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We present a method using many-body potentials and lattice statics and quasiharmonic lattice dynamics for
the calculation of the free energy of periodic crystals and its analytic derivatives with respéaxternal and
internal degrees of freedom. Derivatives are calculated by means of first-order perturbation theory and detailed
expressions for the lattice sums required are presented. No approximations regarding the coupling of vibrations
of different atoms are made. The approach is illustrated using the embedded atom method. As an example we
calculate the temperature variation of the entropy and free energy of mixing of disordered RhPd by using
configurational lattice dynamics, in which the free energies of a number of configurations is determined
directly by means of fully dynamic structural minimizations. The method is particularly useful for quantities
such as the vibrational contributions to the entropy of mixing.
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[. INTRODUCTION thermal expansion is straightforward. Efficient optimization
is only possible if derivatives of the appropriate thermody-
The free energy of a system is the key property fromnamic potential with respect to the geometrical coordinates
which all equilibrium thermodynamic information may be (or straing are available and the generation and use of these
obtained. Central to this is the optimization problem of find-derivatives are the main concerns of this paper. Until very
ing the equilibrium geometry of the system at a given temJecently the small number of existing generally available lat-
perature and pressure. Considerable effort has been expendi dynamics codéseither neglected vibrational contribu-
to develop methods for the determination of the free energyHons to these derivatives or generated themmerically

molecular dynamics and, to a lesser extent, Monte Carlgvhich .is prohibitivelly expensive for large unit cells with
simulations are popular techniques. Lattice dynamtuas many internal coordinates. In Ref. 3 we developed the gen-

been somewhat neglected in recent years, even though it po ral theory, using Iattipe statics,_ and gquasiharmonic lattice
’ namics, for thenalytic calculation of the free energy and

sesses a number of characteristics that make it a powerfyt’ .. S . fining th
complementary technique to molecular dynamics and Montl%s first derivatives with respect t(_) all par_amet_ers defining the
. . . . " rystal geometry, for particles interacting via long-ranged
Ca_rlo simulations. In particular it takes into account Z€ro-~olomb forced and short-range twd-and three-bodypo-
point energy and other quantum effects and hence below thg s These expressions have formed the basis of a new
Debyg temperature scores significantly over the inherently,qogne (5 developed for the efficient study @fnic solids
classical molecular dynamics and Monte Carlo methods. Thgng sjab§ with many internal straingdegrees of freedom
breakdown of the quasiharmonic approximation is often in-and for the first time a full minimization of the quasihar-
dicated by the appearance of imaginary frequencies; fomonic free energy for large unit cells of this type of solid is
Rh-Pd alloys and the potential used here this happens aboygssible.
T~1500 K. The investigation of normal vibrations aids in- In this paper we extend this approach to many-body in-
terpretation and can reveal, for example, the mechanisms reeractions. Many-body potentials are essential for accurate
sponsible for phase transitions and thermal expansion. More&eomputer simulations of metals and alloys and here we
over, unlike molecular dynamics and Monte Carlo present the formalism and detailed expressions required for
simulations, lattice dynamics yields absolute free energiethe free energy and its derivatives in the embedded atom
directly, rather than free-energy differences, and does nomethod(EAM).” In this the crystal energy is expressed as the
rely on long runs for high precision. It is relatively inexpen- sum of one cohesive term originating from the conduction
sive, requiring typically an order of magnitude less compu-and valence electrons and a repulsive contribution due to
tation time than molecular dynamics and Monte Carlo simu-<ore-core overlap. Only a few lattice dynamics simulations
lations, and, moreover, avoids the critical slowing downusing the EAM have appeared, and these have been for
effects and kinetic barriers suffered by those techniques. rather simple systems. Foiles and Addrased expressions
Except at rather low temperatures, the bulk of the compuvalid only for crystals with one atom per primitive unit cell,
tational effort in lattice dynamics calculations is used in theand Foile$ has also calculated surface and monovacancy
optimization problem of determining the equilibrium geom- free energies using the zero static internal stress approxima-
etry of the crystal. Once this is obtained, the calculation oftion (ZSISA),%° in which only the external strains are relaxed
dependent properties such as free energy, heat capacity, vsing fully dynamic free-energy derivatives, while all inter-
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nal strains are relaxed using static energy derivatives. Na-

jafabadi and Srolovif? have applied the local harmonic X | =X(D)+x(e) =118 +1585+ 1585+ x( k),
model? in which all terms in the dynamical matrix that

couple vibrations of different atoms are neglected, to Cu k=12,..Ng/, (2

(bulk, {001} surface, and vacancy formatipmBarrera and de

Tendle!'® have also presented a few examples, but using verwherea;, a,, andaz are the lattice vectors in a given con-

small unit cells. figuration andx(k) is the position of thecth atom in the unit
We do not repeat here the discussions given in Ref. 3, butell with respect to the origin of the unit cell. There &tg_

in the next section summarize the essential points of quassublattices or atoms in the unit cell. The three integers

harmonic free-energy minimization needed for the presenfl,l,,l3) define a lattice point and are collectively denoted

work. In Sec. Il the expressions required for calculating theby I. The positions of the atoms in the basis can be defined

free energy and its derivatives, assuming a EAM potentialusing Cartesian coordinatdas in Eq.(2)] or in relative

are given. Note that no assumptions regarding the localizafractiona) coordinatesR, related tox by

tion of the phonons are made, i.e., no elements in the dy-

namical matrix are neglected as in the local harmonic model. x(k)=R(k)A, «=1,2,..Ng, (3)

The deduction of the equations given in this paper is both

time consuming and error prone. A suitable compact notatiogyhereA is a 3x 3 matrix whose rows are the lattice vectors

and rearrangement and identification of common terms arg, a,, andas;. Since the energy depends on the relative

crucial. We present results in such a way that subsequepjositions of the atoms, there are onliNg —3 parameters

implementation in computer code is as efficient asthat can be used as independent variables. For this reason we

possible—for example, particular attention is paid to recurake R(1) to be constant and define a set M3+ 3 gener-

sion formulas which link the various derived quantities. Thegjized coordinates € whose elements are{R(«),

expressions given her_e for the EAM are also an essential first 2,3,...Ng.} and six variables defining the shape and size of
stage towards those in more elaborate models SUChlfS’ ffe unit cell. The unit cell can be specified in terms of the
example, the modified embedded atom metdEAM), usual six crystallographic lattice parametar®, ¢ «, 3, and
which is necessary for a quantitative study of hexagonal, or equivalently, in terms of external straigg, . These are
close packed structures. _ defined by considering a homogeneous deformation, which
To illustrate the methodology, in Sec. IV we present ageforms the lattice vectorén a given reference configura-

brief application and calculate the enthalpy, entropy, and fregqp) such that the new lattice vectors are rows of the matrix
energy of mixing of disordered RhPd. The free energies of &' (g|ated toA by

number of configurations are determined directly by means
of fully dynamic structural minimizations, and the thermody-

namic properties of RhPd are then evaluated by suitable ther- 1ren  erp €13
modynamic averaging. We shall see that lattice dynamics A=Al ey 1+ey ey |. 4)
thus also provides an efficient route to tlrgfaﬂfree energy of e e, 1+

particular configurations adisorderedsolids;™*"and is par-
ticularly useful for assessing the importance of V|brat|onalcOmponents of the tenser,; determine both the orientation

contributions to mixing properties. and the macroscopic state of strain of the crytalhe pa-
rameterse,z have been chosen because it is convenient to
Il. THEORY obtain derivatives of the free energy with respect to them and

because they may be related simply to other parameters in
o _ o common use such as the Voigt macroscopic infinitesimal
Optimization of a crystal structure involves finding the strain coordinates. For example, the Voigt macroscopic in-

most stable state given a set of thermodynamic constraintginitesimal strain coordinates; are the components of the
and hence the minimization of the appropriate thermodysjx-element vector:

namic potential. At temperatur® and applied pressur@y;
the appropriate potential is an availabil®, defined

A. Crystal geometry

€11 €1 €11
~ €22 €2 €22
G=A+PexV=Pgiart Avip T PextV, (1) £33 £3 €33
: I &= = = - (5
where A, the Helmholtz energy, has static and vibrational €23 €4 €231 €37
contributions,® g,;and A, . In order to proceedh must be €13 €5 €131 €31
expressed as a function of the geometrical parameters of the €12 €g €1+ €x1

structure, with respect to which can be minimized. These
coordinates may bexternal describing macroscopic defor- It is important to note that the last 3 elements:aiffer from
mation of the crystal, ointernal, describing the positions of those ofe by a factor of 2, and that we do not define the

atoms within the unit cell. strainses;, €13, ande,;. The use of the six elements,;
The position of thexth atom in thelth unit cell can be defined in Eq.5) is more convenient than the use gf or
written'® as e,z as it leads to simpler equations.
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B. Lattice dynamics initial ~ configuration the static energy Hessian,

2 . . . .
The static energy¥ of an entire crystal is assumed to be (azq)statlﬁgAagB)* ~which is a good approximation to
a function of the positions(\) of the particles comprising (¢ Asta/ 9€adg), is calculated from its analytic expression,

the crystal. The vibrational frequencies(q) of modes with and its inverse together with thé® ./ 94 is used to ob-
wave vectorq can be obtained by diagonalization of the tain an improved configuration. In subsequent iterations the

d ical matrixD(Q) in th | 9., Ref. 1: (0P ol 9E,) are calculated in the new configurations and the
ynamical matrbO(q) in the usual waye.g., Ref. 1 inverse Hessian updated by the Broyden-Fletcher-Goldfarb-

D(q)e=w?(q)e, (6) Shanno (BFGS formula?? An optimization therefore re-
i , quires one static Hessian calculation, and a small number of
whereD is defined by dynamic gradient calculations. We have found this to be
much more efficient than methods involving repeated evalu-

earlp (7 ation of the Hessian or frequent line minimizations.

1 0
DA ()= ——> @, (
K| —— B
KiKj mKiij |j K Kj
Il. N-BODY INTERACTIONS AND THE EMBEDDED
Throughout this paper Greek letters as subscupts, ... ATOM METHOD

denote Cartesian coordinatesy andz andl; runs over all h h ) i+ cell of th |
unit cells of the crystal. Th@aﬁ(0 J) are second deriva- In the E.AM' the static energy per unit cell of the crysta
may be written as

tives of the crystal energy with respect to atom coordinates
1 i1
0 I P> dy=2, Filp)+= ' (r( . (11
(Daﬂ( J)_ . ) staf EI i(pi) Zzi Z ¢ ki K (11
Kij Kj O |]
Ki IXp Ki Primes on summations in this and subsequent equations in-
. . |i |j _ ) N i
I,=0 is used to label the cell at the origin. dicate that terms WIth(Ki Kj) 0 are excludedF;(p;) is

From the frequencies;(q), A, is determined from negative and represents the energy of “embedding” atam
the electronic densn;o, created by all other atoms in the

crystal, andqﬁ(r(" J)) is the core-core repulsion between

X,

Avp=2 (3 w;(q) +ksTIn{1—exd —fw;(q)/ksT]}).
a.) atoms L) and ¢) assumed to depend only on the type of

© the atoms and the distance between them. The electronic

For a macroscopic crystal the sum oegbecomes an inte- densityp; is assumed to be the sum of the electronic densi-
gral over a cell in reciprocal space, which can be evaluategles of all other atoms at the nucleus of atom
by taking successively finer uniform grids until convergence
is achieved® ) L

Since there is no explicit expression fAg;, in terms of Pi:Z fkj(r( . K') ) (12)
the geometry of the lattice it is not possible to determine the bl
strain derivatives needed for efficient minimization by directThe electron density created by atorh)(at a distance
differentiation of a lattice sum as witp .. Differentiating

Eq. (9) with respect to an arbitrary straihgives ( . ) fi (r( I J)) is assumed to be 'SOtrOp'C abOUt)(
((?Avib | h (} n 1 A. Lattice sums for short-range potentials
IEA 20j(q) 12 expfio;(q)/kgT)—1 The two-body contribution to the energy of a unit cell can
awf(q) be expressed as
X o , (10

hoe =) ¢( (13
where the subscrii’ denotes that all th€ are kept constant 25
except for the differentiation variable. We thus require strain,nare the notation
derivatives of the frequencies. The derivatives
(awf(q)/aEA)g are obtained from the analytic expressions 0.
for the derivativedD(q)/dEx)s by first-order perturbation ¢ KiJ
theory!3 A crucial point here is that for obtaining derivatives _ _ _
the perturbation is infinitesimal and the procedure exact. Ins used to abbreviate the full expression:
addition, for thermodynamic properties no special consider-
ation needs to be given to degeneracies in first-order pertur- 0. _ 0 I 14
bation theory, since the trace @@D(q)/dE,)s IS invariant ¢ KiJ =\ Ki K| (14

for any complete normal set of eigenvectorsDof
To obtain the equilibrium structure a variable metric in which ¢ is the two-body potent|al a function of the dis-
method! is used to minimizeéA with respect to the, . Inthe  tance between atom§1 andj —( l)
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In order to write the derivatives of the two-body potential
in a compact form it is convenient to use the following no-
tation:

<|i Ij)_ I (Ii) 15
xKi " xK]_—xKi, (15
i
rij: X sl (16)
i Kj
and define the functiong"(r;) recursively as
°ri))=o(ry)), 17
ap"H(ry))
i)=— 18
)= (18)

Fij

The first derivatives of the static energy with respect to

external and internal coordinates are then

.0 .0
agaﬁ 22 ¢1( ( " Xg |Kj), (29
> o 0) : 0)
8Xa(Kk)_Zi 1) IKk Xu |Kk . (20

For the Hessian there are three possible different combi-

nations:
7o 1 20_) o_) o_) (0_)
deysdeag 2 Kij Xa KiJ Xp Kij Xy Ki]
0
2.2 ¥
SN Hraatl
Xﬁ Ki J 2 ¢ K; J e yﬁ&salg I} ( )
el gl o]
[ 2| . . .
X g( K1) IX o Ki) ZH¢ IKk XaIKk XBIKk

(5KkK| - 5KiK|)} ) (22)

ol

1'0
+6a,3¢ |K

ol

PPD
=

X Ki) e o4 4

On the derivation of Eq918), (20), and(21), it is useful

to remember that derivatives correspond to changes in

(statio energy wherall atoms of the crystal in a given sub-
lattice are moved by an infinitesimal amount. Equatiiig,
(19), and(21) are expressions for derivatives with respect to
€j,
by an infinitesimal amount.

PHYSICAL REVIEW B69, 024303 (2004

The derivatives needed to evaluate the dynamical matrix
involve changes in the crystal energy when only atoEn)s (

and ¢_) are moved:
J

~ Supdt| | (24)

Equat|on(24) is valid only for (2)#( ) Terms with 6)

—( 1) are calculated from the condmon of translational
invariance?®
0
@ =
af Ki

The two dynamical matrix derivatives necessary involve

]
Kj

>

i

(29

changes in the dynamical matrix when all atoms in the crys-
tal in a given sublattice are moved or when the unit cell is
deformed, both by infinitesimal amounts:

PP
0 (|,-
98 307%al ¢, |P%| .
0 (0 (0 (0| [0
A PRI BN LE
2(0_ s [0, [0
_d) Kij aBXy KiJ Xs Ki]
. 0. 0.
+8uyXp Ij X, Ki] + 046X Ki] X, Kij
0. 0. 0. 0.
+5ﬂ‘yxa KiJ X§ KiJ +5ﬁﬁxa KiJ X'y KiJ
1[0
- ¢ Ki J (50(75[35—"_ 50(55[37)! (26)
PP
X, (Ki)d d O)
X Xa
Kk B Ki
s s JO\ [0 [0 0.
=( KiK. Kij) ¢ Ki] X Ki] Xp KIJ Xy KiJ
+¢2( ) SarXpl . J)+5an( |])
0.
+5aﬁxy KiJ . (27)

i.e., the change in energy when the unit cell is deformed
In Egs.(20) we need the derivatives:
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are 1 sor s w1 s
GEapde s 2 VOB g XaXo0py T 5 XXy 0as
1
+ EXﬁX&éay. (289

If required, derivatives with respect to the(«) rather
than thex(x) may be obtained from the latter and the chain

rule. For example,

D
IRp(K;) IR, (K})

=> é 7o A A
=1 B oxs(kp) Xy (ki) TP

(29

Similarly, derivatives with respect to the lattice parameters
can be obtained from the derivatives with respect tosthg

and the chain rule using E¢4).

B. Lattice sums for embedding interactions

We start by rewriting the embedding contributiondq,;,
i.e., the first term on the right-hand side of Efjl), as

PHYSICAL REVIEW B 69, 024303 (2004

Supoli) = 20 T (XX, 37

and
sO(Ki):% (ki kj), (38)
Sh(ki) =2 SH(xi k), (39)
K
Sa(ki) =2 Sy(ki,Ky), (40
Kj
Siﬁ(Ko:;j Sha(i 1 K)), (41)

and similarly for other terms not explicitly given. It is im-
portant to note that the sums in E¢33)—(41) do not depend
on the index; andl;.

In turn, derivatives of the static energy with respect to
both internal and external strains requires the calculation of
derivatives of the electronic density with respect to the set of

S

X(ki) ande,z. In terms of theSs given above they can be

For convenience we define, analogously to #¥r;;) in the
previous section, a set of quantitié%i(ij ), such that

Lol
fi.(ij>=fxi(ij>=fki(r( ')) (31)
! Kj Kj
1 9% i)
f';(ij)=rfT. (32
ij ij

The contributions of the many-body forces to the static en-
ergy, the dynamical matrix, and the strain derivatives of both

are much more expensive to evaluate than the two-body con- 7=

tributions[Eq. (13)] because now each term in the sum given
by Eq. (30) requires the calculation of another sum owadir
atoms of the crystal. To allow the evaluation of these sums in
an efficient way so as to be able to simulate cells with a large
number of atoms, it is convenient to define the following
sums:

s°<Ki,Kj>=lEj fi (i), (33
Sii ) = 2 Ty (i), (34
Suli )= 20 111l (39
Siﬁm,xj):IZj fo (iDxaliDxg(i1), (36)
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IXg(K)) X Ky)

evaluated as

p(i):SO(Ki), (42)
ap(i)
ﬁsaﬁ _Saﬁ(Ki)! (43)
ap(i) )
Tx () a1k~ O Salk), (44
7*p(i) 1
ap9€ys - Siﬁw(’(i) * 4 (5558%17(’“) T 5B75}.5(Ki)
+ 8, Shsl Ki) T 8aySha(Ki)), (45)
#*p(i)
Ty~ Soanl K119+ 92 )
+ Sy Sh(Ki 1161 = S (St (K1)
+ 8y Sp(Ki) + 8apSy( k1)), (46)
7p(i)

= S, (St Ki ki) + 8o SH( ki, y))
= 8 (Shp( i 1)+ B SH(Ki k1))
- 6KiKk(S§/B( K;j ,K|) + 5,1381( Kij ,K|))
+ O Oy (Sop( ki) BapSH(Ki)).
(47)
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For the evaluation of the dynamical matrix and its deriva-  32p(i)
tives, the following derivatives of the electronic density with e ax (K
. . . A Saﬁax'y( k)
respect to the coordinates of a particular atom are required:

=12 (ik)x,(ik)x (1K), (k)

+ e (1K) (80X (1K) + 85, %4(1K))

i) o . = Bl Sipy (k1) + (30, S ki) + 9, S ()],
k)~ Ta0Xalik) =61 1,00 Sulki), (49 (50
&p(i
) Wxa(k)z(ékkkl—5Kikl)(fik(ik)xa(ik)xﬁ(ik)
dp(i) . . . .
M~ e Rxa(ik)xs(ik) + 1 (1K) 5p) + 11 (K) 8,p) = Sl S2pl i 1)
= Si(F5 (INX(IN)Xg(11) +F1 (i) 8,5, + 8,pS (ki k) ] Bk [ Shp( 1)
(49) + 8apSH(Ki)], (51)

7°p(i)
(D)X (K) 78 o

=—4 fﬁk(ik)xa(ik)xB(ik)xy(ik)xlg(ik) -8 fik(ik)(5a5xﬁ(ik)xy(ik) + 85X a(1K)X,(iK)
8, Xal IK)X (1K) + 8, Xg([K)X (1K) + 85, X (1K) X5(1K)) = 81 T (1K) (8,1, 5
+ 8, 0as) — Bt 2 (INX (1) Xg(I1X, (1) X5(11) = 8 F2 (1) (8o aXa(11)X, (1) + 8% i1)x(il)
8, Xl IDXa(I1) + 8o X (X511 8 X o (11)X(11)) = 8if & (118, Bt 9, 50), (52)

7°p(i) B
X (k) X (1) X (K)

= BB~ Bye) (F (KX (1K) X (1K) X, (1K) + T (1K) (809X (1K) + 85, Xa1K) + 85X, (K)))

= B By, = By (F2 (INXG (11X (D)X, (1) +F2 (11)(8,, % (11) + 3, X (i1) + 8,p%,(i1)).
(53

Equations(51)—(53) are valid only fork#1. Terms withk while the second-order derivatives necessary to calculate the
=| are obtained from the condition of translational invari- dynamical matrix are
ance as given in Eq25).

In the two last sets of equations it is important to note 5 ap( 0) ap( 0
once more the difference between derivatives with respect to J°E =S ( ( 0 ) Ki Ki
the position of all atoms in a given sublatticd,x;), and IX (K1) X oK) B e P Ki| | 0Xg(K)) IXo(Ky)
with respect to a particular atom of the crysbe(l'k‘i). 0

In terms of derivatives of the electronic densities given in 0 r72p< «
Egs. (48—(53), it is now straightforward to calculate the +F. {p )—' (56)
static energy, the dynamical matrix, and their derivatives. VK] J0X (k1) X o K1)

The first derivatives of the static energy are, for instance, By carrying out the evaluation of the static energy, the

dynamical matrix and their derivatives as indicated above it
0 is possible to implement a fairly efficient algorithm in which
ap( ) sums over, in principle, all cells of the crystal are carried out
— (54) only once and for all derivatives, for a given configuration.
X Kk) The final sums as those required in E¢&4) and (55), for
instance, are only over all atoms in one unit cell.

B 5
axa(Kk) a Ki “

p

9p 0 IV. FREE ENERGY OF MIXING OF RhPd

JE 0 i . . .
=2 [:"(.(p( )) Ki , (55) We end with a brief example, our treatment here being
deap  “x  T\\Ki]] deap illustrative rather than comprehensive. Though the use of
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lattice dynamics techniques has largely been restricted to th RhPd

perfect crystals, we have shown previodélthat it can be  ~ 100 - ——

used also for solid solutions. In Ref. 17 we considered a very= Nt o

different type of system(MgO-MnO) in which the atoms g 0 p—0-O " T

interacted via only pairwise interactions. Here we concen-Z

trate on Rh-Pd, a system that phase separates at low temperg -100 ¢ g ; i

tures and which forms a solid solution at temperatures aboveg ™ o

~1200 K (for example, Refs. 24, 25, 26Results for the §- 200 ¢ 1

50-50 mixture are given here. g _300 | i
We represent the electronic densities as simple exponens,

tials: g —400r T = ;; ; PRSP

fi(r)=Djexp(—ri/{)) (57 F _s00 : : : A, S S
200 400 600 800 1000 1200

with different parameterdD; and {; for each metal Temperature (K)

=Pd,Rh). The embedding enerffgqg. (11)] is given by

F(P] C\/—

with different parameter€; again for Pd and Rh. The repul- peratures. All subsequent averages presented here were done

sive potential in Eq(11) is also given a simple form, using 1000 configurations, which ensures very well con-
verged values.

¢ij(r)=Ayj exp(— From the results of optimizations over a wide range of

temperatures, we show in Fig. 1 the temperature dependence

whereAj; and oy; are different for each type of interaction of the enthalpy, the entropas the producTS and the free

(Pd-Pd, Rh Rh, Pd-RhA cutoff of 6 A was used for both energy of disordered RhPd. Again using a simulation cells

electronic densities and repulsive potentials. The values ofith 32 atoms, it is straightforward also to calculage H,

the model parameters were fitted to reproduce the results @ind S for the pure metals over the same temperature range

ab initio calculations and are reported in Ref. 27. and so determine the corresponding values AdB .y,

In order to simulate disordered RhPd we used cubic uninH;,, and AS,,,, which are plotted in Fig. 2. Note the
cells containing 32 atoms, with atom positions as in a faceabsolute values of the quantities in Fig. 1 are of the order of
centered cubic lattice. We generated a set of configurakions several hundred kJ mot, while the thermodynamic poten-
in each of which the location of the sixteen Rit Pd atoms tials of mixing in Fig. 2 are smaller by two orders of mag-
within the unit cell was chosen at random. At each temperanitude. AH ., increases slightly with temperature.
ture a full dynamic optimization of the structure of each con-  The value ofAG,,,, becomes negative at1100 K, which
figuration was carried out, calculating at the same time sevis of course a necessary but not sufficient condition for the
eral thermodynamic properties such as the Gibbs en&igy, formation of a solid solution. Analogous free-energy minimi-
the enthalpyH, and the entropyS,. The ensemble average zations over a range of composition would allow calculation
of an observable, the enthalpy, for instance, is calculatedf the phase diagram. At lower temperaturds,,, is less
from than the ideal value while at 1200 K it is larger than the ideal

value by more than 1 J¥ mol™ (=17%). It is important to

FIG. 1. Enthalpy, entropyTS, and the Gibbs energy of disor-

(58) dered RhPd as a function of temperature.

rij/O'ij), (59)

 S{Hexp(— BGy)

(60)

Sk exp(—BGy) = RhPd
g 9
while the ensemble average of the Gibbs energy is given b)?, 8t ,&
= i A i A
K IE 5 ' e
G=—kgTINK—kgTIn| D, exp(—BGY/K| (61) 5 . - o
k o I T 7
£ 4t Tk 9 H e
. . . . [] ,% s
whereK is the total number of possible configurations for the § 5 | o Ty Tg i
supercell considered. Because it is in general not possible tE ol e Tk
carry out the summation in Eq&44) and (45) over all con- g | _@.»"‘@ *)K
figurations, they are carried out over a subkét Consis- § 3____,@"" Tk
tently, K, the denominator of Eq45), is replaced bX'. The % 0 ¥
first term of Eq.(45) represents the ideal contribution while £ - 0 200 200 600 200 1000 1200

the second term is the deviation from ideality.
With as few as 200 configurations used in the ensemble
average, the value @ at 1000 K is converged to better than

Temperature (K)

0.01 kJ/mol. Similar convergence is observed at other temdisordered RhPd as a function of temperature.
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FIG. 2. Enthalpy, entropyTS, and Gibbs energy of mixing of
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note also that the calculate¥lS,,, includesboth configura- Monte Carlo calculation®’ obtained with the same set of
tional and vibrational terms. The latter are often neglected.potentials as used here. The availability of the Monte Carlo
Vibrational contributions to the thermodynamic properties ofdata was a major reason for our choice of example. It re-
mixing can be estimated quantitatively by comparing resultsnains to examine carefully the convergence of different ther-
obtained from fully dynamic optimizations with those ob- modynamic properties with cell size and with number of
tained using static-limit optimizations of each configurationconfigurations, both of which may well vary with composi-

in the static limit and replacin@, in Egs.(60) and(61) by  tion.

the static enthalpyﬁlkgstaﬂc). This procedure leads to values  The direct minimization of the free energy via this method
of AS, of 5.3 JK *mol™?, which is ~77% of the total is quick and precise. Key to this has been the rearrangement
value at this temperature. Vibrational contributions to theof the complex expressions for the derivatives in such a way

enthalpy of mixing are smaller. that common terms have been identified and recursion rela-
tionships obtained. In total, all the calculations reported in
V. CONCLUSIONS Sec. IV took only a few hours on a typical modern PC.

Increasing the number of configurations sampled by an order
We have discussed a method for the calculation of the fregf magnitude would be Straightforward, and these new meth-
energy of solids and its analytic derivatives with reSpeCt t%ds can read”y app“ed to much more Comp|ex examp|es
arbitrary strain using a many-body potential model togethethan that reported in this study. The expressions presented
with lattice statics and quasiharmonic lattice dynamics. Nthere are also an essential first step towards the implementa-
approximations are made regarding coupling of vibrations ofjon of more elaborate models such as the modified embed-

atoms on different sites. Detailed expressions have beefled atom method for the study of hexagonal systems.
given for the embedded atom method and a computer pro-

gram has been written for this purpde.

By way of example, we have examined the thermodynam-
ics of disordered RhPd. The free energy is determined di- ACKNOWLEDGMENTS
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