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Vibrational properties of phonons in random binary alloys: An augmented space recursive
technique in the k representation
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We present here an augmented space recursive technique knrépeesentation which include diagonal,
off-diagonal, and the environmental disorder explicitly: an analytic, translationally invariant, multiple-
scattering theory for phonons in random binary alloys. We propose the augmented space recursion as a
computationally fast and accurate technique which will incorporate configuration fluctuations over a large local
environment. We apply the formalism todyPd,s5, NiggCry,, and NigPtg alloys which is not a random choice.
Numerical results on spectral functions, coherent structure factors, dispersion curves, and disordered induced
full widths at half maximum are presented. Finally the results are compared with the recent itinerant coherent
potential approximation and also with experiments.
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[. INTRODUCTION mean or the arithmetic mean of the constituents. Second,
often the extra assumptions lead to approximate Green func-
Over the years, there have been many attempts to develdi@ns which violate the essential Herglotz analytic properties
adequate approximations for properties of elementary excitaequired to produce physically acceptable results.
tions in disordered systems. Among these phonons are not Acomplex functionf(z) of a complex variable is said to
only conceptually the simplest, but are also the most readilfp0ssess Herglotz analytic properties provided it satisfies the

. . P . . H H 1,9
accessible to experimental verification. Neutron-scatteringo!lowing properties:

experimentshave provided detailed information about lat- (1) The function is analytic everywhere in the complex
tice vibrations in random alloys. A satisfactory reliable plane, expect on the realaxis. All its singularities therefore

theory is still lacking. The main reason for this is that, unlike ' on the reglz axis. . . .
the case of electrons in substitutionally disordered alloys, (il) The sign of the imaginary part di(z) is negative
where the Hamiltonian can be expressed in a form where thgverywhere on the upper half of teplane and positive
disorder isdiagonal in a real-space representatipfhis is eve_r_ywhere on the I(_)wer h_a_lf of t“’ap"?‘”e-

certainly true, for example, in a linear muffin-tin orbital (iit) If the set of singularities of (z) is bounded, then
(LMTO) formalism in the absence of local lattice distor- lim Ref(E)=0
tions], the disorder in the dynamical matrix is essentially J=Eton '

off-diagonal To make things more complicated, the diagonal

and Oﬁ'diagonal diSOI’derS il’l the dynamical matriX are The augmented Space approach Suggested by Mooﬂerjee
coupled by the force constant sum rulebgr  provided a very interesting starting point for the generation
=—3r+rPrr , Which ensures that no vibration can be ex- of appropriate approximations. The 2-site CRACPA) pro-
cited in a uniform translation of the crystal as a whole. Thisposed by Yussouff and Mookerj€efor model systems and
sum rule imposes aenvironmental disordeon the force  subsequently generalized by Mookerjee and Sthidto re-
constants. That is, the disorder in the diagonal element of thalistic alloys was one successful approach. While it retained
dynamical matrix depends upon its near neighbors or its imthe Herglotz properties of the approximate Green functions,
mediate environment. Hence a reliable theory for phonorthe generalization of the 2CPA to larger clusters violated the
excitations will be that which includes all the three kinds of lattice translational symmetry of theonfigurationally aver-
disorders explicitly. aged Green function for homogeneous disorder. This was
Let us look at the most successful mean-field approximaevercome subsequently by the traveling cluster approxima-
tion: the single-site coherent potential approximati@®A),  tion of Kaplan and Gra{also based on the augmented space
introduced first by Taylot.As the name itself suggests, it is a method. Recently, Ghosét al'® have proposed a nearest-
single-site approximation and per se cannot deal adequateheighbor traveling cluster CPA and have applied it to
with off-diagonal disorder. Several authors have proposeghonons in NiPt and NiPd alloys. In this communication we
schemes for generalizing the CPA and their approaches irshall propose a different approximation procedure. We shall
clude geometrically scaled off-diagonal disorctedjnearly  start from the augmented space method and use the recursion
scaled off-diagonal disordérand independent diagonal and method of Haydocket all® to obtain the configurationally
off-diagonal disordef1° Most of these schemes in practice averaged Green functions. The termination of the continued
lead to a single-site CPA including off-diagonal disorder.fraction expansion will constitute the approximation. This
These approaches suffer from two different kinds of draw-will not only retain the Herglotz analytic properties of the
backs: first, there is no reason why the off-diagonal part ofapproximate averaged Green function, but also include the
the dynamical matrix should scale either as the geometrieffect at a site of its neighborhood, the size of which we can

E isreal.
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control. We shall incorporate the effect of the very distant
environment by the use of accuraémination schemgsro-
posed, e.g., by Haydocd#;*® Luchini and Next® or Beer and
Pettifor®® Since we shall incorporate the lattice translationHere Py is the projection operatdR)(R| and Ty is the
symmetry in the full augmented spa@ehich is characteris- transfer operatofR)(R’| in the Hilbert spacé{ spanned by

tic of homogeneous disordéRef. 21) within our approach,  the tight-binding basig|R)}. R,R’ specify the lattice sites
the drawback of the original cluster CPA's used by Singh andind«, 8 the Cartesian directionsg is the mass of an atom
MOOkerjeé3’l4 will be overcome. Further, we shall use the occupying the positiOIR andq)aﬂ, is the force-constant ten-
local point group symmetries of the lattice and the configu-gq,. RR

rations on it to drastically reduce the rank of the g—lilbert We shall be interested in calculating the displacement-
space on which the recursion takes plésee Sahat al*?). displacement Green function in the frequency-wave-vector

This will allow us to accurately account for large environ- gnace which in the absence of disorder in the system has the
ments around a particular site. One of the strengths of th@iagonal element

proposed method which will represent a major step forward
in the theory is the possibility of including random fluctua-
tions in force constants beyond the nearest neighbors. While
in certain representations the Hamiltonian of electronic sys@nd for the present case

tems can be.seen to be sho_rt ranged, this is not so for dy- G(k,2) = (k|(Mw2— D)~ 1K),
namical matrices. The recursion method in augmented space
can include beyond nearest-neighbor randomness in foroghere|k) is a state in the reciprocal space given by
constants without much computational expense. In our work
on NiPt and NiPd we have extended disorder upto second
nearest neighbors to illustrate this. It is not immediately clear
how easy it would be to extend the method proposed by
Ghoshet al. to larger sized clusters. We propose the aug-Since the mass matriM is perfectly diagonal, we can write
mented space recursidASR) as a computationally fast and

accurate technique which will incorporate configuration fluc-  G(k,0®)=(k|M ™~ *%(@?l =M~ YDM~2)~IM~ k),
tuations over a large local environment. 4

In Sec. II, we shall introduce the basic formalism. In Sec.yhere
[l we shall present results for Bjd,s, NiggCri», and
NisoPto alloys and compare them with experiment. The
choice of the systems is deliberate: NiPd has predominantly
mass disorder, NiCr predominant disorder in the dynamical
matrix; NiPt has large disordesoth in the mass and the Equation(4) looks exactly like the Green function for the
dynamical matrix. Concluding remarks are presented in Selectronic case with ~?DM ~*2 playing the role of Hamil-

V. tonian H,w? in place of energy, ant¥l ~4k) is the starting
state of recursion.

Let us now consider a binary alléy,B, consisting of two
kinds of atomsA and B of massean, and mg randomly
occupying each lattice sites. We wish to calculate the

The basic problem in the theory of phonons is to solve gonfiguration-averaged Green functiddG(k,»?))). We
secular equation of the form shall use the augmented space formaligh$F) to do so.

Since the disorder is homogeneous, avergdgedk,»?))) is

dEf=— > . 3
R'#R

G(k,k',0?)=G(k,w?) 8(k—k"),

|k>:JiN ; exp(—ik.R)|R).

M-v=S my 1/25643':,R _
R

Il. FORMALISM

A. The augmented space formalism for phonons

(Mw?-D)u(R,w)=0,

whereu, (R, ) is the Fourier transform af ,(R,t), the dis-
placement of an atom from its equilibrium positi®won the
lattice, in the directiorn at timet, M is the mass operator
diagonal in real space, aidlis thedynamical matrix opera-
tor whose tight-binding representation is of the form

M=; Mrd,5PR, (1)
D=2 OxPr+>, > O Trr, (2)
R R R'#R

along with thesum rule

also diagonal in reciprocal space representattofhe ASF

has been described in great detail eafifaive shall indicate

the main operational results and refer the reader to the above
monograph for further details. The first operation is to rep-
resent the random parts of the secular equation in terms of a
random set of local variabl€siz} which are 1 if the sitR is
occupied by amA atom and O if it is occupied by. The
probability densities of these variables may be written as

Pr(ng)=xd8(ng—1)+yd(ng)

=(—UmIm(TRl(ngl =Ng) " |TR),  (5)

wherex andy are the concentrations of the constitueAts
andB with x+y=1. Ny is an operator defined on the con-
figuration spacepy of the variableng. This is of rank 2 and
is spanned by the statés r),| | r)}:
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Nr=XpL+ypk+ \/K/(T}H-réf). In augmented space the off-diagonal force-constant matrix
becomes an operator
Let us now carry out the ASF operations in some detail.

The masang, for site R can then be expressed as Has= E [<<q) >>| + O ){(y—x)(pi+pl )+
RR’ 1 R R’
—-1/2 —1/2 —-1/2
Mg =My NgtMg~(1—ng)
+XY(TE A+ TED L+ @5 (y—X)2phph +

+ XYy —=X) (PRT L+ P TR +XYTE T 1® Tre

_ m.;l’2+ (6m)~Y2ng,

where

(6m)~H2=m, M2 mg 2, =2 ¥ @Tre 9
RR'
Therefore,
The sum rule

M™Y2=2, [mg 4 ng(6m) *215,5PR.  (6)
R -2 q)RR/

R'#R

In augmented space formalism, in order to obtain the con-

figuration average we simply replace the random variable§ives the diagonal element of the dynamical matrix

ng by the corresponding operatdg associated with its

probability density[as in Eq.(5)] and take the matrix ele- der=— | S v lgpg,. (10)
ment of the resulting operator between tegerence states R | r'=R RR
The justification is sketched in Appendix A. For a full math- _ o .
ematical proof the reader is referred to Ref. 11. The total dynamical matrix in the augmented space is
—ypl | Tl LTy =7 —\pl ~
Nr—Nr=XP&+yPk+ VXY(7R + 7R =XT+(y—X)pk D:_; { > W loPet > W @ Trp . (11)
+ \/X—yTEl ' R'#R RR

The augmented space theorémow states that the configu-
ration averaged Green functigtiG(k,w?))) may be written
as

Using the above in Eq6) we get,

M~ Y2=m YT @1+m; 2> phePgr+ -
R
<<G(k,w2)>>=f G(k,w’ {neh) I Pr(np)dng

m; 2>, Th @ Pg, (7) _
A = (ke {T}G(k,0? {Na}h) ke {})
where :<k®{@}|l\7l’l’2(wzl~
my Y= xm, Y2+ ymg Y — M- V2DM Y2 -1 - Y2k {2}
m; 2= (y—x)(sm) 12 (12
o1 —1/2 I ;
m; V2 fyy( sm)~ Y2 whereM andD are the operators which are constructed

out of M "2 andD by replacing all the random variableg
Similarly the random off-diagonal force constadt§?, be-  (Or ng/) by the corresponding operatodz (or Ng/) as

tween the siteR andR’ can be written as given by Egs.(7) and (11). These are the operators in the
augmented spac® = H® ®. The statdk®{J}) is actually
q;RR, q)AAanR,+q>a (1-ng)(1—ng)+--- an augmented space state which is the direct product of the
Hilbert space basis and the configuration space basis. The
+ DX NR(1—ng)+Ngi(1—ng)] configuration spac® =113 ¢r is of rank 2 for a system of

N-lattice sites with bmary distribution. A basis in this space

—_®HeB aB af _ afB
=Pt (Paat Peg—2PaB)NRNR + - is denoted by the cardinality sequence{C}

T (DB—DBY (ot Nor). 8 ={R;,Ry, ... R:} which gives us the positions where we
(X6~ Psb) (M Ne) ®  have a||) configuration. The configuratiofi} refers to a
Let us define the following: null cardinality sequence, i.e., one in which we hayg at
all sites.
B=xDR-yPaE+(y—x)DP2E, Using the operator representation fdr > we get
= PR+ PEE—2D3E. M~ ke {@})=m; "A{D}) +m; YA{R}) =[1},
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where a configuration state is denoted bydgsdinality se-
quence{C}. We have also used the short hand notation

1
”{C”ETN; exp(—ik-R)|R®{C}).

ket|1} is not normalized. A normalized két) is given by

o _(ml)—l/z m3)_1/2

With the definitions

((1my))~t=m,

m —-1/2 —-1/2

1 ~

T) e+ 2 Pr® p,l?
m R

m

-1/2

2| X PreTl,
R

m

+

we may rewrite Eq(12) as

((G(k,0?)))=(1](@' 5T =Dery) Y1),

wherew'?=mw? and Dgs=ZDZ.

13
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To implement the above recursion, we require to know the

effect of the operatoﬁeff on a general state in augmented
reciprocal spac&* Some of the main operations are shown in
Appendix B.

So far the expression for the averaged Green function is
exact Approximations are introduced at this stage for its
actual numerical evaluation. The mean-field theories essen-
tially obtain the self-energies because of disorder scattering,
self-consistently and approximately, and then calculate the
averaged Green function either from the Green function
without disorder or the virtual crystal Green function. The
CPA proposed by Sovefi, the cluster CPA proposed by
Mookerjee and Singlt''* the traveling-cluster approxima-
tion (TCA) proposed by Mills and Ratanavaraksmd Ka-
plan et all® and the itinerant CPAICPA) proposed by
Ghoshet al'® basically all belong to this category. The latest
work referenced represent the most sophisticated version of
the mean-field theories. We shall propose an approximation
that will start from the infinite continued fraction and ap-
proximate its asymptotic part by an analytic termination pro-
cedure. The coefficients,, b,, are calculated exactly up to a
finite number of steps and the asymptotic part is then re-
placed by a terminatof’(k,w'?)=T(k,w'?). The concept
of terminators is described in Appendix C, where further
details of estimating (k,'?) are also provided. Haydotk
have carried out extensive studies of the errors involved and

~ This equation is now exactly in the form in which recur- precise estimates are available in the literature. Several ter-
sion method may be applied. At this point we note that theminators are available and we have chosen to use that of

above expression for the averagé@(k,»'?))) is exact.

Luchini and Next® If we calculate the coefficients up to the

The recursion transforms the basis through a three term rexth step exactly the first®2 moments of the density of states

currence relation as
|d>1>=|1>,
| ¢n+ 1> = Beff| ¢n> - anl ¢n> - bﬁ' ¢n—1>-

| o)=0,

14

The averaged Green’s function can then be written as a co

tinued fraction

((G(k,0%))

w'?—ay-T(k,0'?)

(19
wherel'(k,w'?) is the asymptotic part of the continued frac-
tion, and

<¢n|6eff|¢n>
k)=,
R R P
and
(¢nl &)
ba(k)= —————, bi=1. 16
R P P M (o

are reproduced exactly. The terminator ensures that the ap-
proximate Green function has Herglotz analytic properties
which also tells us that the approximate density of states is
always positive definite and the spectrum is always real. The
terminator is also so chosen that the asymptotic moments are
|ffl_lso accurately reproduced. This is a generalization of the
method of moments, with the additional restriction that the
asymptotically large moments are also accurately obtained.

In the absence of disorder in the problem, the Green func-
tion for a given mode is of the form

Go(k,0'?) =——F—.
olk,w™?) w’z—w(z)(k)

The spectral functiory(k,w’?) is a & function of the
form &l 02— w3(k)]. If we write

b3(k
S(k,0'2)=a,(K) — w?(k) + 20

b3(k)

wrz_az(k)_
=a,(k)— 0j(k)+ o(k,0'?). 17

Then,

{((G(k,0'?)))=Ge[k, 02~ (k,0'?)].
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Obviously from above3 (k,w'?) is the disorder induced R. For comparison with experiment we have to calculate
self-energy. Damped vibrations occur with reduced frequen— (1/7)Im{{[bG(q,w)b]**)), rather than the spectral func-
cies atw( (k) which are the solutions of the implicit equation tion. For ordered materials the two are proportional, but if
the scattering lengths are themselves random then although
w?(k)—ay(k) — Reolk,wg?(k)]=0. this has very little effect on the dispersion curves, it does
affect the line shapes and linewidths. We can easily imple-

heir di i idth L
and their disorder induced widths are ment such an average within the ASF:

1 e
WK, w%(K)]= = —Im o[k, wg?(K)]. (18 ((bG(q,0*)b))=(a®{T}[b(Mw?~D) *blge{d}),

) where
The average spectral functigiA, (k,w?))) for a mode

labeled\ is related to the averaged Green function in recip- ~ ~
rocal space as b=((b)I®I +(Y_X)(bB—bA); PR PRt - -

1
((A(k,0'2))) = = — lim [IM{((G,(k,0"2=18)))}]. + Wy(bB—bA); TH ®Pg.

50"
(19 Carrying out algebra similar to the one for the averaged
The averaged density of states is given by Green function, we obtain

20 d% , ((bG(q,@?)b)) =(Lo|(w;T=Der) *1p), (21
(oM =53 [ (ko))

where
Here\ labels the particular normal mode branch and BZ is x,| X5\ M
the Brillouin zone. |lb>=<7) ||{®})+ = I{R})
The dispersion curves for different modes are then ob- X X

tained by numerically calculating the peak frequencies of theyith
spectral function. This averaged spectral function gives, in
principle, a proper description of the dynamics but it does X1 Y2=xmj Y2, +ymg Yoy,
not involve any weighting by scattering lengths. The disper-
sion curves so obtained are nearly the same as those obtained X5 2= (y—x)(my ¥, — mg Y2bg),
experimentally from the peak frequencies of the coherent
structure factors,,,. This is because the coherent structure X3 ¥2= \Ixy(my Y2, — mg Y20y),
factors are nothing but the averaged Green functions
weighted by the coherent scattering lengths. The intensities N b2 bi bé
and the line shapes measured fr@m, and the imaginary X:<<E> > =Xm—A+ym—B- (22)
part of Green function may differ significantly, but the peak
positions will generally differ little. Also

B. The coherent scattering structure factors wl’)zzwa and Dgff:WDW’

Experimental determination of the phonon dispersion andvhere
linewidths are deduced from the averaged coherent scattering 1
structure factors. The expression for these can be written as W (ﬂ) Tol+

m —-1/2

TZ) > Pr@pht -

1 X/

<<Scoh(k,w2)>>=—;|m<<bG(q,w2)b>>, (20) m -1/2

, +(T3) > PrOTY. (23)

here, thermal neutrons with wave vectolgets scattered to X R

final state of wave vectdk’, g=k—k’+Q with Q being a

reciprocal lattice vector. The energy lost by the incoming The subsequent recursion calculation follows the identical

neutrons are taken up by the phonons2/gM,)(k?—k'?) steps as for the averaged spectral functions. We have chosen

=fw, f(w) is the Bose distribution function and a second neighbor force-constant model, with dynamical ma-
trices fitted to reproduce the dispersion curves. The disorder
induced widths are the quantities which are more sensitive to

b= ; brSapPr; the effect of randomness as compared to the frequefices

dispersion curves and as such will be one of the focus of

wherebg is the scattering length of the nucleus occupyingthis work. In order to extract the full width at half maxima

the siteR. This is a random variable taking two valuggsor  (FWHM), we have fitted the coherent structure factors to

bg depending on which kind of atom sits at the site labeled_orenzians exactly as the experimentalists do to extract the
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TABLE I. General properties of fcc Ni, Pd, Pt, and Cr. The force constants for Ni, Pd, and Pt are taken
from Ref. 27 and that for Cr is taken from Ref. 14.

Ni Pd Pt Cr

Atomic number 28 46 78 24
Atomic mass(amu 58.71 106.4 195.09 51.996
Free atom valence configuration d%s? 4d1° 5d%6st 3d54s!
Lattice constantfcc) 3.524 3.8904 3.924 3.68c)

2.89bco
Elastic constants at
296°K (10 dyne/cm)
Cuy 2.461 2.270 3.467 35
Copo 1.501 1.759 2.507 0.678
Cus 1.220 0.717 0.765 1.010
n-n force constants
(in units of dyne/cm
1XX 17319 19337 26358 37483
Xy 19100 22423 30317 17453
127 —436 —2832 —7040 —13229
n-n-n force constants
(in units of dyne/cm
2XX 1044 1424 4926
2YY —780 210 —537

same. The advantage of including the scattering length fluccentered cubic solid solutions of all concentrations and there
tuation will be clear when we will show the nature of the are no indications of long-range order down to 0 °C.

linewidths for NisPdys alloy with and without inclusion of In Fig. 1 we display the coherent scattering structure
the scattering length fluctuatioie., calculating the widths factors obtained from our recursion calculation along the

once by fitting the spectral functions to Lorenzians and therp]- hest symmetrv directiond £00 0 —IKl/
the structure factors to Lorenzign®ur aim in this commu- '9 y y directiond 00],[££0,[£¢¢]), £=[K

nication is to propose the augmented space recursion asl%mad for different branches. For a particular direction and
useful technique to study effects of diagonal, oﬁ-diagonal,bra”Ch_ the dlffe_rent curves indicates the spectra! functions
and environmental disorder. Accurate model building or obfor various points starting from the lowest valuge.,
taining the force constants from first-principles total-energy=0) to the edge of the Brillouin zong.e., {=1 in units of
calculations will be postponed for future work. 27r/a). The first thing to note is that the structure factors are
In the following three sections, we present our calcula-(in contrast to Lorenzian shapeften asymmetric near the
tions on NigPd,s, NiggCr;,, and NPk, alloys. The choice resonances. The asymmetries can be described as a tendency
is not arbitrary. Mass disorder dominates in NiPd alloysOf more scattering to occur near the resonance frequencies.
while force-constant disorder is large in NiCr alloys. NiPt In other words the shape of a mode with a frequency slightly
alloys have large disorddrothin mass and force constants. lower or higher than that of a resonance tends to have a
Since in the phonon problem we have both kinds of disordersecond peak or wide tail over the resonance region. In fact if
it would be interesting to note the interplay between them irone looks at thg ¢{0] L or T1 (doubly degenerateand
this series of alloys. The concentrations are chosen so thaf¢¢] L or T1 or T2 (three-fold degenerakeéoranches, the
we may compare our results with existing work. shape of a doubly peaked structure factor is much more clear.
Out of these two peaks, one peak corresponds to the disper-
sion curve for the longitudinal mode and the other peak to
IIl. RESULTS AND DISCUSSION the transverse mod&. Experimentally, for some neutron
groups corresponding to transverse phonons with frequencies
just below the lower resonance, definite asymmetry to the
A look at Table | immediately shows us that for NiPd right was observed. Such asymmetries are clearly observed
alloys, the dominant disorder is in the mass. Force constanfer the[ {00]T and[ {{0]T1 branches. It is important to note
in Pd are only about 15% larger than those in Ni. We shalthat the structure factors have a pronoun&ednd branch
choose the NiPd,s5 alloy for the application of our formal- dependence.
ism developed in Sec. Il. This particular alloy has already In Fig. 2 we display the dispersion curves, which were
been studied within the ICPA by Ghost al,'®> CCPA by  constructed by numerically determining the peaks in the co-
Mookerjee and Sing#t and experimentalfby inelastic neu- herent scattering structure factor. In this communication our
tron scattering. The alloy forms a continuous series of facenain focus is the development of the augmented space re-

A. The NissPdys Alloy
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[C00IL [£20] LorTi Q
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arbitrary scale

arbitrary scale
|

[C00IT [£C0IT2

arbitrary scale
arbitrary scale

/ f
v A —
A 115 A —
1/
7 N
1 -~
45 8 45 9

(b) @

[ECCIL or T1 or T2

arbitrary scale

0 45 9
(e) Frequency ' (THz)

FIG. 1. Total coherent structure factors in different directions with different branchesdgdy}. In each of the different directions and
branches, the various curves indicate the total structure factors for vdrimiges starting from the lowest value to the edge of the Brillouin
zone. In[£00] directionT1 andT2 modes are degenerate[if¥0] directionL andT1 modes are degenerate and {id{] direction all the
three modes are degenerate. Jtexis is in an arbitrary scale with heights scaled to the maximum height. Different curves for different
values are shifted along theaxis in order to facilitate vision.
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N (<0 IS (<)

s+

constant matrix. This suggests that the force-constant disor-
der is weak and the system is dominated by the mass disor-
der, as is clear from the numerical values of the parameters
given in Table I. If one looks at the previous results for the
dispersion curvefi.e., virtual crystal approximatiotvVCA),
CPA, and ICPA curves(Ref. 15, it will be clear that in the
low wave-vector regime, there is no distinction between
these results and ours, because the self-averaging of both
mass and force constants over a single wavelength reduces
the CPA, ICPA, and the ASR results to become close to the
VCA. However as we move toward high wave vectors, the
VCA curve deviates from the experimentally observed one
and lies lower in frequency as compared to the ICPA and the
ASR results. The reason is that VCA uses an averaged mass.
0 . ! . - . ! . — In contrast to this, for those theories which capture the effect
Reduced wave vector ({) of mass fluctuatiorias do the ICPA and the ASRthe lighter
atoms(Ni in this case dominate in the high wave-vector
FIG. 2. Dispersion curveffrequencyr vs reduced wave vector region and push the frequencies up. That is why our results
{) for NissPd,s calculated from recursioiisolid ling). The force  agree very well across the Brillouin zone.
constants used are given in the text. The filled circles are the ex- The FWHM'’s are much more sensitive to approximations
perimental datéRef. 1). In all the three panels the thin dotted lines as compared to the frequencies. These are shown in Fig. 3.
span the FWHM's. The FWHM'’s shown in the left are those which have been
calculated without including any scattering length fluctua-
cursion method. Accurate determination of the force condtion, while in the right are those where the fluctuation has
stants shall be left for the future. Ghoslt al!® have at- been included. The circles along with the error bars are the
tempted much more detailed determination of the forceexperimental data.t is obvious that the nature of the line-
constants. For the time being we have used the same paramidths are not the same in the two cases, rather the one
etrization of the force constants as they did. These dispersioncluding scattering length fluctuation is matching more
curves (solid lineg are compared with the experimental closely with the experimental data than the one without in-
resultg (filled circles. The dotted lines span the calculated cluding the fluctuation. That should be obvious because the
FWHM'’s. The procedure of calculating FWHM'’s has already experimentalists do include this fluctuation. Our results show
been discussed. The asymmetry in the widths is again clearlery strong branch and wave-vector dependent widths and in
observed in the two transverse branches quoted above. Tig@od agreement with the experimental results of Kamitaka-
results are in good agreement with the experiment for all thdnara and Brockhouse except in hig 1L mode. The reason
three symmetry directions and for each branch. Agreemerfor this may be because of the highly asymmetric line shapes
can be achieved by varying only one parameter in the forcein the[ {{{]L mode. The single-site CPA yields branch &nd
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FIG. 3. Full widths at half maximum for the NiPd alloy as function of frequency for different directiokspace and different modes
without (left) and with (right) the inclusion of the scattering length fluctuation. The filled circles along with the error bars are the experi-
mental dataRef. 1).
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FIG. 4. Dispersion curvedrequencyv vs reduced wave vector FIG. 5. Full widths at half maximum for the NiCr alloy as

¢) for NigCr, calculated from recursiofisolid line). The force g nction of frequency for different directions lnspace and differ-
constants used are given in the text. The filled circles are the 2CPAnt modes.

results(Ref. 29. In all the three panels the thin dotted lines span the

FWHMs. the FWHM's using the force constants of Table I. The pro-

independent widths. It cannot capture the essentially Oﬁ:cridure dhas aIr_eady been discussed in the precedmg_ section.
diagonal disorder of the problem. The ICPA and the ASR esegﬁ ispersion curves compare well with the exp_enmental
manages to capture this feature. One should note that t SUIrth as we!l as the 2CPA re§ults of Mookerjee and
structure factors are often asymmetric in shape and the usu ngit™ (filled circles. The dotted lines span the calculate

e : ; HM’s. It should be noted that in the low-frequency re-
Lorenzian fits carried out by most people may not be valid. . . L
y peop y gion, the widths are small but start to become significant as

_ the phonon frequency increases. The widths are compara-
B. The NigCry, alloy tively larger in the[ £00]L, [££Z]L, and[££0]T2 branches
We shall choose this alloy as being the nearest to thafior high ¢ values. Looking at the dispersion curves, one
studied experimentally by Bosit al?® Determination of the ~should note that the behavior of the natural widths were
force-constant matrices for this alloy becomes difficult, be-somehow complemented in the behavior of the frequencies.
cause pure Cr is body-centered cubic, but alloyed with Ni, upl'here is little evidence of resonances. This is expected, since
to 30% Cr it forms face-centered-cubic alloys. The forceclear cut resonances are characteristics of fngess disor-
constants of pure Cr may be nothing like those of Cr in thisders only.
alloy. Until we are able to determine these from a more first- In Fig. 5 we show the FWHM as a function of frequency.
principles-type approach, our determination of the force conit is clear that there is strong evidence of mode &mfpen-
stants for this alloy will remain tentative. We shall consider adence. The FWHM'’s are very large and asymmetric for the
hypothetical fcc Cr, whose force constants are related to thongitudinal modes near the band-edge frequencies.

elastic constants of bcc Cr via It is obvious from the above discussions that the force-
constant disorder plays a significant role ingddir,,; and a
CytCr=4(f—fy,—fyla, theory capturing only mass disorder effdetg., like CPA

fails to provide various essential features.
Cll_ C12: (f| + 5ft’ + ft)/a,
Cuu=(F,+fu+2f )/, C. The NiggPtsg alloy
Being encouraged by the right trend of theoretical results
The values ofZ,;, C;,, andC,, are taken from Leibfried toward the experimental results in thesMd;s and NggCryo
and Breuée?® (given in Table J. It has been observed that the alloys, where either of the two disorders—diagonal and off-
spectral functions and the structure factors foggli;, has  diagonal dominates, we now apply our formulation to NiPt
strong evidence of branch dependent widths as also asymmaloys where both disorders are predominant. The mass ratio
try in certain directions. This lends credence to our beliefmp/my; is 3.3(quite large compared to previous allpysd
that force-constant disorder leads to both asymmetry anthe nearest-neighbor force constants of Pt are on an average
strong wave vector and frequency dependence of the 1inB5% larger than those in Ni. Tsunodtal > have studied this
shapes. system thoroughly covering a wide range of concentration
The influence of force-constant disorder may be demon{x=0.05x=0.3x=0.5) by inelastic neutron scattering. In
strated more prominently in the dispersion curves andur case, we have considerge-0.5 where we expect the
widths. In Fig. 4, we display the dispersion curves along withdisorder induced scattering to have the strongest effect.
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FIG. 6. Dispersion curvedrequencyr vs reduced wave vector  F|G. 7. Full widths at half maximum for the NiPt alloy as func-
{) for NisgPtsg calculated from recursion. The force constants usedijon of frequency for different directions ik space and different
are given in the text. The solid lines are théranch in all the three  odes including the scattering length fluctuation.
panels, the dashed lines are thbranch in the left and right panels.
In the[ ££0] direction the dashed line indicate tfi@ branch while . . . L
the dot-dashed line indicate tfi@ branch. The filled circles are the 1ONS is the main feature. This is due to strong resonances, a
ICPA results(Ref. 19. In all the three panels the thin dotted lines feature of large mass disorder. Also as one can see that near
span the FWHM's. the resonancegaround 4 THz the FWHM becomes very
large. Tsunoda finds this resonance near 3.8 THz, while the
PA gives a rather lower value of 3 THz. In addition to these
eatures, it has been observed that around 7 THz, the struc-
ture factor has a third small peak split from the main branch.
his evidence of a weak resonance was also speculated by

In this case, the spectral functions as well as the structur
factors show few extra features: Even[igOQ]L, [£O00]T,
and[ ££0]T2 modes, unlike the previous two cases both th

functions have one usual well-defined pgakserved more Mookerjee and Singl The overall agreement of our disper-

clearly in the middle regime of the Brillouin zonelong ; ) X :
with a weakly defined peak with no gap in between. TheSion curves with those calculated in the ICPA is good .

occurrence of such a weakly defined peak is due to the in-
clusion of force-constant disorder. Ghoshall® have ar-
gued that it is entirely because of the off-diagonal disorder in
the force constants. We refer the reader to their paper for the We have set up the augmented space recursion in recipro-
detailed arguments. Here we note that the feature is equallyal space for the study of phonon dispersion and disorder
well reproduced in our augmented space recursive techniquieduced linewidths and line shapes for random binary alloys.
as well. Why this should be so? The effect of force-constanThe technique takes into account both diagonal disorder in
disorder can be understood more clearly by looking at thehe masses, the off-diagonal disorder in the force constants,
dispersion curves and widths. and the environmental disorder in the diagonal term of the
In Figs. 6 and 7 we display the dispersion curves andorce constants arising out of the sum rule. The approxima-
widths, respectively, obtained in the recursion using the forcgion involving termination of continued fraction expansions
constants as given in the text. The solid lines are lthe of the Green function retains the essential Herglotz analytic
branch in all the three panels, the dashed lines areTthe properties. We have applied the method to three classes of
branch in the left and right panels. In the middle panel thealloys: NiPd where mass disorder dominates, NiCr where
dashed line indicate th€l branch while the dot-dashed line force-constant disorder dominates, and NiPt where both
indicate theT2 branch. We have used the same parametrizadominate. Wherever possible we have compared our results
tion of the force constants as used by Ghastal. These  with neutron-scattering data as well as the most sophisticated
dispersion curvessolid line9 are compared with that calcu- mean-field theory recently proposed by Ghestal'® Both
lated in the ICPA(filled circles by Ghoshet al!® The aim of  qualitatively and quantitatively our results agree well with
this work was to establish the ASR as a computationally fasthe available data. We propose the technique as a computa-
and accurate method for phonon calculations for random altionally efficient method for the study of phonons in disor-
loys. Our ultimate goal is to obtain the force constants fromdered systems. Our approach here made no attempt to obtain
first-principles calculations. the force constant themselves from first principles, but rather
For all the three panels the thin dotted lines indicate theesorted, as others did earlier, to fitting them from experi-
FWHM's. Unlike the previous two cases, the dispersionmental data on the constituent metals. Our future endeavor
curves in this case have very different characteristic featuresvould be to rectify this, and attempt to obtain the dynamical
The splitting of the curves in all the three symmetry direc-matrix itself from more microscopic theories.

IV. DISCUSSION AND CONCLUSIONS
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=(E PR®Pr|—= 2 exp(ik-R)[R",{C})
APPENDIX A: THE AUGMENTED SPACE FORMALISM R \/N R’

Let f(ng) be a function of a random variablgy, whose =[{CHé(Ree{C}) (R, is any reference sije

binary probability density is given by
1] _
PI(NR) =Xa8(NR) + Xgd(Ng—1). (; Tr @ Pr|I{CH=I{C=Ry}),

We may then write
1 |33 ZoTan i)
Pr(nR):_;|m<TR|(nRI_NR)7l|TR>'

- 1
=(; > I®TR’R+X>\/—N g exp(1k-R")|R’ {C})

Here, the operatoNg acts on a space spanned by the X

eigenvectorg0) and|1) of Ng, corresponding to eigenval-

ues 0 and 1{1g)=vxa|0)+ VXg|1) is called thereference =s(k|{C=x}) (x is alattice vector,
state Its orthogonal counterpart i g)= vXg|0) — \Xa|1).
The representation dfig in this new basis is where s(k)=§ exp(—1k- x),
R VXaXp
Nl o e |33 ke phe o Tan D)
Now, =s(K)[{C=x}H[(Roe{C—x}) + 8(Ro+ xe{C—x})],
((f(n)))= fﬁ;(nR)Pr(nR)an (; 2 (T&i+7aix)®TR,R+X)ll{C}>

1 ” =s(k)[|{C— x} =R C—x}=(R ,
:_;lmfﬁxf(nR)<TR|(nR|_NR)71|TR>an S(K[{C—x} =Ro) +{C— x} £ (Ro+ x))]

- bPh: O Trrey | IHC
s s [ |33 Ghobeno Tan D)

T A=01yr—g1 /-2

X{TRINN(NRl=Ng) “HN YN[ TR)dNg

=s(K)[{C=xMH[a(Roe {C—x}) 8(Ro+x e{C—xD],
|33 @B S Tan D)

=s(K)[|{C— x} = Ro* (Ro+ X)),

:)\:201<TR|)\>f()\)<)\|TR>:<TR|?|TR>- (A1)

Heref is an operator built out of(ng) by simply replac-
ing the variableng by the associated operatdi . The above 1 1y plgil ...
expression shows that the average is obtained by taking the ; ; (Prey TR+ PRIk )+ @ Trie [ IHCH)
matrix element of this operator between tiederence state

|1R). The full augmented space theorem is a generalization =s(K)[{C=x}=Ro)8{(Ro+x) € (C=x)}+ - -~
?:] t;us for functions of many independent random variables +{C=x} £ (Ro+ x))8(Roe{C—xD].  (BI)
R .

We note that all operations involve only manipulations of the
APPENDIX B: OPERATIONS IN AUGMENTED configuration part of the st#te(i.e., manipulations of the
RECIPROCAL SPACE cardinality sequence only The operation of the effective
dynamical matrix thus entirely takes place in the configura-
The main operations of the effective dynamical matrix ontion space and the calculation does not involve the real space
a general staték®@{c})=||{c}) in the augmented reciprocal 7 at all. This is an enormous simplification over the standard

space are given below, whefe}={R;,R,, ... ,R.} indi- augmented space recursion described e&fiiwhere the en-
cates the cardinality sequence with) configuration at tire reduced real-space part as well as the configuration part
R;,R,, ... R. sites. This is required to implement the re- was involved in the recursion process. Since one can effi-
cursion procedure ciently store the configurations in bits of words so now the
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calculation becomes much simpler. These operations finally For a givena, the (N+ 1) eigenvalues of the finite tridi-
involve simple bit manipulation routines. agonal matrix

It is interesting to note that the second operation in the
above list creates a different configuration. In the next step of
recursion the third operation translates the entire operation
by lattice translation§y}. The cluster of configurations thus
“travel” across the lattice as recursion proceeds. 1 1 1

(a;—a) b, 0 Ca 0

N| -
N[ =

APPENDIX C: TERMINATORS

The recursive calculation described earlier gives rise to a
set of continued fraction coefficients,, ,b,}. In any practi-
cal calculation we can go only upto a finite number of steps, ib
consistent with our computational process. In case the coef- o o N
ficients converge, i.e., ifa,—a|<e, |b,—b|<e for n=N,
we may replacda, ,b,} by {a,b} for all n=N. In that case o o .. —by (ay-a)
the asymptotic part of the continued fraction may be analyti- \/E N
cally summed to obtain:

T(E)=(1/2(E—a— J(E—a)°—4b?), are values at which the Green function diverges. The maxi-
mum and minimum of this set of eigenvalues are those val-

VSV:;]'EQ t%lc\e/etserr%ir:::tgtrlngggf?iciepnigtr:z_rilk; Teﬁigtﬁg .ban es ofb for which spectral weight has just split off from the
and. Thus our choice @ is that value for which the maxi-

edges and widths, a sensible criterion for the choice of thes um eigenvalue is the largest and the minimum the smallest
asymptotic coefficients is necessary, so as not to give arise @ince the continued fraction involvég then '
spurious structures in our calculations. Beer and Petfifor '
suggest a sensible criterion: given a finite number of coeffi- )
cients, we must chooda,b} in such a way so as to give, for be=SURaybmax @c) =infia|bmin(ac)!.

this set of coefficients, the minimum bandwidth consistent

with no loss of spectral weight from the band. This criterion  With this choice the terminatdF(E) has all the Herglotz
is easily translated into mathematical terms. Bhinctions  properties required. Luchini and NExXurther modified this

that would carry weight out of the band must then be situatedy replacing the “butt joining’{a, ,b,} to a,b by a smooth
exactly at the band edges. We thus demand that the continugielear interpolation

fraction diverge simultaneously at both the top and the bot-
tom of the band. At the band edgéda+2b)= *b so,

a,,b, n<ng,
((G(ax2b))) ~ ~ | (@(N=n)+a(n—ny)]/(N-ny), n;=n<=N
b2/4 &P (p (N=n)+b(n—np)]/(N=ny), n;<n=N
*b— E(al_ a)— >
e DA A\ b3/4 They argued that most of the possible spurious structures
*b (ap—a) 5 ) .
2 .. by2 are removed by such interpolation. In our work we have used
Fb-(ay—a) these two ideas to estimate the terminator.
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