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Vibrational properties of phonons in random binary alloys: An augmented space recursive
technique in the k representation

Aftab Alam* and Abhijit Mookerjee†
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We present here an augmented space recursive technique in thek representation which include diagonal,
off-diagonal, and the environmental disorder explicitly: an analytic, translationally invariant, multiple-
scattering theory for phonons in random binary alloys. We propose the augmented space recursion as a
computationally fast and accurate technique which will incorporate configuration fluctuations over a large local
environment. We apply the formalism to Ni55Pd45, Ni88Cr12, and Ni50Pt50 alloys which is not a random choice.
Numerical results on spectral functions, coherent structure factors, dispersion curves, and disordered induced
full widths at half maximum are presented. Finally the results are compared with the recent itinerant coherent
potential approximation and also with experiments.
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I. INTRODUCTION

Over the years, there have been many attempts to dev
adequate approximations for properties of elementary exc
tions in disordered systems. Among these phonons are
only conceptually the simplest, but are also the most rea
accessible to experimental verification. Neutron-scatter
experiments1–3 have provided detailed information about la
tice vibrations in random alloys. A satisfactory reliab
theory is still lacking. The main reason for this is that, unli
the case of electrons in substitutionally disordered allo
where the Hamiltonian can be expressed in a form where
disorder isdiagonal in a real-space representation@This is
certainly true, for example, in a linear muffin-tin orbit
~LMTO! formalism in the absence of local lattice disto
tions.#, the disorder in the dynamical matrix is essentia
off-diagonal. To make things more complicated, the diagon
and off-diagonal disorders in the dynamical matrix a
coupled by the force constant sum ruleFRR

52(R8ÞRFRR8 , which ensures that no vibration can be e
cited in a uniform translation of the crystal as a whole. T
sum rule imposes anenvironmental disorderon the force
constants. That is, the disorder in the diagonal element of
dynamical matrix depends upon its near neighbors or its
mediate environment. Hence a reliable theory for phon
excitations will be that which includes all the three kinds
disorders explicitly.

Let us look at the most successful mean-field approxim
tion: the single-site coherent potential approximation~CPA!,
introduced first by Taylor.4 As the name itself suggests, it is
single-site approximation and per se cannot deal adequa
with off-diagonal disorder. Several authors have propo
schemes for generalizing the CPA and their approaches
clude geometrically scaled off-diagonal disorder,5,6 linearly
scaled off-diagonal disorder,7 and independent diagonal an
off-diagonal disorder.7–10 Most of these schemes in practic
lead to a single-site CPA including off-diagonal disord
These approaches suffer from two different kinds of dra
backs: first, there is no reason why the off-diagonal par
the dynamical matrix should scale either as the geome
0163-1829/2004/69~2!/024205~13!/$22.50 69 0242
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mean or the arithmetic mean of the constituents. Seco
often the extra assumptions lead to approximate Green fu
tions which violate the essential Herglotz analytic propert
required to produce physically acceptable results.

A complex functionf (z) of a complex variablez is said to
possess Herglotz analytic properties provided it satisfies
following properties:11,9

~i! The function is analytic everywhere in the complexz
plane, expect on the realz axis. All its singularities therefore
lie on the realz axis.

~ii ! The sign of the imaginary part off (z) is negative
everywhere on the upper half of thez plane and positive
everywhere on the lower half of thez plane.

~iii ! If the set of singularities off (z) is bounded, then

lim
z5E→6`

Ref ~E!50, E is real.

The augmented space approach suggested by Mooker11

provided a very interesting starting point for the generat
of appropriate approximations. The 2-site CPA~2CPA! pro-
posed by Yussouff and Mookerjee12 for model systems and
subsequently generalized by Mookerjee and Singh13,14 to re-
alistic alloys was one successful approach. While it retain
the Herglotz properties of the approximate Green functio
the generalization of the 2CPA to larger clusters violated
lattice translational symmetry of theconfigurationally aver-
aged Green function for homogeneous disorder. This w
overcome subsequently by the traveling cluster approxim
tion of Kaplan and Gray8 also based on the augmented spa
method. Recently, Ghoshet al.15 have proposed a neares
neighbor traveling cluster CPA and have applied it
phonons in NiPt and NiPd alloys. In this communication w
shall propose a different approximation procedure. We s
start from the augmented space method and use the recu
method of Haydocket al.16 to obtain the configurationally
averaged Green functions. The termination of the contin
fraction expansion will constitute the approximation. Th
will not only retain the Herglotz analytic properties of th
approximate averaged Green function, but also include
effect at a site of its neighborhood, the size of which we c
©2004 The American Physical Society05-1
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control. We shall incorporate the effect of the very dista
environment by the use of accuratetermination schemespro-
posed, e.g., by Haydock,17,18Luchini and Nex,19 or Beer and
Pettifor.20 Since we shall incorporate the lattice translati
symmetry in the full augmented space~which is characteris-
tic of homogeneous disorder~Ref. 21!! within our approach,
the drawback of the original cluster CPA’s used by Singh a
Mookerjee13,14 will be overcome. Further, we shall use th
local point group symmetries of the lattice and the config
rations on it to drastically reduce the rank of the Hilbe
space on which the recursion takes place~see Sahaet al.22!.
This will allow us to accurately account for large enviro
ments around a particular site. One of the strengths of
proposed method which will represent a major step forw
in the theory is the possibility of including random fluctu
tions in force constants beyond the nearest neighbors. W
in certain representations the Hamiltonian of electronic s
tems can be seen to be short ranged, this is not so for
namical matrices. The recursion method in augmented sp
can include beyond nearest-neighbor randomness in f
constants without much computational expense. In our w
on NiPt and NiPd we have extended disorder upto sec
nearest neighbors to illustrate this. It is not immediately cl
how easy it would be to extend the method proposed
Ghoshet al. to larger sized clusters. We propose the au
mented space recursion~ASR! as a computationally fast an
accurate technique which will incorporate configuration flu
tuations over a large local environment.

In Sec. II, we shall introduce the basic formalism. In S
III we shall present results for Ni55Pd45, Ni88Cr12, and
Ni50Pt50 alloys and compare them with experiment. T
choice of the systems is deliberate: NiPd has predomina
mass disorder, NiCr predominant disorder in the dynam
matrix; NiPt has large disorderboth in the mass and the
dynamical matrix. Concluding remarks are presented in S
IV.

II. FORMALISM

A. The augmented space formalism for phonons

The basic problem in the theory of phonons is to solv
secular equation of the form

~Mv22D!u~R,v!50,

whereua(R,v) is the Fourier transform ofua(R,t), the dis-
placement of an atom from its equilibrium positionR on the
lattice, in the directiona at time t, M is themass operator
diagonal in real space, andD is thedynamical matrix opera-
tor whose tight-binding representation is of the form

M5(
R

mRdabPR , ~1!

D5(
R

FRR
abPR1(

R
(

R8ÞR

FRR8
ab TRR8 , ~2!

along with thesum rule
02420
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FRR
ab52 (

R8ÞR

FRR8
ab . ~3!

Here PR is the projection operatoruR&^Ru and TRR8 is the
transfer operatoruR&^R8u in the Hilbert spaceH spanned by
the tight-binding basis$uR&%. R,R8 specify the lattice sites
anda, b the Cartesian directions.mR is the mass of an atom
occupying the positionR andFRR8

ab is the force-constant ten
sor.

We shall be interested in calculating the displaceme
displacement Green function in the frequency-wave-vec
space, which in the absence of disorder in the system has
diagonal element

G~k,k8,v2!5G~k,v2!d~k2k8!,

and for the present case

G~k,v2!5^ku~Mv22D!21uk&,

whereuk& is a state in the reciprocal space given by

uk&5
1

AN
(
R

exp~2 ik.R!uR&.

Since the mass matrixM is perfectly diagonal, we can write

G~k,v2!5^kuM21/2~v2I 2M21/2DM21/2!21M21/2uk&,
~4!

where

M21/25(
R

mR
21/2dabPR .

Equation~4! looks exactly like the Green function for th
electronic case withM21/2DM21/2 playing the role of Hamil-
tonian H,v2 in place of energy, andM21/2uk& is the starting
state of recursion.

Let us now consider a binary alloyAxBy consisting of two
kinds of atomsA and B of massesmA and mB randomly
occupying each lattice sites. We wish to calculate
configuration-averaged Green function̂̂G(k,v2)&&. We
shall use the augmented space formalism~ASF! to do so.
Since the disorder is homogeneous, averaged^^G(k,v2)&& is
also diagonal in reciprocal space representation.21 The ASF
has been described in great detail earlier.23 We shall indicate
the main operational results and refer the reader to the ab
monograph for further details. The first operation is to re
resent the random parts of the secular equation in terms
random set of local variables$nR% which are 1 if the siteR is
occupied by anA atom and 0 if it is occupied byB. The
probability densities of these variables may be written as

Pr~nR!5xd~nR21!1yd~nR!

5~21/p!Im^↑Ru~nRI 2NR!21u↑R&, ~5!

wherex and y are the concentrations of the constituentsA
andB with x1y51. NR is an operator defined on the con
figuration spacefR of the variablenR . This is of rank 2 and
is spanned by the states$u↑R&,u↓R&%:
5-2
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NR5xpR
↑ 1ypR

↓ 1Axy~tR
↑↓1tR

↓↑!.

Let us now carry out the ASF operations in some det
The massmR for site R can then be expressed as

mR
21/25mA

21/2nR1mB
21/2~12nR!

5mB
21/21~dm!21/2nR ,

where

~dm!21/25mA
21/22mB

21/2.

Therefore,

M21/25(
R

@mB
21/21nR~dm!21/2#dabPR . ~6!

In augmented space formalism, in order to obtain the c
figuration average we simply replace the random variab
nR by the corresponding operatorNR associated with its
probability density@as in Eq.~5!# and take the matrix ele
ment of the resulting operator between thereference states.
The justification is sketched in Appendix A. For a full mat
ematical proof the reader is referred to Ref. 11.

nR→NR5xpR
↑ 1ypR

↓ 1Axy~tR
↑↓1tR

↓↑!5x Ĩ1~y2x!pR
↓

1AxyT R
↑↓ .

Using the above in Eq.~6! we get,

M̃21/25m1
21/2Ĩ ^ I 1m2

21/2(
R

pR
↓

^ PR1•••

1m3
21/2(

R
T R

↑↓
^ PR , ~7!

where

m1
21/25xmA

21/21ymB
21/2,

m2
21/25~y2x!~dm!21/2,

m3
21/25Axy~dm!21/2.

Similarly the random off-diagonal force constantsFRR8
ab be-

tween the sitesR andR8 can be written as

FRR8
ab

5FAA
abnRnR81FBB

ab~12nR!~12nR8!1•••

1FAB
ab@nR~12nR8!1nR8~12nR!#

5FBB
ab1~FAA

ab1FBB
ab22FAB

ab!nRnR81•••

1~FAB
ab2FBB

ab!~nR1nR8!. ~8!

Let us define the following:

F (1)
ab5xFAA

ab2yFBB
ab1~y2x!FAB

ab ,

F (2)
ab5FAA

ab1FBB
ab22FAB

ab .
02420
l.

-
s

In augmented space the off-diagonal force-constant ma
becomes an operator

F̃ab5(
RR8

@^^FRR8
ab && Ĩ 1F (1)

ab$~y2x!~pR
↓ 1pR8

↓
!1•••

1Axy~T R
↑↓1T R8

↑↓
!%1F (2)

ab$~y2x!2pR
↓ pR8

↓
1•••

1Axy~y2x!~pR
↓T R8

↑↓
1pR8

↓ T R
↑↓!1xyT R

↑↓T R8
↑↓%# ^ TRR8

5(
RR8

CRR8
ab

^ TRR8. ~9!

The sum rule

FRR
ab52 (

R8ÞR

FRR8
ab

gives the diagonal element of the dynamical matrix

F̃ab52(
R H (

R8ÞR

CRR8
ab J ^ PR . ~10!

The total dynamical matrix in the augmented space is

D̃52(
R H (

R8ÞR

CRR8
ab J ^ PR1(

RR8
CRR8

ab
^ TRR8 . ~11!

The augmented space theorem11 now states that the configu
ration averaged Green function^^G(k,w2)&& may be written
as

^^G~k,v2!&&5E G~k,v2,$nR%!) Pr~nR!dnR

5^k ^ $B%uG̃~k,v2,$NR%!uk ^ $B%&

5^k ^ $B%uM̃21/2~v2 Ĩ

2M̃21/2D̃M̃21/2!21M̃21/2uk ^ $B%&,

~12!

whereM̃21/2 and D̃ are the operators which are construct
out of M21/2 andD by replacing all the random variablesnR
~or nR8) by the corresponding operatorsNR ~or NR8) as
given by Eqs.~7! and ~11!. These are the operators in th
augmented spaceV5H^ F. The stateuk ^ $B%& is actually
an augmented space state which is the direct product of
Hilbert space basis and the configuration space basis.
configuration spaceF5)R

^fR is of rank 2N for a system of
N-lattice sites with binary distribution. A basis in this spa
is denoted by the cardinality sequence$C%
5$R1 ,R2 , . . . ,Rc% which gives us the positions where w
have au↓& configuration. The configuration$B% refers to a
null cardinality sequence, i.e., one in which we haveu↑& at
all sites.

Using the operator representation forM̃21/2 we get

M̃21/2uk ^ $B%&5m1
21/2i$B%&1m3

21/2i$R%&5u1%,
5-3
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AFTAB ALAM AND ABHIJIT MOOKERJEE PHYSICAL REVIEW B 69, 024205 ~2004!
where a configuration state is denoted by itscardinality se-
quence$C%. We have also used the short hand notation

i$C%&[
1

AN
(
R

exp~2 ik•R!uR^ $C%&.

ket u1% is not normalized. A normalized ketu1& is given by

u1&5
u1%

A$1u1%
5S m1

m̂
D 21/2

i$B%&1S m3

m̂
D 21/2

i$R%&.

With the definitions

^^~1/m!&&215m̂,

Ĩ5S m1

m̂
D 21/2

Ĩ ^ I 1S m2

m̂
D 21/2

(
R

PR^ pR
↓

1S m3

m̂
D 21/2

(
R

PR^ T R
↑↓ ,

we may rewrite Eq.~12! as

^^G~k,v2!&&5^1u~v82Ĩ2D̃e f f!
21u1&, ~13!

wherev825m̂v2 and D̃e f f5ĨD̃Ĩ.
This equation is now exactly in the form in which recu

sion method may be applied. At this point we note that
above expression for the averaged^^G(k,v82)&& is exact.
The recursion transforms the basis through a three term
currence relation as

uf1&5u1&, uf0&50,

ufn11&5D̃e f fufn&2anufn&2bn
2ufn21&. ~14!

The averaged Green’s function can then be written as a
tinued fraction

^^G~k,v2!&&

5
b1

2

v822a12
b2

2

v822a22
b3

2

�

v822aN2G~k,v82!

,

~15!

whereG(k,v82) is the asymptotic part of the continued fra
tion, and

an~k!5
^fnuD̃e f fufn&

^fnufn&
,

and

bn
2~k!5

^fnufn&

^fn21ufn21&
, b1

251. ~16!
02420
e

e-

n-

To implement the above recursion, we require to know
effect of the operatorD̃e f f on a general state in augmente
reciprocal space.24 Some of the main operations are shown
Appendix B.

So far the expression for the averaged Green functio
exact. Approximations are introduced at this stage for
actual numerical evaluation. The mean-field theories ess
tially obtain the self-energies because of disorder scatter
self-consistently and approximately, and then calculate
averaged Green function either from the Green funct
without disorder or the virtual crystal Green function. Th
CPA proposed by Soven,25 the cluster CPA proposed b
Mookerjee and Singh,13,14 the traveling-cluster approxima
tion ~TCA! proposed by Mills and Ratanavaraksa9 and Ka-
plan et al.10 and the itinerant CPA~ICPA! proposed by
Ghoshet al.15 basically all belong to this category. The late
work referenced represent the most sophisticated versio
the mean-field theories. We shall propose an approxima
that will start from the infinite continued fraction and a
proximate its asymptotic part by an analytic termination p
cedure. The coefficientsan , bn are calculated exactly up to
finite number of steps and the asymptotic part is then
placed by a terminator:G(k,v82).T(k,v82). The concept
of terminators is described in Appendix C, where furth
details of estimatingT(k,v82) are also provided. Haydock17

have carried out extensive studies of the errors involved
precise estimates are available in the literature. Several
minators are available and we have chosen to use tha
Luchini and Nex.19 If we calculate the coefficients up to th
nth step exactly the first 2n moments of the density of state
are reproduced exactly. The terminator ensures that the
proximate Green function has Herglotz analytic propert
which also tells us that the approximate density of state
always positive definite and the spectrum is always real. T
terminator is also so chosen that the asymptotic moments
also accurately reproduced. This is a generalization of
method of moments, with the additional restriction that t
asymptotically large moments are also accurately obtaine

In the absence of disorder in the problem, the Green fu
tion for a given mode is of the form

G0~k,v82!5
1

v822v0
2~k!

.

The spectral functionA0(k,v82) is a d function of the
form d@v822v0

2(k)#. If we write

S~k,v82!5a1~k!2v0
2~k!1

b2
2~k!

v822a2~k!2
b3

2~k!

�

5a1~k!2v0
2~k!1s~k,v82!. ~17!

Then,

^^G~k,v82!&&5G0@k,v822S~k,v82!#.
5-4
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Obviously from aboveS(k,v82) is the disorder induced
self-energy. Damped vibrations occur with reduced frequ
cies atv08(k) which are the solutions of the implicit equatio

v08
2~k!2a1~k!2Res@k,v08

2~k!#50.

and their disorder induced widths are

W@k,v08
2~k!#52

1

p
Im s@k,v08

2~k!#. ~18!

The average spectral function^^Al(k,w2)&& for a mode
labeledl is related to the averaged Green function in rec
rocal space as

^^Al~k,v82!&&52
1

p
lim

d→01

@ Im$^^Gl~k,v822 id!&&%#.

~19!

The averaged density of states is given by

^^n~v8!&&5
2v8

3 (
l
E

BZ

d3k

8p3
^^Al~k,v82!&&.

Herel labels the particular normal mode branch and BZ
the Brillouin zone.

The dispersion curves for different modes are then
tained by numerically calculating the peak frequencies of
spectral function. This averaged spectral function gives
principle, a proper description of the dynamics but it do
not involve any weighting by scattering lengths. The disp
sion curves so obtained are nearly the same as those obt
experimentally from the peak frequencies of the coher
structure factorsScoh . This is because the coherent structu
factors are nothing but the averaged Green functi
weighted by the coherent scattering lengths. The intens
and the line shapes measured fromScoh and the imaginary
part of Green function may differ significantly, but the pe
positions will generally differ little.

B. The coherent scattering structure factors

Experimental determination of the phonon dispersion a
linewidths are deduced from the averaged coherent scatte
structure factors. The expression for these can be writte

^^Scoh~k,v2!&&52
1

p
Im^^bG~q,v2!b&&, ~20!

here, thermal neutrons with wave vectork gets scattered to
final state of wave vectork8, q5k2k81Q with Q being a
reciprocal lattice vector. The energy lost by the incomi
neutrons are taken up by the phonons: (\2/2Mn)(k22k82)
5\v, f (v) is the Bose distribution function and

b5(
R

bRdabPR ,

wherebR is the scattering length of the nucleus occupyi
the siteR. This is a random variable taking two valuesbA or
bB depending on which kind of atom sits at the site labe
02420
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R. For comparison with experiment we have to calcula
2(1/p)Im^^@bG(q,v)b#aa&&, rather than the spectral func
tion. For ordered materials the two are proportional, bu
the scattering lengths are themselves random then altho
this has very little effect on the dispersion curves, it do
affect the line shapes and linewidths. We can easily imp
ment such an average within the ASF:

^^bG~q,v2!b&&5^q^ $B%ub̃~M̃v22D̃!21b̃uq^ $B%&,

where

b̃5^^b&& Ĩ ^ I 1~y2x!~bB2bA!(
R

pR
↓

^ PR1•••

1Axy~bB2bA!(
R

T R
↑↓

^ PR .

Carrying out algebra similar to the one for the averag
Green function, we obtain

^^bG~q,v2!b&&5^1bu~vb8
2Ĩ2D̃e f f

b !21u1b&, ~21!

where

u1b&5S X1

X̂
D 21/2

i$B%&1S X3

X̂
D 21/2

i$R%&

with

X1
21/25xmA

21/2bA1ymB
21/2bB ,

X2
21/25~y2x!~mA

21/2bA2mB
21/2bB!,

X3
21/25Axy~mA

21/2bA2mB
21/2bB!,

X̂5 K K b2

mL L 5x
bA

2

mA
1y

bB
2

mB
. ~22!

Also

vb8
25X̂v2 and D̃e f f

b 5W̃D̃W̃,

where

W̃5S m1

X̂
D 21/2

Ĩ ^ I 1S m2

X̂
D 21/2

(
R

PR^ pR
↓ 1•••

1S m3

X̂
D 21/2

(
R

PR^ T R
↑↓ . ~23!

The subsequent recursion calculation follows the ident
steps as for the averaged spectral functions. We have ch
a second neighbor force-constant model, with dynamical m
trices fitted to reproduce the dispersion curves. The diso
induced widths are the quantities which are more sensitiv
the effect of randomness as compared to the frequencies~i.e.,
dispersion curves!, and as such will be one of the focus o
this work. In order to extract the full width at half maxim
~FWHM!, we have fitted the coherent structure factors
Lorenzians exactly as the experimentalists do to extract
5-5
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TABLE I. General properties of fcc Ni, Pd, Pt, and Cr. The force constants for Ni, Pd, and Pt are
from Ref. 27 and that for Cr is taken from Ref. 14.

Ni Pd Pt Cr

Atomic number 28 46 78 24
Atomic mass~amu! 58.71 106.4 195.09 51.996
Free atom valence configuration 3d84s2 4d10 5d96s1 3d54s1

Lattice constant~fcc! 3.524 3.8904 3.924 3.68~fcc!

2.89~bcc!
Elastic constants at
296°K (1012 dyne/cm)
C11 2.461 2.270 3.467 3.5
C12 1.501 1.759 2.507 0.678
C44 1.220 0.717 0.765 1.010
n-n force constants
~in units of dyne/cm!
1XX 17319 19337 26358 37483
1XY 19100 22423 30317 17453
1ZZ 2436 22832 27040 213229
n-n-n force constants
~in units of dyne/cm!
2XX 1044 1424 4926
2YY 2780 210 2537
u
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same. The advantage of including the scattering length fl
tuation will be clear when we will show the nature of th
linewidths for Ni55Pd45 alloy with and without inclusion of
the scattering length fluctuation~i.e., calculating the widths
once by fitting the spectral functions to Lorenzians and th
the structure factors to Lorenzians!. Our aim in this commu-
nication is to propose the augmented space recursion
useful technique to study effects of diagonal, off-diagon
and environmental disorder. Accurate model building or o
taining the force constants from first-principles total-ene
calculations will be postponed for future work.

In the following three sections, we present our calcu
tions on Ni55Pd45, Ni88Cr12, and Ni50Pt50 alloys. The choice
is not arbitrary. Mass disorder dominates in NiPd allo
while force-constant disorder is large in NiCr alloys. Ni
alloys have large disorderboth in mass and force constant
Since in the phonon problem we have both kinds of disord
it would be interesting to note the interplay between them
this series of alloys. The concentrations are chosen so
we may compare our results with existing work.

III. RESULTS AND DISCUSSION

A. The Ni55Pd45 Alloy

A look at Table I immediately shows us that for NiP
alloys, the dominant disorder is in the mass. Force const
in Pd are only about 15% larger than those in Ni. We sh
choose the Ni55Pd45 alloy for the application of our formal-
ism developed in Sec. II. This particular alloy has alrea
been studied within the ICPA by Ghoshet al.,15 CCPA by
Mookerjee and Singh14 and experimentally1 by inelastic neu-
tron scattering. The alloy forms a continuous series of f
02420
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centered cubic solid solutions of all concentrations and th
are no indications of long-range order down to 0 °C.

In Fig. 1 we display the coherent scattering structu
factors obtained from our recursion calculation along

highest symmetry directions (@z00#,@zz0#,@zzz#), z5ukW u/
ukWmaxu for different branches. For a particular direction a
branch the different curves indicates the spectral functi
for various z points starting from the lowest value~i.e., z
50) to the edge of the Brillouin zone~i.e., z51 in units of
2p/a). The first thing to note is that the structure factors a
~in contrast to Lorenzian shape! often asymmetric near the
resonances. The asymmetries can be described as a ten
of more scattering to occur near the resonance frequen
In other words the shape of a mode with a frequency sligh
lower or higher than that of a resonance tends to hav
second peak or wide tail over the resonance region. In fa
one looks at the@zz0# L or T1 ~doubly degenerate! and
@zzz# L or T1 or T2 ~three-fold degenerate! branches, the
shape of a doubly peaked structure factor is much more c
Out of these two peaks, one peak corresponds to the dis
sion curve for the longitudinal modeL and the other peak to
the transverse modeT. Experimentally, for some neutro
groups corresponding to transverse phonons with frequen
just below the lower resonance, definite asymmetry to
right was observed. Such asymmetries are clearly obse
for the@z00#T and@zz0#T1 branches. It is important to not
that the structure factors have a pronouncedk and branch
dependence.

In Fig. 2 we display the dispersion curves, which we
constructed by numerically determining the peaks in the
herent scattering structure factor. In this communication
main focus is the development of the augmented space
5-6
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VIBRATIONAL PROPERTIES OF PHONONS IN RANDOM . . . PHYSICAL REVIEW B69, 024205 ~2004!
FIG. 1. Total coherent structure factors in different directions with different branches for Ni55Pd45. In each of the different directions an
branches, the various curves indicate the total structure factors for variousz values starting from the lowest value to the edge of the Brillo
zone. In@z00# directionT1 andT2 modes are degenerate, in@zz0# directionL andT1 modes are degenerate and in@zzz# direction all the
three modes are degenerate. They axis is in an arbitrary scale with heights scaled to the maximum height. Different curves for differz
values are shifted along thex axis in order to facilitate vision.
024205-7
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AFTAB ALAM AND ABHIJIT MOOKERJEE PHYSICAL REVIEW B 69, 024205 ~2004!
cursion method. Accurate determination of the force c
stants shall be left for the future. Ghoshet al.15 have at-
tempted much more detailed determination of the fo
constants. For the time being we have used the same pa
etrization of the force constants as they did. These disper
curves ~solid lines! are compared with the experiment
results1 ~filled circles!. The dotted lines span the calculate
FWHM’s. The procedure of calculating FWHM’s has alrea
been discussed. The asymmetry in the widths is again cle
observed in the two transverse branches quoted above.
results are in good agreement with the experiment for all
three symmetry directions and for each branch. Agreem
can be achieved by varying only one parameter in the fo

FIG. 2. Dispersion curves~frequencyn vs reduced wave vecto
z) for Ni55Pd45 calculated from recursion~solid line!. The force
constants used are given in the text. The filled circles are the
perimental data~Ref. 1!. In all the three panels the thin dotted line
span the FWHM’s.
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constant matrix. This suggests that the force-constant di
der is weak and the system is dominated by the mass d
der, as is clear from the numerical values of the parame
given in Table I. If one looks at the previous results for t
dispersion curves@i.e., virtual crystal approximation~VCA!,
CPA, and ICPA curves# ~Ref. 15!, it will be clear that in the
low wave-vector regime, there is no distinction betwe
these results and ours, because the self-averaging of
mass and force constants over a single wavelength red
the CPA, ICPA, and the ASR results to become close to
VCA. However as we move toward high wave vectors, t
VCA curve deviates from the experimentally observed o
and lies lower in frequency as compared to the ICPA and
ASR results. The reason is that VCA uses an averaged m
In contrast to this, for those theories which capture the eff
of mass fluctuation~as do the ICPA and the ASR!, the lighter
atoms ~Ni in this case! dominate in the high wave-vecto
region and push the frequencies up. That is why our res
agree very well across the Brillouin zone.

The FWHM’s are much more sensitive to approximatio
as compared to the frequencies. These are shown in Fi
The FWHM’s shown in the left are those which have be
calculated without including any scattering length fluctu
tion, while in the right are those where the fluctuation h
been included. The circles along with the error bars are
experimental data.1 It is obvious that the nature of the line
widths are not the same in the two cases, rather the
including scattering length fluctuation is matching mo
closely with the experimental data than the one without
cluding the fluctuation. That should be obvious because
experimentalists do include this fluctuation. Our results sh
very strong branch and wave-vector dependent widths an
good agreement with the experimental results of Kamita
hara and Brockhouse except in the@zzz#L mode. The reason
for this may be because of the highly asymmetric line sha
in the@zzz#L mode. The single-site CPA yields branch andk

x-
s
xperi-
FIG. 3. Full widths at half maximum for the NiPd alloy as function of frequency for different directions ink space and different mode
without ~left! and with ~right! the inclusion of the scattering length fluctuation. The filled circles along with the error bars are the e
mental data~Ref. 1!.
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VIBRATIONAL PROPERTIES OF PHONONS IN RANDOM . . . PHYSICAL REVIEW B69, 024205 ~2004!
independent widths. It cannot capture the essentially
diagonal disorder of the problem. The ICPA and the AS
manages to capture this feature. One should note that
structure factors are often asymmetric in shape and the u
Lorenzian fits carried out by most people may not be va

B. The Ni88Cr12 alloy

We shall choose this alloy as being the nearest to
studied experimentally by Bosiet al.26 Determination of the
force-constant matrices for this alloy becomes difficult, b
cause pure Cr is body-centered cubic, but alloyed with Ni,
to 30% Cr it forms face-centered-cubic alloys. The for
constants of pure Cr may be nothing like those of Cr in t
alloy. Until we are able to determine these from a more fir
principles-type approach, our determination of the force c
stants for this alloy will remain tentative. We shall conside
hypothetical fcc Cr, whose force constants are related to
elastic constants of bcc Cr via

C111C1254~ f l2 f t82 f t!/a,

C112C125~ f l15 f t81 f t!/a,

C445~ f l1 f t812 f t!/a.

The values ofC11, C12, andC44 are taken from Leibfried
and Breuer28 ~given in Table I!. It has been observed that th
spectral functions and the structure factors for Ni88Cr12 has
strong evidence of branch dependent widths as also asym
try in certain directions. This lends credence to our be
that force-constant disorder leads to both asymmetry
strong wave vector and frequency dependence of the
shapes.

The influence of force-constant disorder may be dem
strated more prominently in the dispersion curves a
widths. In Fig. 4, we display the dispersion curves along w

FIG. 4. Dispersion curves~frequencyn vs reduced wave vecto
z) for Ni88Cr12 calculated from recursion~solid line!. The force
constants used are given in the text. The filled circles are the 2
results~Ref. 29!. In all the three panels the thin dotted lines span
FWHM’s.
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the FWHM’s using the force constants of Table I. The pr
cedure has already been discussed in the preceding sec
These dispersion curves compare well with the experime
results26 as well as the 2CPA results of Mookerjee a
Singh29 ~filled circles!. The dotted lines span the calcula
FWHM’s. It should be noted that in the low-frequency r
gion, the widths are small but start to become significant
the phonon frequency increases. The widths are comp
tively larger in the@z00#L, @zzz#L, and@zz0#T2 branches
for high z values. Looking at the dispersion curves, o
should note that the behavior of the natural widths w
somehow complemented in the behavior of the frequenc
There is little evidence of resonances. This is expected, s
clear cut resonances are characteristics of large30 mass disor-
ders only.

In Fig. 5 we show the FWHM as a function of frequenc
It is clear that there is strong evidence of mode andk depen-
dence. The FWHM’s are very large and asymmetric for
longitudinal modes near the band-edge frequencies.

It is obvious from the above discussions that the for
constant disorder plays a significant role in Ni88Cr12; and a
theory capturing only mass disorder effect~e.g., like CPA!
fails to provide various essential features.

C. The Ni50Pt50 alloy

Being encouraged by the right trend of theoretical resu
toward the experimental results in the Ni55Pd45 and Ni88Cr12
alloys, where either of the two disorders—diagonal and o
diagonal dominates, we now apply our formulation to Ni
alloys where both disorders are predominant. The mass r
mPt/mNi is 3.3~quite large compared to previous alloys! and
the nearest-neighbor force constants of Pt are on an ave
55% larger than those in Ni. Tsunodaet al.2 have studied this
system thoroughly covering a wide range of concentrat
(x50.05,x50.3,x50.5) by inelastic neutron scattering. I
our case, we have consideredx50.5 where we expect the
disorder induced scattering to have the strongest effect.

A
e

FIG. 5. Full widths at half maximum for the NiCr alloy a
function of frequency for different directions ink space and differ-
ent modes.
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AFTAB ALAM AND ABHIJIT MOOKERJEE PHYSICAL REVIEW B 69, 024205 ~2004!
In this case, the spectral functions as well as the struc
factors show few extra features: Even in@z00#L, @z00#T,
and@zz0#T2 modes, unlike the previous two cases both
functions have one usual well-defined peak~observed more
clearly in the middle regime of the Brillouin zone! along
with a weakly defined peak with no gap in between. T
occurrence of such a weakly defined peak is due to the
clusion of force-constant disorder. Ghoshet al.15 have ar-
gued that it is entirely because of the off-diagonal disorde
the force constants. We refer the reader to their paper for
detailed arguments. Here we note that the feature is equ
well reproduced in our augmented space recursive techn
as well. Why this should be so? The effect of force-const
disorder can be understood more clearly by looking at
dispersion curves and widths.

In Figs. 6 and 7 we display the dispersion curves a
widths, respectively, obtained in the recursion using the fo
constants as given in the text. The solid lines are theL
branch in all the three panels, the dashed lines are thT
branch in the left and right panels. In the middle panel
dashed line indicate theT1 branch while the dot-dashed lin
indicate theT2 branch. We have used the same parametr
tion of the force constants as used by Ghoshet al. These
dispersion curves~solid lines! are compared with that calcu
lated in the ICPA~filled circles! by Ghoshet al.15 The aim of
this work was to establish the ASR as a computationally
and accurate method for phonon calculations for random
loys. Our ultimate goal is to obtain the force constants fr
first-principles calculations.

For all the three panels the thin dotted lines indicate
FWHM’s. Unlike the previous two cases, the dispersi
curves in this case have very different characteristic featu
The splitting of the curves in all the three symmetry dire

FIG. 6. Dispersion curves~frequencyn vs reduced wave vecto
z) for Ni50Pt50 calculated from recursion. The force constants us
are given in the text. The solid lines are theL branch in all the three
panels, the dashed lines are theT branch in the left and right panels
In the @zz0# direction the dashed line indicate theT1 branch while
the dot-dashed line indicate theT2 branch. The filled circles are th
ICPA results~Ref. 15!. In all the three panels the thin dotted line
span the FWHM’s.
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tions is the main feature. This is due to strong resonance
feature of large mass disorder. Also as one can see that
the resonances~around 4 THz! the FWHM becomes very
large. Tsunoda finds this resonance near 3.8 THz, while
CPA gives a rather lower value of 3 THz. In addition to the
features, it has been observed that around 7 THz, the s
ture factor has a third small peak split from the main bran
This evidence of a weak resonance was also speculate
Mookerjee and Singh.13 The overall agreement of our dispe
sion curves with those calculated in the ICPA is good .

IV. DISCUSSION AND CONCLUSIONS

We have set up the augmented space recursion in rec
cal space for the study of phonon dispersion and disor
induced linewidths and line shapes for random binary allo
The technique takes into account both diagonal disorde
the masses, the off-diagonal disorder in the force consta
and the environmental disorder in the diagonal term of
force constants arising out of the sum rule. The approxim
tion involving termination of continued fraction expansio
of the Green function retains the essential Herglotz anal
properties. We have applied the method to three classe
alloys: NiPd where mass disorder dominates, NiCr wh
force-constant disorder dominates, and NiPt where b
dominate. Wherever possible we have compared our res
with neutron-scattering data as well as the most sophistic
mean-field theory recently proposed by Ghoshet al.15 Both
qualitatively and quantitatively our results agree well w
the available data. We propose the technique as a comp
tionally efficient method for the study of phonons in diso
dered systems. Our approach here made no attempt to o
the force constant themselves from first principles, but rat
resorted, as others did earlier, to fitting them from expe
mental data on the constituent metals. Our future endea
would be to rectify this, and attempt to obtain the dynami
matrix itself from more microscopic theories.

d
FIG. 7. Full widths at half maximum for the NiPt alloy as func

tion of frequency for different directions ink space and different
modes including the scattering length fluctuation.
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APPENDIX A: THE AUGMENTED SPACE FORMALISM

Let f (nR) be a function of a random variablenR , whose
binary probability density is given by

Pr~nR!5xAd~nR!1xBd~nR21!.

We may then write

Pr~nR!52
1

p
Im^↑Ru~nRI 2NR!21u↑R&.

Here, the operatorNR acts on a space spanned by t
eigenvectorsu0& and u1& of NR , corresponding to eigenval
ues 0 and 1;u↑R&5AxAu0&1AxBu1& is called thereference
state. Its orthogonal counterpart isu↓R&5AxBu0&2AxAu1&.
The representation ofNR in this new basis is

NR5S xA AxAxB

AxAxB xB
D .

Now,

^^ f ~nR!&&5E
2`

`

f ~nR!Pr~nR!dnR

52
1

p
Im E

2`

`

f ~nR!^↑Ru~nRI 2NR!21u↑R&dnR

52
1

p
Im (

l50,1
(

l850,1
E

2`

`

f ~nR!

3^↑Rul&^lu~nRI 2NR!21ul8&^l8u↑R&dnR

5 (
l50,1

^↑Rul& f ~l!^lu↑R&5^↑Ru f̃u↑R&. ~A1!

Here f̃ is an operator built out off (nR) by simply replac-
ing the variablenR by the associated operatorNR . The above
expression shows that the average is obtained by taking
matrix element of this operator between thereference state
u↑R&. The full augmented space theorem is a generaliza
of this for functions of many independent random variab
$nR%.

APPENDIX B: OPERATIONS IN AUGMENTED
RECIPROCAL SPACE

The main operations of the effective dynamical matrix
a general stateuk ^ $c%&5uu$c%& in the augmented reciproca
space are given below, where$c%5$R1 ,R2 , . . . ,Rc% indi-
cates the cardinality sequence withu↓& configuration at
R1 ,R2 , . . . ,Rc sites. This is required to implement the r
cursion procedure
02420
he

n
s

S (
R

pR
↓

^ PRD i $C%&

5S (
R

pR
↓

^ PRD 1

AN
(
R8

exp~ ık•R8!uR8,$C%&

5i$C%&d~R0P$C%! ~R0 is any reference site!,

S (
R

T R
↑↓

^ PRD i$C%&5i$C6R0%&,

S (
R

(
x

Ĩ^ TR,R1xD i $C%&

5S (
R

(
x

Ĩ^ TR,R1xD 1

AN
(
R8

exp~ ık•R8!uR8,$C%&

5s~k!i$C2x%& ~x is a lattice vector!,

where s~k!5(
x

exp~2ık•x!,

S (
R

(
x

~pR
↓ 1pR1x

↓ ! ^ TR,R1xD i$C%&

5s~k!i$C2x%&@d~R0P$C2x%!1d~R01xP$C2x%!#,

S (
R

(
x

~T R
↑↓1TR1x

↑↓ ! ^ TR,R1xD i$C%&

5s~k!@ i$C2x%6R0&1i$C2x%6~R01x!&],

S (
R

(
x

~pR
↓ pR1x

↓ ! ^ TR,R1xD i$C%&

5s~k!i$C2x%&@d~R0P$C2x%!d~R01xP$C2x%!#,

S (
R

(
x

~T R
↑↓TR1x

↑↓ ! ^ TR,R1xD i$C%&

5s~k!@ i$C2x%6R06~R01x!&],

S (
R

(
x

~pR1x
↓ T R

↑↓1pR
↓TR1x

↑↓ !•••^ TR,R1xD i$C%&

5s~k!@ i$C2x%6R0&d$~R01x!P~C2x!%1•••

1i$C2x%6~R01x!&d~R0P$C2x%!]. ~B1!

We note that all operations involve only manipulations of t
configuration part of the state29 ~i.e., manipulations of the
cardinality sequence only!. The operation of the effective
dynamical matrix thus entirely takes place in the configu
tion space and the calculation does not involve the real sp
H at all. This is an enormous simplification over the stand
augmented space recursion described earlier,31 where the en-
tire reduced real-space part as well as the configuration
was involved in the recursion process. Since one can e
ciently store the configurations in bits of words so now t
5-11
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AFTAB ALAM AND ABHIJIT MOOKERJEE PHYSICAL REVIEW B 69, 024205 ~2004!
calculation becomes much simpler. These operations fin
involve simple bit manipulation routines.

It is interesting to note that the second operation in
above list creates a different configuration. In the next ste
recursion the third operation translates the entire opera
by lattice translations$x%. The cluster of configurations thu
‘‘travel’’ across the lattice as recursion proceeds.

APPENDIX C: TERMINATORS

The recursive calculation described earlier gives rise t
set of continued fraction coefficients$an ,bn%. In any practi-
cal calculation we can go only upto a finite number of ste
consistent with our computational process. In case the c
ficients converge, i.e., ifuan2au<e, ubn2bu<e for n>N,
we may replace$an ,bn% by $a,b% for all n>N. In that case
the asymptotic part of the continued fraction may be anal
cally summed to obtain:

T~E!5~1/2!~E2a2A~E2a!224b2!,

which gives a continuous spectruma22b<E<a12b.
Since the terminator coefficients are related to the b
edges and widths, a sensible criterion for the choice of th
asymptotic coefficients is necessary, so as not to give aris
spurious structures in our calculations. Beer and Pettif20

suggest a sensible criterion: given a finite number of coe
cients, we must choose$a,b% in such a way so as to give, fo
this set of coefficients, the minimum bandwidth consist
with no loss of spectral weight from the band. This criteri
is easily translated into mathematical terms. Thed functions
that would carry weight out of the band must then be situa
exactly at the band edges. We thus demand that the conti
fraction diverge simultaneously at both the top and the b
tom of the band. At the band edges:T(a62b)56b so,

^^G~a62b!&&

5
b1

2/4

6b2
1

2
~a12a!2

b2
2/4

6b2
1

2
~a22a!2

b3
2/4

�

b
N
2 /2

6b2(aN2a)

.
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For a givena, the (N11) eigenvalues of the finite tridi-
agonal matrix

1
1

2
~a12a!

1

2
b2 0 . . . 0

1

2
b2

1

2
~a22a!

1

2
b3 . . . 0

0
1

2
b3 . . . . . . 0

. . . . . . . . . . . .
1

A2
bN

. . . . . . . . .
1

A2
bN ~aN2a!

2
are values at which the Green function diverges. The ma
mum and minimum of this set of eigenvalues are those v
ues ofb for which spectral weight has just split off from th
band. Thus our choice ofa is that value for which the maxi-
mum eigenvalue is the largest and the minimum the small
Since the continued fraction involvesb2 then,

bc5sup$a%bmax~ac!5 inf$a%ubmin~ac!u.

With this choice the terminatorT(E) has all the Herglotz
properties required. Luchini and Nex19 further modified this
by replacing the ‘‘butt joining’’$an ,bn% to a,b by a smooth
linear interpolation

ân ,b̂n55
an ,bn n,n1 ,

~an~N2n!1a~n2n1!#/~N2n1!, n1<n<N

~bn~N2n!1b~n2n1!#/~N2n1!, n1<n<N

a,b, n.N.

They argued that most of the possible spurious structu
are removed by such interpolation. In our work we have u
these two ideas to estimate the terminator.
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