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Russian doll renormalization group and superconductivity

André LeClair,* JoséMarı́a Román, and Germa´n Sierra
Instituto de Fı´sica Teo´rica, UAM/CSIC, Madrid, Spain

~Received 21 October 2003; published 27 January 2004!

We show that a simple extension of the standard BCS Hamiltonian leads to an infinite number of BCS
eigenstates with different energy gaps and self-similar properties, described by a cyclic renormalization group
flow of the BCS coupling constant which returns to its original value after a finite renormalization group time.
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The renormalization group~RG! continues to be one o
the most important tools for studying the qualitative a
quantitative properties of quantum field theories and ma
body problems in condensed matter physics. The emph
so far has been mainly on flows toward fixed points in
ultraviolet or the infrared. Recently, an entirely novel kind
RG flow has been discovered in a number of syste
wherein the RG exhibits a cyclic behavior: after afinite RG
transformation the couplings return to their original valu
and the cycle repeats itself. Thus if one decreases the siz
the system by a specific factor that depends on the coup
constants, one recovers the initial system, much like a R
sian doll, or quantum version of the Mandelbrot set. B
daque, Hammer, and van Kolck observed this behavior
three-body Hamiltonian of interest in nuclear physics.1 This
motivated Glazek and Wilson to define a very simp
quantum-mechanical Hamiltonian with similar propertie2

In the meantime such behavior was proposed for a cer
regime of anisotropic current-current interactions in tw
dimensional quantum field theory.3

The models in Refs. 1 and 2 are problems in ze
dimensional quantum mechanics, and are thus consider
simpler than the quantum-field theory in Ref. 3 In the latt
standard quantum field-theory methods of the renormal
tion group were used, however knowledge of theb function
to all orders was necessary to observe the cyclic flow. W
is somewhat surprising is that the model considered in Re
is not very exotic, and is in fact a well-known theory th
arises in many physical problems: at one loop it is noth
more than the famous Kosterlitz-Thouless RG flow, wh
the cyclic regime corresponds to the usual crossover reg
This motivated us to find a simpler many-body problem t
captures the essential features of the cyclic RG behavior.
found that a simple extension of the BCS Hamiltonian h
the desirable properties, namely, our model is based on
BCS Hamiltonian with scattering potentialVj j 8 equal tog
1 ih for « j.« j 8 andg2 ih for « j,« j 8 in units of the energy
spacingd.

The main features of the spectrum are the following. F
large system size, there are an infinite number of BCS eig
states, each characterized by an energy gapDn which de-
pends ong and h. The role of these many eigenstates b
comes clearer when we investigate the RG properties. A
the models considered in Refs. 1–3, the RG flow posse
jumps fromg51` to g52` and a new cycle begins. Le
L5e2sL0 denotes the RG scale, which in our problem c
responds toN the number of unperturbed energy levels, a
l the period of RG cycle:g(e2lL)5g(L). We show that
l5p/h.
0163-1829/2004/69~2!/020505~4!/$22.50 69 0205
-
sis
e

s

s
of
g

s-
-
a

in
-

-
bly
,
a-

at
3

g
e
e.
t
e

s
he

r
n-

-
in
es

-
d

The model we shall consider is an extension of the
duced BCS model used to describe ultrasmall supercond
ing grains,4,5 although our results are valid for more gene
cases. Letcj ,6

† (cj ,6) denote creation-annihilation operato
for electrons in time-reversal statesu6&. The index j
51, . . . ,N refers toN equally spaced energy levels« j with
2v,« j,v. The energy« j represents the energy of a pa
of electrons in a given level. The single-particle level spac
will be denoted byd, i.e., « j 112« j52d, so thatv5Nd is
twice the Debye energy. Letbj5cj ,2cj ,1 , bj

†5cj ,1
† cj ,2

† de-
note the usual annihilation and creation Cooper-pair ope
tors. Our model is defined by the reduced BCS Hamilton

H5(
j 51

N

« jbj
†bj2 (

j , j 851

N

Vj j 8bj
†bj 8 , ~1!

where Vj j 8 is the scattering potential. In the usual BC
model,Vj j 8 is taken to be a constant. Here we add an ima
nary part which breaks time reversal,

Vj j 85H ~g1 ih !d if « j.« j 8

gd if « j5« j 8

~g2 ih !d if « j,« j 8 .

~2!

This Hamiltonian is Hermitian sinceVj j 8
* 5Vj 8 j . We con-

sider the positive dimensionless couplingsg and h. This is
the simplest possible extension of the BCS model that bre
time-reversal symmetry of the pairing interaction. Univers
ity arguments suggest it should arise in a number of way

For a large system sizeN the Hamiltonian~1! can be
diagonalized by the grand-canonical BCS variational ans

ucBCS&5)
j 51

N

~uj1v jbj
†!u0&. ~3!

The mean-field method yields the well-known equations

uj
25

1

2 S 11
j j

Ej
D , v j

25
1

2
e2if j S 12

j j

Ej
D ,

Ej5Aj j
21D j

2, j j5« j2m2Vj j , ~4!

whereD j andf j are the modulus and the phase of the BC
order parameter,D̃ j5D je

if j , which satisfy the gap equation

D̃ j5 (
j 8Þ j

Vj j 8

D̃ j 8

Ej 8

, D̃ j[D je
if j . ~5!
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We shall solve this equation at half filling where the numb
of electron pairs is half the number of energy levels. Due
particle-hole symmetry the chemical potential equation
satisfied withm50. In the thermodynamic limit,N→` and
d→0, with fixed v5Nd, the sums over« j become the in-
tegrals*2v

v d«/2d. The gap equation turns into

D̃~«!5gE
2v

v d«8

2

D̃~«8!

E~«8!
1 ihF E

2v

«

2E
«

v Gd«8

2

D̃~«8!

E~«8!
,

~6!

whereD̃(«)5D(«)eif(«).
Differentiating Eq.~6! with respect to« yields

df

d«
5

h

E~«!
, ~7!

and the condition thatD(«)5D is independent of« as for
the standard BCS model which corresponds to the cash
50. The solution to Eq.~7! can be taken to be

f~«!5h sinh21
«

D
, ~8!

showing that the superconducting order parameter acqu
an odd energy dependence phase which is logarithmic,
ln(2u«u/D) for u«u@D.

Using Eq.~8! in the gap equation~6! gives

15E
0

f(v)df

h
~g cosf1h sinf!⇒tanf~v!5

h

g
. ~9!

Solving Eq.~9! for the gap yields an infinite number of so
lutions Dn . They can be parametrized as follows:

Dn5
v

sinhtn
, tn5t01

np

h
, n50,1,2, . . . , ~10!

wheret0 is the principal solution to the equation

tan~ht0!5
h

g
, 0,t0,

p

2h
. ~11!

The gaps satisfyD0.D1.•••. Each gapDn represents a
different BCS eigenstateucBCS

(n) &. One can show tha

u^cBCS
(n) ucBCS

(n8)&u,exp@2N(Dn2Dn8)
2/8v2#, in the limit where

Dn!v. Thus in the large-N limit, these eigenstates are o
thogonal and should all appear in the spectrum, together
the usual quasiparticle excitations above them. At zero t
perature and no external fields the system will be in
ground stateucBCS

(0) &, and ucBCS
(n.0)& will be excited states. In

the limit h→0 the gapsDn.0→0, and sincet051/g, D0
;2ve21/g, in the weak-coupling regime, recovering th
standard BCS result.

For weak-coupling modelsDn!v, all the gaps are relate
by a scale transformationDn;2Nde2t02np/h. Therefore, de-
fining the condensation energy of thenth BCS eigenstate a
EC

(n)5^cBCS
(n) uHucBCS

(n) &2EFS we get
02050
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EC
(n);2

Dn
2

8d
⇒EC

(n);2 1
2 dN2e22t022np/h. ~12!

Thus the spectrum of condensation energies reflects the
ing behavior of the gaps. At the microscopic level the scal
relation Dn;e2np/hD0 implies that the size of the Coope
pairs of thenth solution, given by the correlation length
scales asjn;enp/hj0.

Next we derive the RG equations for our model. LetgN ,
hN denote the couplings for the HamiltonianHN with N en-
ergy levels. The idea behind the RG method is to derive
effective HamiltonianHN21 depending on renormalized cou
plingsgN21 ,hN21 by integrating out the highest energy le
els «N or «1. This can be accomplished by a canonic
transformation.6

We perform the calculation for general couplingsVj j 8 .
The integration of the level«N yields

Vj j 8
(N21)

5Vj j 8
(N)

1
1

2
VjN

(N)VN j8
(N) S 1

jN2j j
1

1

jN2j j 8
D , ~13!

where j j5« j2Vj j . Integration of the level«1 gives the
same Eq.~13! with the replacementjN2j j→2j11j j .

Specializing to the potential, Eq.~2! and approximating
«N2« j or 2«11« j by v5Nd, the above equation implies

gN215gN1
1

N
~gN

2 1hN
2 !, hN215hN . ~14!

Thush is unrenormalized.
In the large-N limit one can define a variables

5 ln N0 /N, whereN0 is the initial size of the system. The
the b function reads

dg

ds
5~g21h2!, s[ ln

N0

N
. ~15!

The solution to the above equation is

g~s!5h tanFhs1tan21S g0

h D G , g05g~N0!. ~16!

The main features of this RG flow are the cyclicity

g~s1l!5g~s!⇔g~e2lN!5g~N!, l[
p

h
, ~17!

and the jumps from1` to 2`, when reducing the size.
The cyclicity of the RG has some important implicatio

for the spectrum. Let$E(g,h,N)% denotes the energy spec
trum of the HamiltonianHN . The RG analysis implies we
can compute this spectrum using the Hamiltoni
HN8„g(N8)… if g(N8) is related tog(N) according the RG
equation~16!. Moreover, ifN8 andN are related by one RG
cycle, N85e2lN, then g(N8)5g(N). Thus a plot of the
spectrum$E(g,h,N)% as a function ofN but atfixed g, h is
expected to reveal the cyclicity $E(g,h,e2lN)%
5$E(g,h,N)%. Since our RG procedure is not exact, we e
pect to observe this signature within the range of our
proximations, i.e., foruEu!v. Indeed this agrees with th
5-2
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result shown in Eq.~12!. This can also be observed in Fig.
for the one-Cooper-pair case, with the cyclicity given
l152l ~see below!.

Eliminating g0 in Eq. ~16! in terms of the mean-field so
lution, Eqs.~10! and~11!, we observe that the jumps ing(s)
from 1` to 2` occur at scaless5tn . As N decreases
g increases steadily to1` and then jumps to2`. At g
51`, t050, t15p/h, . . . , whereas for g52`, t0
5p/h, t152p/h, . . . . Plugging this into Eq.~10!, one
readily sees that

D0~g51`!5`,

Dn11~g51`!5Dn~g52`!, ~18!

which indicates that at every jump the lowest condens
disappears from the spectrum, sinceEC

(0)(g51`)52`.
Equation ~18! implies, for the remaining eigenstate
EC

(n11)(g51`)5EC
(n)(g52`). This result is in agreemen

with Eq. ~12!. Therefore, the eigenstateucBCS
(n11)& of one RG

cycle plays the same role asucBCS
(n) & of the next cycle. The

blow up of D0 and EC
(0) at g51` is an artifact of the RG

scheme used here, since we can only trust the RG for e
gies below the cutoffv. However the disappearance
bound states is correctly described by this RG~see the one-
Cooper-pair problem for a more detailed discussion!.

When N5` the infinite number of BCS eigenstates a
all expected to appear in the spectrum. However at finitN
this is not possible since the Hilbert space is finite dim
sional. One can use the RG to estimate the number of ei
statesnC in the spectrum as a function ofN. From the dis-
cussion above an eigenstate disappears from the spectru
each RG cycle. ThusnC should simply correspond to th
number of cycles in lnN:

nC;
h

p
ln N. ~19!

So far we have found a close relationship between the s
trum of our extended BCS Hamiltonian in the mean-fie
approximation and the RG flow of the coupling constants

FIG. 1. Exact eigenstates of one-Cooper-pair Hamiltonian foN
levels, fromN05500 down to 50. We depict only the states near
to zero. The vertical lines are at the valuesNn5e2nl1N0. The dot-
ted horizontal lines show the cyclicity of the spectrum.
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order to get a further confirmation of our results we sho
compute the spectrum for a finite-size system. However,
very difficult to reach intermediate sizes for this model n
merically, since the dimension of the Hilbert space grows
2N/N1/2. Fortunately, to this end, the similarities between t
many-body case and the case of one Cooper pair, in
presence of the Fermi sea, are widely known.

For one Cooper pair in the presence of the Fermi s
consider an eigenstate of the formuc&5( jc j bj

†u0&. The
Schrodinger equation reads

1

d
~« j2E!c j5gc j1~g1 ih !(

l , j
c l1~g2 ih !(

l . j
c l , ~20!

with « jP(0,v), i.e., the Fermi sea is not accessible for t
pair. Then, in the large-N limit, the sums( j are replaced by
integrals*0

vd«/2d, leading to

~«2E!c~«!5gE
0

vd«8

2
c~«8!1 ihF E

0

«

2E
«

v G d«8

2
c~«8!.

~21!

Differentiating the above with respect to« and integrating,
one obtains

c~«!;
1

«2E
eih ln(«2E). ~22!

This wave function does not have cuts in two cases:~i! E
,0 and~ii ! E.v. Case~i! corresponds to the usual Coope
pair problem where one is looking for bound-state solutio
~these are the solutions we claim to have a similar beha
to the many-body case!. Plugging Eq.~22! back into Eq.~21!
one finds

g1 ih

g2 ih
5S 12

v

ED ih

. ~23!

Equation~23! has an infinite number of solutions given by

En52
v

etn21
, tn5t01

2pn

h
, nPZ, ~24!

wheret0 is the principal solution to the equation

tanS 1

2
ht0D5

h

g
, 0,t0,

p

h
. ~25!

The n>0 solutions correspond toEn,0, while those with
n,0 yield En.v.

As for the many-body case the spectrum has a sca
behavior for weak-coupling systems, namely,

En;2Nde2t022np/h. ~26!

A RG analysis similar to the one in the many-body pro
lem leads to the equation

gN225gN1
gN

2 1hN
2

N212gN
, hN215hN , ~27!

which in the large-N limit becomes

t

5-3
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dg

ds
5

1

2
~g21h2!. ~28!

The solution to this equation is given by Eq.~16! just by
replacinghs→hs/2. This implies that the period of the cy
clicity in s5 ln N0 /N is l152p/h.

The factor 1/2 in the above formula, as compared to
~15!, comes from the nonaccessibility of the Cooper pair
the states below the Fermi level.

The discussion leading to Eq.~18! can be repeated for th
one-Cooper-pair problem obtaining

E0~g51`!52`,

En11~g51`!5En~g52`!. ~29!

Thus we expect that in each RG cycle a bound state
disappear. The analog of Eq.~19! is

nB;
h

2p
ln

N

2
, ~30!

wherenB is the number of bound states in the spectrum.
This again shows the agreement between the mean-

and the RG results. We confirm below this picture with n
merical calculations. Figure 1 shows the numerical solut
of Eq. ~20! for g51, h512, andN ranging from 500 down
to 50. For eachN there arenB(N) bound states,En,0,
wherenB(N) is in good agreement with Eq.~30!.

The spectrum shows the self-similarity found in the a
proaches above: scaling the system by a factore2l1, with
l152p/h, one recovers the same spectrum for sufficien
small energies, i.e.,

*On leave from Newman Laboratory, Cornell University, Ithac
NY 14853.
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FIG. 2. Eigenstates of one-Cooper-pair Hamiltonian withgN

given by Eq.~27! with g051 andh512. The vertical lines denote
the positions at whichg jumps from1` to 2`.
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En11~N,g,h!5En~e2l1N,g,h!. ~31!

Figure 1 also shows the existence of critical valuesNc,n , in
the intervals (e2nl1N,e2(n11)l1N), where the bound state
closest to the Fermi level disappears into the ‘‘continuum
This effect leads to the reshuffling of bound states,n11
→n, observed in Eq.~31!. The critical sizes are also relate
by scaling, i.e.,Nc,n /Nc,n115e2l1. All these phenomena
are in good agreement with the RG interpretation we p
posed, where the eigenstates disappear at scales wherg(s
5tn)51`. All these points are related by the scaling fact
e2l1.

The RG behavior is presented in Fig. 2, which shows
eigenvaluesEn(N) of the one-Cooper-pair Hamiltonian, wit
gN running under Eq.~27!. The spectrum remains unchange
for En(N)!Nd, as shown in Fig. 2~b!. In Fig. 2~a! one ob-
serves that for the energiesEn(N)*Nd the result of the RG
is not reliable. Nevertheless the RG flow describes qual
tively the disappearance of the lowest bound state and
reshuffling of energy levels after a cycle, and furthermore
the predicted scales.

In summary, we have shown that adding to the stand
BCS Hamiltonian a time-reversal breaking term, para
etrized by a coupling constanth, generates an infinite num
ber of BCS eigenstates with energy gapsDn related, for weak
BCS couplingsg, by a scale factore2l with l5p/h. This
unusual spectrum is explained by the cyclic behavior of
RG flow of g, which reproduces itself after a finite RG tim
s equal tol. We have also solved the finite-temperature BC
gap equation, obtaining a critical temperatureTc,n for thenth
eigenstate which is related to the zero-temperature
Dn(0) exactly as in the BCS theory, i.e.,Dn(0)/Tc,n>3.52
for weak couplings.

The results obtained in this Rapid Communication can
easily extended to a generic BCS model where the pai
transition amplitude has an imaginary term depending on
energy difference between the levels involved. In this se
the cyclicity of the RG and the existence of infinitely man
BCS eigenstates are robust features of the proposed mo

An important issue is whether theh interaction has a mi-
croscopic origin. Assuming that theab initio Hamiltonian is
time-reversal invariant, this would require that time-rever
symmetry is broken explicitly or spontaneously. We hope
report our investigations in this direction in the near futur
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