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Based on the canonical Lang-Firsov transformation of the Hamiltonian we develop a very efficient quantum
Monte Carlo algorithm for the Holstein model with one electron. Separation of the fermionic degrees of
freedom by a reweighting of the probability distribution leads to a dramatic reduction in computational effort.

A principal component representation of the phonon degrees of freedom allows to sample completely uncor-
related phonon configurations. The combination of these elements enables us to perform efficient simulations
for a wide range of temperature, phonon frequency, and electron-phonon coupling on clusters large enough to
avoid finite-size effects. The algorithm is tested in one dimension and the data are compared with exact-
diagonalization results and with existing work. Moreover, the ideas presented here can also be applied to the
many-electron case. In the one-electron case considered here, the physics of the Holstein model can be
described by a simple variational approach.
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[. INTRODUCTION ied charge-density-wave formation and superconductivity in
the two-dimensional Holstein model. A numerically faster
Quantum Monte CarldQMC) simulations for models method is the world-line algorithm developed by Hirsch
with electron-phonon coupling are often limited in both sys-et al!*'*based on a special breakup of the Hamiltonian and
tem size and accessible parameter range by long autocorra-fixed number of fermions. This results in configuration
lation times and large statistical errors. This makes it veryweights which are simple to evaluate allowing for much big-
difficult to study realistic models for, e.g., the high- ger system sizes. In the course of the simulation, both fermi-
temperature superconductors or the manganites which exns and bosons are sampled simultaneously. The latter
hibit colossal magnetoresistance. In both classes of materiataethod has been successfully applied to the Holstein polaron
electron-phonon interactions play an important fleAl-  problem and to the half-filled SSH and Holstein motfet.’
though classical treatments of phonons have been quite suttowever the world-line algorithm is restricted to models in
cessful in certain situation e.g., at high-enough tempera- one spatial dimension or to the single-electron case in any
tures, quantum effects are expected to be relevantdimension by the minus-sign problefhScalettaret al® ap-
Consequently, it is highly desirable to develop a new, morelied a rather complicated so-called hybrid molecular dy-
efficient method to treat the phonon degrees of freedonmamics algorithm to the two-dimensional Holstein model
guantum mechanically. The Holstein molecular-crystalnear half filling. This work was extended to the low-
model constitutes one of the simplest models for coupledemperature regime by Noaek al?° Finally, Marsiglid* de-
electron-phonon systems, and therefore serves as an ideadloped a low-temperature QMC method to study the same
testing ground for new approaches. Moreover, despite enomodel, also at half filling. De Raedt and Lagendfji¢* and
mous theoretical efforts, even the physics of the HolsteirKornilovitch?® used an alternative approach based on Feyn-
model is still not completely understood. man’s path-integral methdd, where the boson degrees of
The extensive use of QMC methods to study many-bodyreedom are integrated out analytically and the resulting fer-
problems is based on the fact that they can give quasiexaationic model is simulated using the QMC method. Although
results(i.e.,exact apart from statistical errors which can bethe method is limited to one electron or two electrons of
made arbitrarily small, in princip)e Over the years, several opposite spiff by the sign problem, it allows efficient simu-
different QMC methods have been developed to study sydations in one, two, and three dimensions even for small
tems with electron-phonon coupling, such as the Holstein,phonon frequencies near the adiabatic limit, and has also
the Frdlich® or the Su-Schrieffer-HeegéBSH model’ A been used to investigate the Holstein model with dispersive
very general QMC method for coupled fermion-boson mod-phonons? Also using Feynman’s path integral, Kornilovitch
els was developed by Blankenbecketral® and Scalapino and Piké® developed a QMC method which exploits the
and Sugaf. It is based on an analytic integration over the conservation of the total quasimomentum of the system and
fermion degrees of freedom and a MC simulation of the re-allows the calculation of dynamical properties such as, e.g.,
sulting boson model. The simulation is performed using thehe polaron band structure. Although the method is not re-
grand-canonical ensemble and requires the evaluation of stricted to a certain model or dimensionality of the system, it
fermion determinant involving a computation time which is suffers from large statistical errors. Moreover, it is limited to
proportional to the cube of the system size. Moreover, thehe case of a single fermion at very low temperature, and
method in its original form becomes unstable at low tem-exhibits a sign problem for nonzero total quasimomentum
peratures. While the simulations of Refs. 8 and 9 were reeven in one dimension. Prokof’ev and Svistuffoand Mis-
stricted to one dimension, Levine and8!t and, using a chenkoet al*° used the QMC method to directly sample the
stabilized version of the same algorithm, Niyetzal 12 stud-  zero-temperature one-electron Green function of thélio
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polaron in imaginary time. The method allows calculations The paper is organized as follows. We briefly review the
for an infinite system in three dimensions, but requires alolstein model in Sec. Il. In Sec. Il we discuss the afore-
convergent series for the electron propagator. While all bumentioned transformations of the Hamiltonian. Section IV is
the last method mentioned so far make use of the Trotterdevoted to the variational polaron approach, while the QMC
Suzuki approximatiod® Kornilovitch®**? developed a method for the Lang-Firsov transformed model is presented
continuous-time algorithm that works in any dimension andin Sec. V. Section VI describes the reweighting method, and
allows calculations on infinite systems. It gives directly dy-in Sec. VIl the representation of the phonons in principal
namical quantities such as the polaron spectrum and effectie®MPonents is introduced. Results obtained with the given

mass with very high accuracy. However, similar to previousTethods are presented in Secs. VIl and IX. Finally, Sec. X

work 28 it is restricted to the one-electron limit at very low CONt&INS our conclusions.
temperatures. Moreover, calculations for small phonon fre-

guencies and/or weak electron-phonon coupling are difficult [l. THE HOLSTEIN MODEL
and a sign problem appears for nonzero total quasimomen-
tum. The projector QMC methdiin combination with a
local updating of the phonon degrees of freedom has be
used by Bergeet al2® to investigate the Holstein-Hubbard
model at various band fillings, and Green function QMC
simulations for the half-filled Holstein model of spinless fer-
mions have been performed by McKeneteal ** Finally, the

The Holstein model has been introduced in the 1950s,
e%nd describes a system of tight-binding conduction electrons
coupled to a dispersionless phonon mode. If we express the
phonon operators in terms of their natural units, the Hamil-
tonian takes the form

stochastic series expansion MC technique has been applied H=K+P+,
recently to an extended, one-dimensional Hubbard model

with an electron-phonon interaction of the SSH typen K=-t> cl ¢,
contrast to other work, the phonons are treated in second e 77

qguantization. Although the method allows simulations on
large lattices in one dimension, it relies on an upper limit for ® ng Ag
the number of phonons at each site which makes it difficult P=PytPx=5 EI (P +X7),
to study the regime of small phonon frequencies and/or
strong coupling.

In addition to the specific shortcomings of each method | = _aE niXi . (1)
such as, e.g., the restriction to a single fermion, or to one [
spatial dimension, or to zero temperature, all previous simu- + - .
lations of the Holstein model were limited to some extent by €€ Cis (Ci ) createsannihilates an electron of spinr at
autocorrelations. If the phonon degrees of freedom are ndéttice sitei, x; andp; denote the displacement and momen-
integrated out analytically, these correlations predominantlyum of a harmonic oscillator at site andn,==n;, with

o

in the adiabatic regime of small phonon frequency. This ofyhe gispersionless Einstein phonons to the electron density
ten leads to an enormous computational effort even for rather ' . .

: ; n; . In the first term, the symbq(ij) denotes a summation
small systems and intermediate temperatures.

In this paper we first present a simple variational ap_over all nearest-neighbor hopping paiisjj and (,1). The

proach using a generalized form of the Lang-Firsov transforp"’m”lme'[ers of the model are the hopping mt_egrthe pho-
non energyw, and the electron-phonon coupling constant

mation which, in the one-electron case considered here{Ne introduce the commonly used dimensionless couplin
gives surprisingly good results and yields valuable insight Y piing

—_ 2 — ; i
into the mechanism of polaron formation. The full Hamil- constant = a*/(wW), whereW=4td is the bare bandwidth

tonian resulting from the standard version of the canonical” d dimensions. We also define the dimensionless phonon

Lang-Firsov transformation is then used as the starting poirff€duencyo=w/t and express all energies in unitstoThus

for a QMC method which is free of any uncontrolled ap- the model depends on two independent parametessid\ .
proximations. Due to the fact that the Lang-Firsov transfor-Throughout this paper periodic boundary conditions in real
mation contains the crucial electronic influences on thespace are assumed.

phonons, the Monte Carlo simulation for the phonon degrees The Holstein model has been investigated intensively in
of freedom can be based only on the purely phononic part ofhe past, using a large variety of methods. Due to the large
the transformed Hamiltonian. The electronic contributionsamount of literature available we restrict the discussion to
can then be allowed for by reweighting of the probability the case of a single electron in an otherwise empty lattice
distribution, corresponding to an exact treatment of the ferwith which this paper is concerned. The latter is generally
mion degrees of freedom. This enables us to completely igknown as the Holstein polaron problem and still constitutes a
nore the electronic weights in the updating process, andomplicated many-body problem. Weak-coupling perturba-
thereby dramatically reduce the computational effort. Finallytion theory has been found to be accurate only for very small
we introduce a principal component representation of thesoupling strengtha when the phonon frequency is Iofin
phonon coordinates, which allows exact sampling of thethe strong-coupling regime, an adiabatic small-polaron
phonons and avoids all autocorrelations. approximation®” has been found to work extremely well for
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small values ofw (Ref. 38, while a perturbation theory SPect to a zero-phonon state, thus neglecting phonon emis-
based on the Lang-Firsov transformatidgives accurate re- Sion and absorption during the hopping process. This ap-
sults for o>1 (Refs. 36 and 38 Discrepancies remain proximation, which we shall call the Holstein-Lang-Firsov

however, in the regime of intermediate coupling and phonor{HLF) approximation, was found to give reliable resglts only
frequency’® To bridge this gap, a lot of numerical work has in the strong-coupling and/or nonadiabatic lintw>1
been done using exact diagonalizatidED) methods, (Refs. 43, 44 and 30 More refined approaches based on
density-matrix renormalization-group(DMRG) ~ studies, ~ Strong-coupling perturbation theory provide an accurate de-
QMC methods, and variational methods. ED is limited in thescription of the Holstein polaron over a large range of
accessible parameter range, since it requires a truncation Barameters®>® In the limit A\=cc, the hopping term in
the Hilbert space associated with the phonon degrees of fre€lamiltonian(1) can be neglected, and the Lang-Firsov trans-
dom. With increasing electron-phonon coupling strength, foformation allows an exact solution of the resulting single-site
examp|e, more and more phonon states have to be inc|udw0b|em‘}0 The transformation has also been used in combi-
to obtain converged resuft&3841~44yhich makes it difficult nation with numerical method$:>**°However we are not

to study clusters of reasonable size in the strong or evegware of any QMC simulation based on the transformed
intermediate coupling regime, especially for small phononmodel.

frequencies. At this point calculations based on DMRG set We define the unitary operator

in, which use an optimized phonon basis to reduce the size of

the Hilbert spacé®>'Another possible approach are the so- U=e’, v=i> 7;Mb;. 2
called cluster methods which exploit exact information on i

small clusters to obtain approximate results for infinite . . . . .

253 - wherei andj run over lattice sites, and with real parameters
systems?>°® Moreover, a number of variational methods U defined in Eq(2) has the form of a translation
have been developed which give very accurate results over §i - - @s @eline q as e form ot a transiatio
wide range of paramete?é.‘GZAs discussed in Sec. I, vari- operator. Given an electron at lattice ditét corresponds to

ous QMC methods have been developed for the Holsteif displacement of the harmonic oscillators_ at all sjl_;e;'s
model. The polaron problem considered here has been invesz-l’ --- N, by ;. Hence the transformaﬂon desc_nbes a
tigated by Hirschet al,’®1% De Raedt and Lagendifié-2 nonlocal phonon cloud surrounding an electron. This corre-
Kornilovitch 2> Kornilovitch and Pike?® Kornilovitch-32 ~ SPONdS to the well-known concept of a large polaron, which

and Mishchenkoet al®® Finally, the Holstein polaron has extends over more than one lattice site. Using the transfor-

also been studied in the infinite-dimensional limit using dy-mationO=U O U™ we find for the transformed operators
namical mean-field theofy.

For the one-dimensional case, on which we will focus
here, the general picture emerging from these investigations
is as follows(see, e.g., Ref. 50Starting from the noninter-
acting system?(=0) the electron is gradual_ly dr_essed with a T — ol ex iE L T e ex —iz A
coherent multiphonon cloud as the coupling increases. For¥ioc™ “io J. YijPj | o™ io J. YiiPj |-
A<1 and\/ w<0.5 the resulting quasiparticle remains in a 3

Bloch-like state, with the phonon cloud giving rise to anI fina th its into E the t f d Hamil
increased effective mass. In the strong-coupling regime ( nserting these results into @), the transformed Hamil-
tonian becomes

>1 and)\/5>0.5) the electron becomes self-trapped by the
induced lattice distortion and this object—trapped electron A=K

Xi:Xi+; Yiinj, Pi=P;

plus distortion—is usually called a small polaron. The tran- FPHlept lee,

sition from weak to strong coupling is continudtfsand the

term “large polaron” is often used to describe an electron K=—t> exp<i2 (y”—yjl)ﬁ,)ci"gcja,
dressed with a phonon cloud extending over more than one (i)o !

lattice site. The polaronic effects become more dominant as

the phonon frequency approaches the adiabatic kmitO. lep= > nxi(wy;—ad;),

In QMC simulations, small values @b introduce two very i

different time scales for the evolution of electrons and

phonons, respectively. This gives rise to the problems men- T - « o 4
tioned above and, in fact, many QMC simulations have been T2 E. Yini—avij)- @

done only foro=1. ~ _ _
Here the terml ., describes the coupling between electrons

and phonons, whild ., represents an effective electron-

electron interaction. The Hamiltonigd) will be the starting
The canonical Lang-Firsov transformatfonhas been point for the variational polaron approach presented in the

used extensively to study the polaron problem. A well-knownfollowing section.

approximation due to Holstelnconsists of replacing the A more suitable approach for QMC simulations, however,

transformed hopping term by its expectation value with re-is given by requiring that the electron-phonon terms cancel.

III. EXTENDED LANG-FIRSOV TRANSFORMATION
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Then y;; = y8;; with y=yAW/w and we obtain the standard For simplicity, we restrict ourselves in the present study to
Lang-Firsov transformation with the transformation operatothe case of a single electron so théilﬁj:ﬁiﬁij- The
electron-electron interaction term in Hamiltonidd) be-
. -~ comes
Ug=6", vo=iy> nip;. 5
I

: )

In contrast to the extended polaron cloud, defined by(Ey.

~ ~ w
|ee:§i: ni<§ EI: Vi~ avi
now only the oscillator at the site of the electron is affected. ) ) )
The transformed Hamiltonian reads while the corresponding term in the local Lang-Firsov trans-

formation[last term of Hamiltoniar(6)] reduces to

H=K+P+Q, Q— —\W/2= —Ejp. (8)
o Equationg7) and(8) both describe a shift in energy resulting
K=—t 2 CiTonO'ei Y(Pi—pj), from the original electron-electron interaction which is usu-
(i)

ally called the polaron binding enerdy.

2 n2 6) IV. VARIATIONAL POLARON APPROACH

Q_ : 2
2 i

In the HLF or small-polaron approximation, the ground stateP@sed on the extended transformation discussed in the pre-

of the transformed Hamiltonian is approximated by Ieavingtcedmfg sect!on. Slﬁ;}larli'/vorkltalo_ng these II|Ines uﬁc,lng dlllfferent
all phonons in the ground state. It has been sii8tmat the ~ ansformatons ot (né Hamiitonian as wetl as physically mo-

small-polaron wave function becomes exact in the strongg\é""te‘ii Vgg\/%;u'j:t'%ns can Ze Lound, t;zor exampr:e, in Refs. i
coupling, nonadiabatic limit, and agrees qualitatively with > @Nd BY—02. AS disCussed above, the zero-phonon ansatz

the exact results also in the intermediate coupling regime. Agf the simple HLF approximation gives reliable results only

discussed by Zhanet al,>° the HLF approximation gives an in the limit of largew andA. Whereas in HLF the parameter
overestimated shift of the equilibrium position of the oscil- ¥ of the Lang-Firsov transformation is chosen such that the
lator in the presence of an electron, and does not reproduaectron-phonon coupling terrhg, vanishes, in the varia-
the retardation effects when an electron hops onto a previional polaron approactVPA), we treat they;; as variational
ously unoccupied site. Nevertheless, the local lattice distorparameters which are determined by minimizing the ground-
tion at the site of the electron contains the crucial impact oktate energy in a zero-phonon basis. Like the HLF approxi-
the electron on the lattice. Consequently, the transformeehation, the VPA becomes exact in the weak-coupling limit

Hamiltonian(6) should be a good starting point to perform )\ .0 and in the nonadiabatic strong-coupling limitw
QMC simulations, which merely need to simulate small fluc-_, . we will see in Sec. VIII that the VPA also gives very

tuations around the zero-point motion. Indeed we will see inaccurate results for large phonon frequencﬁsﬂ This

of the free-oscillator case over the whole range of thesection. While the HLF ansatz overestimates the displace-

electron-phonon coupling. This makes sampling of the phofnent of the local oscillator in the presence of an electron, the

hon Igeglrees of freejglon: nLUCh Imore er\f;lc(::ler]t. Intﬁnnc;pletz_, It\/PA determines this shift variationally. Moreover, the miss-
would aiso be possibie to develiop a Q aigoriihm star Ing1ng retardation effects in the response of the oscillator to an
with Hamiltonian (4), with the parametery; being deter- ooy hopping onto the site become negligible for large
mined by the variational method discussed in the fOIIOWIngphonon frequencies. Therefore, in addition to the cases stated

section. However, we will see that the simgileca) Lang- above, the VPA also becomes exact in the nonadiabatic limit
Firsov transformation is already sufficient to obtain a very— S .
efficient QMC method. w—. Although the limitations of the VPA in or near the

From Eq.(6) it is obvious that the standard Lang-Firsov adiabatic regime will clearly emerge when we discuss results

transformation on the one hand removes the electron-phondf S€¢- VIII, it works surprisingly well if we keep in mind
coupling term, but on the other hand introduces complexXN€ Simplicity of the method. Moreover, the reasons for the
valued hopping integrals which depend on the phonon motailure of the VPA in certain parameter regimes are physi-

menta at the lattice sites involved in the hopping processSlly clear and can easily be interpreted.
For translationally invariant systems thdisplacement

Moreover, for more than one electron in the system, the last ) . _ _ )
term Q introduces a Hubbard-like attractive interaction. In fleldssatisfy the conditiony;; = y;; ;. Inserting this relation
the case of the extended transformation, the electron-phondPt® EQ- (7), the expression inside the brackets becomes in-
interaction term cannot be eliminated entirely, the hopping/€Pendent of the index For the single-electron case with
term involves all phonon moment as well as the param- Zin;=1 we have

etersy;;, and the electron-electron interaction becomes long

ranged. For these reasons it is expedient to base the QMC 7 _e 2 v2—ay, (9)
simulation on the local Lang-Firsov transformatit8). 24 0
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We solve the eigenvalue problem of the transformed o ) _
Hamiltonian(4) in a zero-phonon basis for which we make D VVeie= 2 Vq%qe'q&:E 75005(15, (16)
the ansatz Y q a

the kinetic energy can be written as

Ih=cl |0 ®H l¢8Y), 1=1,... N, (10 ‘ -
/=6l :—t25 e'k‘sexp(—(1/2)2 (1—cosq5)y§)
q

wherelqsgV)) denotes the ground state of the harmonic oscil-

lator at sitev. For simplicity, we restrict ourselves to one _~ _ _ ~5

dimension, although the method can easily be extended to _EO(k)eXF{ (1/2)%: (1—cosq)yq

higher dimensions. The matrix elements of the hopping term 5

in this basis are = eq(K), (17

=, i (3o v 3Pl 2 () Where~eo(k)=—2tcosk is the tight-binding dispersion in
(1Kl >=—t,,,]:[ (g€ 7Py ) one dimension. Using these results the ground-state energy
finally becomes

=—ty.]] fdx¢>(x+y|v)¢>(x+y|,,,) - No o« ~, «a ~
g Bl =ear(k)+ 5+ 2 Y g 2 va (19

q

1
_ _Z _ 2 ~
=—t,ex 2 ZV (Vo™ Yv+1-11) (11) The variational parameterg, are determined by

wheret; .=t is nonzero for nearest-neighbor hopping JE a
pairs|’=1=1 and ¢(x) is the harmonic-oscillator ground- — =~ Yper(P)(1—cOSP) +wy,——==0. (19
state wave function in coordinate space. The matrix elements 79 m

of the other terms of Hamiltoniafd) are easily evaluated

The values foﬁfp which minimize the energf can then be

yielding obtained from
w
nes - 1
(I[P[1")= &y > ypzi _ _ (20)
VN @+ €q(p) (1~ cosp)
(ITediy=0, As ‘ec depends on the set of parametess, this equation

has to be solved self-consistently. Equat{@f) has a typical
~ 1, () 2 random-phase approximation form, which is reasonable
(ledl")=du| 5 E| N—avl (12 since a variational ansatz for the wave function of the un-
transformed Hamiltonian can be written [@ge also Eq(3)]
The eigenstates of the transformed Hamilton{@h in the

zero-phonon subspace, spanned by the basis states defmed in ) - )
Eq. (10), are U™y :—2 e ¢l ex —'EI yiup |10y [T [487).
(21)

_ ot v
|¢k>_cko|o>®1:[ |¢6 )> (13 In addition to the total energy given by E{.8), we are also
interested in the quasiparticle weight for momentkmO,
with energy defined as

V2=(0[Cy=0,0]tho)- (22

w w 2
E()=Ec+ 5N+ 5 2 vf—ay
! Here|,) denotes the ground state with one electron of mo-
mentump=0 and the oscillators in the ground stdtg).

E,=—t E eiksexp( _(1/4)2 (Vo= 7v0s 02|, (14 Fourier transformation leads to
6==*1 v

1
whereE, denotes the kinetic energy of the electron. Defining Vzo= N ; <¢)0|<0|CI0’ J(r|o>| bo)
the Fourier-transformed parametér@ as

1 ~
X :NZ <¢O|ex;<—iz ')’ikpk)|¢’0>
~ :_2 egidl (15 I ‘
Yq \/ﬁ : Y
=exp( ~(U4 ES). 23
q

and using , € R)
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where we have used the same steps as in(E. L
Results obtained with the VPA will be presented in Sec. z =C f Dpw, Wy (28

VI,
with the abbreviations

V. MONTE CARLO FOR THE TRANSFORMED MODEL

—A7S —A7K
. . wp=¢e b, Wi=Tr¢), Q= e ~7Th 29
In contrast to the approximate variational approach pre- b f f 1:[ (29

sented in the preceding section, the QMC method discussed  _ _ ~
here is based on the exact Lang-Firsov transformation of thelere K, is K with the phonon operatorns; replaced by the
Holstein Hamiltonian. Therefore, the method is exact apartnomentump; , on the rth Trotter slice. The exponential of
from statistical errors and Trotter discretization, as discussethe hopping term may in the single-electron case be written
in Sec. I. as
A. Partition function e =D .«D!

We begin with the evalliation of the partition function ij,:(emt htb)”,’ (DT)jjrzgjj,eiypj’T' (30)
Z=Tre P"=Tre A", with H given by Eq.(6). As indi-
cated in the preceding section, for the case of a single elegvhereh® is the NX N tight-binding hopping matrix. Thus
tron, the last term in Hamiltonia(6) represents a constant We have the same matrix for every time slice, which is
energy shift. Moreover we can drop spin indices and are leffransformed by the diagonal unitary matrid2s. In our one-

with the Hamiltonian electron case, the fermionic weight==,(n|Q|n) is given
by the sum over the diagonal elements of the matrix repre-
A=K+P—E,. (24)  sentation of) in the basis of one-electron states
The polaron binding energy given by E() can be ne- In)=c1l0). (3D)

glectgd durl_ng the QMC simulation, and needg on_Iy_ to beThe bosonic action in Eq29) contains only classical vari-
considered in calculating the total energy. For simplicity, We_bies and takes the form

only consider the one-dimensional case here, although the
generalization to higher dimensions is a simple matter. Using

the Suzuki-Trotter decomposition we obtdin szﬁ > pi2T+; > (P —Pie)? (32
3 _ 2777 20(An? T T T
—BH L (@ ATKq—ATP a— AP\ L—7 /L o )
€ (e € re )=ur, (29 where the indices=1,... Nandr=1,... L run over all

whereB=(kgT) ! andA 7= g/L. Splitting up the trace into lattice sites and Trotter times, respectively, with the periodic

a bosonic and a fermionic part and insertingomplete sets Poundary conditiong; .1 =p;,. It may also be written as
of momentum eigenstat¥swe derive the approximation for

the partition function S=2> prAp (33)
|
ZL=TFJ dpydp,- - -dp (pa|Up2) - - (LUl py), with pi=(pj 1, ... ,p;,L) and a “periodic” tridiagonalL X L
matrix A with nonzero elements
(26)
wheredp,=Il;dp; .. Each matrix element can be evaluated _w _
. . ’ . . A||— + ) Allil_ (34)
by inserting a complete set of phonon coordinate eigenstates T2 WA : wA 72
Jdx |x.){(x,|. All x,integrals are of Gaussian form and can . .
easily be carried out. The result is Since 2z is a trace, it follows that Aj =A;
=—1/(wA7?).
(p,le 2™1p,. 1) At this stage, with the above result for the partition func-

tion, a QMC simulation of the transformed Holstein model
would proceed as follows. In each MC step, a pair of indices
(ip,70) on theNXL lattice of phonon momentg; , is cho-
sen at random. At this site, a Chang,eoyfoe pio,ro+Ap of

2 the phonon configuration is proposed. To decide upon the
27 acceptance of the new configuration using the Metropolis
algorithm, the corresponding weightg,w; andw/w; have
The normalization factor in front of the exponential has to beto be calculated. Due to the local updating process, the
taken into account in the calculation of the total energy butchange of the bosonic weighw,=w;—w, can easily be
cancels when we measure other observables. With the abbrebtained. In contrast, the fermionic weight requires the
viation Dp=dp;dp,---dp, the partition function finally evaluation of thd.-fold matrix product appearing in the defi-
becomes nition of Q in Eq. (29). The numerical effort for the calcu-

ICNeXF{ -2 (pi— pi,7+1)2/(2wAT))v

C=

wAT
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lation of w; may be reduced by varying, sequentially from  dition number, i.e.,the ratio of largest to smallest eigenvalue,
1 to L instead of picking random values. In this case theof the bosonic actiois,. For small values oA 7 this ratio is
calculation of the new fermionic weight, after the change ofproportional to @A 7) 2 (Ref. 66, leading to autocorrela-

a single phonon momentum, can be reduced to only twdion times which grow quadratically with decreasing phonon
matrix multiplications. Similar to other MC methods, a frequency and the numbér of Trotter times. The physical
warm-up phase at the beginning of the simulation would bgeason for these correlations becomes obvious if we look at
required for each set of parameters. An additional difficultythe bosonic actiofEq. (32)]. The latter can be thought of as
arises from the fact that, for the transformed model, the ferbeing proportional to the energy of a given phonon configu-
mionic weightw; is no longer strictly positive, even for the ration, E=A7S,. While the first term corresponds to the
case of a single electron in one dimension. This is a consekinetic energy of the oscillators, the second term describes a
quence of the complex-valued hopping integrals, in contrasgoupling in imaginary time, i.e.,a pure quantum effect. As
to simulations of, e.g., the Hubbard model, where a minuspointed out by Batrouni and Scalettdrlarge changes of a
sign problem occurs as a consequence of the Fermi statistiéégle phonon degree of freedom, , say, are very unlikely

of the electrons® Here the average sign of; is smallest in  to be accepted due to the energy change proportional to
the regime of small phonon frequency and low temperaturel/(wA ), which arises from the coupling tp; .. How-

The sign problem is most pronounced for intermediate valever, a QMC simulation with only small local changes is
ues of the electron-phonon coupling strengthwhere the extremely ineffective in sampling the relevant regions of
crossover from a large to a small polaron occurs. Howeverphase space. Therefore, successive phonon configurations
in one dimension, it is not severe and reduces with increasingill be highly correlated. A possible solution might be the
system size. For example, calculations in the most criticatise of global updating schemes. Alternatively, the situation
regime Bt=10, w=0.1, and\~1 have shown thatsign) could be improved by transforming to the normal modes of

=(w)/{|wy|) increases from about 0.5 fod=4 to about the phonons, so that different step sizes can be used in up-

0.85 forN=16. Nevertheless, it remains to be seen to whafiating €ach mode. We will see in Sec. VII that the principal

extent the number of electrons and the dimensionality of th€oMponent representation can indeed be used to completely
system affect the situation. eliminate these difficulties.

A related QMC approach to the original Holstein Hamil- In addition to the above-mentioned autocorrelations,
tonian (1) involves a very similar derivatidf’ to obtain the which are n facF independent of any electronic mfluence_s,
partition function, also in the one-electron limit. In fact the Standard simulations of the Holstein model become very dif-
bosonic actionS, takes exactly the same form, wifh re- ficult in the regime where polaron effects are large. This
placed byx. The main difference is the fermionic part of the occurs at low temperatures, small phonon frequenaies
partition function, contained in the matriQ. While the <1, and for intermediate or strong electron-phonon coupling
Lang-Firsov transformation leads to a complicated hopping\=1. Unfortunately, these are exactly the parameters of in-
term, the standard approach for the untransformed modéerest for simulations of real substances such as, e.g., the
only includes the bare hopping operator given by Ei. manganited.To illustrate the physical origin of these prob-
However, an interaction tert[cf. Eq. (1)] appears, which lems let us consider the case of a single electron in the Hol-

contains the phonon coordinale Hence the matrix) is stein model. As discussed in Sec. Il, in the polaronic regime,
the electron drags with it a cloud of phonons which corre-

replaced by X : ) X
sponds to a more or less localized lattice distortion. When
L the electron hops from site Awith a displaced oscillator
0= H kV., (V)= 8 er7e, - (35 corresponding to a small polarprsay, to a neighboring, pre-
7=1 viously unoccupied site Bwith the oscillator in its undis-

placed ground stateduring a QMC simulation, the current

over all coordinates instead of the momenta. Apart from phonon configu_ration is o longer energetic.ally favorable.
the fact that the coordinates are sampled instead of the Clearly, the oscillator at site A has to return to its undisplaced
phonon momenta, the QMC procedure for the untransformeground state, while a corresponding phonon cloud has to be

model is identical to the simulation described above. Webuilt up at site B. Such distortions of the lattice in the pres-
shall refer to this less sophisticated QMC method for thetC€ of an electron are large compared to the zero-point mo-

original Holstein Hamiltonian as thetandard approachFor  ton of the oscillator. On the other hand, only small changes
\=a=0, i.e.,no electron-phonon coupling, we have a set oPf the current configuration will be accepted in the simula-

N independent harmonic oscillators, and both approaches afi@n- Consequently it takes an enormous number of single
alike. updates to obtain the new configuration in which the polaron

has completely moved to site B. Obviously these polaron
effects also give rise to strongly autocorrelated configura-
tions, thereby dramatically increasing the numerical effort
Let us briefly consider the noninteracting limit, in which for the simulation. These problems due to polaron formation
the partition function can be written & ~ [Dp e 2™, As  can be overcome by using the Lang-Firsov transformed
discussed by Batrouni and Scaleftarthe difficulties en- model. The transformation separates the large displacements
countered in QMC simulations, even for the simple case of af the local oscillators, due to polaron effects, from the free-
single (N=1) harmonic oscillator, arise from the large con- oscillator dynamics which correspond to vibrations around

and the path integral in the partition functiggq. (28)] is

B. Problems with the standard approach
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the shifted equilibrium positions. The quantities to be

sampled, namely, the phonon momeptanly show a weak <|2> (Mji)p
dependence on the electron-phonon coupling strergtim E = —t]—. (40)
stark contrast to the coordinata&sin the original, untrans- D (M)

4 ii

|

formed model, whose expectation values grow linearly with
St e e e o Sec e e we e lread taken o account th reueighr
that the statistical errors increase in the intermediate conethOd which will be discussed in d?ta" in the following
pling regime\=~1, but decrease again as we approach thg‘eCt'Onj The tptal e_nergy can be ob.talned f_rom the thermo-
strong-coupling limit. This is in perfect agreement with thedynamlc relatlor_1E— —d(In2)/B, with Z given by Eq.
fact that the the Lang-Firsov transformation diagonalizes thé28)' The result is

Hamiltonian (1) in the strong-coupling or atomic limik

w
— (see Sec. Il so that the QMC method based on the E=E,+ 5 > (pH+ Epn—Ep,
transformed model becomes more and more efficient as !
increases. N L
o - 2 (P Pien)?), (4D
C. Observables P2A7  20AMRL T ' '
Thermodynamic expectation values whereE is defined in Eq(8) and the expectation values are

calculated according to Eq43) given below. To compare
with other work we subtract the ground-state energy of the
phonons Eq ;= Nw/2. Finally, n(k) can be obtained using

of observablesO are computed in the Lang-Firsov trans- Fourier transformation. The result is

formed representation via

(0y=2"1TrOe M=z"1TrDe FH  (36)

1 2 <Mij>beik(i_j)
(k)= = S (42
- <Mii>b

In this paper we are interested in the kinetic energy of th&yiy,  from the first Brillouin zone and the same mathikas
electron, the total energy, the mean square of the phonolrlzI the case of the kinetic energy

momenta, and the momentum distributintk)=(c/c,) for
various wave vector&. We begin with the kinetic energy V. REWEIGHTING
which is defined as

<O>=Z*1Trff dp(p|O e #H|p). (37

In typical QMC simulations a large amount of the total
o ~ computational effort goes into the calculation of the prob-

Ex=(K)=—tZ 1> Tr(c[c,ePiPle FH). (38  ability for the acceptance of a proposed change of the con-
(i figuration. This probability is usually determined by the ratio

) ) o . of the weights of the new and the old configuration, as in the
Using the same steps as in the derivation of the partitioietropolis algorithm used here. In the notation of Sec. V,

function (see Sec. V A and absorbing the additional phase this involves the calculation ofy, and w; for the two con-
factor in a matrixM =D]QD; [see Eq(30)], we find figurations, S and S’ say, in every MC step. While the
change in the bosonic weighty,(S")/wy(S), is easily cal-
. + culated for the case of local updating, the fermionic weight
Ex=—t2 % J’ Dp szn: (n[Mcicj|n) given by Eq. (29 involves anlL-fold matrix product of
: N XN matrices for each configuration. Although the numeri-
1 o cal effort of the evaluation of such a matrix product can be
=—tZ_ % f Dp wij[Mi) reduced by scanning sequentially through the time slises
: Sec. V A it still requires a lot of total computer time.

This can be avoided by reweighting of the probability
distribution to be sampled. In the case considered here, this
corresponds to taking into account only the change
wy,(S")/wy(S) in the bosonic weight, and compensating for

with one-electron statds) as defined in Eq(31). Using the
matrix elementsv;; =(i|M|j) and the expectation values

f Dp W, O(p) this by dividing the resulting expectation value by the expec-
(O)p= b (39) tation value of the fermionic weight/;, as has been used
b already in Eqg. 40, leading generally to ratios of the form
f Dp wy,
Ow
| o | (o) O0 3
with respect to the purely phononic weightg we obtain (Wi)p
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where the subscript “b,” defined in Eq39), indicates that ' ' '
the average is computed based wp only. Following this
procedure, the fermionic weight is treated as part of the ob-
servables. The splitting into weight, and observabl®©w;

is sensible as long as the variancewgfand Ow; is small,

which is the case after the Lang-Firsov transformation. This
approach has several additional advantages. With the reﬁ
weighting method, the updating of the system does no longel (5|
require the calculation ofv; in every step, but only when
measurements are performed. Compared to the usual QM .
procedure described in Sec. V A, this can save an enormou i ks Bag Seeg

—
<« 025p,

0-ON=4,pt=10,0=0.1
©oN=4,pt= 5 0=01
&AN=4,Bt= 5, 0=20 |
EaN=4,Bt= 5 0=20,w/oLF
A-AN=38,Bt= 5 0=01

RADA

A

Sa A
S
SA,

amount of computer time, allowing such simulations to be DL Ko OOGCERIA,

vvvv

run on a standard personal computer instead of a high Y
performance supercomputer. Additionally, since the updating A
does no longer involve any electronic contributions, it be-
comes independent of the electron-phonon coupling strength FIG. 1. Kullback-Leibler numbep, as a function of electron-
\. This allows the simultaneous measurement of observablgzhonon coupling. for various sets of the parametedgnumber of
for a whole set of values of in a single MC run. For a given sites, 8 (inverse temperatuyeandw. As indicated, the results for
phonon configuration, the fermionic weight and the obseryihe untransformed model, denoted in the legend as “w/o LF,” have
ables are measured and stored for each value of the couplingeen scaled by a factor 0.28ee text. Error bars are smaller than
This procedure is repeated until the required number of med"'® SYmPols shown, and lines are guides to the eye only.
surements has been made. At the end of the simulation an
appropriate analysis of the measured values is made indepen- h1(X)
dently for eachn. In contrast, the QMC procedure without Po(X)
reweighting(see Sec. V Awould require a separate run for
each value of\, including a warm-up phase to equilibrate FOr ¢1=¢, we haveuy, =0, while for ¢;# ¢, uy >0.
the system for the current set of parameters. We will see if he fact thatuy_ is a reasonable measure for the distance of
Sec. VII that in combination with the principal component two distributions is best illustrated by considering two
representation, the phonon momeptaan be sampled ex- Gaussian deviate$;, ¢, with varianceo?, centered ak,
actly, removing all autocorrelations. This avoids a warm-upand X,, respectively. In this casgu = (X;—X)%/(202).
phase, and measurements can be made after every Morfter |x; — X,| = V2, where the two peaks begin to be distin-
Carlo step. In this final, very efficient procedure, the calcu-guishable, we haveu, =1, while a large value ofuy,
lation of w; for measurements remains, and is then the most=10, for example, corresponds to well-separated Gaussian
time-consuming part of the calculation. Finally, we want todistributions. Here we use the Kullback-Leibler number to
point out that, with the use of the reweighting method, theinvestigate the applicability of the reweighting method. As
electronic degrees of freedom are treated exactly, i.e.,they ateng as the Kullback-Leibler number is less than or compa-
not sampled in the course of the simulation. rable to 1, reweighting works well, while a Kullback-Leibler
As mentioned in Sec. V A, the weight; for the trans- number strongly exceeding unity indicates severe problems.
formed model is no longer strictly positive, so that it cannotTwo relevant distributions in our case are given $y(p)
be interpreted as a probability. The usual way to deal with=wy(p)/Z, and ¢,(p) =wy(p)|wWi(p)|/ Zp, depending on
such a sign problem is to split the weight inta;  the phonon configuratiop (or x in the case of the untrans-
=|w;| sgnw;. Then|wy can be used as the weight of a given formed Holstein mod¢! Z, and Z,; are the normalization
configuration in the updating process, while the sign is abfactors of the probability densities,(p) and ¢,(p), andw;
sorbed in the observables. The difference to the reweightingas been replaced by its absolute value due to the aforemen-
method presented here is that instead of the sigw;ofwe  tioned sign problem. Inserting these definitions into &)
treat the whole weightv; as part of the observables. we find wy = In{jwg| )p— {Injws| )y, . Figure 1 shows results for
Despite the obvious advantages of this approach, itis neg,,, for different parameterg, w, andN. For A\=0, w; is
essary to scrutinize whether reweighting does not lead tehdependent of the phonon configuration so tha =0.
prohibitive statistical noise. |f, for example, there was tOOW”:h increasing e|ectron-ph0non Coup"ng, the difference be-
small an overlap of the actual probability distribution with tween the two distributions becomes larger. For an interme-
the one we are sampling with, the method would fail. In fact,gjate value of the electron-phonon coupling strengthy
our calculations have shown that for the untransformedakes on a maximum and approaches zero again in the
model the reweighting method would fail at low tempera-strong-coupling limitn— . This is exactly the behavior we
tures and for critical values of the parametersind\. would expect for the Lang-Firsov transformed model. For
The distance between two arbitrary probability distribu-\=0 the transformation has no effect amglis a constant,
tions ¢4(x) and ¢,(x), each depending on a set of variablesjust as in the case of the untransformed model. In the inter-
X, can be measured by the so-called Kullback-Leibler nummediate coupling regime, the small-polaron picture mediated
ber i, which is defined & by the transformation is not correct as we have an extended

MKL((;blad’Z):f dx ¢1(X)In (44
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(large polaron in this region. However, as the coupling in- the evaluation of the fermionic weight, in the critical param-
creases further, the polaron becomes smaller and for it eter regime, an enormous number of such steps will be nec-
is known that the Lang-Firsov transformation diagonalizesessary between successive measurements. Moreover, reliable
the Holstein Hamiltoniaril). The dependence @iy, onthe  results can only be obtained when long enough Monte Carlo
temperature and the phonon frequency is also in perfegiuns have been performed to see even the longest autocorre-
agreement with the physical picture of the Holstein polaronjation times. In this section, we present a principal compo-
As pt increases, polaron effects become more promineniyent representation for the phonon degrees of freedom,
The same effect occurs if we decreasgand in both cases which enables us to create completely uncorrelated samples
the maximum ofuy, increases. In Fig. 1 the result for a of phonon configurations.

system of eight lattice sites is also shown. The maximum in In order to illustrate the severe problem of autocorrela-
ko is clearly smaller than for the four-site cluster. Calcula-tions with standard updates of the phonons, we have calcu-
tions for even larger clusternot shown reveal that the lated the integrated autocorrelation tim, for the phonon
maximum inuy, decreases further indicating that the over-momentap. 7, is a direct measure for the number of MC
lap betweene; and ¢, increases adl—c. This behavior steps which have to be skipped between measurements in
agrees well with the influence of finite-size effects in theorder to obtain uncorrelated data, and is usually given in
transition region as pointed out before by Marsidgfids the  ynits of sweeps. We define a sweepMisimes L proposed
system size increases, the crossover becomes smoother|gital changes of the phonon configuration. For a four-site
agreement with the 1_‘act tha_t the ground state of the H°|3te'§ystem, for example, withBt=5, A\=2, w=2, and A7
polaron is an analytic function of the coupling(Ref. 64.  _ o5 e findr2,~500. This corresponds to an autocorre-

This point will be further illustrated in Sec. IX. To summa- lation time of about X 10° single MC steps. For smaller
rize, for all parameters shown in Fig. 1, the maximunuef —

lies below e ~1, so that we can conclude that the two PNOnon frequencies;, increases strongly. Fes=1 and the

distributions are indeed very close and the reweighting@MeA ™, the autocorrelation time is aIrgz;téyl?OO Sweeps,

method can be successfully applied. hich agrees quite well .Wlth.thea(A 7)< dependence of
We have also calculated the Kullback-Leibler number forthe correlations fon =0 given in Sec. V B. The dependence

the case of the untransformed model, denoted in Fig. 1 a8 7int ON the coupling strength is relatively weak, and we
“w/o LF,” for which |w{=w;. The result has been divided have found no systematic behaviorf; as a function oh.

by a factor 4 to allow a better representation in Fig. 1. TheDepending on the other parameters, the autocorrelation times
difference betweewp, and ¢, increases strongly with and ~ Wwere observed to increase or even decrease slightly ias
reaches large values @fr>10 already in the intermediate increased. This behavior can be ascribed to the exact treat-
coupling regime X\ <2. Hence we cannot expect the re- ment of the fermion degrees of freedom. As we are not sam-
weighting method to work in this case. Finally we want to Pling the hopping process of the single electron considered
point out that the distance between and ¢, may not affect ~here, no autocorrelations due to the resulting reaction of the
all observables in the same way. A detailed analysis for eacfarmonic oscillators to the electronic moti¢gee Sec. V B

observableO would be based on the Kullback-Leibler dis- €an occur. Moreover, even if we would sample the electronic
tance of the marginal probability densities degrees of freedom in the QMC simulation, these autocorre-

lations would still be strongly reduced as long as we use the

Lang-Firsov transformed model. This is a consequence of the
P,(0)= f dx p(o[x) p(x)= j dx 6(0—0(x)) pa(X), fact that the large displacements of the oscillators in the pres-

ence of an electron are explicitly contained in the Hamil-

whereO(x) is the value of the observable for a given con-tonian(6). Finally, as the number of lattice sites is varief},
figurationx and o= 1,2 for the two distributions under con- remains constant in units of sweeps for our single-electron
sideration. simulations. We also determined the autocorrelation times
In summary, the reweighting method, together with thefor observables such as, e.g., the kinetic energy. Althaygh
Lang-Firsov transformation, allows us to sample a system ois smaller for electronic observables, the problem still exists,
independent oscillators, while all the influence of the elec-and the determination of the autocorrelation times for vari-
trons is transferred to the observable, thereby strongly redu®us parameter sets is vital to obtain reliable results. This
ing the numerical effort. In order to obtain a reliable errorusually requires very long QMC runs and a lot of CPU time.
analysis for observables calculated according to(E8), the As indicated in Sec. V B, the autocorrelations which arise
jackknife procedur® has been applied. from the structure of the bosonic acti@) [see EQ.(32)]
may be overcome by a transformation to the normal modes
of the system. Here we represent the bosonic acBgm
terms of its normal modes along the imaginary time axis.
Although the reweighting method allows us, in principle, This allows us to sample completely uncorrelated phonon
to skip enough sweeps between measurements to reduce aenfigurations. In combination with the reweighting method
tocorrelations to a minimum, the computational effort forthe fermion degrees of freedom are treated exactly, so that
these Monte Carlo updates can become the most timeur QMC method is indeed free of any autocorrelations. This
consuming part of the simulation. Even though a single phogreatly simplifies calculations, since it makes the usual bin-
non update requires negligible computer time compared tming analysigto determine the autocorrelation timesbso-

VIl. PRINCIPAL COMPONENT REPRESENTATION
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lete and, more importantly, leads to significantly shorter
simulation times.

All this can be achieved with the simple but effective idea
of a transformation to principal componer(Cs. To this
end let us recall the form of the bosonic action given by Eg.
(33) which can also be written as

E /t

sb=2 p?Api:Z |oiTA“2A”2|oi=:Ei g8 (45

with the PCs&=AYp, in terms of which the bosonic
weight takes the simple Gaussian form

>t

wb=exp( —ArY, giT-gi). (46) 0

The QMC can now be performed directly in terms of the new LS
variablesé. To calculate observables we have to transform
back to the phonon momengeusing the matrixA 2. Com-
parison with Eq. (33) shows that instead of the ill-
conditioned matriXA we now have the ideal structure that we
can easily generate exact samples of a Gaussian distributior

In terms of the new coordinates the probability distribu- ©0.5
tion can be sampled exactly, e.g., by the Boxieu N "
method® In contrast to a standard Markov chain MC simu- =
lation, every new configuration is accepted, and measure N @ Z'g h o
ments of observables can be made at each step. o % 2‘0 Y
From the definition of the PC's it is obvious that an up- o w=10
date of a single variablg; ., say, actually corresponds to a __ o= 1:0, HLF i
change of all phonon coordinatps,, 7'=1, ... L. Thus, % ' '1 —
in terms of the original phonon coordinates, the updating A

loses its local character. As a consequence, the sequential
updating of the Trotter time slices, which we mentioned in  FIG. 2. Total energyE (top) and quasiparticle weigtt, (bot-
Sec. V, can no longer be exploited to reduce the numericabm) as functions of the electron-phonon couplingfor different
effort for the evaluation of the fermionic weight. However, values of the phonon frequenay. Symbols correspond to VPA
in combination with the reweighting method, the latter isresults, while full lines represent exakt 0 data obtained with the
only calculated when measurements of observables adeanczos method(Ref. 70 Dashed lines are results of the HLF
made. The enormous advantage of the PC’s, leading to conapproximation.
pletely uncorrelated phonon configurations, clearly out-
weighs this drawback. Nevertheless, this restriction has to be Finally, for theuntransformednodel, Eq(1), the bosonic
kept in mind when considering possible extensions to manyaction can be obtained from E(83) by replacingp with x
electron systems. Apart from this, the PC representation cat$ee Sec. V Aand a transformation to PC’s could also be
also be applied to the more general case of more than ori¢sed. However, as discussed in Sec. VI, without the Lang-
electron, since the bosonic acti¢Eq. (46), on which the Firsov transformation, the reweighting procedure fails. Con-
transformation relies, remains unchangekhis even holds sequently, using the standard approach, the phonon coordi-
for the case of more general models including, e.g., spin-spifatesx would depend on the electronic degrees of freedom,
or Hubbard-type interactions, as long as the phonon oper&@nd this makes exact sampling impossible for the untrans-
tors enter in the same form as in the Holstein model. formed model.

Another important point is the combination of the PC'’s
with the reweighting method. Using the latter, the changes to VIIl. RESULTS: VPA
the original momenta, which are made in the simulation,
do not depend in any way on the electronic degrees of free-
dom. Thug we are a)étual?/y sampling a setl\bindgependent energ){Eq. (18)] and the quasiparticle weigfEq. (23] on a

harmonic oscillators, as described by the purely bosonic acc!USter of four sites for various phonon frequenciesand
tion S,. The crucial requirement for the success of this compared the results with those of Marsiglio obtained by
method is the use of the Lang-Firsov transformed model, ”{_anczos diagonalizatiof?. The comparison is depicted in
which the polaron effects are separated from the zero- powﬁ'g 2. The values oy have been chosen to lie in the nona-
motion of the oscillators around their current equilibrium diabatic regimes=1 where the zero-phonon approximation
positions. of the VPA is sensible. The overall agreement is strikingly

In order to test the validity of VPA we calculated the total
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10 . .
N=16,0=0.1
8_
6 //// —— Lang-Firsov 7
w el E—aVPA, §=0
e= L e —oVPA,5=1 |
- A—AVPA,§=2
’ A—AVPA,§=3

FIG. 3. Total energyE as a function of the electron-phonon i ,
couplingg (see texx for different values of the phonon frequency N=16. =40

o. Symbols correspond to VPA results, while full lines represent
data obtained with the Global-Local methdfef. 57 The dashed

line represents the atomic-limit resuﬁé ).

—— Lang-Firsov

good. Minor deviations from the exact results increase with E—8VPA, 5=0
decreasing phonon frequency. For the smallest frequence™ 1r —oVPA,8=1 |
shown,w=1.0, the curve for the HLF approximation is also &—AVPA,8=2

depicted. It reveals that VPA represents a significant im- A—AVPA,8=3

provement over the HLF approximation, underlining the im-
portance of the extended polaron cloud.

The comparison with exact results obtained with Lanczos
was restricted to small clusters with=4 in order to achieve . ' . ' . ' . ' .
convergence with respect to the number of phonon state: A
included in the calculatiotsee Sec. ) To further scrutinize
the accuracy of the VPA we also compare the results of the F|G. 4. Polaron-size parametgf as a function of the electron-
latter for the total energy with the variational global-local phonon coupling\ for various distances. The parametey of the
method which has been shown to give reliable results over gtandard Lang-Firsov transformati¢see Sec. 1)l is also shown.
large range of parametets.We choseN=32 for which
finite-size effects are already very sm@ée Sec. IX More-

following R t al.5in Fig. 3 ot/ to the shortcomings of the VPA and due to temperature ef-
oyer]r, E\c/)vwrvgizomer.ce.la 5 'T} '9. w_e P Oh @ OVEIG  fects in the QMC results. Consequently, we have decided to
with g= VAW/(2w). Similar to the casél=4 shown in Fig.  confront the VPA with another approved ground-state

2 we find a very good agreement for large valuessobver  method, namely, the global-local method, which gives a
the whole range of electron-phonon coupling, whereas fomuch clearer picture.

smallerw the VPA results begin to bend away from the cor-  In Fig. 4 we show results for the variational displacement
rect curve and collapse to the strong-coupling, atomic-limitfields ys, which give us a measure for the size of the po-

result for largeg. We would like to point out that the maxi- |aron. Foro=0.1 we see an abrupt crossover from a large to
mum  electron-phonon coupling strength in Fig. 3 corre-3 small polaron ah~1.2. For smaller values of the cou-
sponds toa~40 (for ®=4.0), in contrast to Fig. 2 where pling, the electron induces lattice distortions at neighboring
A=<2. Figures 2 and 3 reveal that in the nonadiabatic regimsites even at a distance of more than three lattice constants.

»>1 VPAyields a very good agreement with the exact datAbove A~1.2 we have a mobile small polaron extending
and the global-local method even in the intermediate an@Vver a single site only. In contrast, for a larger value of the
strong-coupling regime. This behavior can easily be underphonon frequencw=4.0, there is no crossover and we have
stood considering the assumptions of the VPA. The zeroa somewhat extenddthrge polaron even for large values of
phonon approximation becomes exact in the nonadiabatit. The same behavior has been found by Marsiflisho
limit w— o0, where the energies of phonon excitations aredetermined the correlation functigm;x;, ;) by Lanczos di-
too high to have an effect on the ground state. Finally, weagonalization for a restricted phonon basis. Within VPA we
would like to mention the possibility of comparing the VPA have the relatioqn;x; . s)=vs. The main difference is that
with the QMC results presented in the following section.in Marsiglio’s results, the crossover to a small polaron for
This has been done for a variety of parameters, but we have=0.1 occurs at a smaller value of the coupling 1. Nev-
found that it is difficult to distinguish between deviations dueertheless, the simple VPA reproduces the main characteristics
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of the transition of the Holstein polaron as the coupling -
N=32,Bt=10

strength\ is increased. Finally Fig. 4 also shows the result

for the parametety of ihe standard Lang-Firsov transforma- 05=0.1

tion (see Sec. I). For w=0.1, the curves foly andys_, are L5 BBw=05
identical above the critical value~1.2. This is not surpris- LA p=10

ing since, in this regime, we have a small polaron extendingZ AAp=20
over a single site only, which is well described by the local . 1
Lang-Firsov transformation defined in E&). For larger val- -
ues of the phonon frequendgee Fig. 4, y and y, do not

coincide above a critical value of the coupling, but the dif- 051
ference vanishes as—. In contrast to the adiabatic re-
gime, the polaron remains an extended object up to very
large values of the coupling, so that the local ansatz of the ) , , , ,
Lang-Firsov transformation does then not provide the correct 0 1 2 3 4 5

description for finite values af (see also Ref. 62 A

FIG. 5. Negative kinetic enerdy, as a function of the electron-

IX. RESULTS: QUANTUM MONTE CARLO phonon coupling\ for various values of the phonon frequengy

As our approach is based on a discretized imaginary time,

it is important to study the convergence of any results withtheory!* This contrasts strongly with the behavior of the
increasing number of time slicek, which determines the quasiparticle weight, [see Fig. 20)] which decreases much
error due to the Suzuki-Trotter approximation of E25). L faster and is exponentially suppressed in the small-polaron
was chosen such that systematic errors are smaller than thegime?® As pointed out by Fehsket al,* for the case of
statistical errors of the results. For all observables considereitie Holstein model, the quasiparticle weight is exactly the
here we have found the usual {)? dependence of the inverse of the ratiomes/m where mes and m denote the
Suzuki-Trotter error. Depending on the phonon frequeacy effective and free mass of the electron, respectively. Hence,
we have found values oA r=1/30 (for w=<1) and A7 in the small-polaron regime, the effective mass increases ex-
=1/40 (for »>1) to be sufficient even for the most accurate\r,)\c,memla-lg’ vtvk?llebthﬁ k|.net|tc etr;]ergy g-“” r][az a f|r:.|te va}lutﬁ.
- e ascribe this behavior to the undirected motion of the
results of this paper. Moreover, as indicated in Fig. 9, errokectron inside the phonon cloud, which gives rise to a non-
bars for the QI\/I_C data _presented are always smaller than thgy kinetic energy even for large values of However,
IS:YmBOISr used in the flgLéres and arebth_ere(fjore_ rr]‘Ot Ggo‘_""?since the polaron bandwidth is exponentially narrowed with

inally, lines connecting data points obtained with QMC iNjncreasingh, the polaron is almost localized.
F'g{f'c') ?;sltloirrelel\J/IldCeZIgoc):irt]ﬁrr?yvieo?\g\'/e serformed several To study the influence of temperature we have calculated
comparisons with other methods. First, we have checked th tﬂe km_etlc energy for a SySte”_‘ of 32 S|tes_, wiih= 1.0 and
the QMC reproduces the exact results obtained with Lanczos)' various values ot (see Fig. 6. As Bt increases|E,|

X <2. i-
on a four-site cluster. Apart from temperature effects, an exlncreases fon 2. However temperature effects are obvi

cellent agreement has been found for several different valu %usly very small in the strong—couplmg regime. Fmr.: 1,
of the phonon frequency. Second, as the QMC results are al (| decays in a smooth way as is increased, while for
for finite temperature, we have also compared them with an
exact solution for the two-site system, which is valid for
arbitrary temperature. We have found a perfect agreemen

over the whole range of values fg, o, and\, and can
therefore exclude the possibility of any systematic errors.

. i N

A. Kinetic energy ~

]

We begin our discussion of the results with the kinetic A

energy of the electron, given by E(B8), which has previ-
ously been calculated by several authcrs:2°4349.5/.69p
Fig. 5 we show results foE, on a 32-site cluster, witlBt
=10 and for several values of the phonon frequency. While
for small values ofw there is a rapid decrease of the absolute
value of the kinetic energy in the vicinity af=1, the cross-

over becomes smoother asincreases. This agrees with the
findings of previous studies and resembles closely the behav- FiG. 6. Negative kinetic energy as a function of the electron-
ior of the total energy discussed above. For large values of phonon coupling: for various values of the inverse temperatyre
and w=1 we find E,~\"! as predicted by small-polaron for various values of the phonon frequeney
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®=0.5, Bt=10 @) ©=10,A=1

GON= 4 6

AAN= § 8

AAN=16 6

OO 1 2 3 4 5
A
FIG. 7. Negative kinetic energy as a function of the electron- 2 T T T
phonon coupling\ for different numbers of lattice site. L (b) ©0=10,A=1
coft=
lower temperatures we find the typical rather abrupt cross- z:ig:

over neai =1, as in Fig. 5. De Raedt and Lagendijkave i aaBt=10 4]
calculated the kinetic energy for the same set of parameterZ | 51 M
using their QMC method. However, the lowest temperaturemM E 4 A_/
they could reach wag@t=5 which, according to Fig. 6, is !
still quite different from the ground-state result. Moreover, |
their calculations did not include dynamical effects of the
phonon degrees of freedom. As a consequencepferl, 1
they do not obtain the correct behavior of the kinetic energy 1F 9
|
0.2

A=

as a function ofs. Finally, Romeroet al®’ and Jeckelmann
and Whité® calculated the kinetic energy far=0 on a 32-
site cluster and for an infinite system, respectively. Their
results are in a good agreement with our findings, although FiG. 8. Negative kinetic energfg) as a function of the inverse
small deviations due to temperature and finite-size effects ar@mperaturgs and(b) as a function of the inverse of the number of
visible. Nevertheless, we can conclude from Fig. 6 that dattice sitesN.

value of Bt=10 should be sufficient to obtain results which

are representative of the ground state. . _ show that very good convergence with respect to the number
We now tum our attention tojnlte-sae effects. In Fig. 7 of |attice sites is achieved for rather smill In fact, for the
we show the kinetic energy fo®=0.5, ft=10, and for  highest temperature showi{=1), the line connecting the
various number of lattice sites. Fbi=16 the results foE,  data points becomes vertical alreadyNat 8, while for gt
are well converged over the whole range\oéind finite-size =10 convergence is reached fide=16. Hence, if we con-
effects are very small. This agrees with the findings of othekider these findings in the context of the usual finite-size
authors?>***?Figure 8 shows the kinetic energy as a func-scaling analysis where one plots the data as a function of a
tion of temperature, fow=1.0 and various numbers of lat- suitably chosen power of W/and extrapolates to the infinite
tice sitesN. Moreover we chosg =1, as the influence of the system(i.e., 1IN—0), we have here the special case of a
system size is largest in the crossover regime. Figuiee 8 linear dependence with zero slope at large enoNgfihus,
clearly demonstrates that finite-size effects are most proi contrast to the half-filled Holstein model of spinless fer-
nounced at low temperatures, while they are completelynion, for which a finite-size analysis has been performed by
smeared out at higher temperatures, since high-temperatuteo groups:*’?> we merely find that the results converge
properties are determined by integral quantities, such as emvithin the accuracy of our calculations already for rather
ergy momentgE”), which have a small size dependence,small systems.
while low-temperature features are governed by energetically
low-lying eigenvectors. To further illustrate the influence of
the system size, we plot in Fig.(ly the negative kinetic

energy as a function of W again foro=X\=1 and for vari- Next we consider the total ener@y given by Eq.(41). In

ous values of8. As before, error bars are smaller than theFig. 9 we present the total energy for a cluster of 32 sites and
symbol size, but due to the very high accuracy of the datavarious values of the phonon frequency. Finite temperature
the systematic errors due to the finite number of Trotteeffects increase as we approach the low-frequency regime,
slicesL are comparable to the statistical errors. The resultand for w=0.1 we clearly see a strong deviation from the

? A
0.03125 0.0625 0.1 0.125 .25

B. Total energy
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FIG. 9. QMC results for the total enerdyas a function of the FIG. 10. Momentum distributiom(k) as a function ofx for

electron-phonon coupling for various values of the phonon fre- various wave vectork.
quency; Here and in subsequent figures lines are guides to the
eye, and error bars for the QMC data are smaller than the symbodoes not change significantly. As discussed for the two-
shown. dimensional case by Kornilovitch, this can be explained as
follows: for small ratiosw/t, the phonon energy associated
ground-state resultE=—2t for A=0. The frequency- with the termP of Hamiltonian(1) is small and the system is
dependence of the temperature effects can easily be undaeyeverned by the balance of the electronic kinetic energy and
stood if we consider the exact result for the kinetic energy othe energy due to the electron-phonon coupling. In the trans-
N independent harmonic oscillators formed model, the latter is given I, as defined by EqS8).
When the ratio of the two energies approaches uieityiva-
® No [ 1 1 lent to A=1), it becomes energetically favorable for the
Ek,ph=§ 2 <|0i2>= 7(5‘*' ) (47) electron to localizelosing kinetic energyand increase its
! potential energy. This leads to finite displacements of the
oscillators in the vicinity of the electron and increases the
potential energy of the phonons. Hence, ngarl the en-
gy of the system is redistributed from kinetic to potential
ergy so thakE remains almost unchanged. This is exactly
what we see in Fig. 5.

efo—1)

which is identical to the second term in E@1). For low
temperatures we hay@?)~0.5+ e A, with a correction to
the ground-state value of 0.5 that increases with decreasin
. These temperature effects &due to the oscillator en-
ergy do not depend an [see Eq(47)] and therefore shift the
total energy curve by the same amount for all values of the

coupling. A comparison with the discussion of the kinetic C. Momentum distribution and oscillator momenta

energy reveals that temperature effects are much smaller for Following Zhanget al*® we also calculated the momen-

other observables due to the absence of th’e strong%m distributionn(k), given by Eq.(42), for different wave
temperature-dependent phonon energy tePmandEg,[see  yectorsk (Fig. 10. To compare with their DMRGRef. 73

Eq_‘T’_'h(:eL) a::ir:edp(:nlz]e;nce o agrees well with existing results we chose the same paramefdrs6 and w=1.0.
Work 22232253958 879515 i knowr?® that at 710 g a1 were fo the ground atte. Far-0 the ground stae.
temperature and for small values of the phonon frequency,,q momentunk=0, so we haven(0)=1 and n(k#0)
0=0.5, the total energy displays a rather sharp transition=0. With increasing coupling(0) decreases in a way simi-
around\~1, where the crossover from a large to a smalljar to the kinetic energycf. Fig. 5, while n(k) for k#0
polaron occurs. In ED studies of small clustéms kink inE  increases. In the strong-coupling limk—c, n(k) ap-
has been observed, which is smeared out in the finiteproaches the value N/~ 1/6 for all k. This is a simple con-
temperature QMC results. Nevertheless, we observe theequence of the localization of the electron for . Al-
same rounding of the energy curve with increasingRef.  though the curve fok=0 looks very similar to the results of
36). As discussed by Marsighif the kink in the total energy Zhanget al. we find a slightly stronger decrease mf0) in
is merely a finite-size effect. As the system size increases thime intermediate coupling regime. This deviation is no tem-
discontinuity disappears, in accordance with the fact that thperature effect of our QMC method but probably originates
ground state of the Holstein polaron is an analytic functionfrom the fact that Zhangt al.obtained their results fan(0)
of the coupling parametex (Ref. 64. by integrating over an approximate spectral function.

Finally, it is interesting to note that in contrast to the ki- In Sec. VI we mentioned that, within the Lang-Firsov
netic energy—E,, which shows a sharp decrease naar approach, the phonon degrees of freedom only show a weak
=1 in the adiabatic regimesee, e.g., Fig.)5the total energy dependence on the electron-phonon coupling, in contrast to
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0.51 - - | - | - - grow as A7) 2. However, in materials such as the man-
ERRRRRERRRSRRRROREER0 ganites, the frequencies of the relevant phonon modes are
0.55 Y known to be small ¢=<0.5, see, e.g., Ref.)X0 that our

method could represent an important step forward towards
the simulation of electron-phonon models with realistic pa-
rameters. Also, we are able to reach very low temperatures

“&0.48 N=8 =10 Bt=20 and clusters large enough to avoid finite-size effects
v %B:f 13 . with modest computational effort. Another key advantage is
0.47F ngt; 20 that the method becomes more and more efficient as the cou-
1 pling strength\ increases, which is due to the use of the
0.46- _ Lang-Firsov transformation. In our results we find that sta-
L . | tistical errors of expectation values of phonon operators are
0.45 s L | . | . ! . larger than, e.g., the errors of the kinetic energy. Finally, the
0 1 2 3 4 5 errors increase slightly as we approach the adiabatic and/or
A low-temperature regime—0 and Bt— o, respectively.
FIG. 11. Mean square of the phonon momenifuas a function To demonstrate the efficiency of our method we give
of the electron-phonon coupling. some figures for the CPU time of the simulations. A typical

QMC run for 32 lattice sitesBt=5, w=1.0, and\~1 (i.e.,

the standard approach, where the average oscillator coordiear the small-polaron crossoyemly takes 5 min of CPU
nate(x) increases strongly with due to the displacement in time on a 650 MHz Pentium Il PC. For such a run relative
the presence of an electron. The weak dependence of tif&rors of, for example, the kinetic energy are less than 1.0%.
vibrational energy of the local oscillator, which is propor- Avay from the crossover point, the same accuracy can be
tional to(p?), on \ is shown in Fig. 11. Foh=0 we have obtaln_ed within a few second_s. FBt=10, the temperature
the result(p?)=0.5+[exp(Bw)—1]~! [see Eq.(47)] for a used in most of the calculations presented in thls paper, a
free oscillator. In the intermediate coupling regin(@?) QM_C run with N near the_ crossover value and with S|m|!ar
takes on a minimum, corresponding to a reduction of mere|}$tat|st|_cal errors as mentioned above_ t_akes about 80 min of
4% and approaches the value for=0 again in the strong- CPU time. Hence, aIthozlEJ)gaPsnot as efficient as thg specialized
coupling limit. As the Lang-Firsov transformation does notOne-electron methptf%,‘ *+3%ur approach significantly re-
affect the phonon momenta (see Sec. I, the result for duc_:es the numerical effort compared to previous methods
(p?) as a function ofx is the same in the untransformed which were often run on supercomputers and did not reach
Holstein model. However, the significant advantage of thdhe parameterslow temperature and small phonon fre-
proposed method is that the phonon momenta are sampléie€ncy and accuracy of our simulations.
instead of the coordinates Thus the probability distribution
associated with the degrees of freedom to be sampled has
only a small variance compared to the standard method,
which makes the simulations much more effective. The de- \We have presented a Simp|e variational approach to the
pendence of p%) on the coupling strength and the tem-  Holstein model, which incorporates an extended Lang-Firsov
perature has first been studied by Ranninger and Thiiblin transformation. This approach is easily applicable to infinite
for the two-site polaron problem. For such a small systemsystems and represents a marked improvement over the stan-
the minimum of(p?) is even more pronounced, while for dard small-polaron approximation, which is only useful in
larger systems the average effect of the electron on a locahe nonadiabatic, strong-coupling regime.
oscillator is more and more washed out. Ranninger and More importanﬂy, we have introduced an exact QMC
Thibblin*! ascribed the deviation of the vibrational energy method for the Holstein model, which is based on the stan-
from the free-oscillator result to anharmonic effects, whichdard Lang-Firsov transformation of the Hamiltonian. The
are visible only at low enough temperatures. This can clearlphonon momenta are represented in terms of principal com-
be seen in Fig. 11, where the minimum(pf) becomes less ponents, which enables us to sample completely uncorrelated
pronounced and is shifted to smaller values\dds the tem-  configurations, while the electronic degrees of freedom are
perature increases. taken into account exactly by use of a reweighting method
for calculating observables. Thereby, we avoid the numeri-
cally expensive evaluation of the electronic weights in the
updating process. The present approach can be applied for a

We conclude this section with a discussion of the perforwide range of parameters with relatively small computational
mance of the QMC approach. From the results presenteeffort. In particular, efficient simulations can be performed in
above it is obvious that the method enables us to study a velpe adiabatic regimes<1, which is of special interest in

wide range of parameters. Hence, for example, we have pegpnnection with materials such as the manganites. In the
formed calculations for 0Zw=4.0 (see Fig. % Simula- one-dimensional case considered here, a sign problem result-
tions in the adiabatic regime would be extremely difficulting from the Lang-Firsov transformation on small systems

within the standard approach, since the autocorrelation timesas been found to have only a small effect on the statistics.

X. CONCLUSIONS

D. Performance
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Tests have been presented in the one-electron case and revsial states used hef&q. (31)] have to be replaced by the
that the method reproduces Lanczos diagonalization resultorresponding set of many-electron states. Since the number
in the regime where the latter are applicable, namely, foof such basis states, and thereby the linear dimension of the
very small systems, small to moderate electron-phonon coumatrices(), «, andD (see Sec. V A grows exponentially
pling and for sufficiently large phonon frequency. Moreover,with the system size, an exact treatment of the fermion de-
a satisfactory agreement with other methods has been foungéfees of freedom will become increasingly difficult. Conse-
Owing to the exact treatment of the electronic degrees ofiuently, a more refined approach based on, e.g., the use of
freedom and the sampling of the phonons, the method is fredeterminant methods will be required. For the bipolaron
of any autocorrelations. The use of the Lang-Firsov transforProblem of two electrons with opposite spin, on which work
mation, which is essential for the applicability of the re-'S currently in progress, the computational effort can be sig-
weighting method, substantially improves the statistics, alplflcqntly reduced by exploiting the conservation of the total
lowing for very accurate results. quas,lmomenturr(sge, e.g., Ref. 28leading to a computer
Despite the great computational efficiency of our method' ™ that grows with the cube of _the system size. The more
compared to the standard approach, even faster methods eneral case of, eg., a .quarter-fllle.d band correspom_jlng to
ist. For example, the QMC simulations of de Raedt and '€ colossal magnetoresistance regime of the manganites, re-
Lagendijk>=2* and Kornilovitci#>1%2 seem to be numeri- quires further consideration, and the effect of the sign prob-

cally faster due to the analytic integration over the phonor{em remains to be investigated. Moreover, the performance

degrees of freedom which significantly reduces statistical erQf such an approach has to be compared to existing many-

rors. However, both methods are restricted in their applicaEaIECtron QMC methods for the Holstein model. Finally, the

bility as discussed in Sec. I. In particular, an extension t ethod can be gene_rahzed to more complicated m_odels in-
many-electron systems seems impossible, since simulatior%Ud'ng’ €.9., a coupling of the electrons to local SpIns as in
will be restricted by a severe minus sign problem similar tolne Kondo or double-exchange model for the manganites.
other world-line methods. In contrast, the method presented
here is not restricted to the single-electron limit in principle,
although some modifications will be necessary. As pointed This work was partially supported by the Austrian Science
out in previous sections, most of the ideas proposed her&und (FWF), Project No. P15834. M.H. is grateful to the
such as the use of the transformed model, the reweightingustrian Academy of Sciences for financial support. We
method, and the PC representation, remain unchanged if weould like to acknowledge helpful discussions with Markus
consider more than one electron. The required modificationfichhorn, Holger Fehske, Winfried Koller, and Alexander
concern mainly the fermionic weight; [Eq. (29)]. There is  Prul. We would also like to thank Frank Marsiglio and Aldo
a Hubbard-like interaction term coming from the Lang- Romero for providing us with some of the data presented in
Firsov transformatiorisee Sec. I, and the one-electron ba- this paper.
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