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Russian doll renormalization group and superconductivity
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We show that a simple extension of the standard BCS Hamiltonian leads to an infinite number of BCS
eigenstates with different energy gaps and self-similar properties, described by a cyclic renormalization group
flow of the BCS coupling constant which returns to its original value after a finite renormalization group time.
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The renormalization groupRG) continues to be one of The model we shall consider is an extension of the re-
the most important. tools for studyi_ng the q_ualitative andduced BCS model used to describe ultrasmall superconduct-
quantitative properties of quantum field theories and manying grains*® although our results are valid for more general

body problems in condensed matter physics. The emphasises. Let] . (c; ) denote creation-annihilation operators
so far has been mainly on flows toward fixed points in thesgr electrons in time-reversal statdsc). The index j
ultraviolet or the infrared. Recently, an entirely novel kind of —_1 N refers toN equally spaced energy leveds with
RE ﬂpwthhaéebeeﬂ'b(_:itlscovertla'd bmha _nu.mt;terﬁ O.I slg/(sstems_w<8]_<w_ The energye; represents the energy of a pair
WhErein the <L exnibils a Cyclic behavior. altetiate of electrons in a given level. The single-particle level spacing
transformation the couplings return to their original values il be denoted bvs. ie. e . —e.=25 so thatw=NSs is
and the cycle repeats itself. Thus if one decreases the size of he Deb yo, 1.€., EJ“_ gj= <% bl — T“’_T q

the system by a specific factor that depends on the couplin}j¥ice the Debye energy. L& =c; _c; .., bj=¢j ,¢j _ de-

constants, one recovers the initial system, much like a Rugloté the usual annihilation and creation Cooper-pair opera-
sian doll, or quantum version of the Mandelbrot set. Be-tors. Our model is defined by the reduced BCS Hamiltonian

daque, Hammer, and van Kolck observed this beéhavior in a N N
three-body Hamiltonian of interest in nuclear physichis _ T t
motivated Glazek and Wilson to define a very simple H _121 £jbjb; 2 Viibjbjr, (1)

quantum-mechanical Hamiltonian with similar properfies. _ _ _
In the meantime such behavior was proposed for a certaiwhere V;;, is the scattering potential. In the usual BCS
regime of anisotropic current-current interactions in two-model,V;; is taken to be a constant. Here we add an imagi-

dimensional quantum field theoty. nary part which breaks time reversal,
The models in Refs. 1 and 2 are problems in zero- ) )
dimensional quantum mechanics, and are thus considerably (g+ih)o if e;>ej
simpler than the quantum-field theory in Ref. 3 In the latter, Vi =1 98 it ej=¢; )

standard quantum field-theory methods of the renormaliza-
tion group were used, however knowledge of héunction

to all orders was necessary to observe the cyclic flow. Whathis Hamiltonian is Hermitian sinc®*,=V.,;. We con-

is somewhat surprising is that the model considered in Ref. 3i4er the positive dimensionless couplings;njd h. This is

is not very exotic, and is in fact a well-known theory that ie gimplest possible extension of the BCS model that breaks
arises in many physical problems: at one loop it is nothing;me_reversal symmetry of the pairing interaction. Universal-
more than the famous Kosterlitz-Thouless RG flow, wher€, arguments suggest it should arise in a number of ways.
the cyclic regime corresponds to the usual crossover regime” g, 5 large system sizBl the Hamiltonian(1) can be

This motivated us to find a simpler many-body problem thaljjagonalized by the grand-canonical BCS variational ansatz
captures the essential features of the cyclic RG behavior. We

found that a simple extension of the BCS Hamiltonian has N
the desirable properties, namely, our model is based on the |¢BCS>=H (uj+vjb;r)|0>. 3
BCS Hamiltonian with scattering potenti&l;;, equal tog =1

+ih for§j>8y andg—ih for £;<g;, in units of the energy  The mean-field method yields the well-known equations
spacings.

(g_lh)5 if 8J<8]/

The main features of the spectrum are the following. For , 1 & , 1 2idh &
large system size, there are an infinite number of BCS eigen- U ) 1+ E | VUl =§e 1= E |
states, each characterized by an energy §apvhich de- ! !
ends ong and h. The role of these many eigenstates be-
D J v e Ei=VE AL, &=s—n-Vj, (4)

comes clearer when we investigate the RG properties. As in

the models considered in Refs. 1-3, the RG flow possesseghereA; and ¢; are the modulus and the phase of the BCS
jumps fromg=+ to g=—c and a new cycle begins. Let grqer parameter ;= A e'?i, which satisfy the gap equation:
L=e %L,y denotes the RG scale, which in our problem cor-

responds tdN the number of unperturbed energy levels, and

~ A - .
\ the period of RG cycleg(e *L)=g(L). We show that AJ:_E_ VJ-J-,—J, AJEA]-e'¢i. (5)
N=malh. i'#] St
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We shall solve this equation at half filling where the number Aﬁ
of electron pairs is half the number of energy levels. Due to EM~— S =EM~ —15N2%e 227/ (12

. : : g 86
particle-hole symmetry the chemical potential equation is
satisfied withu=0. In the thermodynamic limitN—o and  Thus the spectrum of condensation energies reflects the scal-
6—0, with fixed w=N4, the sums ovee; become the in- ing behavior of the gaps. At the microscopic level the scaling

tegrals[? de/26. The gap equation turns into relation A,~e "™"A, implies that the size of the Cooper
pairs of thenth solution, given by the correlation length,
- ode' A"y [ (e [o]de’ A(e") scales ag,~e"""&,.
Al(e)=g| — +ih f —J - Next we derive the RG equations for our model. bgt,
~0 2 E(g') o Je | 2 E(g")

hy denote the couplings for the Hamiltoni&h, with N en-
(6)  ergy levels. The idea behind the RG method is to derive an
whereA (s)=A(s)e ). effective HamiltoniarH_; depending on renormalized cou-

plingsgy_1,hy_1 by integrating out the highest energy lev-

els gy or g4. This can be accomplished by a canonical
dé  h transformatiorf.
=, (7) We perform the calculation for general couplings .
de  E(e) The integration of the levet, yields

Differentiating Eq.(6) with respect tae yields

and the condition thaf(e)=A is independent ot as for
the standard BCS model which corresponds to the tase V=D (N EV(N)V(N)
i’ i’

i =+
=0. The solution to Eq(7) can be taken to be 2 "IN TN

EnEj En— &y

) , (13

e where §;=¢;—Vj;. Integration of the levek; gives the
d)(s):hsinh‘lK, (8)  same Eq(13) with the replacemeny— &— — & +§;.
Specializing to the potential, E¢2) and approximating
showing that the superconducting order parameter acquiréi—¢j Of —£1+¢&; by @=NJ, the above equation implies
an odd energy dependence phase which is logarithmic, i.e.,
In(2lel/A) for |e|>A.

1
C1=gnt+ = (g3+h3), hy_1=hy. 14
Using Eq.(8) in the gap equatior6) gives In-17 0w N(gN W) -1 =h 19

Thush is unrenormalized.
B(w)dp , h - ' .
1:f ——(gcosp+hsing)=tang(w)=—. (9) In the largeN limit one can define a variables
0 h 9 =InNgy/N, whereNj is the initial size of the system. Then

Solving Eq.(9) for the gap yields an infinite number of so- the 8 function reads

lutions A,,. They can be parametrized as follows: dg No
—=(g%*+h?), s=In—. (15

nar ds N

A=, W=ttt =012 (10 g6 solution to the above equation is
heret, is the principal solution to the equation
whereto 1s T principal sl quat g(s)=htar{hs+tan‘l %) . 9o=9(Ny). (16
h T
tan(hty) = g’ O<t0<ﬁ. (1) The main features of this RG flow are the cyclicity

The gaps satisi\g>A,>-... Each gapA, represents a g(s+N)=g(s)=ge *N)=g(N), )\E%, (17)

different BCS eigenstatd yils). One can show that

(54 Wied | <exd —N(A,—A,)%8w?], in the limit where  and the jumps from+ = to —c, when reducing the size.
Ap<w. Thus in the largeN limit, these eigenstates are or-  The cyclicity of the RG has some important implications
thogonal and should all appear in the spectrum, together witfor the spectrum. LefE(g,h,N)} denotes the energy spec-
the usual quasiparticle excitations above them. At zero temtrum of the HamiltoniarH, . The RG analysis implies we
perature and no external fields the system will be in itscan compute this spectrum using the Hamiltonian
ground statd yq), and|y#{tsY) will be excited states. In - Hy, (g(N")) if g(N’) is related tog(N) according the RG
the limit h—0 the gapsA,-o—0, and sinceta=1/g, Ay  equation(16). Moreover, ifN" andN are related by one RG
~2we M, in the weak-coupling regime, recovering the cycle, N'=e N, theng(N’)=g(N). Thus a plot of the
standard BCS result. spectrum{E(g,h,N)} as a function ol but atfixed g h is
For weak-coupling modeld ,.<w, all the gaps are related expected to reveal the cyclicity {E(g,h,e *N)}
by a scale transformatia,~2Nde o """ Therefore, de- ={E(g,h,N)}. Since our RG procedure is not exact, we ex-
fining the condensation energy of thth BCS eigenstate as pect to observe this signature within the range of our ap-
ED =y H| i — Ers we get proximations, i.e., fol E|<w. Indeed this agrees with the
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o . . T T order to get a further confirmation of our results we should
ol g=1 // compute the spectrum for a finite-size system. However, it is
i = ] very difficult to reach intermediate sizes for this model nu-
o ;ﬂ??éf merically, since the dimension of the Hilbert space grows as
= ONINYV2 F , R
o 10F P S QU S . Fortunately, to this end, the similarities between the
= many-body case and the case of one Cooper pair, in the
éﬁ N e i i ey presence of the Fermi sea, are widely known.
el / i For one Cooper pair in the presence of the Fermi sea,
A // consider an eigenstate of the forfr)=13;; bJ-T|0). The
/// ] Schrodinger equation reads
30 -
I e / 1 1 . .
) 3% 200 N T S(SJ_E)wj:g¢j+(g+|h)l2<j ¢I+(g_|h)|2>j W, (20)

FIG. 1. Exact eigenstates of one-Cooper-pair HamiltoniarNfor W't_h g€ (O’.w)’ \.e., the .Fe'fm' sea Is not accessible for the
levels, fromN,=500 down to 50. We depict only the states nearestP@- Then, in the largét limit, the sumsZ; are replaced by

to zero. The vertical lines are at the valués=e ™iN,. The dot-  Integrals/gde/24, leading to
ted horizontal lines show the cyclicity of the spectrum. ode’ . ol de’
result shown in Eq(12). This can also be observed in Fig. 1 (e=B)yle) gfo 2 ye")+in fo L } 2 wie’).
for the one-Cooper-pair case, with the cyclicity given by (21
N1=2\ (see below.

Eliminating go in Eq. (16) in terms of the mean-field so-

Differentiating the above with respect toand integrating,

lution, Egs.(10) and(11), we observe that the jumps g{(s) one obtains
from +o to — occur at scales=t,,. As N decreases, 1
g increases steadily te-» and then jumps to-«. At g 1/’(8)~Ee'h'"(£{)- (22)
=+, ty=0, t;==/h, ..., whereas forg=—o, t,
=mx/h, t;=2x/h, ... . Plugging this into Eq(10), one  This wave function does not have cuts in two casesE
readily sees that <0 and(ii) E>w. Case(i) corresponds to the usual Cooper-
pair problem where one is looking for bound-state solutions
Ao(g=+x) =0, (these are the solutions we claim to have a similar behavior
to the many-body cagePlugging Eq(22) back into Eq(21
Appa(g=+o)=A,(g=—), (18 one finds ybody casePlugging Eqlz2) 2y
which indicates that at every jump the lowest condensate +ih ih
disappears from the spectrum, sinE&)(g= + )= —o. g7 _ 1—2) _ (23)
Equation (18) implies, for the remaining eigenstates, g—ih E

EN*H(g=+0)=ED(g=—). This result is in agreement Equation(23) has an infinite number of solutions given by

with Eq. (12). Therefore, the e(ig)enstawg};*sl)) of one RG

cycle plays the same role agyls of the next cycle. The B ® B 2mn

blow up of Aq andE) at g=+= is an artifact of the RG En=- eh—1" th=tot = neZ, 29

scheme used here, since we can only trust the RG for ener- ) o ) )

gies below the cutoffo. However the disappearance of Whereto is the principal solution to the equation

bound states is correctly described by this 8e the one- 1 h .

Cooper-pair problem for a more detailed discusgion tar(—hto) =—, 0<ty<—.
When N=cc the infinite number of BCS eigenstates are 2 h

all expected to appear in the spectrum. However at fiNite The n=0 solutions correspond tB,<0, while those with

this is not possible since the Hilbert space is finite dimeny < yield E,> .

sional. One can use the RG to estimate the number of eigen- a5 for the many-body case the spectrum has a scaling
statesnc in the spectrum as a function &f. From the dis-  pehavior for weak-coupling systems, namely,

cussion above an eigenstate disappears from the spectrum for

each RG cycle. Thusic should simply correspond to the E,~—Né&e to~2n7/h, (26)
number of cycles in IiN:

(25

A RG analysis similar to the one in the many-body prob-
h lem leads to the equation
ne~ —InN. (19
K gn+hi
So far we have found a close relationship between the spec- On-—2=0OnT m hn-1=hy, (27)
trum of our extended BCS Hamiltonian in the mean-field N
approximation and the RG flow of the coupling constants. Inwhich in the largeN limit becomes
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(a) (b) En+1(N,g,h)=E (e MN,g,h). (31
3000 = T T T __.___,:///950
I gO =1 Zéw
mk h=12 ——=w»  Figure 1 also shows the existence of critical valtks,, in
ool < 1 —== the intervals ¢ ™iN,e”(""1iN), where the bound state
o S - > T 10 closest to the Fermi level disappears into the “continuum.”
g 0 —=————————0 This effect leads to the reshuffling of bound states;1
o e T ﬁ 1o —n, observed in Eq(31). The critical sizes are also related
1000 0 \\\_‘_ZO by scaling, i.e.,N¢ /N qi1=€ 1. All these phenomena
[ 0 L e are in good agreement with the RG interpretation we pro-
'ZOOOX) \\ Juo posed, where the eigenstates disappear at scales @(ere
o @ (I N LN T =t,) = +«. All these points are related by the scaling factor
%00 400 300 200 N 100 50400 300 zooN 100 507 e M,

The RG behavior is presented in Fig. 2, which shows the
FIG. 2. Eigenstates of one-Cooper-pair Hamiltonian wath  eigenvalue&, (N) of the one-Cooper-pair Hamiltonian, with
given by Eq.(27) with go=1 andh=12. The vertical lines denote gy running under Eq(27). The spectrum remains unchanged

the positions at whicly jumps from+o to — . for E,(N)<NS§¢, as shown in Fig. @). In Fig. 2a) one ob-
serves that for the energi&s,(N) =N the result of the RG
dg 1 ., is not reliable. Nevertheless the RG flow describes qualita-
(g°+h%). (28)

ds 2 tively the disappearance of the lowest bound state and the

ds 2

) ) o . reshuffling of energy levels after a cycle, and furthermore at

The solution to this equation is given by E@A6) just by e predicted scales.

replacinghs—hs/2. This implies that the period of the cy-  |n summary, we have shown that adding to the standard

clicity in s=InNo/Nis \y=2/h. BCS Hamiltonian a time-reversal breaking term, param-
The factor 1/2 in the above formula, as compared to Edetrized by a coupling constaht generates an infinite num-

(15), comes from the nonaccessibility of the Cooper pair toper of BCS eigenstates with energy gapsrelated, for weak

the states below the Fermi level. BCS couplingsy, by a scale factoe ™ with A= 7/h. This
The discussion leading to E(L8) can be repeated for the ynysual spectrum is explained by the cyclic behavior of the
one-Cooper-pair problem obtaining RG flow of g, which reproduces itself after a finite RG time

sequal tor. We have also solved the finite-temperature BCS
gap equation, obtaining a critical temperatiligg, for thenth
E,.1(g=+%)=E (g=—o). (29) eigenstate which is related to the zero-temperature gap

A,(0) exactly as in the BCS theory, i.€),,(0)/T ,=3.52
Thus we expect that in each RG cycle a bound state wilfor weak couplings.

Eo(g=+®)=—0,

disappear. The analog of E(L9) is The results obtained in this Rapid Communication can be
easily extended to a generic BCS model where the pairing

Ng~ lmﬂ (30) transition amplitude has an imaginary term depending on the

27 2 energy difference between the levels involved. In this sense

the cyclicity of the RG and the existence of infinitely many
|%CS eigenstates are robust features of the proposed model.
An important issue is whether theinteraction has a mi-
croscopic origin. Assuming that theb initio Hamiltonian is
Yime-reversal invariant, this would require that time-reversal
symmetry is broken explicitly or spontaneously. We hope to
report our investigations in this direction in the near future.

whereng is the number of bound states in the spectrum.

This again shows the agreement between the mean-fie
and the RG results. We confirm below this picture with nu-
merical calculations. Figure 1 shows the numerical solutio
of Eq. (20) for g=1, h=12, andN ranging from 500 down
to 50. For eachN there areng(N) bound statesg,<O0,
whereng(N) is in good agreement with E¢30).
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