetic transition.

ach field are shown as solid lines through the d&iaparameters
or 0 and 13 T are shown next to the respective cujvElse inset
shows the temperature dependence expomeats a function of
field.

Considering now the dc susceptibiligybetween 1.7 and below 6 K, with a further decrease of the magnitude(d®

10 Kin 0.1 T(shown in the inset in Fig.)5 x4 has a slight

K). (In UPt x (2 K) continues to increas®as field is in-

peak at~3 K and is approximately constant at 14.5 m emu/creased.Thus the temperature dependence of the dc suscep-
Ce mol below 4 K. In order to look further for nFl behavior tibility in field agrees with the results for the specific heat: at
at 13T,y vs T at 13 T, field perpendicular to the basal plane,low fields Celring exhibits Fermi-liquid behavior, while at

is shown in Fig. 5. These data risel0% between 10 and 2 13 T there is non-Fermi-liquid behavior. In higher fields,

K and can be fit approximately equally weéiee Fig. 5 to
the nFl temperature dependences T~ %% or y~InT. In

C/T exhibits evidence for an upturn at low temperatures
while the dc susceptibility shows again Fermi-liquid behav-

any case, thesg (13 T) vs temperature data are not indepen-ior, both of which contrast with what is measutéabove
dent of temperature at low temperature, i.e., are not FermiH neramagin UPL.
liquid like in character. As shown in Fig. 5, a further increase As a further probe of the evolution of the behavior in

of the field to 24.5 T results in an essentially constgnt
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FIG. 5. (Color onling Susceptibility vs temperature in 0(in- :
sed, 13, and 24.5 T applied perpendicular to the basal plane if). Rather, the 24.5-T data appear to be describable as the
Celring. Both the power-lawsolid line) and log(dashed lingfits

Celring with increasing field, Fig. 6 shows the resistivity in
0, 13, 20, and 24.5 T down to 0.3 0.5 K for H>13T).
Data (not shown for the resistivity in 15 T are essentially
identical to the 13-T data. Similar to the,. vs T data dis-
cussed above, thedata shown in Fig. 6 show no indication
of the transition observed in the specific heat at 0.7 K. In 0
field, the resistivity follows* p=py+ATYS i.e., the tem-
perative dependence is significantly differérthan theT?
expected from Fermi-liquid behavior. At 13 Tp=pg
+ATY% where linearT dependence 9sa standard nFl tem-
perature dependence. 15-T datat shown have a resistiv-
ity temperature dependence &% Thus the temperature
dependence of the resistivity datsee inset to Fig. )6is in
qualitative agreement with tHe/T and y data which show a
change to nFl behavior at a critical field of 13 T. However, as
has been seérin other systems where field induces nFl be-
havior, e.g., URt, the exponentr in p=py+AT* does not
fully recover back to the Fermi-liquid value @i~2 over
any appreciable temperature range even by 24(5€€ Fig.

lower half of an S-shaped curve:> py+ AT at low tempera-

to the 13-T data are shown. Taking into consideration the expandelires over a more limited temperature rang®.5-0.75 K,
scales for both the inset and the main figure, the data in 0 and 24 than at 13—20 T—as expected as the field moves the system
T are essentially constant at low temperatures. away from the quantum critical point, followed by negative

024402-3



KIM, MORENO, SARRAO, THOMPSON, AND STEWART PHYSICAL REVIEW B9, 024402 (2004

curvature at higher temperatures. It should be stressed that C/T and y for fields above 13 T from what is obsertéd
the value ofp, observed in the single crystal reported herein UPt; above H eamag (PlUS the lack of any long range
(~26 u)cm) is characteristic of high quality crystals with- antiferromagnetic order to suppress with the applied field
out evidence for In inclusiongsee Ref. #and is les$than indicate that the field-induced non-Fermi-liquid behavior in
the value of p, found for high quality CeRhing (p,  Cselring is not comparable to that of the other knolield-
=55 u) cm) which becomes superconductifzertainly a induced non-Fermi-liquid systems such as 4JPor

sign of sample qualityat 2 K under 25 kbar pressure. CeCy_,Agy, but rather is due to non-Fermi-liquid behavior
at a quantum critical point where the quantum criticality is
I1l. SUMMARY AND CONCLUSIONS due to theinducementof a magnetic transition by applied

Celring appears to be a new example of fieId—inducedfle
non-Fermi-liquid behavior, wittH,;~13 T. The tempera-
ture dependences &/T and y show Fermi-liquid behavior
in O field, andC/T, x, andp all show standard nFl tempera-  The authors gratefully acknowledge the assistance of G.
ture dependences () InT or T~ ¢, andT?, respectivelyin ~ Armstrong and G. Jones with the VSM measurements at
the vicinity of 13 T. At higher fields, the susceptibility shows NHMFL, Tallahassee and thank R. Movshovich for commu-
a return to Fermi-liquid behavior, whil€/T shows an ap- nicating his resistivity results ahead of publication. One of
proximately field-independent upturn below 0.7 ower  the authorgG.R.S) would like to acknowledge helpful dis-
temperatureC/T data in high field, currently outside of our cussions with D. Vollhardt. Work at the University of Florida
measurement range, could well exhibit Fermi-liquid behaviowas supported by the U.S. Department of Energy under Con-
below the magnetic transitionThe source of the long-range tract No. DE-FG05-86ER45268. Work at Los Alamos was
interactions responsible for the nFl behavior are likely re-performed under the auspices of the U.S. Department of En-
lated to this field-induced upturn i@/ T, the nature of which ergy. Measurements in fields above 15 T were performed at
requires further investigation. The low-temperature magnetithe NHMFL, Tallahassee, which is supported by the U.S.
zation as a function of field up to 30 T, as well as differencesNational Science Foundation.
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