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We investigate the quasiparticle density of states in disordeneeve superconductors. By constructing a
guantum map describing the quasiparticle dynamics in such a medium, we explore deviations of the density of
states from its universal forn(E), and show that additional low-energy quasiparticle states exist protided
the range of the impurity potential is much larger than the Fermi wavelgiadjdwing one to use recently
developed semiclassical methpd@i) classical trajectories exist along which the pair potential changes sign,
and(iii ) the diffractive scattering length is longer than the superconducting coherence length. In the classically
chaotic regime, universal random matrix theory behavior is restored by quantum dynamical diffraction which
shifts the low-energy states away from zero energy, and the quasiparticle density of states exhibits a linear
pseudogap below an energy threshBlt<A,, much smaller than the superconducting gap.
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In recent years, considerable attention has been focused1 .2’ The latter class is characterized by the emergence of a
on the low-energy properties of the quasiparticle spectrum ofiiffractive scatteringime scale,rg= v~ In[{/\¢], defined as
disordered cuprate superconductbfsBecause many of the the time it takes for the classically chaotic dynam{esth
cuprate superconductors are randomly chemically doped inzyapunov exponent) to stretch a wave packet of minimal
sulators and disorder is a pair breaker ewave supercon- initial extension\ to a length/. In contrast to quantum
ductors, the role of nonmagnetic impurities is particularly disordered systems, quantum chaotic systems exhibit nonuni-
important for an understanding of tllewave superconduct- versal properties due to their short-time classical, deter-
ing state, its quasiparticle spectral and transport propertiesninistic) dynamics. In particular, significant deviations from
Of special interest is the low-energy behavior of the singleRandom matrix theoryRMT) emerge, as was recently found
particle Density of State@OS) p(E). by Adagideliet al° in the context of impurities ird-wave

In an early worlC the self consistenE-matrix approxima- superconductors. These authors used a semiclassical ap-
tion was shown to break down for two-dimensiof@D)  proach to calculate the low-energy DOS for a collection of
d-wave superconductors. This led to a series of papers usingxktendedscattererga quantum chaotic systerand found an
nonperturbative methods, which predictedifirst sight con-  asymptotic behaviop(E)~ 1/E|In E® asE—0. They nev-
tradictory results: vanishing,® constant,® and divergind’®  ertheless argued that the RMT predictions of a linear
DOS ase—0. On the numerical side, several investigationspseudogap would be restored at lower enefgyE*, i.e.,
also predicted both vanishing!?and diverging®'*DOS at  that the singularity in the DOS would be cut off at an energy
zero energy. It was soon argued, based on numerical analfz* related torg, by diffractive (nonclassicalscattering oc-
sis, that the reason behind these contradicting predictions @urring at larger timesr> rz. The purpose of the present
the fact that the microscopic details of disordee., details  paper is to investigate the modifications that the DOS under-
beyond the transport mean free péthsuch as the density of goes as the correlation length of the impurity potential in-
scatterers or the correlation lengthof the impurity poten- creases andz becomes relevant. We will focus our attention
tial) as well as the symmetries of the clean Hamiltonian maton (i) providing for numerical checks of the theory of
ter both qualitatively and quantitativéfi/'® (see also Ref. Adagideli et al. in the case of long-wavelength disord®@r,
16). An important feature shared by the numerics of Refs(ii) finding out whether for somg* the DOS is suppressed
11-15is that the disorder is introduced via isolgpethtlike ~ for E<E*, in agreement with RMT predictiorfs? and (iii )
scatterers. Long-wavelength disorder, which may arise due timvestigate the transition region between extended and point-
chemical doping away from Cuplanes, or can be induced like disorder.
via ion radiation techniqué$or via a scanning tunnel mi- We start by introducing a quantum map model for quasi-
croscope tip? is thus ignored. Effects of long-wavelength particle states in disorderedwave superconductors. The
disorder are expected to become dominant when the,CuGmain motivation behind this model is to investigate discrep-
planes have almost no atomic disordfethey are the main  ancies(in low-energy DO$ between pointlike versus ex-
focus of this paper. tended disorder as well as the transition region, i.e., the re-

It has recently been realized, in the context of mesoscopigime in which the impurity size is intermediate. To the best
physics and weak localization, th&tand ¢, together with  of our knowledge no disorder model which includes ex-
the Fermi wavelength\, define two classes of complex tended impurities as well as pointlike ohwave supercon-
guantum systems: quantum disordered systems whewductors has been studied numerically so far. This map has
Ne€/?>1 and quantum chaotic systems for whicp¢/(?>  two additional advantages: First, as both the density and cor-
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relation length of impurities can be tuned independently, it isfor the caseD =2. First, we replace the free quasiparticle
possible to interpolate between the two extreme regimes ahotion by a coupled electron and hole dynamics,
strong disorder: unitary disordéire., disorder due to dilute,

pointlike scatterer§>1>16 viz., quantum disordgrand qua- Fo=exp(—iH7olh), (23
siclassical disordé? (i.e., disorder due to extended scatter-
ers, viz. quantum chaojicSecond, from a numerical point of H=Ho,+Aoy. (2b)

view, it allows for the investigation of very large system Here H=—(ﬁ2§2/2I)—EF with E¢ the Fermi energyy
1 1 X,z

sizes, i.e., lattice sizes of up to 28@56, which are neces- 0 pajji matrices acting in particle-hole space, And the

sary for both variations of the disorder correlation length an uperconducting pair potential. Second, the coupled quasi-
the numerical extraction of the parametric behavior of theparticle motion is followed by a. Kick '

DOS. Our reasons why a dynamical model is relevaniiare

In absence of superconductivity, many properties of quasi- Fr=exp —iHg /1), (33
particles in disordered med{auch as Anderson localizatipn

are correctly described by 1D mafsin fact it has been Kl

shown by Altland and Zirnbauer that one of those maps, the HK:T—OCOSX cosyo,. (3b)

1D kicked rotator, and quasi-one-dimensional metallic wires
are described by the same effective field thédriRecent ~Exponentiating the Pauli matrices, we end up with the
numerical investigations D=2 suggest that this is also Bogoliubov—de Gennes—FloquddGF) operator

true in higher dimensior. (i) In the presence of supercon-
ductivity, Andreev maps based on the kicked rotator have F=FFo, (4a)
recently been shown to adequately describe quantum dots in
contact with a superconductt.

Fo=cos{(H?+A%)(7,/h)*T

We first briefly discuss generic properties of quantum i SinV(HZ+ A2) (7o/7)2
maps for uncoupled quasiparticles. The dynamics corre- 0 Ho,+ Ao 4b
. . . 2 2 [ z X]! ( )
sponds to a succession of free propagations, interrupted by VH +A

suddenkicks of period 7, i.e., instantaneous perturbations.
Quantum maps are conveniently represented by a unitary, _ ﬂ C ] R
Floquetoperatorr, giving the time-evolution aftep kicks as Fr=co ﬁTOCOSX cosy|Z+1si ﬁTOCOSX cosy
u(p)=FPu(0), for aninitial wave functionu(0). The ma- (40
trix F has elgenvalugs exp(sm),whlch deflne quUAasIeNergies  in Z, the identity matrix in particle-hole space. Far
eme (—m,m) (energies and quasienergies are expressed o, E (4) describes uncoupled electron and hole excita-
units of 2/ ry). While the energy is not conserved, the peri-,. "’ =9- %) P X
o . . : . . tions in a disordered @ metal. Once this metal becomes
odicity of the kick still preserves quasienergies, much in the . o : ;
same way as a periodic potential breaks translational sy superconductingA couples these excitations during their
metry, but still preserves quasimomentum. Time evolution o ree propagatiop, while it is neglected. during the instanta-
hole excitationgbeing the time-reversed of electronic exci- nﬁggi\j’arl:(lacrk.ieAss[\I/Cit:]e ;\a;:(raaoga Edscﬁge;n:p{oblenl, tM; ?
tations is given byv(p)=(F*)Pv(0). Specializing to the ' Y fgth BUGE t? - pa Xg o mea o
D-dimensional kicked rotator, we write the Floquet operator_ ™ M1 Of the BAGF equation*dp,=exp(-iem)ém, come
ad in pairs with opposite sigl,= —e2m_m+ 1, Similarly to the
spectral properties of a BdG Hamiltonian. These consider-
K| hr ations establish the correspondence between the map of Eq.
F=ex;< —j —Hlecosrj)exp< i _062)_ (1) (4) and quasiparticles in a dirty superconductor.
ho 2l We next quantize the phase space on a four-torus

It describes the free motion of a particle with dimensionless{f’yfpx’py}’ with d”‘;‘gns'o”'ess _ momentum p,y

. _ . : . = —lihegdl d(X,y) € (0,2m).7> The effective Planck constant
coordinates{r;} (e.g., expressed in units of a lattice con b o—hr /1 takes on valued.—27/M . with inteaer M
stan}, which is interrupted at periodic time intervatg by a _elf_f_ LTO ir? torm of the real s%fa_ceﬁinez’ir system %i res
kick of strengthK - IIP_ cosr;. | is the moment of inertia of _ X "V’ T e . S
the particle %nd( isjt_hle kici<ing strength. FOD=1 and 2 (also expressed in units of a lattice spagjnand the impu-

. ) kes the classical d : e f it rities have a spatial extensidi=O(L,,L,). The BAGF op-
increasingK makes the ¢ assical dynamics €volve Trom Inte-g 41 is then a 1 x 2M unitary matrix, and we consider the
grable (K=0) to fully chaotic[K=7, with Lyapunov expo-

_ 2 2 2, . 2
nentA~In(K/2)]. For 0<K<7 stable and unstable motion two cases ofd-wave [A(Py,Py)=Ao(Px=Py/(P+Py)]

_ 2 .2 2 ¥
coexist (a so-called mixed phase spaée IncreasingK is and extendedswave [A(py,p,)= Aol Py~ Pyl/ (Pt py)]
thus tantamount to increasing the amount of disorder, th

Qair potentials, for whicl# is diagonal in momentum rep-
fully chaotic regime corresponding to a finite density of im- Fesentation. Noting thafy is diagonal in real-space repre-
purities.

sentation, we rewriteF as
Electron and hole excitations inside a superconductor are o + .-
however coupled by a nonvanishing pair-potential. Accord- Fopr = (UFU T o) gy ®
ingly we extend the kicked rotator of Eql) to a  wherel/=UZ, andU is the unitary matrix of the R Fourier
Bogoliubov—de Gennes form. We discuss this constructiortransform between real-space and momentum coordinates,

Kl

g,,
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E/A FIG. 2. Main plot: Low-energy DOS for thed-wave
0 Bogoliubov—de Gennes kicked rotator of Ed®)—(4), L,XL,

=256x 256, Ay=0.4, Er=272/5, andK =8. Inset: Asymptotic of

FIG. 1. Density of states for thd-wave (right) and extended
s-wave(left) Bogoliubov—de Gennes kicked rotator defined by Egs.
(2—(4), and parametersL,xL,=128x128, A,=0.4, Eg
=272/5, andK=0 (solid lines, 2 (dashed lines and 8(dotted-
dashed lines

U =M~ Y2exd (27i/M)p-p']. We numerically extract the
quasienergy DOS from the eigenvalues sjnof the Her-
mitean matrix (1/2)(F—FT), which we diagonalize using
the Lanczos algorithrf’

In Fig. 1 we show the quasienergy DOS fbwave and
extendeds-wave pair potentials away from half fillinge¢
=27%/5<?[2), as the kicking strength increases. In the
clean caseK =0) the two DOS are the same. The gap sin-
gularity atE/Ay=1 gets washed out &€ increases in both
cases, however, a peak emerges indhgave DOS around
E=0, while p(E)=0 in the extended-wave case. This is in

an energy corresponding to the gap averaged over all m
menta mixed by the impurity potential.

We focus on thel-wave symmetry from now on. A closer
look at the DOS in the fully chaotic regime witk=38, is
provided in Fig. 2. It indicates that the characteristic semi-
classical singularity exhibited by the DOSBs-0 is cut off
at an energ\E* <A, where a sharp drop occurs ap¢E)

—0. RMT predicts such a drop to occur over an energy scale
given by the Thouless ener§yyhich in our case is however
significantly larger tham\ .2 We thus attribute this drop to
the emergence of diffractive scattering at times larger than
=20 as follows. According to Ref. 10, the DOS correspond-
ing to low-energy semiclassical states can be estimated from
a mapping onto a tight-binding chain with random hoppings,
for which the eigenfunctions are localized with an energy-
dependent localization leng§{E).?° At low energies¢ ex-
ceeds the diffractive scattering lengthre (vg is the Fermi
velocity) in which case hoppings between otherwise un-
coupled tight-binding chain&orresponding to different clas-
sical trajectorieshave to be taken into account. The emer-

p(E) S

the density of states at low excitation energy for the same set of
parameters, for long-wavelength disordguantum chaotic; black
circles and diffractive disorder as defined in E&) with Ny =27
(quantum disorder; empty diamonddhe solid and dashed lines
indicate axE and«E ! behavior, respectively.

superconducting coherence lenggtE) =%vg /Ao, *° the ob-
servation of the semiclassical peak in the DOS requires a
long enough diffractive scattering length-7e>hve/Ag.
While preliminary results corroborate this argument, a de-
tailed investigation oE* will be presented elsewher@.

In the inset to Fig. 2 we show the asymptotic behavior of
the DOS on a log-log scale. Once abstraction is made of the
drop in the DOS belovE*, the semiclassical data exhibit a
singular behavior slightly below E ! (black circle$ which
is in qualitative agreement with the predictiop(E)
«E~YInE| 2 of Ref. 10.

Having established the validity of semiclassical predic-

Ygime. We accomplish this via the inclusion of higher har-
nonics to the kicking potential, and replace E8). by

KI N
=— > codlx]cogmy]o,. (6)
NHTO|,m=l

FIG. 3. Low-energy DOS for thed-wave Bogoliubov—de

gence of these processes signals the breakdown @fennes kicked rotator with decreasing disorder range as defined in
semiclassics and the restoration of RMT. One thus expectsgs. (2), (4), and (6), with L,x L,=256x256, Ag=0.4, Ef

the vanishing of the DOS below a threshold energy given by=2+2/5 K=8, andN,=1, 3,5, 7, 17, and 2Tfrom top to bot-

the conditioné(E*)~vere. Sinceé(E) is bounded by the tom).
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The typical impurity size decreases &s Ngl. Figure 3 Our results thus clarify the competition between RMT
shows the disappearance of the low-energy peak in the DOand semiclassic®. The next step is to investigate the effect
asNy, increases. For the set of parameter considered, ondgat the semiclassical low-energy states have on the transport
N, =27 is reached, the DOS vanishesEat 0. Note that the ~Properties and to explore the parametric dependende" of
resolution used in Fig. 3 does not allow to see the opening ofVork along those lines is in progress.

the RMT gap belovE™*. A more precise look at the DOS for  This work was supported by the Dutch Science Founda-
Ny =27 is provided on the inset to Fig.(Bmpty diamonds  tion NWO/FOM and the Swiss National Science Foundation.
The data clearly indicate the expected RMT linear suppreswe thank I. Gornyi, A. Yashenkin, M. Vojta, N. Trivedi, and
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