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Quasiharmonic free energy and derivatives for many-body interactions:
The embedded atom method
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We present a method using many-body potentials and lattice statics and quasiharmonic lattice dynamics for
the calculation of the free energy of periodic crystals and its analytic derivatives with respect toall external and
internal degrees of freedom. Derivatives are calculated by means of first-order perturbation theory and detailed
expressions for the lattice sums required are presented. No approximations regarding the coupling of vibrations
of different atoms are made. The approach is illustrated using the embedded atom method. As an example we
calculate the temperature variation of the entropy and free energy of mixing of disordered RhPd by using
configurational lattice dynamics, in which the free energies of a number of configurations is determined
directly by means of fully dynamic structural minimizations. The method is particularly useful for quantities
such as the vibrational contributions to the entropy of mixing.
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I. INTRODUCTION

The free energy of a system is the key property fro
which all equilibrium thermodynamic information may b
obtained. Central to this is the optimization problem of fin
ing the equilibrium geometry of the system at a given te
perature and pressure. Considerable effort has been expe
to develop methods for the determination of the free ene
molecular dynamics and, to a lesser extent, Monte C
simulations are popular techniques. Lattice dynamics1 has
been somewhat neglected in recent years, even though it
sesses a number of characteristics that make it a pow
complementary technique to molecular dynamics and Mo
Carlo simulations. In particular it takes into account ze
point energy and other quantum effects and hence below
Debye temperature scores significantly over the inhere
classical molecular dynamics and Monte Carlo methods.
breakdown of the quasiharmonic approximation is often
dicated by the appearance of imaginary frequencies;
Rh-Pd alloys and the potential used here this happens a
T;1500 K. The investigation of normal vibrations aids i
terpretation and can reveal, for example, the mechanism
sponsible for phase transitions and thermal expansion. M
over, unlike molecular dynamics and Monte Car
simulations, lattice dynamics yields absolute free energ
directly, rather than free-energy differences, and does
rely on long runs for high precision. It is relatively inexpe
sive, requiring typically an order of magnitude less comp
tation time than molecular dynamics and Monte Carlo sim
lations, and, moreover, avoids the critical slowing dow
effects and kinetic barriers suffered by those techniques.

Except at rather low temperatures, the bulk of the com
tational effort in lattice dynamics calculations is used in t
optimization problem of determining the equilibrium geom
etry of the crystal. Once this is obtained, the calculation
dependent properties such as free energy, heat capaci
0163-1829/2004/69~2!/024303~9!/$22.50 69 0243
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thermal expansion is straightforward. Efficient optimizati
is only possible if derivatives of the appropriate thermod
namic potential with respect to the geometrical coordina
~or strains! are available and the generation and use of th
derivatives are the main concerns of this paper. Until v
recently the small number of existing generally available l
tice dynamics codes2 either neglected vibrational contribu
tions to these derivatives or generated themnumerically,
which is prohibitively expensive for large unit cells wit
many internal coordinates. In Ref. 3 we developed the g
eral theory, using lattice statics and quasiharmonic lat
dynamics, for theanalyticcalculation of the free energy an
its first derivatives with respect to all parameters defining
crystal geometry, for particles interacting via long-rang
Coulomb forces3 and short-range two-3 and three-body4 po-
tentials. These expressions have formed the basis of a
codeSHELL5 developed for the efficient study ofionic solids
and slabs6 with many internal strains~degrees of freedom!,
and for the first time a full minimization of the quasiha
monic free energy for large unit cells of this type of solid
possible.

In this paper we extend this approach to many-body
teractions. Many-body potentials are essential for accu
computer simulations of metals and alloys and here
present the formalism and detailed expressions required
the free energy and its derivatives in the embedded a
method~EAM!.7 In this the crystal energy is expressed as
sum of one cohesive term originating from the conduct
and valence electrons and a repulsive contribution due
core-core overlap. Only a few lattice dynamics simulatio
using the EAM have appeared, and these have been
rather simple systems. Foiles and Adams8 used expressions
valid only for crystals with one atom per primitive unit cel
and Foiles9 has also calculated surface and monovaca
free energies using the zero static internal stress approx
tion ~ZSISA!,10 in which only the external strains are relaxe
using fully dynamic free-energy derivatives, while all inte
©2004 The American Physical Society03-1
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nal strains are relaxed using static energy derivatives.
jafabadi and Srolovitz11 have applied the local harmoni
model,12 in which all terms in the dynamical matrix tha
couple vibrations of different atoms are neglected, to
~bulk, $001% surface, and vacancy formation!. Barrera and de
Tendler13 have also presented a few examples, but using v
small unit cells.

We do not repeat here the discussions given in Ref. 3,
in the next section summarize the essential points of qu
harmonic free-energy minimization needed for the pres
work. In Sec. III the expressions required for calculating
free energy and its derivatives, assuming a EAM poten
are given. Note that no assumptions regarding the local
tion of the phonons are made, i.e., no elements in the
namical matrix are neglected as in the local harmonic mo
The deduction of the equations given in this paper is b
time consuming and error prone. A suitable compact nota
and rearrangement and identification of common terms
crucial. We present results in such a way that subseq
implementation in computer code is as efficient
possible—for example, particular attention is paid to rec
sion formulas which link the various derived quantities. T
expressions given here for the EAM are also an essential
stage towards those in more elaborate models such as
example, the modified embedded atom method~MEAM !,14

which is necessary for a quantitative study of hexago
close packed structures.15

To illustrate the methodology, in Sec. IV we present
brief application and calculate the enthalpy, entropy, and
energy of mixing of disordered RhPd. The free energies o
number of configurations are determined directly by me
of fully dynamic structural minimizations, and the thermod
namic properties of RhPd are then evaluated by suitable t
modynamic averaging. We shall see that lattice dynam
thus also provides an efficient route to the free energy
particular configurations ofdisorderedsolids,16,17 and is par-
ticularly useful for assessing the importance of vibratio
contributions to mixing properties.

II. THEORY

A. Crystal geometry

Optimization of a crystal structure involves finding th
most stable state given a set of thermodynamic constra
and hence the minimization of the appropriate thermo
namic potential. At temperatureT and applied pressurePext

the appropriate potential is an availabilityG̃, defined

G̃5A1PextV5Fstat1Avib1PextV, ~1!

where A, the Helmholtz energy, has static and vibration
contributions,Fstat andAvib . In order to proceed,A must be
expressed as a function of the geometrical parameters o
structure, with respect to whichA can be minimized. These
coordinates may beexternal, describing macroscopic defo
mation of the crystal, orinternal, describing the positions o
atoms within the unit cell.

The position of thekth atom in thel th unit cell can be
written18 as
02430
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xS l
k D5x~ l !1x~k!5 l 1a11 l 2a21 l 3a31x~k!,

k51,2,...,NSL , ~2!

wherea1 , a2 , anda3 are the lattice vectors in a given con
figuration andx~k! is the position of thekth atom in the unit
cell with respect to the origin of the unit cell. There areNSL
sublattices or atoms in the unit cell. The three integ
( l 1 ,l 2 ,l 3) define a lattice point and are collectively denot
by l. The positions of the atoms in the basis can be defi
using Cartesian coordinates@as in Eq. ~2!# or in relative
~fractional! coordinatesR, related tox by

x~k!5R~k!A, k51,2,...,NSL , ~3!

whereA is a 333 matrix whose rows are the lattice vecto
a1 , a2 , and a3 . Since the energy depends on the relat
positions of the atoms, there are only 3NSL23 parameters
that can be used as independent variables. For this reaso
takeR~1! to be constant and define a set of 3NSL13 gener-
alized coordinates E whose elements are$R(k), k
52,3,...,NSL% and six variables defining the shape and size
the unit cell. The unit cell can be specified in terms of t
usual six crystallographic lattice parametersa, b, c, a, b, and
g, or equivalently, in terms of external strainseab . These are
defined by considering a homogeneous deformation, wh
deforms the lattice vectors~in a given reference configura
tion! such that the new lattice vectors are rows of the ma
A8 related toA by

A85AS 11e11 e12 e13

e21 11e22 e23

e31 e32 11e33

D . ~4!

Components of the tensoreab determine both the orientatio
and the macroscopic state of strain of the crystal.19 The pa-
rameterseab have been chosen because it is convenien
obtain derivatives of the free energy with respect to them
because they may be related simply to other parameter
common use such as the Voigt macroscopic infinitesim
strain coordinates. For example, the Voigt macroscopic
finitesimal strain coordinates« i are the components of th
six-element vector:

«5S «11

«22

«33

«23

«13

«12

D 5S «1

«2

«3

«4

«5

«6

D 5S e11

e22

e33

e231e32

e131e31

e121e21

D . ~5!

It is important to note that the last 3 elements of« differ from
those ofe by a factor of 2, and that we do not define th
strains«32, «13, and«21. The use of the six elements«ab
defined in Eq.~5! is more convenient than the use of« i or
eab as it leads to simpler equations.
3-2
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B. Lattice dynamics

The static energyC of an entire crystal is assumed to b
a function of the positionsx(k

l ) of the particles comprising
the crystal. The vibrational frequenciesv j (q) of modes with
wave vectorq can be obtained by diagonalization of th
dynamical matrixD~q! in the usual way~e.g., Ref. 1!:

D~q!e5v2~q!e, ~6!

whereD is defined by

Dk ik j

ab ~q!5
1

Amk i
mk j

(
l j

FabS 0 l i

k i k j
D eiq•r ~ l j !. ~7!

Throughout this paper Greek letters as subscriptsa, b,...
denote Cartesian coordinatesx, y andz, and l j runs over all
unit cells of the crystal. TheFab(k i

0
k i

l j ) are second deriva

tives of the crystal energy with respect to atom coordina

FabS 0 l j

k i k j
D 5

]2C

]xaS 0
k i

D ]xbS l j

k j
D . ~8!

l i50 is used to label the cell at the origin.
From the frequenciesv j (q), Avib is determined from

Avib5(
q, j

„$ 1
2 \v j~q!1kBT ln$12exp@2\v j~q!/kBT#%….

~9!

For a macroscopic crystal the sum overq becomes an inte
gral over a cell in reciprocal space, which can be evalua
by taking successively finer uniform grids until convergen
is achieved.20

Since there is no explicit expression forAvib in terms of
the geometry of the lattice it is not possible to determine
strain derivatives needed for efficient minimization by dire
differentiation of a lattice sum as withFstat. Differentiating
Eq. ~9! with respect to an arbitrary strainE gives

S ]Avib

]EA
D

R8,T

5(
q, j

H \

2v j~q! S 1

2
1

1

exp~\v j~q!/kBT!21D
3S ]v j

2~q!

]EA
D

E8
J , ~10!

where the subscriptE8 denotes that all theE are kept constan
except for the differentiation variable. We thus require str
derivatives of the frequencies. The derivativ
(]v j

2(q)/]EA)E8 are obtained from the analytic expressio
for the derivatives„]D(q)/]EA…E8 by first-order perturbation
theory.1,3A crucial point here is that for obtaining derivative
the perturbation is infinitesimal and the procedure exact
addition, for thermodynamic properties no special consid
ation needs to be given to degeneracies in first-order pe
bation theory, since the trace of„]D(q)/]EA…E8 is invariant
for any complete normal set of eigenvectors ofD.

To obtain the equilibrium structure a variable met
method21 is used to minimizeA with respect to theEA . In the
02430
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initial configuration the static energy Hessian,
(]2Fstat/]EA]EB), which is a good approximation to
(]2Astat/]EA]EB), is calculated from its analytic expressio
and its inverse together with the (]Fstat/]EA) is used to ob-
tain an improved configuration. In subsequent iterations
(]Fstat/]EA) are calculated in the new configurations and t
inverse Hessian updated by the Broyden-Fletcher-Goldfa
Shanno ~BFGS! formula.22 An optimization therefore re-
quires one static Hessian calculation, and a small numbe
dynamic gradient calculations. We have found this to
much more efficient than methods involving repeated eva
ation of the Hessian or frequent line minimizations.

III. N-BODY INTERACTIONS AND THE EMBEDDED
ATOM METHOD

In the EAM, the static energy per unit cell of the cryst
may be written as

Fstat5(
i

Fi~r i !1
1

2 (
i

( 8
j

fXr S l i l j

k i k j
D C. ~11!

Primes on summations in this and subsequent equation
dicate that terms withr (k i

l i
k j

l j )50 are excluded.Fi(r i) is

negative and represents the energy of ‘‘embedding’’ atomi in
the electronic densityr i created by all other atoms in th
crystal, andf„r (k i

l i
k j

l j )… is the core-core repulsion betwee

atoms (k i

l i ) and (k j

l j ), assumed to depend only on the type

the atoms and the distance between them. The electr
densityr i is assumed to be the sum of the electronic den
ties of all other atoms at the nucleus of atomi:

r i5( 8
j

f k jXr S l i l j

k i k j
D C. ~12!

The electron density created by atom (k j

l j ) at a distance

r (k i

l i
k j

l j ), f j„r (k i

l i
k j

l j )…, is assumed to be isotropic about (k j

l j ).

A. Lattice sums for short-range potentials

The two-body contribution to the energy of a unit cell c
be expressed as

F5
1

2 (
k i , j

fS 0
k i

j D , ~13!

where the notation

fS 0
k i

j D
is used to abbreviate the full expression:

fS 0
k i

j D[fXr S 0 l j

k i k j
D C ~14!

in which f is the two-body potential, a function of the dis
tance between atoms (k i

0 ) and j [(k j

l j ).
3-3
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In order to write the derivatives of the two-body potent
in a compact form it is convenient to use the following n
tation:

xS l i l j

k i k j
D 5xS l j

k j
D2xS l i

k i
D , ~15!

r i j 5UxS l i l j

k i k j
D U, ~16!

and define the functionsfn(r i j ) recursively as

f0~r i j !5f~r i j !, ~17!

fn~r i j !5
1

r i j

]fn21~r i j !

]r i j
. ~18!

The first derivatives of the static energy with respect
external and internal coordinates are then

]F

]«ab
5

1

2 (
i ,k j

f1S i
0
k j

D xaS i
0
k j

D xbS i
0
k j

D , ~19!

]F

]xa~kk!
5(

i
f1S i

0
kk

D xaS i
0
kk

D . ~20!

For the Hessian there are three possible different com
nations:

]2F

]«gd]«ab
5

1

2 (
k i , j

Ff2S 0
k i

j D xaS 0
k i

j D xbS 0
k i

j D xgS 0
k i

j D

3xdS 0
k i

j D1
1

2
f1S 0

k i
j D ]2r 2S 0

k i
j D

]«gd]«ab

G , ~21!

]2F

]xb~k l !]xa~kk!
5(

i
H Ff2S i

0
kk

D xaS i
0
kk

D xbS i
0
kk

D
1dabf1S i

0
k i

D G~dkkk l
2dk ik l

!J , ~22!

]2F

]xg~kk!]«ab
5(

i
Hf2S i

0
kk

D xaS i
0
kk

D xbS i
0
kk

D xgS i
0
kk

D
1f1S i

0
kk

D FdagxbS i
0
kk

D1dbgxaS i
0
kk

D G J .

~23!

On the derivation of Eqs.~18!, ~20!, and~21!, it is useful
to remember that derivatives correspond to changes
~static! energy whenall atoms of the crystal in a given sub
lattice are moved by an infinitesimal amount. Equations~17!,
~19!, and~21! are expressions for derivatives with respect
« i , i.e., the change in energy when the unit cell is deform
by an infinitesimal amount.
02430
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The derivatives needed to evaluate the dynamical ma
involve changes in the crystal energy when only atoms (k i

0 )

and (k j

l j ) are moved:

FabS 0 l j

k i k j
D 52f2S j

0
k i

D xaS j
0
k i

D xbS j
0
k i

D
2dabf1S j

0
k i

D . ~24!

Equation~24! is valid only for (k i

0 )Þ(k j

l j ). Terms with (k i

0 )

5(k j

l j ) are calculated from the condition of translation

invariance:23

(
k j

FabS 0 l j

k i k j
D 50 ~25!

The two dynamical matrix derivatives necessary invo
changes in the dynamical matrix when all atoms in the cr
tal in a given sublattice are moved or when the unit cell
deformed, both by infinitesimal amounts:

]3F

]«gd]xaS 0
k i

D ]xbS l j

k j
D

52f3S 0
k i

j D xaS 0
k i

j D xdS 0
k i

j D xgS 0
k i

j D xdS 0
k i

j D
2f2S 0

k i
j D FdabxgS 0

k i
j D xdS 0

k i
j D

1dagxbS 0
k i

j D xgS 0
k i

j D1dadxbS 0
k i

j D xgS 0
k i

j D
1dbgxaS 0

k i
j D xdS 0

k i
j D1dbdxaS 0

k i
j D xgS 0

k i
j D G

2f1S 0
k i

j D ~dagdbd1daddbg!, ~26!

]3F

]xg~kk!]xbS l j

k j
D ]xaS 0

k i
D

5~dk ikk
2dk jkk

!Hf3S 0
k i

j D xaS 0
k i

j D xbS 0
k i

j D xgS 0
k i

j D
1f2S 0

k i
j D FdagxbS 0

k i
j D1dbgxaS 0

k i
j D

1dabxgS 0
k i

j D G J . ~27!

In Eqs.~20! we need the derivatives:
3-4
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]2r 2

]«ab]«gd
5

1

2
xaxgdbd1

1

2
xaxddbg1

1

2
xbxgdad

1
1

2
xbxddag . ~28!

If required, derivatives with respect to theR(k) rather
than thex(k) may be obtained from the latter and the cha
rule. For example,

]2F

]Rb~k i !]Ra~k j !
5 (

g51

3

(
d51

3
]2F

]xd~k j !]xg~k i !
AagAbd .

~29!

Similarly, derivatives with respect to the lattice paramet
can be obtained from the derivatives with respect to the«ab
and the chain rule using Eq.~4!.

B. Lattice sums for embedding interactions

We start by rewriting the embedding contribution toFstat,
i.e., the first term on the right-hand side of Eq.~11!, as

E5(
k i

HFk i
XrS 0

k i
D CJ . ~30!

For convenience we define, analogously to thefn(r i j ) in the
previous section, a set of quantitiesf k i

n ( i j ), such that

f k i

0 ~ i j !5 f k i
~ i j !5 f k iXr S l i l j

k i k j
D C, ~31!

f k i

n ~ i j !5
1

r i j

] f k i

n21~ i j !

]r i j
. ~32!

The contributions of the many-body forces to the static
ergy, the dynamical matrix, and the strain derivatives of b
are much more expensive to evaluate than the two-body
tributions@Eq. ~13!# because now each term in the sum giv
by Eq. ~30! requires the calculation of another sum overall
atoms of the crystal. To allow the evaluation of these sum
an efficient way so as to be able to simulate cells with a la
number of atoms, it is convenient to define the followi
sums:

S0~k i ,k j !5(
l j

f k j
~ i j !, ~33!

S1~k i ,k j !5(
l j

f k j

1 ~ i j !, ~34!

Sa
1~k i ,k j !5(

l j

f k j

1 ~ i j !xa~ i j !, ~35!

Sab
1 ~k i ,k j !5(

l j

f k j

1 ~ i j !xa~ i j !xb~ i j !, ~36!
02430
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1 ~k i ,k j !5(

l j

f k j

1 ~ i j !xa~ i j !xb~ i j !xg~ i j !, ~37!

and

S0~k i !5(
k j

S0~k i ,k j !, ~38!

S1~k i !5(
k j

S1~k i ,k j !, ~39!

Sa
1~k i !5(

k j

Sa
1~k i ,k j !, ~40!

Sab
1 ~k i !5(

k j

Sab
1 ~k i ,k j !, ~41!

and similarly for other terms not explicitly given. It is im
portant to note that the sums in Eqs.~33!–~41! do not depend
on the indexl i and l j .

In turn, derivatives of the static energy with respect
both internal and external strains requires the calculation
derivatives of the electronic density with respect to the se
x(k i) and«ab . In terms of theS’s given above they can be
evaluated as

r~ i !5S0~k i !, ~42!

]r~ i !

]«ab
5Sab

1 ~k i !, ~43!

]r~ i !

]xa~kk!
5Sa

1~k i ,kk!2dk i ,kk
Sa

1~k i !, ~44!

]2r~ i !

]«ab]«gd
5Sabgd

2 ~k i !1
1

4
„dbdSag

1 ~k i !1dbgSad
1 ~k i !

1dbgSad
1 ~k i !1dagSbd

1 ~k i !…, ~45!

]2r~ i !

]xa~kk!]«bg
5Sabg

2 ~k i ,kk!1dabSg
1~k i ,kk!

1dagSb
1~k i ,kk!2dk ikk

„Sabg
2 ~k i !

1dagSb
1~k i !1dabSg

1~k i !…, ~46!

]2r~ i !

]xb~k l !]xa~kk!
5dkkk l

„Sab
2 ~k i ,kk!1dabS1~k i ,kk!…

2dk ik l
„Sab

2 ~k i ,kk!1dabS1~k i ,kk!…

2dk ikk
„Sab

2 ~k i ,k l !1dabS1~k i ,k l !…

1dk ikk
dk ik l

„Sab
2 ~k i !1dabS1~k i !….

~47!
3-5
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For the evaluation of the dynamical matrix and its deriv
tives, the following derivatives of the electronic density wi
respect to the coordinates of a particular atom are requir

]r~ i !

]xa~k!
5 f kk

1 ~ ik !xa~ ik !2d l i ,l k
dk i ,kk

Sa
1~k i !, ~48!

]2r~ i !

]xb~ l !]xa~k!
52d i l „f kk

2 ~ ik !xa~ ik !xb~ ik !1 f kk

1 ~ ik !dab…

2d ik„f k l

2 ~ i l !xa~ i l !xb~ i l !1 f k l

1 ~ i l !dab…,

~49!
ri-

te
t

in
e
es
,
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d:

]2r~ i !

]«ab]xg~k!
5 f kk

2 ~ ik !xa~ ik !xb~ ik !xg~ ik !

1 f kk

1 ~ ik !„dagxb~ ik !1dbgxa~ ik !…

2d ik@Sabg
2 ~k i !1„dagSb

1~k i !1dbgSa
1~k i !…#,

~50!

]2r~ i !

]xb~k l !]xa~k!
5~dkkk l

2dk ik l
!„f kk

2 ~ ik !xa~ ik !xb~ ik !

1 f kk

1 ~ ik !dab…2d ik@Sab
2 ~k i ,k l !

1dabS1~k i ,k l !#1d ikdk ik l
@Sab

2 ~k i !

1dabS1~k i !#, ~51!
]3r~ i !

]xd~ l !]xg~k!]«ab
52d i l f kk

3 ~ ik !xa~ ik !xb~ ik !xg~ ik !xd~ ik !2d i l f kk

2 ~ ik !„dadxb~ ik !xg~ ik !1dbdxa~ ik !xg~ ik !

1dgdxa~ ik !xb~ ik !1dagxb~ ik !xd~ ik !1dbgxa~ ik !xd~ ik !…2d i l f kk

1 ~ ik !~dagdbd

1dbgdad!2d ik f k l

3 ~ i l !xa~ i l !xb~ i l !xg~ i l !xd~ i l !2d ik f k l

2 ~ i l !„dadxb~ i l !xg~ i l !1dbdxa~ i l !xg~ i l !

1dgdxa~ i l !xb~ i l !1dagxb~ i l !xd~ i l !1dbgxa~ i l !xd~ i l !…2d ik f k l

1 ~ i l !~dagdbd1dbgdad!, ~52!

]3r~ i !

]xg~km!]xb~ l !]xa~k!
52d i l ~dkkkm

2dk ikm
!„f kk

3 ~ ik !xa~ ik !xb~ ik !xg~ ik !1 f kk

2 ~ ik !~dagxb~ ik !1dbgxa~ ik !1dabxg~ ik !!…

2d ik~dk lkm
2dk ikm

!„f kk

3 ~ i l !xa~ i l !xb~ i l !xg~ i l !1 f kk

2 ~ i l !~dagxb~ i l !1dbgxa~ i l !1dabxg~ i l !!….

~53!
the

he
e it
h
ut
n.

ing
of
Equations~51!–~53! are valid only forkÞ l . Terms withk
5 l are obtained from the condition of translational inva
ance as given in Eq.~25!.

In the two last sets of equations it is important to no
once more the difference between derivatives with respec
the position of all atoms in a given sublattice,x(k i), and
with respect to a particular atom of the crystal,x(k i

l i ).

In terms of derivatives of the electronic densities given
Eqs. ~48!–~53!, it is now straightforward to calculate th
static energy, the dynamical matrix, and their derivativ
The first derivatives of the static energy are, for instance

]E

]xa~kk!
5(

k i

Fk i
8 S rS 0

k i
D D ]rS 0

k i
D

]xa~kk!
, ~54!

]E

]«ab
5(

k i

Fk i
8 S rS 0

k i
D D ]rS 0

k i
D

]«ab
, ~55!
to

.

while the second-order derivatives necessary to calculate
dynamical matrix are

]2E

]xb~k l !]xa~kk!
5(

k i

Fk i
9 XrS 0

k i
D C ]rS 0

k i
D

]xb~k l !

]rS 0
k i

D
]xa~kk!

1Fk i
8 XrS 0

k i
D C ]2rS 0

k l
D

]xb~k l !]xa~kk!
. ~56!

By carrying out the evaluation of the static energy, t
dynamical matrix and their derivatives as indicated abov
is possible to implement a fairly efficient algorithm in whic
sums over, in principle, all cells of the crystal are carried o
only once and for all derivatives, for a given configuratio
The final sums as those required in Eqs.~54! and ~55!, for
instance, are only over all atoms in one unit cell.

IV. FREE ENERGY OF MIXING OF RhPd

We end with a brief example, our treatment here be
illustrative rather than comprehensive. Though the use
3-6
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lattice dynamics techniques has largely been restricted to
perfect crystals, we have shown previously17 that it can be
used also for solid solutions. In Ref. 17 we considered a v
different type of system~MgO-MnO! in which the atoms
interacted via only pairwise interactions. Here we conc
trate on Rh-Pd, a system that phase separates at low tem
tures and which forms a solid solution at temperatures ab
;1200 K ~for example, Refs. 24, 25, 26!. Results for the
50-50 mixture are given here.

We represent the electronic densities as simple expo
tials:

f j~r !5D j exp~2r i j /z j ! ~57!

with different parametersD j and z j for each metal (j
5Pd,Rh). The embedding energy@Eq. ~11!# is given by

F j~r j !52CjAr j ~58!

with different parametersCj again for Pd and Rh. The repu
sive potential in Eq.~11! is also given a simple form,

f i j ~r !5Ai j exp~2r i j /s i j !, ~59!

whereAi j and s i j are different for each type of interactio
~Pd-Pd, Rh-Rh, Pd-Rh!. A cutoff of 6 Å was used for both
electronic densities and repulsive potentials. The value
the model parameters were fitted to reproduce the resul
ab initio calculations and are reported in Ref. 27.

In order to simulate disordered RhPd we used cubic u
cells containing 32 atoms, with atom positions as in a fa
centered cubic lattice. We generated a set of configurationk,
in each of which the location of the sixteen Rh~or Pd! atoms
within the unit cell was chosen at random. At each tempe
ture a full dynamic optimization of the structure of each co
figuration was carried out, calculating at the same time s
eral thermodynamic properties such as the Gibbs energy,Gk ,
the enthalpy,Hk and the entropy,Sk . The ensemble averag
of an observable, the enthalpy, for instance, is calcula
from

H5
(k

KHk exp~2bGk!

(k
K exp~2bGk!

, ~60!

while the ensemble average of the Gibbs energy is given

G52kBT ln K2kBT lnS (
k

K

exp~2bGk!/K D ~61!

whereK is the total number of possible configurations for t
supercell considered. Because it is in general not possib
carry out the summation in Eqs.~44! and ~45! over all con-
figurations, they are carried out over a subsetK8. Consis-
tently,K, the denominator of Eq.~45!, is replaced byK8. The
first term of Eq.~45! represents the ideal contribution whi
the second term is the deviation from ideality.

With as few as 200 configurations used in the ensem
average, the value ofG at 1000 K is converged to better tha
0.01 kJ/mol. Similar convergence is observed at other t
02430
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peratures. All subsequent averages presented here were
using 1000 configurations, which ensures very well co
verged values.

From the results of optimizations over a wide range
temperatures, we show in Fig. 1 the temperature depend
of the enthalpy, the entropy~as the productTS! and the free
energy of disordered RhPd. Again using a simulation ce
with 32 atoms, it is straightforward also to calculateG, H,
and S for the pure metals over the same temperature ra
and so determine the corresponding values ofDGmix ,
DHmix , and DSmix , which are plotted in Fig. 2. Note the
absolute values of the quantities in Fig. 1 are of the orde
several hundred kJ mol21, while the thermodynamic poten
tials of mixing in Fig. 2 are smaller by two orders of ma
nitude.DHmix increases slightly with temperature.

The value ofDGmix becomes negative at'1100 K, which
is of course a necessary but not sufficient condition for
formation of a solid solution. Analogous free-energy minim
zations over a range of composition would allow calculati
of the phase diagram. At lower temperatures,DSmix is less
than the ideal value while at 1200 K it is larger than the id
value by more than 1 J K21 mol21 ~'17%!. It is important to

FIG. 1. Enthalpy, entropy~TS!, and the Gibbs energy of disor
dered RhPd as a function of temperature.

FIG. 2. Enthalpy, entropy~TS!, and Gibbs energy of mixing of
disordered RhPd as a function of temperature.
3-7
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note also that the calculatedDSmix includesboth configura-
tional and vibrational terms. The latter are often neglecte
Vibrational contributions to the thermodynamic properties
mixing can be estimated quantitatively by comparing res
obtained from fully dynamic optimizations with those o
tained using static-limit optimizations of each configurati
in the static limit and replacingGk in Eqs.~60! and ~61! by
the static enthalpyHk(static). This procedure leads to value
of DSmix of 5.3 J K21 mol21, which is '77% of the total
value at this temperature. Vibrational contributions to t
enthalpy of mixing are smaller.

V. CONCLUSIONS

We have discussed a method for the calculation of the
energy of solids and its analytic derivatives with respect
arbitrary strain using a many-body potential model toget
with lattice statics and quasiharmonic lattice dynamics.
approximations are made regarding coupling of vibrations
atoms on different sites. Detailed expressions have b
given for the embedded atom method and a computer
gram has been written for this purpose.28

By way of example, we have examined the thermodyna
ics of disordered RhPd. The free energy is determined
rectly from fully dynamic structural minimizations of a num
ber of randomly chosen configurations, followed
thermodynamic averaging. This approach is particularly u
ful for quantities such as the vibrational contributions to t
entropy of mixing. The values ofDGmix for RhPd agree well
with those obtained from semigrand ensemble canon
s

ck
-
-

s.

s.

.

.

es
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Monte Carlo calculations,27 obtained with the same set o
potentials as used here. The availability of the Monte Ca
data was a major reason for our choice of example. It
mains to examine carefully the convergence of different th
modynamic properties with cell size and with number
configurations, both of which may well vary with compos
tion.

The direct minimization of the free energy via this meth
is quick and precise. Key to this has been the rearrangem
of the complex expressions for the derivatives in such a w
that common terms have been identified and recursion r
tionships obtained. In total, all the calculations reported
Sec. IV took only a few hours on a typical modern P
Increasing the number of configurations sampled by an o
of magnitude would be straightforward, and these new me
ods can readily applied to much more complex examp
than that reported in this study. The expressions prese
here are also an essential first step towards the impleme
tion of more elaborate models such as the modified emb
ded atom method for the study of hexagonal systems.
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