
PHYSICAL REVIEW B 69, 024301 ~2004!
Quantum Monte Carlo and variational approaches to the Holstein model
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Based on the canonical Lang-Firsov transformation of the Hamiltonian we develop a very efficient quantum
Monte Carlo algorithm for the Holstein model with one electron. Separation of the fermionic degrees of
freedom by a reweighting of the probability distribution leads to a dramatic reduction in computational effort.
A principal component representation of the phonon degrees of freedom allows to sample completely uncor-
related phonon configurations. The combination of these elements enables us to perform efficient simulations
for a wide range of temperature, phonon frequency, and electron-phonon coupling on clusters large enough to
avoid finite-size effects. The algorithm is tested in one dimension and the data are compared with exact-
diagonalization results and with existing work. Moreover, the ideas presented here can also be applied to the
many-electron case. In the one-electron case considered here, the physics of the Holstein model can be
described by a simple variational approach.
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I. INTRODUCTION

Quantum Monte Carlo~QMC! simulations for models
with electron-phonon coupling are often limited in both sy
tem size and accessible parameter range by long autoc
lation times and large statistical errors. This makes it v
difficult to study realistic models for, e.g., the high
temperature superconductors or the manganites which
hibit colossal magnetoresistance. In both classes of mate
electron-phonon interactions play an important role.1,2 Al-
though classical treatments of phonons have been quite
cessful in certain situations,3,4 e.g., at high-enough tempera
tures, quantum effects are expected to be releva2

Consequently, it is highly desirable to develop a new, m
efficient method to treat the phonon degrees of freed
quantum mechanically. The Holstein molecular-crys
model constitutes one of the simplest models for coup
electron-phonon systems, and therefore serves as an
testing ground for new approaches. Moreover, despite e
mous theoretical efforts, even the physics of the Holst
model is still not completely understood.

The extensive use of QMC methods to study many-bo
problems is based on the fact that they can give quasie
results~i.e.,exact apart from statistical errors which can
made arbitrarily small, in principle!. Over the years, severa
different QMC methods have been developed to study s
tems with electron-phonon coupling, such as the Holste5

the Fröhlich,6 or the Su-Schrieffer-Heeger~SSH! model.7 A
very general QMC method for coupled fermion-boson mo
els was developed by Blankenbecleret al.8 and Scalapino
and Sugar.9 It is based on an analytic integration over t
fermion degrees of freedom and a MC simulation of the
sulting boson model. The simulation is performed using
grand-canonical ensemble and requires the evaluation
fermion determinant involving a computation time which
proportional to the cube of the system size. Moreover,
method in its original form becomes unstable at low te
peratures. While the simulations of Refs. 8 and 9 were
stricted to one dimension, Levine and Su10,11 and, using a
stabilized version of the same algorithm, Niyazet al.12 stud-
0163-1829/2004/69~2!/024301~18!/$22.50 69 0243
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ied charge-density-wave formation and superconductivity
the two-dimensional Holstein model. A numerically fast
method is the world-line algorithm developed by Hirs
et al.13,14 based on a special breakup of the Hamiltonian a
a fixed number of fermions. This results in configurati
weights which are simple to evaluate allowing for much b
ger system sizes. In the course of the simulation, both fer
ons and bosons are sampled simultaneously. The la
method has been successfully applied to the Holstein pola
problem and to the half-filled SSH and Holstein model.13–17

However the world-line algorithm is restricted to models
one spatial dimension or to the single-electron case in
dimension by the minus-sign problem.18 Scalettaret al.19 ap-
plied a rather complicated so-called hybrid molecular d
namics algorithm to the two-dimensional Holstein mod
near half filling. This work was extended to the low
temperature regime by Noacket al.20 Finally, Marsiglio21 de-
veloped a low-temperature QMC method to study the sa
model, also at half filling. De Raedt and Lagendijk22–24 and
Kornilovitch25 used an alternative approach based on Fe
man’s path-integral method,26 where the boson degrees o
freedom are integrated out analytically and the resulting
mionic model is simulated using the QMC method. Althou
the method is limited to one electron or two electrons
opposite spin27 by the sign problem, it allows efficient simu
lations in one, two, and three dimensions even for sm
phonon frequencies near the adiabatic limit, and has a
been used to investigate the Holstein model with dispers
phonons.24 Also using Feynman’s path integral, Kornilovitc
and Pike28 developed a QMC method which exploits th
conservation of the total quasimomentum of the system
allows the calculation of dynamical properties such as, e
the polaron band structure. Although the method is not
stricted to a certain model or dimensionality of the system
suffers from large statistical errors. Moreover, it is limited
the case of a single fermion at very low temperature, a
exhibits a sign problem for nonzero total quasimoment
even in one dimension. Prokof’ev and Svistunov29 and Mis-
chenkoet al.30 used the QMC method to directly sample th
zero-temperature one-electron Green function of the Fro¨hlich
©2004 The American Physical Society01-1
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polaron in imaginary time. The method allows calculatio
for an infinite system in three dimensions, but require
convergent series for the electron propagator. While all
the last method mentioned so far make use of the Trot
Suzuki approximation,18 Kornilovitch31,32 developed a
continuous-time algorithm that works in any dimension a
allows calculations on infinite systems. It gives directly d
namical quantities such as the polaron spectrum and effec
mass with very high accuracy. However, similar to previo
work,28 it is restricted to the one-electron limit at very lo
temperatures. Moreover, calculations for small phonon
quencies and/or weak electron-phonon coupling are diffi
and a sign problem appears for nonzero total quasimom
tum. The projector QMC method18 in combination with a
local updating of the phonon degrees of freedom has b
used by Bergeret al.33 to investigate the Holstein-Hubbar
model at various band fillings, and Green function QM
simulations for the half-filled Holstein model of spinless fe
mions have been performed by McKenzieet al.34 Finally, the
stochastic series expansion MC technique has been ap
recently to an extended, one-dimensional Hubbard mo
with an electron-phonon interaction of the SSH type.35 In
contrast to other work, the phonons are treated in sec
quantization. Although the method allows simulations
large lattices in one dimension, it relies on an upper limit
the number of phonons at each site which makes it diffic
to study the regime of small phonon frequencies and
strong coupling.

In addition to the specific shortcomings of each meth
such as, e.g., the restriction to a single fermion, or to o
spatial dimension, or to zero temperature, all previous sim
lations of the Holstein model were limited to some extent
autocorrelations. If the phonon degrees of freedom are
integrated out analytically, these correlations predomina
come from the free harmonic-oscillator dynamics, especi
in the adiabatic regime of small phonon frequency. This
ten leads to an enormous computational effort even for ra
small systems and intermediate temperatures.

In this paper we first present a simple variational a
proach using a generalized form of the Lang-Firsov trans
mation which, in the one-electron case considered h
gives surprisingly good results and yields valuable insi
into the mechanism of polaron formation. The full Ham
tonian resulting from the standard version of the canon
Lang-Firsov transformation is then used as the starting p
for a QMC method which is free of any uncontrolled a
proximations. Due to the fact that the Lang-Firsov transf
mation contains the crucial electronic influences on
phonons, the Monte Carlo simulation for the phonon degr
of freedom can be based only on the purely phononic par
the transformed Hamiltonian. The electronic contributio
can then be allowed for by reweighting of the probabil
distribution, corresponding to an exact treatment of the
mion degrees of freedom. This enables us to completely
nore the electronic weights in the updating process,
thereby dramatically reduce the computational effort. Fina
we introduce a principal component representation of
phonon coordinates, which allows exact sampling of
phonons and avoids all autocorrelations.
02430
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The paper is organized as follows. We briefly review t
Holstein model in Sec. II. In Sec. III we discuss the afor
mentioned transformations of the Hamiltonian. Section IV
devoted to the variational polaron approach, while the QM
method for the Lang-Firsov transformed model is presen
in Sec. V. Section VI describes the reweighting method, a
in Sec. VII the representation of the phonons in princip
components is introduced. Results obtained with the gi
methods are presented in Secs. VIII and IX. Finally, Sec
contains our conclusions.

II. THE HOLSTEIN MODEL

The Holstein model has been introduced in the 19505

and describes a system of tight-binding conduction electr
coupled to a dispersionless phonon mode. If we express
phonon operators in terms of their natural units, the Ham
tonian takes the form

H5K1P1I ,

K52t (
^ i j &s

cis
† cj s ,

P5Pp1Px5
v

2 (
i

~ p̂i
21 x̂i

2!,

I 52a(
i

n̂i x̂i . ~1!

Herecis
† (cis) creates~annihilates! an electron of spins at

lattice sitei, x̂i and p̂i denote the displacement and mome
tum of a harmonic oscillator at sitei, and n̂i5(sn̂is with
n̂is5cis

† cis . The last termI describes the local coupling o
the dispersionless Einstein phonons to the electron den
n̂i . In the first term, the symbol̂i j & denotes a summation
over all nearest-neighbor hopping pairs (i , j ) and (j ,i ). The
parameters of the model are the hopping integralt, the pho-
non energyv, and the electron-phonon coupling constanta.
We introduce the commonly used dimensionless coup
constantl5a2/(vW), whereW54td is the bare bandwidth
in d dimensions. We also define the dimensionless pho
frequencyv̄5v/t and express all energies in units oft. Thus
the model depends on two independent parameters,v̄ andl.
Throughout this paper periodic boundary conditions in r
space are assumed.

The Holstein model has been investigated intensively
the past, using a large variety of methods. Due to the la
amount of literature available we restrict the discussion
the case of a single electron in an otherwise empty lat
with which this paper is concerned. The latter is genera
known as the Holstein polaron problem and still constitute
complicated many-body problem. Weak-coupling perturb
tion theory has been found to be accurate only for very sm
coupling strengthsl when the phonon frequency is low.36 In
the strong-coupling regime, an adiabatic small-polar
approximation5,37 has been found to work extremely well fo
1-2
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small values ofv̄ ~Ref. 38!, while a perturbation theory
based on the Lang-Firsov transformation39 gives accurate re
sults for v̄@1 ~Refs. 36 and 38!. Discrepancies remain
however, in the regime of intermediate coupling and phon
frequency.40 To bridge this gap, a lot of numerical work ha
been done using exact diagonalization~ED! methods,
density-matrix renormalization-group~DMRG! studies,
QMC methods, and variational methods. ED is limited in t
accessible parameter range, since it requires a truncatio
the Hilbert space associated with the phonon degrees of
dom. With increasing electron-phonon coupling strength,
example, more and more phonon states have to be inclu
to obtain converged results,36,38,41–47which makes it difficult
to study clusters of reasonable size in the strong or e
intermediate coupling regime, especially for small phon
frequencies. At this point calculations based on DMRG
in, which use an optimized phonon basis to reduce the siz
the Hilbert space.48–51Another possible approach are the s
called cluster methods which exploit exact information
small clusters to obtain approximate results for infin
systems.52,53 Moreover, a number of variational method
have been developed which give very accurate results ov
wide range of parameters.54–62As discussed in Sec. I, vari
ous QMC methods have been developed for the Hols
model. The polaron problem considered here has been in
tigated by Hirschet al.,13,14 De Raedt and Lagendijk,22–24

Kornilovitch,25 Kornilovitch and Pike,28 Kornilovitch,31,32

and Mishchenkoet al.30 Finally, the Holstein polaron ha
also been studied in the infinite-dimensional limit using d
namical mean-field theory.63

For the one-dimensional case, on which we will foc
here, the general picture emerging from these investigat
is as follows~see, e.g., Ref. 50!. Starting from the noninter-
acting system (l50) the electron is gradually dressed with
coherent multiphonon cloud as the coupling increases.
l,1 andl/v̄,0.5 the resulting quasiparticle remains in
Bloch-like state, with the phonon cloud giving rise to a
increased effective mass. In the strong-coupling regimel

.1 andl/v̄.0.5) the electron becomes self-trapped by
induced lattice distortion and this object—trapped elect
plus distortion—is usually called a small polaron. The tra
sition from weak to strong coupling is continuous,64 and the
term ‘‘large polaron’’ is often used to describe an electr
dressed with a phonon cloud extending over more than
lattice site. The polaronic effects become more dominan
the phonon frequency approaches the adiabatic limitv̄→0.
In QMC simulations, small values ofv̄ introduce two very
different time scales for the evolution of electrons a
phonons, respectively. This gives rise to the problems m
tioned above and, in fact, many QMC simulations have b
done only forv̄*1.

III. EXTENDED LANG-FIRSOV TRANSFORMATION

The canonical Lang-Firsov transformation39 has been
used extensively to study the polaron problem. A well-kno
approximation due to Holstein5 consists of replacing the
transformed hopping term by its expectation value with
02430
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spect to a zero-phonon state, thus neglecting phonon e
sion and absorption during the hopping process. This
proximation, which we shall call the Holstein-Lang-Firso
~HLF! approximation, was found to give reliable results on
in the strong-coupling and/or nonadiabatic limitl,v̄@1
~Refs. 43, 44 and 50!. More refined approaches based
strong-coupling perturbation theory provide an accurate
scription of the Holstein polaron over a large range
parameters.36,38 In the limit l5`, the hopping term in
Hamiltonian~1! can be neglected, and the Lang-Firsov tran
formation allows an exact solution of the resulting single-s
problem.40 The transformation has also been used in com
nation with numerical methods.45,59,65 However we are not
aware of any QMC simulation based on the transform
model.

We define the unitary operator

U5en, n5 i(
i j

g i j n̂i p̂ j , ~2!

wherei and j run over lattice sites, and with real paramete
g i j . U as defined in Eq.~2! has the form of a translation
operator. Given an electron at lattice sitei, it corresponds to
a displacement of the harmonic oscillators at all sitesj, j
51, . . . ,N, by g i j . Hence the transformation describes
nonlocal phonon cloud surrounding an electron. This cor
sponds to the well-known concept of a large polaron, wh
extends over more than one lattice site. Using the trans

mation Õ̂5U Ô U† we find for the transformed operators

x̃̂i5 x̂i1(
j

g i j n̂ j , p̃̂i5 p̂i

c̃is
† 5cis

† expS i(
j

g i j p̂ j D , c̃is5cis expS 2 i(
j

g i j p̂ j D .

~3!

Inserting these results into Eq.~1!, the transformed Hamil-
tonian becomes

H̃5K̃1P1 Ĩ ep1 Ĩ ee,

K̃52t (
^ i j &s

expS i(
l

~g i l 2g j l ! p̂l D cis
† cj s ,

Ĩ ep5(
i j

n̂ j x̂i~vg i j 2ad i j !,

Ĩ ee5(
i j

n̂i n̂ j S v

2 (
l

g l j g l i 2ag i j D . ~4!

Here the termĨ ep describes the coupling between electro
and phonons, whileĨ ee represents an effective electron
electron interaction. The Hamiltonian~4! will be the starting
point for the variational polaron approach presented in
following section.

A more suitable approach for QMC simulations, howev
is given by requiring that the electron-phonon terms can
1-3
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Theng i j 5gd i j with g5AlW/v and we obtain the standar
Lang-Firsov transformation with the transformation opera

U05en0, n05 ig(
i

n̂i p̂i . ~5!

In contrast to the extended polaron cloud, defined by Eq.~2!,
now only the oscillator at the site of the electron is affect
The transformed Hamiltonian reads

H̃5K̃1P1Q,

K̃52t (
^ i j &s

cis
† cj seig( p̂i2 p̂ j ),

Q52
1

2
g2v(

i
n̂i

2 . ~6!

In the HLF or small-polaron approximation, the ground st
of the transformed Hamiltonian is approximated by leav
all phonons in the ground state. It has been shown50 that the
small-polaron wave function becomes exact in the stro
coupling, nonadiabatic limit, and agrees qualitatively w
the exact results also in the intermediate coupling regime
discussed by Zhanget al.,50 the HLF approximation gives an
overestimated shift of the equilibrium position of the osc
lator in the presence of an electron, and does not reprod
the retardation effects when an electron hops onto a pr
ously unoccupied site. Nevertheless, the local lattice dis
tion at the site of the electron contains the crucial impac
the electron on the lattice. Consequently, the transform
Hamiltonian~6! should be a good starting point to perfor
QMC simulations, which merely need to simulate small flu
tuations around the zero-point motion. Indeed we will see
Sec. IX that the expectation values of the phonon opera
in the transformed Holstein model remain close to the res
of the free-oscillator case over the whole range of
electron-phonon coupling. This makes sampling of the p
non degrees of freedom much more efficient. In principle
would also be possible to develop a QMC algorithm start
with Hamiltonian ~4!, with the parametersg i j being deter-
mined by the variational method discussed in the follow
section. However, we will see that the simple~local! Lang-
Firsov transformation is already sufficient to obtain a ve
efficient QMC method.

From Eq.~6! it is obvious that the standard Lang-Firso
transformation on the one hand removes the electron-pho
coupling term, but on the other hand introduces comp
valued hopping integrals which depend on the phonon m
menta at the lattice sites involved in the hopping proce
Moreover, for more than one electron in the system, the
term Q introduces a Hubbard-like attractive interaction.
the case of the extended transformation, the electron-pho
interaction term cannot be eliminated entirely, the hopp
term involves all phonon momentapi as well as the param
etersg i j , and the electron-electron interaction becomes lo
ranged. For these reasons it is expedient to base the Q
simulation on the local Lang-Firsov transformation~6!.
02430
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For simplicity, we restrict ourselves in the present study
the case of a single electron so thatn̂i n̂ j5n̂id i j . The
electron-electron interaction term in Hamiltonian~4! be-
comes

Ĩ ee5(
i

n̂i S v

2 (
l

g l i
2 2ag i i D , ~7!

while the corresponding term in the local Lang-Firsov tran
formation @last term of Hamiltonian~6!# reduces to

Q→2lW/252EP. ~8!

Equations~7! and~8! both describe a shift in energy resultin
from the original electron-electron interaction which is us
ally called the polaron binding energyEP.

IV. VARIATIONAL POLARON APPROACH

Here we present a simple variational method which
based on the extended transformation discussed in the
ceding section. Similar work along these lines using differ
transformations of the Hamiltonian as well as physically m
tivated wave functions can be found, for example, in Re
58 and 60–62. As discussed above, the zero-phonon an
of the simple HLF approximation gives reliable results on
in the limit of largev̄ andl. Whereas in HLF the paramete
g of the Lang-Firsov transformation is chosen such that
electron-phonon coupling termĨ ep vanishes, in the varia-
tional polaron approach~VPA!, we treat theg i j as variational
parameters which are determined by minimizing the grou
state energy in a zero-phonon basis. Like the HLF appro
mation, the VPA becomes exact in the weak-coupling lim
l→0 and in the nonadiabatic strong-coupling limitl,v̄
→`. We will see in Sec. VIII that the VPA also gives ver
accurate results for large phonon frequencies,v̄@1. This
can easily be understood keeping in mind the discussion
the validity of the HLF approximation given in the precedin
section. While the HLF ansatz overestimates the displa
ment of the local oscillator in the presence of an electron,
VPA determines this shift variationally. Moreover, the mis
ing retardation effects in the response of the oscillator to
electron hopping onto the site become negligible for la
phonon frequencies. Therefore, in addition to the cases st
above, the VPA also becomes exact in the nonadiabatic l
v̄→`. Although the limitations of the VPA in or near th
adiabatic regime will clearly emerge when we discuss res
in Sec. VIII, it works surprisingly well if we keep in mind
the simplicity of the method. Moreover, the reasons for
failure of the VPA in certain parameter regimes are phy
cally clear and can easily be interpreted.

For translationally invariant systems thedisplacement
fieldssatisfy the conditiong i j 5g u i 2 j u . Inserting this relation
into Eq. ~7!, the expression inside the brackets becomes
dependent of the indexi. For the single-electron case wit
( i n̂i51 we have

Ĩ ee5
v

2 (
l

g l
22ag0 . ~9!
1-4
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We solve the eigenvalue problem of the transform
Hamiltonian~4! in a zero-phonon basis for which we mak
the ansatz

u l &5cls
† u0& ^)

n
uf0

(n)&, l 51, . . . ,N, ~10!

whereuf0
(n)& denotes the ground state of the harmonic os

lator at siten. For simplicity, we restrict ourselves to on
dimension, although the method can easily be extende
higher dimensions. The matrix elements of the hopping te
in this basis are

^ l uK̃u l 8&52t l l 8)
n

^f0
(n)uei (g ln2g l 8n) p̂nuf0

(n)&

52t l l 8)
n
E dx f~x1g ln!f~x1g l 8n!

52t l l 8expS 2
1

4 (
n

~gn2gn1 l 2 l 8!
2D ~11!

where t l l 85td^ l l 8& is nonzero for nearest-neighbor hoppin
pairs l 85 l 61 andf(x) is the harmonic-oscillator ground
state wave function in coordinate space. The matrix elem
of the other terms of Hamiltonian~4! are easily evaluated
yielding

^ l uPu l 8&5d l l 8

v

2
,

^ l u Ĩ epu l 8&50,

^ l u Ĩ eeu l 8&5d l l 8S v

2 (
l

g l
22ag0D . ~12!

The eigenstates of the transformed Hamiltonian~4! in the
zero-phonon subspace, spanned by the basis states defin
Eq. ~10!, are

uck&5cks
† u0& ^)

n
uf0

(n)& ~13!

with energy

E~k!5Ek1
v

2
N1

v

2 (
l

g l
22ag0

Ek52t (
d561

eikdexpS 2~1/4!(
n

~gn2gn1d!2D , ~14!

whereEk denotes the kinetic energy of the electron. Defini
the Fourier-transformed parametersg̃q as

g̃q5
1

AN
(

l
eiqlg l ~15!

and using (g lPR)
02430
d

l-

to
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d in

(
n

gngn1d5(
q

g̃qg̃2qeiqd5(
q

g̃q
2cosqd, ~16!

the kinetic energy can be written as

Ek52t(
d

eikdexpS 2(1/2)(
q

(12cosqd)g̃q
2D

5 ẽ0~k!expS 2~1/2!(
q

~12cosq!g̃q
2D

5 ẽeff~k!, ~17!

where ẽ0(k)522tcosk is the tight-binding dispersion in
one dimension. Using these results the ground-state en
finally becomes

E~k!5 ẽeff~k!1
Nv

2
1

v

2 (
q

g̃q
22

a

AN
(

q
g̃q . ~18!

The variational parametersg̃p are determined by

]E

]g̃p

52g̃pẽeff~p!~12cosp!1vg̃p2
a

AN
5
!

0. ~19!

The values forg̃p which minimize the energyE can then be
obtained from

g̃p5
g

AN

1

v1 ẽeff~p!~12cosp!
. ~20!

As ẽeff depends on the set of parametersg̃p , this equation
has to be solved self-consistently. Equation~20! has a typical
random-phase approximation form, which is reasona
since a variational ansatz for the wave function of the u
transformed Hamiltonian can be written as@see also Eq.~3!#

U†uck&5
1

AN
(

j
eik j cj s

† expS 2 i(
l

g j l p̂l D u0& ^)
n

uf0
(n)&.

~21!

In addition to the total energy given by Eq.~18!, we are also
interested in the quasiparticle weight for momentumk50,
defined as

Az05^0uc̃k50,suc0&. ~22!

Hereuc0& denotes the ground state with one electron of m
mentump50 and the oscillators in the ground stateuf0&.
Fourier transformation leads to

Az05
1

N (
i j

^f0u^0uc̃iscj s
† u0&uf0&

5
1

N (
i

^f0uexpS 2 i(
k

g ikp̂kD uf0&

5expS 2~1/4!(
q

g̃q
2D , ~23!
1-5
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where we have used the same steps as in Eq.~11!.
Results obtained with the VPA will be presented in S

VIII.

V. MONTE CARLO FOR THE TRANSFORMED MODEL

In contrast to the approximate variational approach p
sented in the preceding section, the QMC method discus
here is based on the exact Lang-Firsov transformation of
Holstein Hamiltonian. Therefore, the method is exact ap
from statistical errors and Trotter discretization, as discus
in Sec. I.

A. Partition function

We begin with the evaluation of the partition functio
Z5Tr e2bH5Tr e2bH̃, with H̃ given by Eq.~6!. As indi-
cated in the preceding section, for the case of a single e
tron, the last term in Hamiltonian~6! represents a constan
energy shift. Moreover we can drop spin indices and are
with the Hamiltonian

H̃5K̃1P2EP. ~24!

The polaron binding energy given by Eq.~8! can be ne-
glected during the QMC simulation, and needs only to
considered in calculating the total energy. For simplicity,
only consider the one-dimensional case here, although
generalization to higher dimensions is a simple matter. Us
the Suzuki-Trotter decomposition we obtain18

e2bH̃'~e2DtK̃e2DtPpe2DtPx!L[U L, ~25!

whereb5(kBT)21 andDt5b/L. Splitting up the trace into
a bosonic and a fermionic part and insertingL complete sets
of momentum eigenstates18 we derive the approximation fo
the partition function

ZL5Tr fE dp1dp2•••dpL^p1uUup2&•••^pLuUup1&,

~26!

wheredpt[) idpi ,t . Each matrix element can be evaluat
by inserting a complete set of phonon coordinate eigenst
*dxtuxt&^xtu. All xt integrals are of Gaussian form and c
easily be carried out. The result is

^ptue2DtPxupt11&

5CNexpS 2(
i

~pi ,t2pi ,t11!2/~2vDt! D ,

C5A 2p

vDt
. ~27!

The normalization factor in front of the exponential has to
taken into account in the calculation of the total energy
cancels when we measure other observables. With the ab
viation Dp5dp1dp2•••dpL the partition function finally
becomes
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with the abbreviations

wb5e2DtSb, wf5Tr f V, V5)
t

e2DtK̃t. ~29!

Here K̃t is K̃ with the phonon operatorsp̂i replaced by the
momentumpi ,t on thetth Trotter slice. The exponential o
the hopping term may in the single-electron case be writ
as

e2DtK̃t5DtkDt
†

k j j 85~eDtt htb
! j j 8 , ~Dt! j j 85d j j 8e

igpj ,t, ~30!

where htb is the N3N tight-binding hopping matrix. Thus
we have the same matrixk for every time slice, which is
transformed by the diagonal unitary matricesDt . In our one-
electron case, the fermionic weightwf5(n^nuVun& is given
by the sum over the diagonal elements of the matrix rep
sentation ofV in the basis of one-electron states

un&5cn
†u0&. ~31!

The bosonic action in Eq.~29! contains only classical vari
ables and takes the form

Sb5
v

2 (
i ,t

pi ,t
2 1

1

2v~Dt!2 (
i ,t

~pi ,t2pi ,t11!2, ~32!

where the indicesi 51, . . . ,N andt51, . . . ,L run over all
lattice sites and Trotter times, respectively, with the perio
boundary conditionspi ,L115pi ,1 . It may also be written as

Sb5(
i

pi
TApi ~33!

with pi5(pi ,1 , . . . ,pi ,L) and a ‘‘periodic’’ tridiagonalL3L
matrix A with nonzero elements

Al ,l5
v

2
1

1

vDt2
, Al ,l 6152

1

vDt2
. ~34!

Since ZL is a trace, it follows that A1,L5AL,1
521/(vDt2).

At this stage, with the above result for the partition fun
tion, a QMC simulation of the transformed Holstein mod
would proceed as follows. In each MC step, a pair of indic
( i 0 ,t0) on theN3L lattice of phonon momentapi ,t is cho-
sen at random. At this site, a changepi 0 ,t0

°pi 0 ,t0
1Dp of

the phonon configuration is proposed. To decide upon
acceptance of the new configuration using the Metrop
algorithm, the corresponding weightswbwf and wb8wf8 have
to be calculated. Due to the local updating process,
change of the bosonic weightDwb5wb82wb can easily be
obtained. In contrast, the fermionic weight requires t
evaluation of theL-fold matrix product appearing in the defi
nition of V in Eq. ~29!. The numerical effort for the calcu
1-6
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QUANTUM MONTE CARLO AND VARIATIONA L . . . PHYSICAL REVIEW B 69, 024301 ~2004!
lation of wf may be reduced by varyingt0 sequentially from
1 to L instead of picking random values. In this case t
calculation of the new fermionic weight, after the change
a single phonon momentum, can be reduced to only
matrix multiplications. Similar to other MC methods,
warm-up phase at the beginning of the simulation would
required for each set of parameters. An additional difficu
arises from the fact that, for the transformed model, the
mionic weightwf is no longer strictly positive, even for th
case of a single electron in one dimension. This is a con
quence of the complex-valued hopping integrals, in cont
to simulations of, e.g., the Hubbard model, where a min
sign problem occurs as a consequence of the Fermi stati
of the electrons.18 Here the average sign ofwf is smallest in
the regime of small phonon frequency and low temperatu
The sign problem is most pronounced for intermediate v
ues of the electron-phonon coupling strengthl, where the
crossover from a large to a small polaron occurs. Howe
in one dimension, it is not severe and reduces with increa
system size. For example, calculations in the most crit
regimebt510, v̄50.1, andl'1 have shown that̂sign&
[^wf&/^uwfu& increases from about 0.5 forN54 to about
0.85 forN516. Nevertheless, it remains to be seen to w
extent the number of electrons and the dimensionality of
system affect the situation.

A related QMC approach to the original Holstein Ham
tonian ~1! involves a very similar derivation8,9 to obtain the
partition function, also in the one-electron limit. In fact th
bosonic actionSb takes exactly the same form, withp re-
placed byx. The main difference is the fermionic part of th
partition function, contained in the matrixV. While the
Lang-Firsov transformation leads to a complicated hopp
term, the standard approach for the untransformed mo
only includes the bare hopping operator given by Eq.~1!.
However, an interaction termI @cf. Eq. ~1!# appears, which
contains the phonon coordinatex̂. Hence the matrixV is
replaced by

V85)
t51

L

k Vt , ~Vt! j j 85d j j 8 eDtaxj ,t ~35!

and the path integral in the partition function@Eq. ~28!# is
over all coordinatesx instead of the momentap. Apart from
the fact that the coordinatesx are sampled instead of th
phonon momenta, the QMC procedure for the untransform
model is identical to the simulation described above.
shall refer to this less sophisticated QMC method for
original Holstein Hamiltonian as thestandard approach.For
l5a50, i.e.,no electron-phonon coupling, we have a se
N independent harmonic oscillators, and both approaches
alike.

B. Problems with the standard approach

Let us briefly consider the noninteracting limit, in whic
the partition function can be written asZL;*Dp e2DtSb. As
discussed by Batrouni and Scalettar,66 the difficulties en-
countered in QMC simulations, even for the simple case o
single (N51) harmonic oscillator, arise from the large co
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dition number, i.e.,the ratio of largest to smallest eigenval
of the bosonic actionSb . For small values ofDt this ratio is
proportional to (vDt)22 ~Ref. 66!, leading to autocorrela-
tion times which grow quadratically with decreasing phon
frequency and the numberL of Trotter times. The physica
reason for these correlations becomes obvious if we loo
the bosonic action@Eq. ~32!#. The latter can be thought of a
being proportional to the energy of a given phonon config
ration, E5DtSb . While the first term corresponds to th
kinetic energy of the oscillators, the second term describe
coupling in imaginary time, i.e.,a pure quantum effect.
pointed out by Batrouni and Scalettar,66 large changes of a
single phonon degree of freedom,pi ,t say, are very unlikely
to be accepted due to the energy change proportiona
1/(vDt), which arises from the coupling topi ,t61. How-
ever, a QMC simulation with only small local changes
extremely ineffective in sampling the relevant regions
phase space. Therefore, successive phonon configura
will be highly correlated. A possible solution might be th
use of global updating schemes. Alternatively, the situat
could be improved by transforming to the normal modes
the phonons, so that different step sizes can be used in
dating each mode. We will see in Sec. VII that the princip
component representation can indeed be used to compl
eliminate these difficulties.

In addition to the above-mentioned autocorrelatio
which are in fact independent of any electronic influenc
standard simulations of the Holstein model become very
ficult in the regime where polaron effects are large. T
occurs at low temperatures, small phonon frequenciesv̄
,1, and for intermediate or strong electron-phonon coupl
l*1. Unfortunately, these are exactly the parameters of
terest for simulations of real substances such as, e.g.,
manganites.2 To illustrate the physical origin of these prob
lems let us consider the case of a single electron in the H
stein model. As discussed in Sec. II, in the polaronic regim
the electron drags with it a cloud of phonons which cor
sponds to a more or less localized lattice distortion. Wh
the electron hops from site A~with a displaced oscillator
corresponding to a small polaron!, say, to a neighboring, pre
viously unoccupied site B~with the oscillator in its undis-
placed ground state! during a QMC simulation, the curren
phonon configuration is no longer energetically favorab
Clearly, the oscillator at site A has to return to its undisplac
ground state, while a corresponding phonon cloud has to
built up at site B. Such distortions of the lattice in the pre
ence of an electron are large compared to the zero-point
tion of the oscillator. On the other hand, only small chang
of the current configuration will be accepted in the simu
tion. Consequently it takes an enormous number of sin
updates to obtain the new configuration in which the pola
has completely moved to site B. Obviously these pola
effects also give rise to strongly autocorrelated configu
tions, thereby dramatically increasing the numerical eff
for the simulation. These problems due to polaron format
can be overcome by using the Lang-Firsov transform
model. The transformation separates the large displacem
of the local oscillators, due to polaron effects, from the fre
oscillator dynamics which correspond to vibrations arou
1-7
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HOHENADLER, EVERTZ, VON DER LINDEN PHYSICAL REVIEW B69, 024301 ~2004!
the shifted equilibrium positions. The quantities to
sampled, namely, the phonon momentap, only show a weak
dependence on the electron-phonon coupling strengthl, in
stark contrast to the coordinatesx in the original, untrans-
formed model, whose expectation values grow linearly w
l in the strong-coupling regime. In fact, the QMC resu
obtained for the transformed model~see also Sec. IX! show
that the statistical errors increase in the intermediate c
pling regimel'1, but decrease again as we approach
strong-coupling limit. This is in perfect agreement with t
fact that the the Lang-Firsov transformation diagonalizes
Hamiltonian ~1! in the strong-coupling or atomic limitl
→` ~see Sec. III!, so that the QMC method based on t
transformed model becomes more and more efficient al
increases.

C. Observables

Thermodynamic expectation values

^O&5Z 21 Tr Ô e2bH5Z 21 Tr Ỗ e2bH̃ ~36!

of observablesO are computed in the Lang-Firsov tran
formed representation via

^O&5Z 21 Tr fE dp^puỖ e2bH̃up&. ~37!

In this paper we are interested in the kinetic energy of
electron, the total energy, the mean square of the pho
momenta, and the momentum distributionn(k)[^c̃k

†c̃k& for
various wave vectorsk. We begin with the kinetic energy
which is defined as

Ek5^K&52tZ 21 (̂
i j &

Tr~ci
†cj eig( p̂i2 p̂ j ) e2bH̃!. ~38!

Using the same steps as in the derivation of the parti
function ~see Sec. V A!, and absorbing the additional pha
factor in a matrixM5D1

†VD1 @see Eq.~30!#, we find

Ek52tZ L
21 (̂

i j &
E Dp wb(

n
^nuMci

†cj un&

52tZ L
21 (̂

i j &
E Dp wb^ j uM u i &

with one-electron statesun& as defined in Eq.~31!. Using the
matrix elementsMi j 5^ i uM u j & and the expectation values

^O&b5

E Dp wb O~p!

E Dp wb

~39!

with respect to the purely phononic weightswb we obtain
02430
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Ek52t

(̂
i j &

^M ji &b

(
i

^Mii &b

. ~40!

Here we have already taken into account the reweigh
method which will be discussed in detail in the followin
section. The total energy can be obtained from the therm
dynamic relationE52](lnZ)/]b, with Z given by Eq.
~28!. The result is

E5Ek1
v

2 (
i

^pi
2&1Eph8 2EP,

Eph8 5
N

2Dt
2

1

2vDt2L
(
i ,t

^~pi ,t2pi ,t11!2&, ~41!

whereEP is defined in Eq.~8! and the expectation values a
calculated according to Eq.~43! given below. To compare
with other work we subtract the ground-state energy of
phonons,E0,ph5Nv/2. Finally, n(k) can be obtained using
Fourier transformation. The result is

n~k!5
1

N

(
i j

^Mi j &be
ik( i 2 j )

(
i

^Mii &b

~42!

with k from the first Brillouin zone and the same matrixM as
in the case of the kinetic energy.

VI. REWEIGHTING

In typical QMC simulations a large amount of the tot
computational effort goes into the calculation of the pro
ability for the acceptance of a proposed change of the c
figuration. This probability is usually determined by the ra
of the weights of the new and the old configuration, as in
Metropolis algorithm used here. In the notation of Sec.
this involves the calculation ofwb and wf for the two con-
figurations, S and S8 say, in every MC step. While the
change in the bosonic weight,wb(S8)/wb(S), is easily cal-
culated for the case of local updating, the fermionic weig
given by Eq. ~29! involves an L-fold matrix product of
N3N matrices for each configuration. Although the nume
cal effort of the evaluation of such a matrix product can
reduced by scanning sequentially through the time slices~see
Sec. V A! it still requires a lot of total computer time.

This can be avoided by reweighting of the probabil
distribution to be sampled. In the case considered here,
corresponds to taking into account only the chan
wb(S8)/wb(S) in the bosonic weight, and compensating f
this by dividing the resulting expectation value by the exp
tation value of the fermionic weightwf , as has been use
already in Eq. 40, leading generally to ratios of the form

^O&5
^O wf&b

^wf&b
, ~43!
1-8
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QUANTUM MONTE CARLO AND VARIATIONA L . . . PHYSICAL REVIEW B 69, 024301 ~2004!
where the subscript ‘‘b,’’ defined in Eq.~39!, indicates that
the average is computed based onwb only. Following this
procedure, the fermionic weight is treated as part of the
servables. The splitting into weightwb and observableOwf

is sensible as long as the variance ofwf and Owf is small,
which is the case after the Lang-Firsov transformation. T
approach has several additional advantages. With the
weighting method, the updating of the system does no lon
require the calculation ofwf in every step, but only when
measurements are performed. Compared to the usual Q
procedure described in Sec. V A, this can save an enorm
amount of computer time, allowing such simulations to
run on a standard personal computer instead of a h
performance supercomputer. Additionally, since the upda
does no longer involve any electronic contributions, it b
comes independent of the electron-phonon coupling stre
l. This allows the simultaneous measurement of observa
for a whole set of values ofl in a single MC run. For a given
phonon configuration, the fermionic weight and the obse
ables are measured and stored for each value of the coup
This procedure is repeated until the required number of m
surements has been made. At the end of the simulation
appropriate analysis of the measured values is made inde
dently for eachl. In contrast, the QMC procedure withou
reweighting~see Sec. V A! would require a separate run fo
each value ofl, including a warm-up phase to equilibra
the system for the current set of parameters. We will se
Sec. VII that in combination with the principal compone
representation, the phonon momentap can be sampled ex
actly, removing all autocorrelations. This avoids a warm-
phase, and measurements can be made after every M
Carlo step. In this final, very efficient procedure, the calc
lation of wf for measurements remains, and is then the m
time-consuming part of the calculation. Finally, we want
point out that, with the use of the reweighting method,
electronic degrees of freedom are treated exactly, i.e.,they
not sampled in the course of the simulation.

As mentioned in Sec. V A, the weightwf for the trans-
formed model is no longer strictly positive, so that it cann
be interpreted as a probability. The usual way to deal w
such a sign problem is to split the weight intowf
[uwfu sgnwf . Thenuwfu can be used as the weight of a give
configuration in the updating process, while the sign is
sorbed in the observables. The difference to the reweigh
method presented here is that instead of the sign ofwf , we
treat the whole weightwf as part of the observables.

Despite the obvious advantages of this approach, it is n
essary to scrutinize whether reweighting does not lead
prohibitive statistical noise. If, for example, there was t
small an overlap of the actual probability distribution wi
the one we are sampling with, the method would fail. In fa
our calculations have shown that for the untransform
model the reweighting method would fail at low temper
tures and for critical values of the parametersv̄ andl.

The distance between two arbitrary probability distrib
tionsf1(x) andf2(x), each depending on a set of variabl
x, can be measured by the so-called Kullback-Leibler nu
ber mKL which is defined as67
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mKL~f1 ,f2!5E dx f1~x!ln
f1~x!

f2~x!
. ~44!

For f1[f2 we havemKL50, while for f1Þf2 mKL.0.
The fact thatmKL is a reasonable measure for the distance
two distributions is best illustrated by considering tw
Gaussian deviatesf1 , f2 with variances2, centered atx1
and x2, respectively. In this casemKL5(x12x2)2/(2s2).
For ux12x2u5A2s, where the two peaks begin to be disti
guishable, we havemKL51, while a large value ofmKL
.10, for example, corresponds to well-separated Gaus
distributions. Here we use the Kullback-Leibler number
investigate the applicability of the reweighting method. A
long as the Kullback-Leibler number is less than or com
rable to 1, reweighting works well, while a Kullback-Leible
number strongly exceeding unity indicates severe proble
Two relevant distributions in our case are given byf1(p)
5wb(p)/Zb and f2(p)5wb(p)uwf(p)u/Zbf , depending on
the phonon configurationp ~or x in the case of the untrans
formed Holstein model!. Zb and Zbf are the normalization
factors of the probability densitiesf1(p) andf2(p), andwf
has been replaced by its absolute value due to the aforem
tioned sign problem. Inserting these definitions into Eq.~44!
we findmKL5 ln^uwfu&b2^ lnuwfu&b . Figure 1 shows results fo
mKL for different parametersb, v̄, andN. For l50, wf is
independent of the phonon configuration so thatmKL50.
With increasing electron-phonon coupling, the difference
tween the two distributions becomes larger. For an interm
diate value of the electron-phonon coupling strength,mKT
takes on a maximum and approaches zero again in
strong-coupling limitl→`. This is exactly the behavior we
would expect for the Lang-Firsov transformed model. F
l50 the transformation has no effect andwf is a constant,
just as in the case of the untransformed model. In the in
mediate coupling regime, the small-polaron picture media
by the transformation is not correct as we have an exten

FIG. 1. Kullback-Leibler numbermKL as a function of electron-
phonon couplingl for various sets of the parametersN ~number of

sites!, b ~inverse temperature!, andv̄. As indicated, the results fo
the untransformed model, denoted in the legend as ‘‘w/o LF,’’ ha
been scaled by a factor 0.25~see text!. Error bars are smaller than
the symbols shown, and lines are guides to the eye only.
1-9
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HOHENADLER, EVERTZ, VON DER LINDEN PHYSICAL REVIEW B69, 024301 ~2004!
~large! polaron in this region. However, as the coupling i
creases further, the polaron becomes smaller and forl5` it
is known that the Lang-Firsov transformation diagonaliz
the Holstein Hamiltonian~1!. The dependence ofmKL on the
temperature and the phonon frequency is also in per
agreement with the physical picture of the Holstein polar
As bt increases, polaron effects become more promin
The same effect occurs if we decreasev̄, and in both cases
the maximum ofmKL increases. In Fig. 1 the result for
system of eight lattice sites is also shown. The maximum
mKL is clearly smaller than for the four-site cluster. Calcu
tions for even larger clusters~not shown! reveal that the
maximum inmKL decreases further indicating that the ove
lap betweenf1 and f2 increases asN→`. This behavior
agrees well with the influence of finite-size effects in t
transition region as pointed out before by Marsiglio.36 As the
system size increases, the crossover becomes smooth
agreement with the fact that the ground state of the Hols
polaron is an analytic function of the couplingl ~Ref. 64!.
This point will be further illustrated in Sec. IX. To summa
rize, for all parameters shown in Fig. 1, the maximum ofmKL
lies below mKL'1, so that we can conclude that the tw
distributions are indeed very close and the reweight
method can be successfully applied.

We have also calculated the Kullback-Leibler number
the case of the untransformed model, denoted in Fig. 1
‘‘w/o LF,’’ for which uwfu[wf . The result has been divide
by a factor 4 to allow a better representation in Fig. 1. T
difference betweenf1 andf2 increases strongly withl and
reaches large values ofmKT.10 already in the intermediat
coupling regime 1,l,2. Hence we cannot expect the r
weighting method to work in this case. Finally we want
point out that the distance betweenf1 andf2 may not affect
all observables in the same way. A detailed analysis for e
observableO would be based on the Kullback-Leibler di
tance of the marginal probability densities

pa~o!5E dx p~oux! pa~x!5E dx d~o2O~x!! pa~x!,

whereO(x) is the value of the observable for a given co
figurationx anda51,2 for the two distributions under con
sideration.

In summary, the reweighting method, together with t
Lang-Firsov transformation, allows us to sample a system
independent oscillators, while all the influence of the el
trons is transferred to the observable, thereby strongly red
ing the numerical effort. In order to obtain a reliable err
analysis for observables calculated according to Eq.~43!, the
jackknife procedure68 has been applied.

VII. PRINCIPAL COMPONENT REPRESENTATION

Although the reweighting method allows us, in princip
to skip enough sweeps between measurements to reduc
tocorrelations to a minimum, the computational effort f
these Monte Carlo updates can become the most ti
consuming part of the simulation. Even though a single p
non update requires negligible computer time compared
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the evaluation of the fermionic weight, in the critical param
eter regime, an enormous number of such steps will be n
essary between successive measurements. Moreover, re
results can only be obtained when long enough Monte C
runs have been performed to see even the longest autoc
lation times. In this section, we present a principal comp
nent representation for the phonon degrees of freed
which enables us to create completely uncorrelated sam
of phonon configurations.

In order to illustrate the severe problem of autocorre
tions with standard updates of the phonons, we have ca
lated the integrated autocorrelation timet int

p for the phonon
momentap. t int is a direct measure for the number of M
steps which have to be skipped between measuremen
order to obtain uncorrelated data, and is usually given
units of sweeps. We define a sweep asN times L proposed
local changes of the phonon configuration. For a four-s
system, for example, withbt55, l52, v̄52, and Dt
50.05 we findt int

p '500. This corresponds to an autocorr
lation time of about 23105 single MC steps. For smalle
phonon frequencies,t int increases strongly. Forv̄51 and the
sameDt, the autocorrelation time is already'1700 sweeps,
which agrees quite well with the (vDt)22 dependence of
the correlations forl50 given in Sec. V B. The dependenc
of t int

p on the coupling strengthl is relatively weak, and we
have found no systematic behavior oft int

p as a function ofl.
Depending on the other parameters, the autocorrelation ti
were observed to increase or even decrease slightly asl is
increased. This behavior can be ascribed to the exact tr
ment of the fermion degrees of freedom. As we are not sa
pling the hopping process of the single electron conside
here, no autocorrelations due to the resulting reaction of
harmonic oscillators to the electronic motion~see Sec. V B!
can occur. Moreover, even if we would sample the electro
degrees of freedom in the QMC simulation, these autoco
lations would still be strongly reduced as long as we use
Lang-Firsov transformed model. This is a consequence of
fact that the large displacements of the oscillators in the p
ence of an electron are explicitly contained in the Ham
tonian~6!. Finally, as the number of lattice sites is varied,t int

p

remains constant in units of sweeps for our single-elect
simulations. We also determined the autocorrelation tim
for observables such as, e.g., the kinetic energy. Althought int
is smaller for electronic observables, the problem still exis
and the determination of the autocorrelation times for va
ous parameter sets is vital to obtain reliable results. T
usually requires very long QMC runs and a lot of CPU tim

As indicated in Sec. V B, the autocorrelations which ar
from the structure of the bosonic actionSb @see Eq.~32!#
may be overcome by a transformation to the normal mo
of the system. Here we represent the bosonic actionSb in
terms of its normal modes along the imaginary time ax
This allows us to sample completely uncorrelated phon
configurations. In combination with the reweighting meth
the fermion degrees of freedom are treated exactly, so
our QMC method is indeed free of any autocorrelations. T
greatly simplifies calculations, since it makes the usual b
ning analysis~to determine the autocorrelation times! obso-
1-10
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QUANTUM MONTE CARLO AND VARIATIONA L . . . PHYSICAL REVIEW B 69, 024301 ~2004!
lete and, more importantly, leads to significantly shor
simulation times.

All this can be achieved with the simple but effective id
of a transformation to principal components~PCs!. To this
end let us recall the form of the bosonic action given by E
~33! which can also be written as

Sb5(
i

pi
TApi5(

i
pi

TA1/2A1/2pi5:(
i

ji
T
•ji ~45!

with the PCsji5A1/2pi , in terms of which the bosonic
weight takes the simple Gaussian form

wb5expS 2Dt(
i

ji
T
•ji D . ~46!

The QMC can now be performed directly in terms of the n
variablesj. To calculate observables we have to transfo
back to the phonon momentap using the matrixA21/2. Com-
parison with Eq. ~33! shows that instead of the ill
conditioned matrixA we now have the ideal structure that w
can easily generate exact samples of a Gaussian distribu
In terms of the new coordinatesj, the probability distribu-
tion can be sampled exactly, e.g., by the Box-Mu¨ller
method.69 In contrast to a standard Markov chain MC sim
lation, every new configuration is accepted, and meas
ments of observables can be made at each step.

From the definition of the PC’s it is obvious that an u
date of a single variablej i ,t , say, actually corresponds to
change of all phonon coordinatespi ,t8 , t851, . . . ,L. Thus,
in terms of the original phonon coordinatespi , the updating
loses its local character. As a consequence, the seque
updating of the Trotter time slices, which we mentioned
Sec. V, can no longer be exploited to reduce the numer
effort for the evaluation of the fermionic weight. Howeve
in combination with the reweighting method, the latter
only calculated when measurements of observables
made. The enormous advantage of the PC’s, leading to c
pletely uncorrelated phonon configurations, clearly o
weighs this drawback. Nevertheless, this restriction has to
kept in mind when considering possible extensions to ma
electron systems. Apart from this, the PC representation
also be applied to the more general case of more than
electron, since the bosonic action@Eq. ~46!, on which the
transformation relies, remains unchanged#. This even holds
for the case of more general models including, e.g., spin-s
or Hubbard-type interactions, as long as the phonon op
tors enter in the same form as in the Holstein model.

Another important point is the combination of the PC
with the reweighting method. Using the latter, the change
the original momentap, which are made in the simulation
do not depend in any way on the electronic degrees of f
dom. Thus we are actually sampling a set ofN independent
harmonic oscillators, as described by the purely bosonic
tion Sb . The crucial requirement for the success of th
method is the use of the Lang-Firsov transformed model
which the polaron effects are separated from the zero-p
motion of the oscillators around their current equilibriu
positions.
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Finally, for theuntransformedmodel, Eq.~1!, the bosonic
action can be obtained from Eq.~33! by replacingp with x
~see Sec. V A! and a transformation to PC’s could also b
used. However, as discussed in Sec. VI, without the La
Firsov transformation, the reweighting procedure fails. Co
sequently, using the standard approach, the phonon co
natesx would depend on the electronic degrees of freedo
and this makes exact sampling impossible for the untra
formed model.

VIII. RESULTS: VPA

In order to test the validity of VPA we calculated the tot
energy@Eq. ~18!# and the quasiparticle weight@Eq. ~23!# on a
cluster of four sites for various phonon frequenciesv and
compared the results with those of Marsiglio obtained
Lanczos diagonalization.70 The comparison is depicted i
Fig. 2. The values ofv̄ have been chosen to lie in the non
diabatic regimev̄>1 where the zero-phonon approximatio
of the VPA is sensible. The overall agreement is striking

FIG. 2. Total energyE ~top! and quasiparticle weightz0 ~bot-
tom! as functions of the electron-phonon couplingl for different

values of the phonon frequencyv̄. Symbols correspond to VPA
results, while full lines represent exactT50 data obtained with the
Lanczos method.~Ref. 70! Dashed lines are results of the HL
approximation.
1-11
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HOHENADLER, EVERTZ, VON DER LINDEN PHYSICAL REVIEW B69, 024301 ~2004!
good. Minor deviations from the exact results increase w
decreasing phonon frequency. For the smallest freque
shown,v̄51.0, the curve for the HLF approximation is als
depicted. It reveals that VPA represents a significant
provement over the HLF approximation, underlining the i
portance of the extended polaron cloud.

The comparison with exact results obtained with Lanc
was restricted to small clusters withN54 in order to achieve
convergence with respect to the number of phonon st
included in the calculation~see Sec. II!. To further scrutinize
the accuracy of the VPA we also compare the results of
latter for the total energy with the variational global-loc
method which has been shown to give reliable results ov
large range of parameters.57 We choseN532 for which
finite-size effects are already very small~see Sec. IX!. More-
over, following Romeroet al.,57 in Fig. 3 we plotE/v overg
with g5AlW/(2v). Similar to the caseN54 shown in Fig.
2 we find a very good agreement for large values ofv̄ over
the whole range of electron-phonon coupling, whereas
smallerv̄ the VPA results begin to bend away from the co
rect curve and collapse to the strong-coupling, atomic-li
result for largeg. We would like to point out that the maxi
mum electron-phonon coupling strength in Fig. 3 cor
sponds tol'40 ~for v̄54.0), in contrast to Fig. 2 where
l<2. Figures 2 and 3 reveal that in the nonadiabatic reg
v̄@1 VPA yields a very good agreement with the exact d
and the global-local method even in the intermediate
strong-coupling regime. This behavior can easily be und
stood considering the assumptions of the VPA. The ze
phonon approximation becomes exact in the nonadiab
limit v̄→`, where the energies of phonon excitations a
too high to have an effect on the ground state. Finally,
would like to mention the possibility of comparing the VP
with the QMC results presented in the following sectio
This has been done for a variety of parameters, but we h
found that it is difficult to distinguish between deviations d

FIG. 3. Total energyE as a function of the electron-phono
coupling g ~see text! for different values of the phonon frequenc

v̄. Symbols correspond to VPA results, while full lines repres
data obtained with the Global-Local method.~Ref. 57! The dashed

line represents the atomic-limit result (v̄5`).
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to the shortcomings of the VPA and due to temperature
fects in the QMC results. Consequently, we have decide
confront the VPA with another approved ground-sta
method, namely, the global-local method, which gives
much clearer picture.

In Fig. 4 we show results for the variational displaceme
fields gd , which give us a measure for the size of the p
laron. Forv̄50.1 we see an abrupt crossover from a large
a small polaron atl'1.2. For smaller values of the cou
pling, the electron induces lattice distortions at neighbor
sites even at a distance of more than three lattice consta
Above l'1.2 we have a mobile small polaron extendin
over a single site only. In contrast, for a larger value of t
phonon frequencyv̄54.0, there is no crossover and we ha
a somewhat extended~large! polaron even for large values o
l. The same behavior has been found by Marsiglio36 who
determined the correlation function^nixi 1d& by Lanczos di-
agonalization for a restricted phonon basis. Within VPA w
have the relation̂nixi 1d&5gd . The main difference is tha
in Marsiglio’s results, the crossover to a small polaron
v̄50.1 occurs at a smaller value of the couplingl'1. Nev-
ertheless, the simple VPA reproduces the main characteri

t

FIG. 4. Polaron-size parametergd as a function of the electron
phonon couplingl for various distancesd. The parameterg of the
standard Lang-Firsov transformation~see Sec. III! is also shown.
1-12
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QUANTUM MONTE CARLO AND VARIATIONA L . . . PHYSICAL REVIEW B 69, 024301 ~2004!
of the transition of the Holstein polaron as the coupli
strengthl is increased. Finally Fig. 4 also shows the res
for the parameterg of the standard Lang-Firsov transform
tion ~see Sec. III!. For v̄50.1, the curves forg andgd50 are
identical above the critical valuel'1.2. This is not surpris-
ing since, in this regime, we have a small polaron extend
over a single site only, which is well described by the loc
Lang-Firsov transformation defined in Eq.~5!. For larger val-
ues of the phonon frequency~see Fig. 4!, g and g0 do not
coincide above a critical value of the coupling, but the d
ference vanishes asl→`. In contrast to the adiabatic re
gime, the polaron remains an extended object up to v
large values of the coupling, so that the local ansatz of
Lang-Firsov transformation does then not provide the cor
description for finite values ofl ~see also Ref. 62!.

IX. RESULTS: QUANTUM MONTE CARLO

As our approach is based on a discretized imaginary ti
it is important to study the convergence of any results w
increasing number of time slices,L, which determines the
error due to the Suzuki-Trotter approximation of Eq.~25!. L
was chosen such that systematic errors are smaller than
statistical errors of the results. For all observables conside
here we have found the usual (Dt)2 dependence of the
Suzuki-Trotter error. Depending on the phonon frequencyv̄

we have found values ofDt51/30 ~for v̄&1) and Dt

51/40 ~for v̄.1) to be sufficient even for the most accura
results of this paper. Moreover, as indicated in Fig. 9, er
bars for the QMC data presented are always smaller than
symbols used in the figures and are therefore not sho
Finally, lines connecting data points obtained with QMC
Figs. 9–11 are guides to the eye only.

To test our QMC algorithm we have performed seve
comparisons with other methods. First, we have checked
the QMC reproduces the exact results obtained with Lanc
on a four-site cluster. Apart from temperature effects, an
cellent agreement has been found for several different va
of the phonon frequency. Second, as the QMC results ar
for finite temperature, we have also compared them with
exact solution for the two-site system, which is valid f
arbitrary temperature. We have found a perfect agreem
over the whole range of values forb, v̄, and l, and can
therefore exclude the possibility of any systematic errors

A. Kinetic energy

We begin our discussion of the results with the kine
energy of the electron, given by Eq.~38!, which has previ-
ously been calculated by several authors.22,23,25,43,49,57,65In
Fig. 5 we show results forEk on a 32-site cluster, withbt
510 and for several values of the phonon frequency. Wh
for small values ofv̄ there is a rapid decrease of the absol
value of the kinetic energy in the vicinity ofl51, the cross-
over becomes smoother asv̄ increases. This agrees with th
findings of previous studies and resembles closely the be
ior of the total energy discussed above. For large valuesl
and v̄&1 we find Ek;l21 as predicted by small-polaro
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theory.71 This contrasts strongly with the behavior of th
quasiparticle weightz0 @see Fig. 2~b!# which decreases muc
faster and is exponentially suppressed in the small-pola
regime.48 As pointed out by Fehskeet al.,59 for the case of
the Holstein model, the quasiparticle weight is exactly t
inverse of the ratiomeff /m where meff and m denote the
effective and free mass of the electron, respectively. Hen
in the small-polaron regime, the effective mass increases
ponentially, while the kinetic energy still has a finite valu
We ascribe this behavior to the undirected motion of
electron inside the phonon cloud, which gives rise to a n
zero kinetic energy even for large values ofl. However,
since the polaron bandwidth is exponentially narrowed w
increasingl, the polaron is almost localized.

To study the influence of temperature we have calcula
the kinetic energy for a system of 32 sites, withv̄51.0 and
for various values ofbt ~see Fig. 6!. As bt increases,uEku
increases forl&2. However temperature effects are obv
ously very small in the strong-coupling regime. Forbt51,
uEku decays in a smooth way asl is increased, while for

FIG. 5. Negative kinetic energyEk as a function of the electron

phonon couplingl for various values of the phonon frequencyv̄.

FIG. 6. Negative kinetic energy as a function of the electro
phonon couplingl for various values of the inverse temperatureb

for various values of the phonon frequencyv̄.
1-13
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HOHENADLER, EVERTZ, VON DER LINDEN PHYSICAL REVIEW B69, 024301 ~2004!
lower temperatures we find the typical rather abrupt cro
over nearl51, as in Fig. 5. De Raedt and Lagendijk23 have
calculated the kinetic energy for the same set of parame
using their QMC method. However, the lowest temperat
they could reach wasbt55 which, according to Fig. 6, is
still quite different from the ground-state result. Moreov
their calculations did not include dynamical effects of t
phonon degrees of freedom. As a consequence, forbt51,
they do not obtain the correct behavior of the kinetic ene
as a function ofl. Finally, Romeroet al.57 and Jeckelmann
and White49 calculated the kinetic energy forT50 on a 32-
site cluster and for an infinite system, respectively. Th
results are in a good agreement with our findings, altho
small deviations due to temperature and finite-size effects
visible. Nevertheless, we can conclude from Fig. 6 tha
value ofbt510 should be sufficient to obtain results whic
are representative of the ground state.

We now turn our attention to finite-size effects. In Fig.
we show the kinetic energy forv̄50.5, bt510, and for
various number of lattice sites. ForN>16 the results forEk
are well converged over the whole range ofl and finite-size
effects are very small. This agrees with the findings of ot
authors.23,36,42Figure 8 shows the kinetic energy as a fun
tion of temperature, forv̄51.0 and various numbers of la
tice sitesN. Moreover we chosel51, as the influence of the
system size is largest in the crossover regime. Figure~a!
clearly demonstrates that finite-size effects are most p
nounced at low temperatures, while they are comple
smeared out at higher temperatures, since high-tempera
properties are determined by integral quantities, such as
ergy momentŝ En&, which have a small size dependenc
while low-temperature features are governed by energetic
low-lying eigenvectors. To further illustrate the influence
the system size, we plot in Fig. 8~b! the negative kinetic
energy as a function of 1/N again forv̄5l51 and for vari-
ous values ofb. As before, error bars are smaller than t
symbol size, but due to the very high accuracy of the d
the systematic errors due to the finite number of Tro
slicesL are comparable to the statistical errors. The res

FIG. 7. Negative kinetic energy as a function of the electro
phonon couplingl for different numbers of lattice sitesN.
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show that very good convergence with respect to the num
of lattice sites is achieved for rather smallN. In fact, for the
highest temperature shown (bt51), the line connecting the
data points becomes vertical already atN58, while for bt
510 convergence is reached forN516. Hence, if we con-
sider these findings in the context of the usual finite-s
scaling analysis where one plots the data as a function
suitably chosen power of 1/N and extrapolates to the infinit
system~i.e., 1/N→0), we have here the special case of
linear dependence with zero slope at large enoughN. Thus,
in contrast to the half-filled Holstein model of spinless fe
mion, for which a finite-size analysis has been performed
two groups,34,72 we merely find that the results converg
within the accuracy of our calculations already for rath
small systems.

B. Total energy

Next we consider the total energyE, given by Eq.~41!. In
Fig. 9 we present the total energy for a cluster of 32 sites
various values of the phonon frequency. Finite temperat
effects increase as we approach the low-frequency reg
and for v̄50.1 we clearly see a strong deviation from th

-

FIG. 8. Negative kinetic energy~a! as a function of the inverse
temperatureb and~b! as a function of the inverse of the number
lattice sitesN.
1-14
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QUANTUM MONTE CARLO AND VARIATIONA L . . . PHYSICAL REVIEW B 69, 024301 ~2004!
ground-state resultE522t for l50. The frequency-
dependence of the temperature effects can easily be un
stood if we consider the exact result for the kinetic energy
N independent harmonic oscillators

Ek,ph5
v

2 (
i

^pi
2&5

Nv

2 S 1

2
1

1

ebv21
D , ~47!

which is identical to the second term in Eq.~41!. For low
temperatures we have^p2&'0.51e2bv, with a correction to
the ground-state value of 0.5 that increases with decrea
v. These temperature effects onE due to the oscillator en
ergy do not depend onl @see Eq.~47!# and therefore shift the
total energy curve by the same amount for all values of
coupling. A comparison with the discussion of the kine
energy reveals that temperature effects are much smalle
other observables due to the absence of the stro
temperature-dependent phonon energy termsPp andEph8 @see
Eqs.~1! and ~41!#.

The dependence onv̄ agrees well with existing
work.22,23,25,31,36,38,41,47,56,57,59,70It is known36 that at zero
temperature and for small values of the phonon freque
v̄&0.5, the total energy displays a rather sharp transi
aroundl'1, where the crossover from a large to a sm
polaron occurs. In ED studies of small clusters36 a kink in E
has been observed, which is smeared out in the fin
temperature QMC results. Nevertheless, we observe
same rounding of the energy curve with increasingv̄ ~Ref.
36!. As discussed by Marsiglio36 the kink in the total energy
is merely a finite-size effect. As the system size increases
discontinuity disappears, in accordance with the fact that
ground state of the Holstein polaron is an analytic funct
of the coupling parameterl ~Ref. 64!.

Finally, it is interesting to note that in contrast to the k
netic energy2Ek , which shows a sharp decrease nearl
51 in the adiabatic regime~see, e.g., Fig. 5!, the total energy

FIG. 9. QMC results for the total energyE as a function of the
electron-phonon couplingl for various values of the phonon fre

quencyv̄. Here and in subsequent figures lines are guides to
eye, and error bars for the QMC data are smaller than the sym
shown.
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does not change significantly. As discussed for the tw
dimensional case by Kornilovitch,25 this can be explained a
follows: for small ratiosv/t, the phonon energy associate
with the termP of Hamiltonian~1! is small and the system i
governed by the balance of the electronic kinetic energy
the energy due to the electron-phonon coupling. In the tra
formed model, the latter is given byEp as defined by Eq.~8!.
When the ratio of the two energies approaches unity~equiva-
lent to l51), it becomes energetically favorable for th
electron to localize~losing kinetic energy! and increase its
potential energy. This leads to finite displacements of
oscillators in the vicinity of the electron and increases
potential energy of the phonons. Hence, nearl51 the en-
ergy of the system is redistributed from kinetic to potent
energy so thatE remains almost unchanged. This is exac
what we see in Fig. 5.

C. Momentum distribution and oscillator momenta

Following Zhanget al.50 we also calculated the momen
tum distributionn(k), given by Eq.~42!, for different wave
vectorsk ~Fig. 10!. To compare with their DMRG~Ref. 73!
results we chose the same parametersN56 and v̄51.0.
Moreover, we tookbt510 since the calculations of Zhan
et al. were for the ground state. Forl50 the ground state
has momentumk50, so we haven(0)51 and n(kÞ0)
50. With increasing couplingn(0) decreases in a way sim
lar to the kinetic energy~cf. Fig. 5!, while n(k) for kÞ0
increases. In the strong-coupling limitl→`, n(k) ap-
proaches the value 1/N51/6 for all k. This is a simple con-
sequence of the localization of the electron forl5`. Al-
though the curve fork50 looks very similar to the results o
Zhanget al. we find a slightly stronger decrease ofn(0) in
the intermediate coupling regime. This deviation is no te
perature effect of our QMC method but probably origina
from the fact that Zhanget al.obtained their results forn(0)
by integrating over an approximate spectral function.

In Sec. VI we mentioned that, within the Lang-Firso
approach, the phonon degrees of freedom only show a w
dependence on the electron-phonon coupling, in contras

e
ls

FIG. 10. Momentum distributionn(k) as a function ofl for
various wave vectorsk.
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HOHENADLER, EVERTZ, VON DER LINDEN PHYSICAL REVIEW B69, 024301 ~2004!
the standard approach, where the average oscillator co
nate^x& increases strongly withl due to the displacement i
the presence of an electron. The weak dependence o
vibrational energy of the local oscillator, which is propo
tional to ^p2&, on l is shown in Fig. 11. Forl50 we have
the result^p2&50.51@exp(bv)21#21 @see Eq.~47!# for a
free oscillator. In the intermediate coupling regime,^p2&
takes on a minimum, corresponding to a reduction of mer
4% and approaches the value forl50 again in the strong-
coupling limit. As the Lang-Firsov transformation does n
affect the phonon momentap ~see Sec. III!, the result for
^p2& as a function ofl is the same in the untransforme
Holstein model. However, the significant advantage of
proposed method is that the phonon momenta are sam
instead of the coordinatesx. Thus the probability distribution
associated with the degrees of freedom to be sampled
only a small variance compared to the standard meth
which makes the simulations much more effective. The
pendence of̂ p2& on the coupling strengthl and the tem-
perature has first been studied by Ranninger and Thibb41

for the two-site polaron problem. For such a small syste
the minimum of^p2& is even more pronounced, while fo
larger systems the average effect of the electron on a l
oscillator is more and more washed out. Ranninger
Thibblin41 ascribed the deviation of the vibrational ener
from the free-oscillator result to anharmonic effects, wh
are visible only at low enough temperatures. This can cle
be seen in Fig. 11, where the minimum of^p2& becomes less
pronounced and is shifted to smaller values ofl as the tem-
perature increases.

D. Performance

We conclude this section with a discussion of the perf
mance of the QMC approach. From the results presen
above it is obvious that the method enables us to study a
wide range of parameters. Hence, for example, we have
formed calculations for 0.1<v̄<4.0 ~see Fig. 5!. Simula-
tions in the adiabatic regime would be extremely diffic
within the standard approach, since the autocorrelation ti

FIG. 11. Mean square of the phonon momentump as a function
of the electron-phonon couplingl.
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grow as (vDt)22. However, in materials such as the ma
ganites, the frequencies of the relevant phonon modes
known to be small (v̄&0.5, see, e.g., Ref. 2! so that our
method could represent an important step forward towa
the simulation of electron-phonon models with realistic p
rameters. Also, we are able to reach very low temperatu
bt<20 and clusters large enough to avoid finite-size effe
with modest computational effort. Another key advantage
that the method becomes more and more efficient as the
pling strengthl increases, which is due to the use of t
Lang-Firsov transformation. In our results we find that s
tistical errors of expectation values of phonon operators
larger than, e.g., the errors of the kinetic energy. Finally,
errors increase slightly as we approach the adiabatic an
low-temperature regimev̄→0 andbt→`, respectively.

To demonstrate the efficiency of our method we gi
some figures for the CPU time of the simulations. A typic
QMC run for 32 lattice sites,bt55, v̄51.0, andl'1 ~i.e.,
near the small-polaron crossover! only takes 5 min of CPU
time on a 650 MHz Pentium III PC. For such a run relati
errors of, for example, the kinetic energy are less than 1.
Away from the crossover point, the same accuracy can
obtained within a few seconds. Forbt510, the temperature
used in most of the calculations presented in this pape
QMC run with l near the crossover value and with simil
statistical errors as mentioned above takes about 80 mi
CPU time. Hence, although not as efficient as the special
one-electron methods,22–25,31,32our approach significantly re
duces the numerical effort compared to previous meth
which were often run on supercomputers and did not re
the parameters~low temperature and small phonon fre
quency! and accuracy of our simulations.

X. CONCLUSIONS

We have presented a simple variational approach to
Holstein model, which incorporates an extended Lang-Fir
transformation. This approach is easily applicable to infin
systems and represents a marked improvement over the
dard small-polaron approximation, which is only useful
the nonadiabatic, strong-coupling regime.

More importantly, we have introduced an exact QM
method for the Holstein model, which is based on the st
dard Lang-Firsov transformation of the Hamiltonian. T
phonon momenta are represented in terms of principal c
ponents, which enables us to sample completely uncorrel
configurations, while the electronic degrees of freedom
taken into account exactly by use of a reweighting meth
for calculating observables. Thereby, we avoid the num
cally expensive evaluation of the electronic weights in t
updating process. The present approach can be applied
wide range of parameters with relatively small computatio
effort. In particular, efficient simulations can be performed
the adiabatic regimev̄,1, which is of special interest in
connection with materials such as the manganites. In
one-dimensional case considered here, a sign problem re
ing from the Lang-Firsov transformation on small syste
has been found to have only a small effect on the statist
1-16
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Tests have been presented in the one-electron case and r
that the method reproduces Lanczos diagonalization res
in the regime where the latter are applicable, namely,
very small systems, small to moderate electron-phonon c
pling and for sufficiently large phonon frequency. Moreov
a satisfactory agreement with other methods has been fo
Owing to the exact treatment of the electronic degrees
freedom and the sampling of the phonons, the method is
of any autocorrelations. The use of the Lang-Firsov trans
mation, which is essential for the applicability of the r
weighting method, substantially improves the statistics,
lowing for very accurate results.

Despite the great computational efficiency of our meth
compared to the standard approach, even faster method
ist. For example, the QMC simulations of de Raedt a
Lagendijk22–24 and Kornilovitch25,31,32 seem to be numeri
cally faster due to the analytic integration over the phon
degrees of freedom which significantly reduces statistical
rors. However, both methods are restricted in their appl
bility as discussed in Sec. I. In particular, an extension
many-electron systems seems impossible, since simula
will be restricted by a severe minus sign problem similar
other world-line methods. In contrast, the method presen
here is not restricted to the single-electron limit in princip
although some modifications will be necessary. As poin
out in previous sections, most of the ideas proposed h
such as the use of the transformed model, the reweigh
method, and the PC representation, remain unchanged i
consider more than one electron. The required modificati
concern mainly the fermionic weightwf @Eq. ~29!#. There is
a Hubbard-like interaction term coming from the Lan
Firsov transformation~see Sec. III!, and the one-electron ba
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