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We studied the interrelationship of elastic and piezoelectric properties with the lattice structure and crystal
physics of paratellurited-TeO,). Tetragonal paratellurited(;,P422) shows six independent elastic constants
Cijui » the associated internal frictio@i]kﬁ, and one piezoelectric coefficiert,. We determined simulta-
neously these material coefficients using resonant ultrasound spectroscopy coupled with laser-Doppler inter-
ferometry. Mode identification, essential for success, was done by measuring the displacement distributions on
a vibrating-specimen surface. OQy; were consistent with reported values measured by conventional meth-
ods. Oure,, exceeds the reported value by 53%. We focus on several unusual elastic properties, including a
negative Poisson ratio. Considering a star-shape truss structure on the basal plane consistently explains all of
them. Internal friction correlates with ti@;,,; temperature derivatives, suggesting phonon-phonon interactions
as a dominant cause of the mechanical loss.
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I. INTRODUCTION and e, . Resonant ultrasound spectroscd®US) can de-
tect th m, from which an inverse calculation yields the
Paratellurite ¢-TeQ,) finds wide use in many advanced needed coefficients. Previously, this approach was used to
devices because of its outstanding acousto-optical, dielectriéletermine theCyj,; of solids™ ™ Schreuet® applied the
and electro-optic propertié€. Its crystallographic structure RUS method to piezoelectric crystals to deduceG}g and
received intensive study by many researctief<Paratellu-  €ijx - However, the mode-identification problem remains. To
rite belongs to crystals with 422 point-group symmefig- ~ deduce theey, along with Cj , resonance-frequency mea-
tragona) and shows six independent elastic-stifiness coeffiSurements must be done with a sufficiently high accuracy
cients Cyjy , corresponding six internal friction@i]kﬁ, one because contributions d;, to resonance frequencies are

piezoelectric coefficieney,, and two dielectric coefficients usr?ta}!ymrggghrr?;?g#iir tgz?wtggrsl%‘sgé'ﬂ'/;jvgz drT::c;rI((a:ullrg{)eodr-reso-
gij . Their accurate measurement is of great importance botﬁj‘ 1ing : -
nances. Mode mismatch is fatal to obtaining these less-

for scientific and practical studies. Elastic constants, for ex- S - L .
ample, reflect crystal structure and interatomic-bondcontributing coefficients. Therefore, obtaining relialelg,
strength. They are indispensable for designing surface2Nd Cij by the RUS method requires precise frequency

acoustic-wavéSAW) and acousto-optic devices. The Ioresentmeas,urement and correct mode identification. We overcame
study contains two principal purposes. First, determine al hese diﬁicgltigs by developing a piezoe_lectric trip_od to de-
the material coefficients accurately on a single monocryst ctfree oscillation of a specimen and by incorporating laser-

using a new acoustic-spectroscopic method. Second, clari oppler Tr:erferc;metré( mlto the retsc;nandce tr_ne'asutrhemgkr)\t tto
paratellurite’s remarkable elastic properties. easure the surface displacements for identifying the vibrat-

Crystal-system design often requires a complete set of thi!d modes. For the internal-friction tensQ¥,j, we deduced
material coefficients. The dielectric coefficients are availabldnem from peak widths of individual resonances.
accurately from low-frequency capacitance measurenfents, Reémarkable elastic anisotropy of paratellurite was re-
but measuring all of the elastic and piezoelectric coefficient§0rted by several researchérs. They attributed it to the
presents a formidable task with conventional metfdlise- ~ S'ONg and weak Te-O-bond stretching. However, they did
cause they involve many independent measurements dipt discuss other important and unusual properties such as a

many crystals in many orientations: pulse-echo measurdl€gative Poisson ratio for a deformation along &0 direc-
ments or rod-resonance measurements coupled with t n. We show that the conventional interpretation consider-

resonance-antiresonance measurements of electric imped Only bond stretching fails to explain the elastic proper-

ance. One must solve a set of labyrinthine equations to dd!€S, and we propose a weak-bond-bending model with a star-
duce theCy; andey, . Various errors easily occur, associ- shape truss structure. We measure all of the internal-friction

ated with use of different methods and different Crysta|scomponents and find a correlation between internal friction

crystal misorientation, resonance-frequency shifts by attacrand elastic-constant temperature (_jerivatives. This correlation
ing electrodes and acoustic transducers, and so on. Here, \We99€sts phonon-phonon interactions.

describe an advanced methodology that yields all the elastic,
anelastic, and piezoelectric coefficients from a single
rectangular-parallelepiped specimen. The mechanical reso- We used an oriented rectangular-parallelepiped monocrys-
nance frequencies of a piezoelectric solid depend olCffge  tal of paratellurite, measuring 6.778 mm by 7.022 mm by

Il. MATERIAL
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' — —— nal frictions at constant temperature=30.02 °C in vacuum
i I\ ] . (~10"2 Torr). Thus, little energy leaks into the air, which
. otherwise would affect the internal-friction measurement as
1902 104108 1 described below. Reproducibility among independent mea-
surements was better than F0for resonance frequencies.
After finishing the series of measurements, we deposited a
100-nm aluminum film on the surface perpendicular toxhe
. , . axis to measure distributions of the out-of-plane displace-
100 200 300 ment for mode identification. This deposition was needed
Frequency (kHz) because paratellurite is transparent. The specimen surface
was scanned with a He-Ne laser beam, detecting the out-of-
plane displacements. Frequency shifts from the aluminum-
film addition were so smal(~0.01% that the modes re-
cr)nained clearly identified after the deposition.

Amplitude
—

FIG. 1. Resonance spectrum of the paratellurite monocrystal.

8.963 mm. Laue x-ray diffraction confirmed orientations
within 0.2°. The three orthogonal faces were perpendicular t
[100], [010], and[001] directions, along which we take the

X1, X, and X3 axes, respectively. Using Archimedes’s
method and distilled water as a standard, we found a mass Resonance frequencies can be calculated from specimen’s
densityp=5984 kg/ni. For 422-symmetry materials, the co- mass density, dimensions, and all the coefficients using La-

efficients take the form in contracted notation: grangian minimization with the Rayleigh-Ritz method with a

- sufficient accuracy. Such a forward calculation was estab-

B. Inverse calculation

Ci Cp G5 0 0 0 lished by Ohnd’ He considered the weak form of the La-
Cyp, Ciy Ci3 O 0 0 grangian in a piezoelectric material:
Cal=l o 0 o Cu O 0 @) '—ZEJV S Ciila Sa~ 75— emrgy 255~ €miiSa
0 0 0 0 Cy O
0 0 0 0 0 Cgf —pwzuiui)dv. (5)
0 0 0 ey O O Here u; denotes the displacement along theaxis, S; a
[e;]= 0 00 0 —ey Of ) component_of the strain tensab,the electric potentialp j[he
mass density, and the angular frequency. The stationary
000 0 0 0 point of the LagrangiandL =0) gives the resonance modes.
and Because analytical solutions for the displacements and elec-
tric potential are unavailable, he approximated them with
g7 0 O linear combinations of the basis functiogsconsisting of
[e]= 0 &, O], 3) normalized Legendre polynomials:
O 0 €33 . .
. . . | ui(X11X21X3):2 aL\PL(XIIX27X3)v (6)
Besides, there are six independent internal frictiQ)g, k
which indicate the ratios of imaginary-to-real parts of the
: : e .13
complex elastic stiffnesses;jy : ¢(xl,x2,x3)=% a;?‘I’f(Xl,Xz,Xg). 7
Ciji=Cija(1+jQid)- (4) Here
. MEASUREMENT W (X1,X2,X3)
A. RUYlaser technique [ 8 _ - .
The piezoelectric tripod consists of two pinducers for gen- L,L,Lg P1(2X1/L1)Pr(2X2/L2)Pr(2X3/L3). (8)

eration and detection of vibration, and one needle just for_

support. Because no external force was applied to the sped? denotes the normalized Legendre polynomial of degree
men, except for specimen weight, and no coupling agent wagndL; denotes the edge length along theaxis of the rect-
used, the acoustical coupling between the pinducers an@ngular parallelepiped. The Lagrangian minimization with a
specimen remains stable and idémle vibrations occur. A Rayleigh-Ritz approacfr'? determines the resonance fre-
frequency scan detected all the resonance peaks in a frguencies together with the associated sets of expansion co-
quency band as shown in Fig. 1. Peak-width measuremengfficients a, through an eigenvalue problem. According to
yielded internal frictions of individual resonance modes. Wedeformation symmetry about the three principal axes, free-
measured the resonance frequencies and corresponding inteibration resonance frequencies of an oriented tetragonal
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those calculated by E@6). Excellent agreement allowed us
to make unambiguous mode identification. Because such a
displacement distribution is hardly affected by the material
coefficients and it is governed by shape and orientation of
: the solid, we do not requirgoodinitial guesses o€Cj;,; and

129.89 kHz (Ay-3) eijx for the inverse calculation. We achieved correct mode
identification even with sets of initial guesses different from
true values by more than 50%. Thus, we identified 48 peaks
and entered them into the inverse calculatighfew modes
gave ambiguous displacement figures because of peak over-
lapping and low peak heights, which we omitted in the cal-
culation) Table | shows the measured and calculated reso-
nance frequencies. Their rms difference was 0.27%. Table I
shows the elastic constants and piezoelectric coefficient de-
termined in the present study together with those reported
previously.

Figure 3 shows internal frictions at individual resonances.
Internal friction measured in vacuum is smaller than that in
. | ambient pressure by a factor about 1.5. Energy leakage into

air causes background energy loss and increases the as-
measured internal friction. Thus Fig. 3 emphasizes the neces-
sity of the internal-friction measurement in vacuum for low-
Q! materials.

In deducing the internal-friction tensor, we assumed it to

FIG. 2. Calculatedleft) and measuredright) distributions of b€ independent of frequency. However, in the low-frequency
out-of-plane displacement amplitude on thesurface of the speci- region, internal friction apparently depends on frequency.
men. Bright area implies large displacement amplitude and black hus, we omitted measurements at low frequencies and used
area zero amplitude, that is, nodal lines. The maximum amplitude ifive sets of frequency ranges(i) 50 internal frictions in
about 1 nm. 150-287 kHz(ii) 45 in 166—287 kHz(iii) 40 in 181287
kHz, (iv) 35 in 204-287 kHz, andv) 30 in 216—-287 kHz.
"rhe five sets of internal-friction data yielded identical com-
onents of the internal-friction tensor within acceptable error
ands. The results are shown in Table 1.

" 222.69 kHz (B,,-5)

243.94 kHz (B3g-5)

{ 270.87 kKHz (B2,-8)

rectansgularsparalIelepiped can be divided into eight vibratio
groups'?¥®and, by calculating the resonance frequencie
of each vibration group independently, we can reduce th
number of basis functions and then the computation time.
Following Ohno’s study, we performed a least-squares-
fitting procedure for the calculated and measured resonance V. DISCUSSION
frequencies to deduce th&;, and e, simultaneously. In
this inverse calculation, comparison of the measurements
with the calculations must be made on exactly the same reso- First, we discuss the accuracy of our results. This is an
nance mode. Otherwise, resultant material coefficients argnportant task in the physical point of view because we can
physically meaningless. We achieved correct mode identifidiscuss physics based on accurate and reliable measure-
cation by computing the displacement distributions on a viments. Four error sources could affect the resulting coeffi-
brating specimen surface using E@) and comparing them  cients in the present method. They #ilemeasurement error
with the measurementsee Fig. 2™ ) for resonance frequenci¢s.0.01%, (i) measurement errors
The dielectric coefficients;; can be determined by ca- for dimensions and density<0.02%, (iii) misorientation

pacitance measurements with good accuracy, and we fix€dor (less than 0.2° and (iv) errors in the calculated reso-
the e;; at averaged values from previous studiesea$  pance frequencies~0.1%. Thus, the calculation error

— — 12 — —12
=201.0<10" ** ande 35=218.7<10" 2 F/n®. dominates the accuracy of the resulting coefficients. It occurs

aomion s remmatin o e depentan et eiorbSCaUSe o he approxmaton of dspiasemerts and lect
bp b potential by a linear combination of Legendre polynomials

-1 H 3,20,21
componentsQy from the peak widths: A complete [Egs. (6)—(8)]. Increasing the number of the basis function

_1 .
set of Cyjq and Q;y enables one to calculate mechanical oy ces this error, but increases the computation tive.

losses of all possible ultrasonic modes, including unmeasUliseq 60—80 basis functions for a displacement and electric

a_ble r_nodes, and then to_flnd a Iess-lossy m_ode, prOpa_‘gat'%tential in calculating frequencies of one vibration group.
d_|rect|on, and surface orientation for designing acoustic deSuch a material coefficient that shows contributions to the
vices. resonance frequencies smaller than the calculation errors can
not be determined accurately. We calculated the contribu-
IV. RESULTS . L. .. . .
tions of individual coefficienf¢ and estimated possible
Figure 2 compares some of distributions of the displacemaximum errors using the calculation erréfswhich are
ment amplitude measured by Doppler interferometry withshown in Table II.

A. Accuracy of the results

024104-3



OGl et al.

TABLE I. Resonance frequenciéslHz) of «-TeO, rectangular
parallelepiped crystal measurefl ¢, by the piezoelectric tripod
at 30°C and calculatedf(,,) by the Lagrangian minimization
method. The rms difference is 0.27%. Mode notation follows Mo-

chizuki (Ref. 18.
Mode fmeas f(:alc diff. (%)
Au-1 0.102052 0.101939 -0.11
Au-2 0.153248 0.153415 0.11
Au-3 0.183265 0.182991 —0.15
Au-4 0.184328 0.184025 —0.16
Au-5 0.245183 0.245234 0.02
Ag-1 0.063715 0.06356 —0.24
Ag-2 0.085905 0.0855 —0.47
Ag-3 0.129891 0.129813 —0.06
Ag-4 0.190581 0.190765 0.1
Ag-5 0.208573 0.208927 0.17
Ag-6 0.211971 0.212273 0.14
Ag-7 0.214433 0.214899 0.22
Ag-8 0.238184 0.237626 -0.23
Blu-1 0.063552 0.063368 —0.29
Blu-2 0.134526 0.134383 -0.11
Blu-3 0.210471 0.210603 0.06
Blu-4 0.215879 0.21501 -0.4
Blu-5 0.22269 0.222743 0.02
Blu-6 0.239386 0.239906 0.22
B2u-1 0.077949 0.077734 —0.28
B2u-2 0.13616 0.135926 -0.17
B2u-3 0.156802 0.156779 —0.01
B2u-4 0.180404 0.180469 0.04
B2u-5 0.204789 0.204603 —0.09
B2u-6 0.232348
B2u-7 0.254821 0.257404 1.01
B2u-8 0.270873 0.271265 0.14
B3u-1 0.075063 0.074816 —0.33
B3u-2 0.14183 0.141669 -0.11
B3u-3 0.156986 0.156933 —0.03
B3u-4 0.181832
B3u-5 0.196158 0.195894 —0.13
B3u-6 0.232394 0.232556 0.07
B3u-7 0.266271 0.268832 0.96
B3u-8 0.273315 0.273779 0.17
Blg-1 0.127168 0.127106 —0.05
Blg-2 0.150752 0.150416 —0.22
B1g-3 0.169746 0.169433 —-0.18
Blg-4 0.243256
Blg-5 0.250712 0.250676 —0.01
Blg-6 0.25806 0.259008 0.37
Blg-7 0.260292
B1lg-8 0.272143 0.272042 —0.04
B2g-1 0.108169 0.108011 —0.15
B2g-2 0.166158
B2g-3 0.176056 0.176235 0.1

PHYSICAL REVIEW B 69, 024104 (2004

TABLE I. (Continued)

Mode fmeas f(:alc diff. (%)
B2g-4 0.220302 0.220517 0.1
B2g-5 0.245582 0.246129 0.22
B3g-1 0.106792 0.106619 —0.16

B3g-2 0.163709 0.163706 0

B3g-3 0.172693 0.172852 0.09
B3g-4 0.226291 0.226663 0.16
B3g-5 0.243943 0.244581 0.26

Our elastic constants are consistent with those measured
previously by conventional methods with larger errors. How-
ever, our piezoelectric coefficier;, is remarkably larger
than that measured by Ohmachi and Uchibig 53%. This
difference far exceeds the error limit. We consider our value
more reliable because the previous measurement involved
many error sources associated with the use of different crys-
tals, combination of different measurement methods, use of
electrodes and coupling materials for the acoustic transduc-
tion. The present method excludes all these error sources.

B. Elastic constants: Crystal physics

We discuss the interrelationships among crystal structure,
elastic constants, and interatomic bonding. Paratellurite
shows the following remarkable elastic properties.

(i) Longitudinal modulusC,; exceedsC;; by a factor 2.
The crystal is much stiffer along the axis.

(i) This stiffness anisotropy appears especiallyEigg
exceedingEjop by a factor 11.E gy and E(1gq denote
Young's moduli along thexs andx; directions, respectively.

(i) The diagonal shear modulus’'=(C;;—C49)/2 is
very small. Note thaCgs/C' =28, an enormous shear an-
isotropy.

(iv) The in-plane Poisson ratio,, is almost unity, while
the out-of-plane Poisson ratig 5 is almost zero.

(v) The longitudinal modulus Cyy;=(Cy+Cua
+2Cgp)/2 exceed<zs. C<L110> denotesC; in a coordinate
system where the; andx, axes are rotated about tkg axis
by 45°,

(vi) Poisson ratiov 119,110 iS Negativer ;1110 denotes
Poisson ratiov,, in the coordinate system rotated about the
X3 axis by 45°. Negative Poisson ratiieansverse expansion
during uniaxial extensionsignal odd behavior, often related
to an internal degree of freedom.

We identify two principal reasons for these remarkable
elastic properties. First is bond strength for stretching of
atomic pairs. Figure 4 shows the unit cell containing four
formula units, or twelve atoms. This cell follows from Tho-
mas’s crystal-structure determinatitrBoth oxygen and tel-
lurium occur in column VIB of Mendeleev’s table. Usually,
we call such elements isoelectronic. Oxygen, with electron
configuration[ He]2s?2p*, almost always shows &2 va-
lence (two electrons required to complete an ogtdtellu-
rium, with electron configuratiopKr]4d'%s?5p#, can also
show a—2 valence. But, as a cation it shows valenicé or
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TABLE Il. Elastic constant£;; (GPa, piezoelectric coefficiert; , (C/mP), Poisson ratio’;; , and internal
friction Q;;*, of a-TeO, at 30 °C.

Ohmachi and Arlt and Mirgorodsky Qi]l
Present Uchida(Ref. 5 SchweppgRef. 4 et al. (Ref. 72 (10°9)

Cn 55.75+0.02 55.7 56.0 59.3 6:00.6
Cas 106.6-1.5 105.8 105.1 102.2 5:81.7
Cu 26.6+0.2 26.5 27 12.3 7%0.9
Ces 65.8+0.3 65.9 66.8 43.6 12:80.4
Cq 51.1+0.1 51.2 51.6 53.8 590.7
Cis 22.9+0.9 21.8 27.2 53.4 0:10.9
ey 0.330+0.03 0.216
B 45.3 4.6
C’ 2.32 7.4
Cluig 119.3 9.7
E(100 8.87
E ooy 96.8
127 0.91
Vi3 0.019
V31 0.21
V(110/(110) —0.15
V(110(001) 0.25
V(001)(110 0.21

&Calculated by a joint model.

+4. In TeG,, the latter valence occurs, meaning that the 2unknown?* (In SeG,, the bond angle equals 11%).Adding
electrons comprise an inert pair, a nonbonding valencethe Te, O covalent radii0.73, 1.35 A gives for the solid a

electron pair.

We must consider three bond types:
Te-O. The closest Te-Te distan@® in metallic tellurium is

predicted bond length of 2.08 A. Figure 4 shows Te-O bonds
Te-Te, O-O, anaf 1.88 A, typifying strong covalent low-coordination bonds
(between pairs 1-5, 2-6, 2-10, 3-7, 3-12, 4-8, 4-9 in the dia-
2.86 A. In TeQ, the closest Te-Te distance is 3.74 A. Be- gran'i’_ Te-O bonds also occur with |arger than optimum dis-
cause interatomic interactions gods" (n ranges from 2 to
10 or highey, we expect little Te-Te contribution to bonding.
The shortest O-O bond in Te@neasures 2.69 A. This com-
pares with a Shannon-Prewittfourfold-coordination value
of 2.48 A. Thus, we expect some O-O contribution to bond
ing. In Fig. 4, the shortest bonds are represented by bon
between the 5-6, 10-12, 7-8, 9-11 oxygen-atom pairs.

As for the Te-O bonds, we note first that in the free Te-O

tance:

molecule the bond length is 1.83 A, the bond angle being

10 T

o' o)

&
T
L S

4 vacuum

O ambient pressure

Frequency (kHz)

FIG. 3. Internal friction versus frequency measured in vacuum
and ambient pressure at 30 °C.

FIG. 4. Crystallographic structure in a unit cell of paratellurite.
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2.12 A(atom pairs 2-5, 2-12, 4-7, 4-11 in the dia-
gram). Because of their extra lengti3%) these bonds are
much weaker. Thus, as emphasized by Mirgorodsky and
coauthors, TeO, consists essentially of TeQinits, with two
“strong Te-O bonds and two weak Te-O bonds. The crystal
ilds up by a string of Te-O bonds alternating two-strong/
two-weak/two-strong. The crystallographic arrangement of
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observationgi)—(vi), that is, large elastic anisotropies in the
basal-plane and x; directions (large C33/C;; and
E(ooy/E(100), Unusual Poisson ratios v{;~1,;3
~0,v(119(110<0), nearly zero shear modul@’, and the
large modulusC<L110>, which reflects the bond strength for
stretching.

The bulk modulusB is low, 45 GPa. Here, independent of
the shear-mod€;;y; ,*°

X2

1 .
B:§Ciijj [Sum Onl,]]. (9)

It is useful to consider the linear compressibilities

K=Sijk|€i€j' (10)

Here s;j denotes the tensor inverse Gfj, and{ denotes
components of a unit vector. For tetragonal symmetry, this
becomes

2
K=(811FS12F S13) —(S11+ 812~ S13—S39) 3. (11)

Substitution gives «(100)=0.0081 GPal and «(001)
=0.0059 GPal. In this property, Te@shows near isotropy.
V<1105<T10><0 The bulk modulus relates to these by

(b) () B=(2«(100) + x(001)) L. (12)

FIG. 5. (a) Lattice projection on the;-X, plane of paratellurite,  Thys the low bulk modulus reflects the high compressibility
(b) star-shape truss unit constructing the lattice structure (ena in the basal plane.

schematic explanation of a negative Poisson ratio when the stat- Acoustically, the Debye temperatué, is defined &
shape truss is deformed along #14.0) direction(dashed line indi- ’
cates the truss shape before the deformation h (SN) 1/3(

P\ e
i by —) V- (13

. . M
these strong, weak bonds explains some of ;Te@lastic

properties. Here, k denotes Boltzmann constarit,Planck constantN
This crystal physics explains observatigijsand i), be- ~ Avogadro constant, and the mean atomic massy, denotes

cause the strong bonds nearly align with f3exis while the ~ the mean sound velocity given by

weak bonds align close to thg —x, plane[see Fig. 5)].

However, it is less satisfactory in explaining observations 3 _ 2 +i (14)

(iii)~(v), especially observatiofv), where it predictsC; T

= Cg3 because a projection onto the basal plane shows thz?—‘ere vg and v denote the average-over-direction shear-

the weak bond aligns well with eith¢t10] or [110]. ~  \ave and longitudinal-wave velocities, respectively. We nu-
As a second part of the crystal physics, we consider gnerically determined,, using the monocrystal;; to solve
star-shape truss structure. We see that the lattice structufge christoffel equation for a large number of random direc-
projected onto the basal plafgig. 5@a)] consists of a star- (ions and integrating the mean sound velocity over all
shape unit composed of four Te atoms and four oxygen atépacez.s This method yields »,=1907 m/s and Op
oms as shown in Fig.(6): Te and O atoms connect with _ 531 g K at 30°C. This value is much smaller than for
‘r’w"eak and s:rong bonding altherna:]ely. The unit ?trut():turg_ bejsual oxide crystals@,=781K at room temperature for
aves as a truss structure when the resistance for bending i 27 ; y 3
Te-O bonds is weak. It is well known that a square truss?z;fgtzy' fﬁ;g)r(:;p\lgé“ ;&{fiﬁgghg\tl_ggsgiﬁs \slg%aer wave ve
consisting of four rigid bars connected to each other by free- ' '
rotation joints, shows no resistance to a shear deformation
along the square’s sid&orresponding tadC’'=0) and that
Poisson ratio nearly equals unity when it is deformed along a We consider phonon-phonon interactions as the principal
direction inclined by 45° from the side. These properties aporigin of paratellurite’s internal friction. Through lattice an-
ply to the star-shape truss structure. Furthermore, the staharmonicity, acoustic waves break the equilibrium state of
shape truss yields a negative Poisson ratio when deformetiermal phonons. Scattered phonons subsequently equilibrate
along a direction perpendicular to the sides as shown in Figoy interacting with a low-frequency-mode acoustic phonon
5(c). Thus, by considering the star-shape truss structure oand other thermal-mode phonons, during which an energy
the x;—Xx, basal plane as well, we can explain all of theloss occurs. The energy loss relates closely with a dimen-

C. Internal friction
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sionless constant, the Greisen parametey, which shows
the degree of a crystal's anharmonicity and quantifies rela-
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tionships between solid-state thermal and elastic properties.
According to the Akhieser resuif,the energy loss is propor-

when w7<1, which normally applies to measurements at
room temperature at kilohertz frequencies.

On the other hand, Ledbettérshowed that the tempera- T —
ture derivative of the bulk moduluB relates simply to the 0 1 2 3 4

Gruneisen parametey: | dC;/dT |/C; (10%)
(dBS

tional to y° as 10+ .
—_ - Cu L’ |

v | e i

C T'y 0T ) L E Cu ¢ .

Qphonor™ —2— 1522 (15) - o ’% !

> S -

Here, C, denotes specific heat per unit volumieabsolute - o Ca Ciz .
temperature, ana sound velocity.7 denotes the relaxation [ ]
time, the time required to equilibrate the interchange of - e -
acoustic energy with thermal energy. Equati@5) is valid 0 — Ci .

w

FIG. 6. Correlation between internal-friction components and
magnitudes of normalized temperature derivatives of elastic con-
stants. The temperature derivative values are taken from Ohmachi
Here,V, denotes the atomic volume. A relationship like Eq. and Uchida(Ref. 5.

(16) should hold for otheC;j,, . Thus the magnltude of tem-

perature derivative of;j, and internal frlctlorQ,JIk should hybrid method. Our elastic coefficients are consistent with
show a positive correlation through the ‘@aisen parameter those reported previously, but our piezoelectric coefficient is
when phonon-phonon interactions provide the dominantarger than the previous value by 53%.

damping mechanism. Indeed, we see their positive correla- (2) Paratellurite shows remarkable elastic properties, in-
tion in Fig. 6. cluding a negative Poisson ratio, very strong anisotropy be-

Above discussion applies considering the magnitude ofween Young's moduliE og and Ejngy, and almost zero
internal friction at a constant frequency. However, concernvalue of diagonal-shedaZ’. All these properties can be un-
ing the frequency dependence of internal friction, our resultlerstood by considering alternating weak-strong Te-O bonds
fails to obey the conventional phonon-phonon theory beand a star-shape truss structure on the basal plane. The latter
cause the theory predicts an increase of internal friction withindicates very weak resistance for Te-O-bond bending.
increasing frequency. Recent studies on internal friction in (3) The elastic Debye temperatuBis, =232 K at ambient
piezoelectric crystals show that internal friction is indepen-temperature agrees well with the heat-capacity value. For
dent of frequenc’? or decreases with increasing frequefity. oxides, it is especially low.

Thus the frequency-dependence term in the phonon-phonon (4) Internal friction correlates with the elastic-constant
interaction theory may need to be improved. temperature derivatives. This correlation is interpreted as
meaning thaQ ! arises from phonon-phonon interactions.

3ky(y+1)

A (16)

dT
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