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Role of spinon in the presence of spinon singlet pair excitations on phase transitions
in d-wave superconductors
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We examine the roles of massless Dirac spinon and spin singlet pair excitations on both quantum and
classical phase transitions in extreme typeHivave superconductors. We discuss that the massless Dirac
fermion (spinon excitations in the presence of the spin singlet pair excitations do not alter the nature of the
guantum phase transition @0, that is, the XY universality class, while at finite temperature they are seen
to induce an additional logarithmic interaction potential between vortices, further stabilizing vortex-antivortex
pairs at low temperature fd{T transition for lightly doped high-. samples.
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Recent thermal Hall conductivity measuremérssggest Our primary focus is to examine how low-energy excita-
the existence of vortices in the pseudod®®) phase. This tions, specifically the Dirac spinon excitations in the pres-
implies that preformed pairs are present in the PG phase. ence of spinon singlet pair excitations affect the vortex-
the PG phase, vortex-antivortex pairs remain broken to caudgduced phase transition. Here the low-energy excitations
a state of globally incoherent but locally coherent Cooperrefer to the phase fluctuations of both the spinon singlet pair

pairs. Vortex-induced phase transitions in underdoped regiofi"d € single holon order parameter and the massless Dirac
have been an issue of great intefs&n this paper, by spinon excitations near thetwave nodes of the spinon sin-

Vi duality t ¢ i tend th glet pair. Gauge-field fluctuatiotfsare introduced to allow
applying a duailty transtormation we exten elvgaugg the presence of internal flux responsible for the stabilization
Lagrangiad obtained from the slave-boson mean-field

011 ; . , of the system by energy lowering. Thus considering gauge
theor'f in order to examine how vortex-induced phaseq,cations and proper phase fluctuatiofisvolved with
transitions ind-wave superconductors at low energy are af-¢ o= ei%p and ¢, = ei ) for the spinon pairing order field
fected by the presence of both the massless spinon angq the single holon order field, respectively, we rewrite the

number of the massless Dirac fermions in the absence of the

spinon singlet pair excitations is shown to alter the nature ofﬁz Kb,,ula fo+a,—A, |2+
the phase transition. According to this studgs the flavor 2 TpTb TS B
number increases, the type-superconductivity is preferred
showing the second-order phase transition which deviates
from the XY universality class. In the case of small flavor . _

number it leads to the type-l superconductivity and the tran- X (st Za"“)+lpsr’(a7é5p 2000+ 2Ro), @)
sition becomes first order owing to the strong fluctuations ofvhere Ky, ,=(1/up,Ky,Ky) with 1fu, (~14), the com-
the massless gauge field. Our present study differs from othdtessibility and Ky, (~2tx6), the phase stiffness of
previous studie&? in that in our case the (@) effective the single holon field andKs, ,=(1/usp,Ksp,Ksp) with
gauge field of interest becomes massive as a result of thBusp (—14), the compressibility anKs, (~JA), the
spinon (spin) singlet pair excitations. Particle-hole excita- phase stiffness of the spinon pair order fields,
tions of the massless Dirac spinons lead to the renormahzeg(e_ g . ) is the renormalized Nambu spinor associ-
kinetic energy of the (1) gauge fiel&'>3[the second term elfsf2e, i

in Eq. (3)]. Based on the effective Lagrangian involved with ated with the d-wave gap nodesn. vg (~Jyx,) and
the massive gauge field caused by the presence of the spinoR (~JA,) are the Fermi and gap velocities of the Dirac
singlet pair excitations, Eq3), we discuss zero- and finite- spinons, respectively. J;,= (S ¢, ¥, vl 10
temperature phase transitions in the extreme type-I| fifvit. iyl 1,,) is the three-current of the spinon quasiparticles
F|rst_, we find that the _(} 1)D XY universality class afl _ and;sp is the average density of spinon pairs.

=0 is not altered despite the presence of the massless Dirac
fermions(spinong, as long as the spinon singlet pair excita-
tions exist in the underdoped high. cuprates and thus the
effective gauge particl¢Egs. (5) and (12)] remains suffi- b _ Kspues . ~
ciently massivé® Second, it is shown from the present study ~ £= T'#I&,ﬁp—a,ﬁ 2A,, |+ T’MaiJr iJ¢,a,
that at finite temperature the interaction potentials between

Ksp.u

2

|3, 0spt 22|

+ Yl 0, +vpriiog+ vaTHdy]Yn+ (1—2x—y) +idy,

By introducing the gauge shifunitary gaug}ea#:Za#

+3d,0sp, we rewrite Eq.(1) as

vortices are modified to bring an additional logarithmic in- + lﬂ[ﬁﬁvFTsi Ayt qu-liay] U+ (1—=2x—Y)
teraction[Egs. (13) and (23)] as a consequence of the mas- B
sive gauge field, thus maintaining tKel transition. +ipsp(d.0,12A0), 2
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where 6,= 05,—26,. 0, is the phase of the Cooper pair vortex mass and self-interaction terms leads to an effective
order parameter AcoopelK) =184, velK)|¢p, where Lagrangian for the vortex field,
AcoopelK) = <CkTC ki) (b* f ko™ f k1> <fka k1><b >

=[80(K)[[(b*)|?bspbi? and thus by=e'%o=dsppi? z- f D¢pVDcMD5Mexp( - f ),
=e'%spe™ 2% 73, is the massive effective gauge field associ-
ated with the phase fluctuations of spinon singlet pair order Uy
parameter and the original interna(1) gauge fielda,, . The L=](d,+ic,) Yo+ Myl o+ %|¢pV|4
massm, , of the effective gauge field, is defined by the
phase stiffnesKs, , of the spinon pamng order parameter

involved with the PG phase of the doped Mott insulator. In +——|axc|?+i(ax c)#(aM—ZAﬂ)—,u(ax ()
the above equation, the fluctuating fields&yf, a and ¢, b.u
are Ul) gauge invariant® thus satlsfymg Elitzur's N 1
theorem’ (&xa) (f7><61)Jr mgﬂai: 5
Integrating over the Nambu spinor fields and expanding e
4,12,13

the resulting logarithmic term up to second ordeﬁjp,

where m2,~Kp— Ky~ 86— 5., with K,. as the critical
we get an effective (1) Lagrangian involved with the mas- pv b he © be

phase stiffness of the holdboson field, § the hole doping

sive gauge field,, concentration, and, the critical hole doping concentration
_ and p=—"Uyps, With Uy Yoy represents the Cooper

sz DapDaMexp( - j ﬁer dxzﬁ), pair vortex field ancc,, the dual gauge field to mediate in-

0 teractions between vortices. Noting thais analogous to an

5 applied “magnetic field"H, and (@< c) . to B,,*®*°the sixth
K

N - - . _ -
= b,u|(9 0, 3 +2A#|2+ (9%3) (4%3) term in Eq.(5), — u(dX C)TLRefs. 1-8 and 1Pwhich r-esults
16 Ny from the Berry phase teripgyd .0, is analogous to interac-
1 tion energy— H,B, associated with the vortex field. We note
that in case o< 6. vortex condensation occurs.
+ = 24 + S c . o :
2 ma WP S”(a Opt2h0), © In association with the Lagrangian, E@) it is of interest

~ 5 i to examine the instanton contribution resulting from the
whereK,, , =Ky /4 andmg , =K, . N is the number of  compactness of the original gauge fielgl in the expression

s 5, 0 P of oDt 1 DUSE 1y g - 2,01 T Conper p
y “charge” neutral and can not couple with thg1) gauge

tive gauge fielda, originates from the misls,z'??s exCIt""'['O”Sﬁeld a,. In the following we discuss the conservation of

of the spinon quaS|part|cI€(§)|rac fermions. The Berry  yortex current to show that the contribution of instanton dis-

phase contrlbutlonpS 3.0, is related to the Cooper pair appears. We rewrite our dual Lagrangian, E).in the first

boson density®°In (2+ 1)D the chiral-symmetry breaking quantized representation,

is expected to occur and the fermions get a dynamically gen-

erated mas$1%2%21This will not alter the XY universality ) v ~

class atT=0 owing to the presence of the spin singlet pair £= wad +ic,dp ,Hi(axce),(a,—2A,)

excitations but will change the interaction potential between b4
vortices. This will be discussed later. N 1
In passihg we _would like tp briefl_y discuss.a npdeless (a>< a)\/_(ax a)+ 2ma ﬂaﬂ—,u(ax C) ;s
case. That is, we ignore the Dirac spinon quasiparticles and
thus consider only thél=0 flavor limit (which corresponds (6)

to the isotropics-wave superconductivijy It is then obvious v , .
that the kinetic-energy term of the gauge field in E8) whereJ;=dXxd6, is the Cooper pair vortex three current.

disappears. Integrating over the effective gauge fﬁ;jdn From this we obtain the equation of motion for the dual

Eq. (3), we obtain gauge fieldc,, ,
- X 9% Jp—(9Xa)+2(axA) @
' i - c= a _
L= ;l“|0"’u0p+2A'u|2+|psp((97_0p+2A0), (4) K,

- ~ Thus we obtain
where K, , =Ky, ,Ksp . /(K ,+Kgp ). This reveals that

the phase stn‘fnesls n, Of the Cooper pair field is in a “re- d- JV—(? axa=ad-dx(2a+ 30sp) = 2pM+JSp, (8)
duced mass” forrff between the holon and the spinon pair,

and the usual logarithmic type of interaction between vorti Wherepgﬂza d-dXais the instantor(*magnetic” monopolg
ces arises under a duality transformation. ensltyL associated with the original gauge fiedd and

Now for the case of N#0 flavor, the duality Jsp X (903p, the spinon pair vortex three current. Taking
transformatioft>*81%%3of Eq. (3) with the introduction of py=d-dXa with py, the monopole density of the effective
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gauge fielda,, , we write - JJ=py for the relation between Z:ZaJ' Du-De exr{ _J 4*xL )L‘
the vortex current and the monopole den$itySince the 0 YpvDeu eff) et

spinon pair vortex current carriéss/Ze flux quantum, where ) Upy
e is the internal(gauge charge,d-Jy=py=2py+d-Jg, =[(a,+ic,) Yol >+ mpyl gpvl*+ 7|9’fpv|4
=0 must hold. This indicates that the instanton contribution

disappears to conserve the vortex current of the Cooper pairs. 1 , 1 1
Thus the compactness af, and thusa,, does not alter the + oK |9xc|*+ 5(‘”(0) N , (9xc)
(2+1)D XY universality class. b, gV Frm,
We now prove that gy +d-Jg,=0. Performing the du-
ality transformation of the starting Lagrangian, Ed), we —i(axc),2A,—u(dxc),,
obtain
z2 JD~ p( Jd3 N(ax”) ! (X )
. . = a,exp — Xo—= a)— a
ﬁduaIZZKSpM|5xcsp+‘]f|2+|csp,u‘]¥p,,u_l(&xcsp)uzau ° # 16 V—3°
1 5 v +Em2 32 (12)
— ps(IX Cgp) ,+ m|a><cb| +icp ,dp 4 > Mau@y |-
—i(9Xcp) (8, = AL) = up(IXCp),+ Ly, (9)  The fifth term represents an additional kinetic energy of the

o o dual gauge field resulting from the presence of the massless
where ug,= —Ugppsp With Ugp~J and u,=Uppsp With Uy Dirac spinon field and the spinon singlet pair field which
~t are the applied magnetic fields for the spinon pair andtesults in the massive effective gauge figg. In the case of
holon vortices, respectively, andC,=i[d,+verid,  weak external fielgk, the nature of the XY universality class
+v,7h 0y ]+ (1—2x—Y) is the Dirac fermion Lagrang- at T=0 will not be affected in the extreme type-Il limit
ian. Jyyp) is the vortex three-current of the spinon singlet despite the contribution of the massless Dirac fermiass
pair (holon) and ¢y, the dual gauge field to mediate in- shown in the fifth termas long as the mass of the gauge
teractions between the spinon péiolon) vortices. From the field, that is, the phase stiffnes , of the spinon singlet pair
above dual Lagrangian we obtain the equations of motion foorder parameter is substantially large; the lower the tempera-
Csp @Ndcy , , respectively, ture, the larger is th&,, in the PG phase.

Thus far we discussed the zero-temperature phase transi-
tion which maintains the (21)D XY universality class in
the presence of negligible magnetic fluctuatiohs. Now
we examine the finite-temperature phase transition by con-

— isp? X (9X Coptp) =J{,+20%a,

1 v sidering dimensional reduction. We calculate the dual gauge-
~ gpIXIXCp=JpFIxa=dxA. (10 field propagator to obtain the interaction potential between
vortices. The dual field propagator involved with the fourth
Thus we obtain and fifth terms in Eq(12) is obtained:

3-30+20- 9% a=3- 3+ 20-b=a- Y+ 2py =0, a9
Pij(a)= P(Q)( i — #)

8-+ pu=0. (11)
The above result proves that the instanton contribufign T E 2
\V; . . Kp| o+ N ma 1 K 1
=2putd-Jg, for the effective gauge fiela, is zero. In- _ -~ b
- : ~ " P(a)= =Kp=5+ 22—,
stantons associated with, and thusa,, do not affect dynam- 2 gt §m2+ ER q> 4 “q(gtM?
ics of the Cooper pair field and thus the vortex field since it laTNMaT e

is a gauge neutral particle. On the other hand, instantons are (13
expected to affect dynamics of the gauge noninvariant ob- B _ [BN(K. K4
jects(i.e., spinon pairs and holonsince instantons act as the whdere_ KP/_ KbKSP/(KbJ.r‘“fSP)’ dM N 8/|;:(KSP+ Kp/4),
source of the spinon pair vortex and holon vortex current21d23=Kp/(Kp+4Ksp). i,j=1,2 denotes the space compo-
respectively{see Eq.(11)]. If we consider the dynamics of "€ntindex &y). In the real space, the above equation leads
spinon pairs and holons to examine the confinement physidg the total interaction potential between a vortex and an
involved with the opposite charges for these particles, wénNtVortex:
must consider the instanton effect. The issue of the instanton N , v ) .
effect on the confinement physics and the superconducting (X~ X )= 2aKpIn[x—x"| = 7K pz,(StruveHo(M?x—x'[)
phase transition will be discussed in a Igter study. —YO(M2|X—x’|))~277KpIn|x—x’|

Integrating over the effective gauge fielg in Eq. (5), we 5
get + m2Kpzyin|x—x'| for M?|x—x'|<1, (14
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wherem is the mass of the Dirac fermion. Integrating over
> O M 2 . . . 2 21 . .

. the massive Dirac fermiofid®?*and performing the duality
T‘g 0.1t transformation, we obtain the low-energy effective Lagrang-
i 0 ian
(1)

Fu]

8, -0.1 ~ 3
- Z=J D¢p/Dc, Da,ex —J ax°L],

S -0.2
-
is)

Y -0.3 Uy
5 : 2 P
B -0.4} 1 L::|((9,u,+ICM)pr|2+mpV|pr|2+7|¢IDV|4
b -0.

H
0 20 40 60 80 100 1 B
Distance between vortices, d 4+ — |(9>< C|2+i(&XC)ﬂ(aﬂ—ZAM)—M(&XC)T
FIG. 1. The total interaction enerdgolid line), logarithmic in- o
teraction energy(dashed ling and additional interaction energy ~12 1 5 ~o
(dotted ling (in the unit oft) at underdoping~0.035 as a function * omm |oxal?+ 5 M & - 17)

of vortex distancel (in the unit oft™1).

~ Note that the kinetic energy of the gauge field is proportional
27Kpz; 1 for MZx—x'|>1 to g2, but not toq as in the case of the chiral-symmetric

M2 |x—x/| " phase. After integrating over the massive effective gauge
(15  field, we obtain

~2mKpln[x—x"|—

whereY(x) is the zeroth-order Bessel function of the sec-

ond kind and Struvd(x) represents the zeroth-order Struve — _ 3

function? The addit?(()n)al iﬁteraction in Eq15) shows a z f D"lijDC"eXF< fdx £
power-law behavior |[k—x’|"1) showing its decrease at

large vortex separation distances while it is logarithmic in Upy
nature at short separations as shown in(E4). In Fig. 1, we L=|(d,+ic,) ll/pv|2+ m,23v| llfpv|2+ 7|1,0pv|4
plot this interaction potential as a function of distance in the

underdoped regioff. As shown in Fig. 1, the additional at-

1 1
traction between vortices does not introduce a significant +——1|axc?+ E(ax c)
change in the net attractive interaction and shows virtually 2Kp —— (=% +m?2
no change particularly at large separations. It is noted that 67m "

the additional attractive interaction combined with the origi-
nal logarithmic term results in the renormalized form of a net

logarithmic  interaction, 2K'Injx—x'|, where K'=Ky |5 the |ong-wavelength limit (9 c)[ L/(N/6mm(— )

+(m/2)Kpzy, with K'~K, particulary at low dopindinthe  +m?2 )](axc) is reduced to (1R, ,)|dxc|? as in the

limit of z;—0) in the underdoped region. The vortex- case of the chiral-symmetric phase. Thus the superconduct-

antivortex unbinding transition temperatufig(5) as a ing phase transition af=0 falls into the XY universality

function of hole dopings is expected to linearly scale with class in both cases of chiral-symmetry and chiral symmetry

the phase stiffnes&, of the Cooper pair field. FOKs,  breaking in the extreme type-Il limif: Only the interaction

>Ky, Ky is seen to be linearly dependent émparticularly  petween vortices is affected as a result of chiral-symmetry

in the lightly doped region. On the other hand, the strength obreaking. In the chiral-symmetry broken phase the interac-

the additional interactiofthe second term in E¢15)] shows  tion potential is obtained to be, from E€L8),

a nonlinear(quadrati¢ dependence of owing to the linear

doping dependence df,(~ ) and z;(~ ) in the lightly .

underdoped regiof?. Pi(q)= p(q)( 8~ q._(j,) ,
Now we discuss the case of the chiral-symmetry breaking q

in the (2+1)D systems and show that this will not alter the

XY universality class only in the presence of negligible mag- ~ [ , 6mm ,

netic fluctuationsA, ,** but change the strength of interac- Kb(q + Tma>

tion between the vortices. Introducing the massive Dirac fer-P(q)=

mions for the case of the chiral-symmetry-broken 92l g2+ Lm(szrR )

phasé12292lwe rewrite the effective Lagrangian, E@®), N “al TP 9

19

K, - 1.
L= 2’“|3M0p—aﬂ+ 2A,)%+ Emg,ﬂaiﬂpsp(&r@ﬁ 2A0)  with m the mass of the Dirac fermion arid the effective

mass of the effective gauge field defined by1?
+ P y,u(9,—Ta,) +mgn (16)  =(6mm/N)(m3+Ky). In real space this is expressed as

X(dxc)—i(dxc),2A,— u(dxc),. (18

1 +Kb 1
R— _Z —,
qu 4 Jq2+M2

2
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TABLE |. Comparison of the interaction potential between vorticesivave andd-wave superconduct-

ors.
s-wave superconductors d-wave superconductors
K K . —
L= 7”|00p|2 c:7p|aep|2—|zJJfaep+ by
1 . 1 N 1
Lyua==—|dxc|?+icdy (Jy=0%X 30 - 24 B
dual 2Kp| | V( \ p) [’dual 2Kp|ﬁXC| +icdy+ 16ZJJV \/—_(QZJV
via) = Kp Vi) K, NZ
()= ? ()= ?er
=K, V(x) =K, sz1
V(x)=Kln|x () =Kplnx -5 g
K, Dirac fermion fields ignoring the local interactions of the
V(r)=2=| Kglnr— TZJKO[Mr] : (200 Dirac fermions and the temporal fluctuations in E2pR) to

find
wherer is the separation distance between a vortex and an

antivortex andK g x] is the modified Bessel function, which _Kp , N,
is [5dtcoskt)/\t>+ 1, wherex>0.2* In the limit of large L= 7|V0F’_2A| 1RV XVI,—2VXA)
separation we obtaif
1
X XVO,—2VXA).
N Ky \/?G_Mr - W(V Vo,-2VXA) (23
(I’)— o pnr—TzJ WT . ( )

The resulting additional attractive interaction between vorti-

At a large separation distance the correction term is ineffecces leads to the second term in E4f) (Ref. 27 as a result
tive to alter the nature of phase transition. Thus owing to th@f the supercurrent affected by the massless Dirac-fermions
main contribution of the logarithmic term particulary at low involved with the Doppler-shift terma, J;,.d,, 6, . For a brief
temperature, the classical transitiorki type as in the case guidance we list differences in interaction potentials between
of the chiral-symmetric phase. vortices in theswave and thed-wave superconductors in

To grasp the origin of the additional attractive interaction Table I and a comparison of tiewave BCS theory and the
between vortices in a different angle, we now take a differenPresent theory in Table Il. We note that in the limit of large

: - = M, M?>q in Eq. (13), the interaction energy between vorti-
rocedure. Integrating over the effective gauge fag|dfirst ’ : ’ X .
ﬁ] Eq.(2), we ol?tain tﬁe effective Lagrangi%ahn\?olveé with  ces obtained by the gauge theory is the same as that obtained

the U1) gauge-invariant particles and the Doppler energ)py the d-wave BCS formalisn{Eg. (23)]. This limit corre-

shift term? 2,39, 0 sponds to the case in which the _Iocal intgracti@l’rme_ last
TSI term in Eq.(22)] of the massless Dirac fermions are ignored.
The additional interactions may affect the vortex lattice
Z:j DyD gpeX[{ _deTf dx2£>, structure?® Since our present theory is able to handle the
0 doping dependence of vortex interactions, it is advantageous

to study in the future how the vortex dynamics and lattice
structure vary with hole concentration.

P, . . ;
L= Tﬂ|‘9ﬂ0p_ 2A,17=i2,31,(3,0,—2A,) In this paper we examined the nature of both the quantum
(T=0) and the classicall(# 0 phase transitions at low tem-
+¢I[a,+vpr3iax+vArliay]z,bl+(1—>2,x—>y) perature in the lightly doped region of high- cuprates.
First, we note that the quantum phase transition in under-
1 3%, doped cupraté$ falls into the XY universality class or the
t+ o, 22 ; ; i ;
2K, ,+K inverted XY (IXY) universality clasS depending on the
Y Spu

strength of magnetic fluctuation, . This situation of XY
with Ky, =Ky Ksp /(Kb +4Ksp ) =(1lu, K, Kp) the O IXY transi_tion will not be_ altered even in the case of the
phase stiffness of the Cooper pair order parameterszand massless spinon guasiparticle as long as there exists the mas-
=Kp, ./ (Kp, . +4Ksp ) =(2,.,25,2;) the effective charge of sive gauge field,, which results from the spinon singlet pair
the spinon quasiparticlésas mentioned earlier. The above excitations. It is known that higfiy cuprates(such as
Lagrangian is the low-energy effective Lagrangian of theYBa,Cu;O;_;) of extreme type Il obey a 3D XY scaling as
d-wave BCS theory with the doping dependent phase stiffthey have high values of Ginzburg-Landau parameten
nessK, (~ ) and effective charge, (~9).° the range of 70—100 in which case the magnetic fluctuations
To see the effects of the Dirac fermions on the phaselay no significant rolé? On the other hand, the inverted
fluctuations of the Cooper pair fields, we integrate over thg2+1)D XY transitior® may occur for weakly type-Il
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TABLE II. Comparison of the interaction potential between vortices indlveave BCS formalism and in
the present gauge theory formalism.

d-wave BCS theory Our theory

Ky ~o N
L=—"]360,—a +E(a><a)

1 ~
3 — (9xa)+3mZa’

=7
L =——|oxc|?+icd
dual 2Kb| | \%

KP 2_; m
£:7|50p| _|ZJJf(90p+ l,b’|‘}/l9¢|

1 3,
Edua|:2—Kp|ﬁX C| +icJy

N 1
+1_62§JV_—2—(9 Jy (Jy=0%36,) +3(0%0) (9%c)
== P+mi
V() K N3 V(a) S S
V=2 8q )= — TKpzy
q* 8d q? q(q+M?)
N, 1 N 1
= a4y = R <M 2
V(x)=K,ln|x| 82§|x| V(x)=K,ln|x| 82§|X| for g<M
T~
V(x)=| K+ 5Kpz; |Inx| for g=>M?

2

superconductor¥' Second, we show that at finite tempera- then expected that the nature of phase transition will not be
ture the massless Dirac fermions in the presence of theltered since no marked change of vortex fugacity will occur
spinon singlet pairs induces the additional attractive interacparticulary in the low doping spin gap phase region of

tion of a logarithmic behavior #/2)K,z;Injx—x'| at short
distances and of a power-law behavier(Kz;/M?)|x

present interesC For a detailed analysis renormalization-
group calculation is needed in the future. The present study

—x'| ! at large distances. As shown in Fig. 1 of our paper,1aS been made based on thelUslave-boson theory con-
the additional attraction between vortices did not introduce &€rmed with the single holon order parameter. Thus it will be

significant change in the net attractive interaction an
showed virtually no change particularly at large separation

Pf great interest to apply our recent &Y holon pair boson
dheory! in the future.

It is noted that the additional attractive interaction combined \ve thank Dr. Sung-Sik Lee and Jae-Gon Eom for helpful
with the original logarithmic term results in the renormalized giscussions. One of us.H.S.S). greatly acknowledges the

form of a net logarithmic interaction 2K’ In|x—x’|, where
_ ’:_Kp+(q-r_/2)_szJ, with K’ ~K,, particulary at low dop-
ing (in the limit of z;—0) in the underdoped region. It is

supports of Korea Ministry of EducatiofHakjin program
2003 and BSRI program(2003 at Pohang University of
Science and Technology.
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