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Spin-glass phase of cuprates
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We investigate a phenomenological model for the spin-glass phase of La22xSrxCuO4, in which it is assumed
that holes doped into the CuO2 planes localize near their Sr dopant, where they cause a dipolar frustration of
the antiferromagnetic environment. In absence of long-range antiferromagnetic order, the spin system can
reduce frustration, and also its free energy, by forming a state with an ordered orientation of the dipole
moments, which leads to the appearance of spiral spin correlations. To investigate this model, a nonlinear
sigma model is used in which disorder is introduced via a randomly fluctuating gauge field. A renormalization-
group study shows that the collinear fixed point of the model is destroyed through the disorder and that the
disorder coupling leads to an additive renormalization of the order-parameter stiffness. Further, the stability of
the spiral state against the formation of topological defects is investigated with the use of the replica trick. A
critical disorder strength is found beyond which topological defects proliferate. Comparing our results with
experimental data, it is found that for a hole densityx.0.02, i.e., in the entire spin-glass regime, the disorder
strength exceeds the critical threshold. In addition, some experiments are proposed in order to distinguish if the
incommensurabilities observed in neutron-scattering experiments correspond to a diagonal stripe or a spiral
phase.
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I. INTRODUCTION

A. Generalities

This paper discusses the influence of disorder on the p
erties of weakly hole doped cuprate materials. In cupra
the superconducting state emerges through chemical do
of a parent compound which is insulating and shows anti
romagnetic~AF! order with a high critical Ne´el temperature
of typically a few hundred Kelvin. As a consequence
chemical doping, the compounds are intrinsically disorder
Especially at weak doping concentrations, disorder is kno
to strongly influence the behavior of these materials. Thi
evident in the simplest cuprate superconduc
La22xSrxCuO4, where the superconducting phase emer
via doping directly from a low-temperature spin-glass~SG!
phase. Recently, glassy characteristics were detected
inside the superconducting phase~see Ref. 1 for a summar
of the available experimental data!.

Understanding the very weak doping regime of cupra
the insulating AF and SG regime, should be relative
simple. This optimism is based on the belief that this regi
is dominated by the behavior of isolated holes in presenc
well-developed AF moments. The single hole propert
seem now to be quite well understood and early theorie
high-temperature superconductivity were constructed fr
these one-hole wave functions. Shraiman and Siggia2,3 pro-
posed a theory of interacting hole quasiparticles based on
one-hole picture and predicted the formation of spiral cor
lations with a pitch proportional to the hole density. Expe
ments have to date, however, not found any evidence of s
spiral correlations inside the superconducting phase.
pairing mechanism suggested by this semiclassical pictu
dipole-dipole interaction between holes mediated by s
0163-1829/2004/69~1!/014424~21!/$22.50 69 0144
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spin waves,4,5 has, perhaps unfairly, received scant attent
of late. A potential weakness of the approach is the semic
sical treatment of spins~largeS), which implies the assump
tion of a large AF correlation length, whereas in the sup
conducting phase the spins are believed to form some kin
quantum disordered spin liquid. The scattering of holes
spin excitations would then be qualitatively different at lar
scales. However, while the semiclassical theory is formula
for large scales, the structure and energy of the resul
two-hole bound state is determined by the shortest cutof
the system,5 where AF correlations are still intact. Furthe
more, the correlation length can be substantial even in su
conducting samples, e.g., it exceeds 200 Å in the stripe c
pound La1.45Nd0.4Sr0.15CuO4.6 Thus, the pairing mechanism
suggested by the semiclassical picture may hide some t
despite the absence of long-range order.

While a semiclassical approach to the superconduc
regime may or may not be valid, at sufficiently low ho
concentrations, where static AF correlations are still dom
nant, i.e., in the SG and AF phase, a semiclassical treatm
of spins is certainly justified. However, at these low den
ties, where the system is still a Mott insulator, screening
very poor and long-range Coulomb interaction leads to
strong disorder potential which must be taken into accou
Here we discuss a model in which the entire charge distri
tion is assumed to be quenched. Each hole, localized clos
an ionized dopant, is assumed to produce a long-ran
dipolar-shaped frustration of the AF, similar to the o
known to be produced by delocalized holes. A polarization
the dipole moments then implies the appearance of sp
correlations.

It is known that the spiral state described by Shraiman
Siggia, if one ignores disorder, is unstable toward a lo
©2004 The American Physical Society24-1
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HASSELMANN, CASTRO NETO, AND MORAIS SMITH PHYSICAL REVIEW B69, 014424 ~2004!
enhancement of the spiral pitch. This instability arises fr
the fermionic susceptibility of the holes and may signal
instability towards charge density formation or pha
separation.7 However, if the holes are quenched this instab
ity is suppressed. Therefore, disorder takes a prominent
in the creation of a spiral state.

We here develop a renormalization approach for dis
dered spiral phases, where we study the scaling of the
stiffness and of the disorder. The importance of topologi
defects of the spiral texture is analyzed and their releva
for the physics of the spin-glass phase is discussed.

B. Undoped and weakly doped cuprates

Undoped La2CuO4 is a charge-transfer insulator with a
antiferromagnetically ordered ground state. It is well d
scribed by a simple square lattice spin-1/2 Heisenberg m

HH5J(̂
i j &

Si•Sj , ~1!

with the antiferromagnetic exchangeJ;1200 K. The sum is
over nearest-neighbor pairs of sites andSi are spin-1/2 op-
erators.

In the study of magnetism of La2CuO4, an approach
based on the quantum-nonlinear-s model (QNLsM) has
been highly successful. It correctly describes the long wa
length hydrodynamic modes~spin waves! of the Heisenberg
model.8 In this continuum model, it is assumed that the a
tiferromagnetic correlation length is much larger than
lattice spacing and the model describes slow fluctuation
the locally well-defined staggered magnetizationn ~with n2

51). The QNLsM action is

Seff

\
5

rS

2\E0

\b

dtE d2xH ~]mn!21
1

c2
~]tn!2J . ~2!

The spin stiffnessrS and the spin-wave velocityc should be
viewed as phenomenological parameters to be determ
either from experiment or from other techniques such
spin-wave theory or numerical simulations. The coupli
constant of the model isg5\cL/rs (L is a high-frequency
cutoff!. There is a zero-temperature quantum phase trans
at g5gc;4p from a phase with long-range order (g,gc ,
‘‘renormalized classical regime’’! to a phase which exists fo
g.gc and which is quantum disordered with only finite sp
correlations and no static magnetic order. It is now firm
believed that theS51/2 Heisenberg model described by E
~1! has g,gc . Measurements of the correlation length
La2CuO4 have been fitted extremely well with the QNLsM
predictions for the renormalized classical regime.9

Once holes are added to the CuO2 planes, the magnetism
becomes rather complex. Figure 1 summarizes the magn
phase diagram at weak doping concentrations
La22xSrxCuO4 and Y12xCaxBa2CuO4.10 Here, we concen-
trate on La22xSrxCuO4. For very small Sr concentration, th
most dramatic effect is a rapid reduction ofTN with the
complete destruction of long-range order occurring at a c
cal doping value of roughlyxg;0.02. Further, a spin freez
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ing is observed inside the AF phase below a temperatureTf
which scales linearly with the Sr concentration,Tf
;(815 K)x for 0,x,xg . This spin freezing is inferred
from a broad distribution of extremely slow relaxation tim
measured with local probes such as139La nuclear quadrupole
resonance11 ~NQR! and muon spin resonance12 (mSR). Sur-
prisingly, while at higher temperatures doping leads to a
duction of the local staggered moments, at temperatu
lower than about 30 K the staggered moments recover an
zero temperature they are practically doping independent
approach the value of the undoped compound,11,12 see the
middle panel of Fig. 1. However, the distribution of sta
gered moments is broad at finite doping, with a varian
which is again simply linear inx, see Fig. 1 bottom.10 Both
the recovery of the staggered moments and the broad d
bution of relaxation times are reminiscent of a transve
spin-glass state, in which the transverse spin-wave mode
the AF freeze in a static but random pattern. These are c
signatures of disorder in the weakly doped AF phase. Thi
further corroborated by transport measurements, which s
a behavior typical for random systems.13 At temperatures
below ;50 K the conductivity roughly follows variable
range hopping characteristics while at higher temperatur

FIG. 1. Phase diagram as seen bymSR, with data obtained from
La22xSrxCuO4 ~open symbols! and Y12xCaxBa2CuO3 ~closed sym-
bols!, psh is the hole concentration.~a! Doping dependence of the
Néel temperatureTN , freezing transition temperatureTf , spin-
glass transition temperatureTg , and superconducting transitio
temperatureTc . ~b! Normalized average internal field atT51 K.
~c! Root mean square deviationDB at T51 K. Figure from Nied-
ermayeret al.10
4-2
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SPIN-GLASS PHASE OF CUPRATES PHYSICAL REVIEW B69, 014424 ~2004!
thermally activated conductivity is observed, with activati
energies of about 19 meV.14 This indicates that the hole
localize near the randomly distributed Sr donors.

Both the presence of finite staggered magnetic mom
and the broad distribution of slow relaxation times pers
also abovex.xg where long-range order is destroyed10

Again, there is a recovery of the staggered moments at v
low temperatures, although the zero-temperature mome
now slightly smaller than in the undoped compound. Thx
dependence ofTf follows now roughly a 1/x scaling. The
regime 0.02,x,0.05 is well described as a conventional S
and shows characteristic nonergodic behavior.15 The freezing
transition temperatureTf in this regime can thus be identifie
as a SG transition temperatureTg . The fact that staggere
moments persist also abovex50.02 is important and ex
cludes the possibility that the transition atx50.02 is a dis-
ordering transition driven by quantum fluctuations as
scribed in the QNLsM formulation above. It is often argue
that upon hole doping, the reshuffling of the spins by mob
holes leads to enhanced quantum fluctuations of the s
which would eventually drive the spin system past the qu
tum critical point of the QNLs model, driving the AF into a
spin liquid phase. As the transition atx50.02 is not followed
by a spin liquid phase but rather a SG this scenario does
apply for the AF-SG transition.

Only recently, it was found that the short-ranged magne
order in the SG regime is incommensurate, with a maxim
of the imaginary part of the susceptibility located at the
plane wave vector (1/26d/A2, 1/27d/A2), in units of
2p/a wherea is the Cu lattice spacing.15–17 Here,d is the
incommensurability which roughly followsd.x. This in-
commensurability has often been interpreted as diago
stripe formation, even though no signatures of a cha
modulation were observed. Rather, all experiments point
ward a quenched charge distribution and we thus argue th
more likely explanation is the formation of short-ranged s
ral order.

In La22xSrxCuO4 static AF moments are strong for sma
x and the holes seem to localize at low temperatures wh
transport experiments indicate a relatively weakly bou
hole with a localization length of a few lattice constan
Thus, one might hope to gain considerable insight into th
phases by solving the one-hole problem first and to proc
from there on. As mentioned in the beginning, the und
standing of the spin-polaron state arising from one hole in
antiferromagnetic background is by now quite mature.2,18,19

For thet2J model, the bottom of the dressed hole band l
at the zone face centersk05(6p/2,6p/2) and the band-
width scales withJ. Because of the presence of two subl
tices, there exists a pseudospin degeneracy for eachk vector.
An important characteristic of the hole wave function is th
it describes a long-ranged dipolar distortion of the AF ord
which arises from a coupling of the spin current carried
the hole to the magnetization current of the AF backgroun2

Relative to the position of the moving hole, the Fourier tra
form of the transverse spin deviations is then proportiona
(q̄x1q̄y)/q̄

2,18 whereq̄5q2(p,p), i.e., the staggered mag
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netization shows a dipolar pattern in real space identica
the one produced by an isolated ferromagnetic bond, see
II A.

The Sr impurity position, located above the center of a
plaquette, has a high symmetry and couples to both sub
tices in the same way, so that the pseudospin degene
mentioned above should survive also in the bound hole st
The bound hole state is a superposition of plane-wave st
describing the mobile hole. For sufficiently weakly boun
holes, we expect the main weight of the bound hole wa
function to remain at wave vectors close tok0 or equivalent
positions, and, depending on the relative phases and
weight of these pockets, dipolar or quadrupolar frustration
associated with the localized hole. We note that dipolar fr
tration was also suggested by Aharonyet al. for O doped
systems, caused by a localization of holes in the O site w
the liberation of one of the spins from the Op6 state,21

leading to an effective ferromagnetic coupling for the two C
spins joint by the O. While the microscopic origin of frus
tration in the Aharony model is very different from th
quantum-mechanical one that we assume here, the phen
enological spin-only model we employ below is not sensit
to the microscopic details. In either case, the dipole mom
of the localized hole state is characterized by two vecto
one in spinspace and one in real space. The real-space v
characterizing the dipole is simply the orientation of the f
romagnetic bond in the Aharony picture while it is dete
mined by the four coefficientsck0

and by the equivalen
wave vectors of the bound hole wave function in t
quantum-mechanical model. The coupling to the spin ba
ground is then identical in both models. Here we simp
assume that the localized hole produces dipolar frustra
and, rather than relating our phenomenological coupling
rameters to a microscopic model, we derive our parame
from a comparison to experiments. As we discuss below,
dipole model can quite well explain all the important cha
acteristics of the magnetism of the weakly doped AF and
phase. Let us further mention that for Sr doping, it was p
posed that a chiral spin current is induced on the four
sites closest to the Sr impurity which leads to a Skyrmio
like distortion of the AF, where the mechanism of frustrati
is again the coupling between spin and background mag
tization currents.20

In Sec. II we introduce the dipolar frustration model, su
marize the main results of previous studies on this mod
and discuss how they compare with experiments. In Sec
we first derive an extension of the model to allow for no
collinear correlations which arise from dipole ordering. W
perform a renormalization-group~RG! calculation to under-
stand the influence of disorder and discuss the importanc
topological defects of the spin texture. Finally, in Sec. IV o
results are compared with neutron-scattering data on the
phase of La22xSrxCuO4. We find that the SG phase can b
described as a strongly disordered spiral phase in which
pological defects proliferate.

II. THE AF PHASE AND DIPOLAR FRUSTRATION
MODELS

We briefly sketch here the basis of the dipolar frustrat
model and the results of previous studies of this model in
4-3
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collinear limit. The model as presented in this section is
plicable only for the antiferromagnetic phase in which t
dipoles do not have a preferred direction. At high tempe
tures, the collinear theory can be used. We will show in
following section, however, that the collinear model is n
able to describe the low temperature and/or strong diso
regime, where noncollinear behavior emerges.

In the dipole model, it is assumed that each localized h
produces dipolar frustration. It is then possible to study
magnetism of the hole doped materials completely ignor
the charge degrees of freedom and to work with the s
sector only. Further, as there are clear indications of static
correlations forx,0.05, the antiferromagnet should be we
described within the renormalized classical regime of
QNLsM. In this regime, quantum fluctuations simply lead
a renormalization of the coupling constant of the class
model. A classical model should thus suffice to describe
relevant physics in the AF and SG regime.

A. Ferromagnetic bonds as an example of dipolar frustration

Dipolar frustration was first discussed in the general c
text of insulating spin glasses by Villain.22 The simplest way
of producing dipolar spin textures is by placing a ferroma
netic bond in an otherwise AF magnet, whose order par
eter we denote byn. At a distancex away from the ferro-
magnetic bond, this leads to a deviation of the Ne´el order
dn;fmxm /x2. Here, fm is a vector both in spin and lattic
space, wherem51,2 are the indices of the two-dimension
~2D! lattice vector. The spin part corresponds to the lo
ferromagnetic moment~with fm'n) produced by the bond
and the lattice part corresponds to the orientation of the b
on the lattice~see Fig. 2!. This can be easily derived in
harmonic continuum approximation, where the energy d
sity of the magnet away from the impurity is proportional
@]m(dn)#2 and the classical equation of motion is¹2(dn)
50. For any impurity distribution, the solution fordn can
thus be written in a multipole expansion. As the monop
moment is energetically too costly22 the lowest-order contri-
butions, consistent with the symmetry of the one-bond pr
lem, are dipolar.

B. Collinear Model

Because of the long-range nature of dipolar frustration
continuum field theory, such as a~classical! nonlinear s

FIG. 2. Dipolar distortions produced by a ferromagnetic bond
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model (NLsM), should be well suited for a treatment of th
problem. While the dipole spin structure discussed above
solution of the harmonic theory, it is not a solution of the 2
NLsM. Nonetheless one can study the dipole model with
the NLsM, if one introduces the dipolar frustration throug
a minimal coupling scheme. As mentioned in Ref. 23, t
dipolar frustration can be reproduced~on the harmonic level!
via a coupling of the dipoles to the gradient of the ord
parametern of the NLsM. Thus, within a NLsM approach,
the reduced Hamiltonian of the model can be written as23,24

~the factorb5T21 is included in the Hamiltonian and we se
kB51)

Hcol5
rs

2TE d2x~]mn!21
rs

T E d2xfm•]mn ~3!

wheren251, rs is the spin stiffness~renormalized by quan-
tum fluctuations!, T is the temperature,n is a three compo-
nent unit vector representing the local staggered moment
fm is a field representing the dipoles. We did not include h
small corrections which lower the spin symmetry fro
Heisenberg toXY or Ising. While these are known to b
present both in the undoped and weakly doped compound25

they have a very small characteristic energy scale and,
first approximation, we set them to zero. Note, however, t
these terms dominate the static magnetic susceptibility n
the Néel transition. For a random distribution of localize
dipoles we write

fm~x!5M(
i

d~x2xi !am~xi !M i , ~4!

where the sum is over the impurity sites,ai are lattice unit
vectors,M i are unit vectors in spin space, andM measures
the strength of the dipoles. While there is no dipole-dipo
interaction term in Eq.~3!, fluctuations of then field gener-
ate a spin-wave mediated interaction. This can be seen o
short scale fluctuations are integrated out under a renorm
ization procedure.23 An integration over the short scale fluc
tuations up to a scaleL@1/Ax ~but L!j wherej is the 2D
spin correlation length! leads to an effective interaction term
of the form

H@$M i%#5
rsM 2

2T (
i , j

Ji j M i•M j ~5!

with

Ji j 5
1

2pxi j
2 S 2

~xi j •ai !~xi j •aj !

xi j
2

2ai•aj D , ~6!

and xi j 5xi2xj . Thus, for an average separation of dipol
;1/Ax there is a random interaction among dipoles with
characteristic energyU;rsM 2x/4p. It was further shown23

that at high temperaturesU!T the presence of dipoles lea
to a renormalized effective stiffnessreff5rs(12U/T).
Thus, the correlation length at high temperatures~and small
x) has the form
4-4



y
-
ig

le

b
re
e
en
as
th
n

y
e

lin
i

ai
ti

SG
y

te
s

la

milar

or-

eri-
er
ripe

gth
een

ld

the
ents
ake
here
and
en,

e

ipes
ase

ro-
the

ized
o a
the
ible

IC

of
lat-

a
e-
ge-

on

and
lat-
the

iral
he

bits
ite
of a

el.

-

SPIN-GLASS PHASE OF CUPRATES PHYSICAL REVIEW B69, 014424 ~2004!
j;expS 2preff

T D5expS 2prs

T
2

2prsU

T2 D . ~7!

This result agrees to lowest order inx with that obtained by
Cherepanovet al.24 in a related RG calculation where the
calculatedreff up to orderx2. From a comparison with cor
relation lengths obtained from neutron-scattering data at h
temperatures, they estimatedU;20rsx. The doping depen-
dence ofTN was also found to be consistent with the dipo
model.24

A second independent test of the value ofU is to consider
the spin-relaxation times inside the AF phase. This can
understood already within the theoretical framework just p
sented using arguments similar to those from Ref. 26 wh
spin relaxation has been discussed within a slightly differ
frustration model. The relaxation rates inside the AF ph
can be explained within the dipole theory if one assumes
the relaxation is driven by the interaction among dipoles a
hence controlled by the parameterU. At temperatures well
above the actual freezing temperature, an Arrhenius law
observed, with a characteristic energyE58.9Tf;7250 Kx,
see Fig. 3. The above estimate ofU correctly reproduces the
linear scaling of the relaxation energy withx and also gives a
good estimate for the slope. WithU520rsx, rs;24 meV24

one obtainsU;5500 Kx. Considering that this is a ver
rough approximation, the value is not too far off from th
experimental one. We mention further that the linear sca
of the width of the distribution of local staggered moments
also consistent with a dipole model.27

III. NONCOLLINEAR CORRELATIONS AND DIPOLE
ORDERING

While the dipole model presented above can well expl
the temperature and doping dependence of the correla
length not just in the AF but also, to some extent, in the
regime,24 theoretical investigations of the model have alwa
predicted ~or rather assumed! short-ranged commensura
antiferromagnetism. The recent observation of incommen
rate ~IC! correlations for the regime 0.02,x,0.05 requires
therefore a new approach to the SG phase.28

As a possible explanation for the presence of IC corre

FIG. 3. R15(T1* )21 data from139La NQR relaxation measure
ments for La22xSrxCuO4 and variousx,0.02, from Ref. 11.
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tions, a disordered striped phase has been proposed, si
to the ordered striped phase found nearx;1/8. While there
is indeed an instability in the striped phase toward a dis
dered phase at lowx,29 it is unlikely that the stripes will
survive in presence of strong disorder. In fact, recent num
cal simulations of Shraimann-Siggia dipoles with disord
have shown that the latter leads to a destruction of the st
phase.30

In the spin-glass regime, there are two competing len
scales. The first is related to the average separation betw
disorder centers~Sr ions! ,d which scales as,d;1/Ax. The
other is the scaling of the periodicity,s associated with the
incommensurability, which scales as,s;1/x. For smallx,
,d!,s . In a stripe scenario the charge distribution wou
also have a periodicity which scales with,s . Thus, in a
striped phase the charge can not take full advantage of
disorder. The stripes must either break up into short segm
or reduce their on-stripe charge density considerably to t
advantage of the disorder potential. Instead we propose
a theory in which the charges are completely disordered
the incommensurability exists only in the spin sector. Th
there is no conflict between the two scales,s and ,d as ,s
relates only to the spins whereas,d characterizes the charg
distribution.

Note that even in the case that short segments of str
should be present, these stripes would lose their antiph
domain wall character and instead act like a row of fer
magnetic bonds, again causing dipolar frustration. Thus,
theory we present here applies both to the case of local
hole states which produce dipolar frustration as it does t
system of randomly placed stripe segments. We view
scenario of localized holes, however, as the more plaus
one.

A. Dipole ordering

It is easy to see how the dipole model can lead to
correlations.3 The Hamiltonian Eq.~3! favors the formation
of a spiral phase, with a nonzero average twist]mn of the AF
order and a simultaneous alignment of the dipoles,^fm&
Þ0, as long as the lattice and spin degrees of freedom
dipoles are annealed and free to orient themselves. The
tice position of the Sr dopants~located above the center of
Cu plaquette!, which pin the holes, suggests that this fre
dom indeed exists. We emphasize that a spatially homo
neous distribution of dipoles is not required for the formati
of spiral correlations.

The preferred orientation of the lattice part of thefm vec-
tor is determined by the nature of the localized hole state
therefore should reflect the symmetries of the underlying
tice. Thus a discrete set of favored lattice vectors for
formation of the spiral exists. Thea-b ~or square lattice!
symmetry breaking associated with the formation of sp
correlations can therefore have truly long-range order. T
continuous symmetry of spin space on the other hand inhi
long-range magnetic order in the 2D system for either fin
temperatures or disorder. The experimental observation
macroscopica-b asymmetry16 but very short spin correlation
lengths thus clearly motivate the study of the dipole mod
4-5
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B. Continuum description of spiral phases

Here we investigate the dipole model allowing for t
presence of nonzero ordered moments but assume a ran
spatial distribution of the dipoles. First, however, we nee
proper theoretical description of the homogeneous sp
phase.

In collinear magnets, the rotational O~3! symmetry of the
system is broken down to a ground state with O~2! symme-
try, as rotations around the magnetization axis leave
ground state invariant~this is schematically shown on th
left-hand side of Fig. 4!. The order parameter of collinea
magnets is then an element of O~3!/O~2!. This group is iso-
morphic to the group of three-dimensional unit vectorsn,
which is the representation used in the Hamiltonian, Eq.~3!.
Further, in absence of dipoles, the Hamiltonian, Eq.~3! is
invariant with respect to O~2! rotations of the lattice vari-
ables. The spin and lattice symmetries are decoupled
independent for the collinear AF. A spiral ground state,
the other hand, breaks the O~3! spin symmetry completely
Moreover, in a spiral state the lattice symmetries and the s
symmetries are no longer decoupled and the order-param
space of such a state becomes more involved.

For spirals, the combined symmetry of lattice and the s
space is O(3)3O(2). As discussed in detail by Azaria
et al.,31 the coupling of the spin and lattice degrees of fre
dom in frustrated spin systems leads to an order param
which results from a symmetry breaking of the combin
lattice and spin degrees of freedom and is in general of
form O(3)3O(q)/O(q) whereq depends on the symmetrie
of the lattice. For a spiral phase, one finds32 q52.

A convenient representation of the order parameter is
terms of orthonormalnk , k51, . . . ,3,with nk

anq
a5dkq . Klee

and Muramatsu32 have derived a continuum field theory fo
the nk order parameters from the lattice Heisenberg mod
Eq. ~1!, assuming an IC spiral state with an ordering wa
vectorkS5(p/a,p/a)1qS . Here,qS measures the deviatio
from the commensurate AF wave vector, see Fig. 5. T

FIG. 4. The order parameter of collinear magnets, which
invariant under rotations around the collinear axis, can be re
sented by a unit vector~left!, whereas noncollinear order paramete
require three orthonormal vectors~right!.

FIG. 5. Spin texture of an AF spiral.
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lattice spinsSi at sitesr i can be parametrized in a spira
configuration with the use of thenk

a as ~with n35n13n2)

Si /S5n1cos~kS•r i !2n2sin~kS•r i !. ~8!

A perfectly ordered spiral is described by Eq.~8! with con-
stant, i.e., space independentnk . To allow for spatial fluc-
tuations of the spins around the spiral order, Klee and Mu
matsu introduced a slowly varying fieldL via32,33

S~r i !

S
5

N1aL

A112aN•L1a2L2
5N1a@L2~N•L !#

2a2@~N•L !L1 1
2 L2N2 3

2 ~N•L !2N#1O~a3!,

~9!

whereN5n1cos(kS•r i)2n2sin(kS•r i) with now slowly fluc-
tuating fieldsnk . The continuum theory can then be foun
upon expressing in the lattice Heisenberg model the s
operators in terms of thenk andL fields, expanding the term
up to ordera2 and taking the limita→0 in the end. After
integrating out theL fields, one finds an effective Hamil
tonian which can be written in the classical limit in the ge
eral form32 ~again we include the factorb5T21 into H)

H5
1

2E d2xpkm~]mnk!
21smE d2xn1•]mn2 . ~10!

This description is valid for length scales larger th
uqSu21. The stiffnesses of the order parameternk are given
initially by p1m5p2m5JS2cos(qSma)/(2T) and p3m.0, but
will change under a renormalization of the model. We w
ignore for the most part the small anisotropy~of orderqS

2a2)
in the stiffnessespkm and just writepk . The vectors is to
lowest order given bys5JqS /T. The term with thesm pre-
factor makes this Hamiltonian unstable, which simply e
presses the fact that the pure Heisenberg model does
support a spiral phase ground state. Thesm term will, how-
ever, be canceled by a similar term originating from the co
pling of the spins to the ordered fraction of the dipoles,
lating the incommensurability self-consistently to th
ordered moment of the dipoles. In other words, the orde
dipoles stabilize the spiral phase, as expected.

It must be stressed that because the continuum mod
only valid at length scales larger than the period of the
structure, there is a relatively large uncertainty in the e
mates of thepkm . There is always a fundamental problem
relating the continuum model parameters to those of
original microscopic lattice model, but in this case this pro
lem is especially severe. The continuum model parame
must be obtained from an average over one period of
spiral which, for small incommensurabilities, can be rath
large. Thus, the above estimates for thepkm’s should be
taken with care.

C. Disorder coupling: a gauge glass model

Now we must include the coupling of the dipolar frustr
tion centers to the spiral order parameter. While there is
microscopic derivation of this coupling at hand, the fact th

e
e-
4-6



in
za
rv

m
i-
o
d

tia
ru

a

f
ic

m
lds
n
he
th
us

il

o

n-
t o
n

q

i-

ie

e

d

o

l
it is
h a
berg

de-
m-
al
pin
ere
s in

be
at
tes
an
one

n-
the

he
n-

)

the

n-

is
l

hey
be-

an

SPIN-GLASS PHASE OF CUPRATES PHYSICAL REVIEW B69, 014424 ~2004!
the coupling in the collinear model can be expressed with
minimum coupling scheme allows for a simple generali
tion of the model to noncollinear spin states. We first obse
that the ordering wave vector of the spiralqS is entirely
determined by the average orientation of the dipoles. Si
larly, local variations of the density or orientation of the d
poles should also modify the local ordering wave vect
Further, to reproduce the strong canting produced by the
poles, the coupling should be of first order in the spa
derivative of the spiral order parameter. To generate the f
tration produced by the dipoles we thus introduce a minim
coupling34 in the first term of Eq.~10!, i.e., we replace
(]mnk)

2 with @(]m2 iBm•L )nk#
2 where Bm is a random

gauge field, representing the dipoles. The components oL
are 333 matrix representations of angular momenta wh
generate rotations about the three spin axes, with

2 iBm•Ln k5Bm3nk . ~11!

This coupling has the advantage of relative simplicity co
bined with a clear physical interpretation: the dipolar fie
define the locally preferred wave vector of the spiral, a
fluctuations of the dipole fields lead to fluctuations of t
wave vector. Further, it reproduces the correct form of
dipole coupling in the collinear limit, as shown below. Let
write Bm5@Bm#D1Qm so that@Qm#D50, where@•••#D is
the disorder average. We then obtain the following Ham
tonian for the spiral in presence of disorder,

H5
1

2E d2xpkm~]mnk!
21E d2xpk]mnk•Qm3nk ,

~12!

where the ordered part of the dipole field cancels the sec
term in Eq.~10!. Thus,

pkm]mnk•@Bm#D3nk1smn1•]mn250. ~13!

As qS}s, this equation relates the incommensurability li
early to the density of ordered dipoles. The remaining par
the dipole fieldQm is a quenched variable with zero mea
and we assume Gaussian short-ranged statistics,

@Qm
a ~x!Qn

b~y…#D5ld~xÀy!dabdmn . ~14!

In absence of disorder, the Hamiltonian defined by E
~12! has the desired O(3)3O(2)/O(2) symmetry. The O~3!
symmetry is associated with the spin indicesa of the nk

a ,
while the O~2! symmetry is associated with the lattice ind
ces k and arises becausep1m5p2m . Hence, the equality
p1m5p2m is directly related and enforced by the symmetr
of the spiral. Note that if allpkm are identical, the lattice
symmetry is enhanced to O~3!. We further see now, that th
model reduces to the collinear model Eq.~3! in the case
p1,250 with p35rs /T, n35n and fm5Qm3n. Unfortu-
nately it is not possible to reach the collinear limit by sen
ing qS→0. The reason is that the parameterspkm are, within
the approximation used in their derivation, independent
the size of the unit cell of the spiral, i.e., in the limitqS
→0, the unit-cell size diverges while the parameterspkm
remain unaffected.
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The model defined by Eq.~12! is in fact far more genera
than its derivation might suggest. In absence of disorder
applicable to other types of frustrated spin systems wit
noncollinear ground state, such as, e.g., the Heisen
model on a triangular lattice.31,33,35It is conceivable that cer-
tain types of randomness in such lattices may be well
scribed by the disorder coupling employed here. More i
portantly, the model Eq.~12! can be viewed as a gener
model to investigate diluted spin glasses, in which a s
system is frustrated by a small number of impurities. Th
have been investigations of similar models of spin glasse
the past, most notably by Hertz,34 which however did not
account for noncollinear correlations which are known to
essential in spin glasses.36 Our approach has the appeal th
it can interpolate between collinear and noncollinear sta
and thus offers the possibility to study the transition from
ordered collinear magnet to a disordered noncollinear
continuously.

D. Renormalization

We now investigate the renormalization of the model u
der a change of scale, with the objective to understand
influence of the dipoles on the correlation length of t
model. For carrying out the RG calculation, it is of adva
tage to use a SU~2! representation of the model35 ~see also
Appendix A!. We therefore write

nk
a5 1

2 tr@sagskg21#, ~15!

wheresa are Pauli matrices andgPSU(2). Wefurther in-
troduce the fields37

Am
a 5

1

2i
tr@sag21]mg#, ~16!

which are related to the first spatial derivatives ofnk through
]mnk

a52e i jkAm
i nj

a . Equation~12! then acquires the form

H5
1

tm
E d2x@Am

2 1bAm
z 2#12E d2xpkme i jkeabcAm

i nj
ank

cQm
b ,

~17!

where tm
2152(p1m1p3m) and b5(p1m2p3m)/(p1m1p3m).

At the point b50 the symmetry is enhanced to O(3
3O(3)/O(3).O(4)/O(3) while at b521 the model is
collinear. For spirals, we have initiallyb51.

We first discuss the dimensional scaling behavior of
models~12! and ~17!. We assign the dimension21 to each
spatial dimension so]m has dimension 1. It follows that the
Am fields have a scaling dimension of 1. The scaling dime
sion of the first term in Eqs.~12! and~17! is then 22d where
hered52. Thus, this term is marginal and a RG analysis
required to study the scaling of thetm , b parameters. Loca
terms containing more than twoAm terms have positive di-
mensions and are irrelevant. Hence, such terms, while t
are generated in the perturbative expansion we discuss
low, need not be considered.

As was pointed out in Ref. 24, for the disorder choice~14!
the model defined by Eq.~3! has a lower critical dimension
of two and is thus renormalizable in two dimensions, as c
4-7
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be shown with a general Imry–Ma-type argument. The sa
argument can be used for the present model. The diso
coupling in Eq.~12! can be rewritten in momentum space
a random-field coupling of the form

E d2q

~2p!2
nk~2q!•hk~q!;

hk~q!5 ipkmqmE d2x~Qm3nk!e
iq•x,

where the random fieldshk(q) have disorder correlation

with a momentum dependence@hk
a(q)hk8

a8(q8)#D}d(q
2q8)uquQ with Q52. According to general arguments b
Imry and Ma,38 in models with continuous symmetries ra
dom fields will destroy long-range order as long asd,4
2Q. This implies that in our cased52 is the lower critical
dimension24 and a renormalization-group analysis of both t
stiffness and the disorder coupling is required.

We now derive the one-loop RG equations. For this,
split the original SU~2! field g into slow and fast modes,g
5g̃exp(iwasa) and trace out the fast modeswa which have
fluctuations in the range@L21,1#, where we set the origina
UV cutoff equal to 1. For the one-loop calculation, we ne
an expansion of Eq.~17! up to second order inwa ~higher-
order terms will only contribute at higher loop order of th
RG!. For the fieldsnk andAm the expansion reads~see Ap-
pendix B for more details!

Am
i 5Ãm

i 1]mw i1e i jkw j]mwk12e i jkw j Ãm
k 22Ãm

i w2

12Ãm"ww i1O~w3!,

ni
a5ñi

a12e i jkw j ñk
a1w jwkRjk

ai1O~w3!,

where

Rjk
ai5 1

2 tr$sag̃~s js isk2 1
2 s jsks i2 1

2 s is jsk!g̃21%.

The expansion of the energy functional~17! reads

H5
1

tm
E d2x@Ãm

2 1b~Ãm
z !2#1Hc01Hw1Hp , ~18!

with

Hc052E d2xpkme i jkeabcÃm
i ñ j

añk
cQm

b ,

Hp5H11H21H31H41Hc11Hc21Hc31Hc4 .

The first two terms in the expansion ofH have exactly the
same form as the original functional~17!, but are now func-
tionals of the slow fields.Hw is quadratic inw and has the
form

Hw5
1

tm
E d2x@~]mw!21b~]mwz!2#.

H1 , . . . ,H4 are generated by the first term in Eq.~17! and
are given by
01442
e
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H152tm
21E d2xÃm

i ]mw jwke i jk~12bd iz12bd jz!,

H252tm
21E d2x]mw i Ãm

i ~11bd iz!,

H354btm
21E d2xez jkÃm

z w j Ãm
k ,

H454btm
21E d2x@~ez jkw

j Ãm
k !22~Ãm

z !2w21Ãm
z wzÃm"w#.

The coupling term in Eq.~17! produces theHc1 , . . . ,Hc4
terms,

Hc154E d2xpkme i jkeabc@eklmñj
añm

c Ãm
i 1e j lmñk

cñm
a Ãm

i

1e i lmñj
añk

cÃm
m#w lQm

b ,

Hc252E d2xpkme i jkeabc]mw i ñ j
añk

cQm
b ,

Hc352E d2xpkme i jkeabc@Ãm
i ~ ñ j

aRlm
ck1ñk

cRlm
a j !w lwm

12ñ j
añk

c~Ãm"ww i2Ãm
i w2!14~Ãm

i e j lmekpqñm
a ñq

c

1Ãm
me i lmekpqñq

cñj
a1Ãm

me i lme jpqñq
añk

c!wpw l #Qm
b ,

Hc452E d2xpkme i jkeabc@2~eklmñj
añm

c 1e j lmñm
a ñk

c!]mw iw l

1e i lm]mwmw l ñ j
añk

c#Qm
b .

The integration over the fastw fields is performed with

E D@w i #exp~2Hw!exp~2Hp!5e2FE D@w i #exp~2Hw!,

whereF is obtained from a cumulant expansion

2F5 ln
E D@w i #exp~2Hw!exp~2Hp!

E D@w i #exp~2Hw!

5 (
n51

`
~21!n

n!
^Hp

n&wc

~19!

and^•••&wc indicates that only connected diagrams are to
considered.

1. Renormalization of the spin stiffness

We ignore the~small! anisotropy of thetm parameter and
simply use the isotropic meants5At1t2 in the RG analysis
below. We collect all terms in the perturbative expansi
which are bilinear inÃm

i . After performing the disorder av

erage ofF, the renormalized stiffnesses of theÃm
i fields is

found to be~see Appendixes C and D 1!
4-8
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1

t s̃

5
1

ts
2F2~12b!

ts
1

~22b1b2!l

ts
2 GCx~0!,

b̃

t s̃

5
b

ts
2F2b~31b!

ts
1

b~51b!l

ts
2 GCx~0!.

With ,5 ln L and

Cx~0!5
ts

4p
ln L

one finds the RG equations

]

],

1

ts
52

12b

2p
2

~22b1b2!l

4pts
,

]

],

b

ts
52

~31b!b

2p
2

~51b!bl

4pts
.

This yields

]

],
ts5

12b

2p
ts
21

22b1b2

4p
lts , ~20!

]

],
b52

b~11b!

p
ts2

b~11b!~32b!

4p
l. ~21!

For l50, these equations describe the RG of a cle
spiral,35 while for the collinear pointb521, the equations
reproduce the RG of the stiffness for disordered collin
models.24 From Eq.~21! it is seen that there are two fixe
points forb ~the asymptotic freedom of the model prevent
true fixed point in 2D asts always diverges!. The collinear
point b521 is unstable whereasb50 is stable, irrespective
of the disorder. The RG flow ofts andb is shown in Fig. 6
for l50. The flow does not change qualitatively for finitel
as long asl!ts . Hence, the coupling to weak disorder do
not lead to any new fixed points, although the disorder ren
malizes the stiffness.

FIG. 6. RG flow ofts andb for l50. For anyb.21, the flow
is towardb50.
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2. Renormalization of disorder coupling

As we discuss below, the renormalization ofl is given by
terms proportional tolts andl2. As the disorder enters th
renormalization ofts only in the combinationlts @see Eq.
~20!#, we can neglect the renormalization ofl altogether for
ts@l, i.e., at high temperatures~we havets}T/J). How-
ever, for low temperatures the renormalization ofl must be
taken into account. To calculate the renormalization of
disorder we follow the approach used in Ref. 24. In th
approach, the renormalized disorder variance is defined
the variance of all terms in the perturbative expansion wh
couple to the quenched disorder fields and are linear inÃm .
Note, however, that there exists no symmetry argum
which guarantees that the functional form of the disord
coupling remains unchanged under the RG. It is thus p
sible that new disorder terms are generated so that a sim
renormalization ofl is not sufficient. This is indeed the situ
ation we encounter for generalbÞ0 and discuss in more
detail below, where we find the generation of new coupli
terms at orderl2. To find the complete renormalization o
the model one would have to include all generated new te
into the original model, which is a rather laborious proce
which we did not pursue. Nonetheless, as we have
shown above, there are only two possible fixed points e
in absence of disorder,b50 andb521. Rather than trying
to categorize all possible disorder couplings, we theref
focus on a discussion of the RG of the disorder near th
two possible fixed points and discuss their stability under
flow.

We begin with the collinear caseb521. In this case, the
renormalized variance of the terms linear inÃm

i is given by
@see Appendixes D 2 and D 3, Eq.~D13!#

l

ts
2E d2xH @~Ãm

x !21~Ãm
y !2#S 12

2

p
tsln L2

1

2p
l ln L D

1~Ãm
z !2

1

2p
l ln LJ . ~22!

What is evident from this result is that the renormaliz
disorder coupling is no longer of the original form
pk]mnk•Qm3nk . Such a coupling has a variance which i
cludes a prefactor of (11b)2 of (Ãm

z )2. According to Eq.
~21!, b521 is not changed under the influence of the ori
nal disorder coupling. A renormalization which retains t
form of the original coupling can then not lead to a reno
malized disorder variance with a finite prefactor of (Ãm

z )2 at
b521. Such a term is however present in Eq.~22! from
which we conclude that a different type of disorder coupli
is generated atb521. This is perhaps easier to see in Fo
rier space, where the original disorder coupling can be w
ten as a correlated random-field couplingnk(2q)•hk(q), see
Eq. ~18!. For the original minimal coupling one hashk(q)
}pk and thus, in the collinear limitb521 ~or p150), only
n3 is affected by this coupling. We can then interpret t
finite prefactor of the (Am

z )2 term in the disorder variance a
the generation of correlated fields which couple also ton1,2
4-9
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even atb521. It is evident that such a coupling will driv
the system away fromb521 and thus destroy the collinea
fixed point. Thus, even if the original AF order is colline
~i.e., in absence of dipole ordering!, the disorder drives the
system to a noncollinear state. An analysis which pres
poses collinear order is thus not valid in the presence
dipoles and cannot describe the low-temperature regime
rectly. Physically, one would also expect the appearanc
noncollinearity. The random canting of spins leads to a r
dom local deviation of the spins from the ordering axis a
thus destroys the remaining O~2! spin symmetry of the col-
linear model.

To make contact with the RG result obtained from t
collinear model in Ref. 24, we note that we can reprodu
the result Cherepanovet al. obtained for the disorder renor
malization if we ignore noncollinear modes. We can th
define the renormalization ofl just by the terms which are
present in a purely collinear theory, i.e., by the@(Ãm

x )2

1(Ãm
y )2# term in Eq.~22!. Then

]

],

l

ts
2

52
2l

pts
2

l2

2pts
2

, ~23!

which, using Eq.~20! leads to

]

],
l5

3

2p
l2. ~24!

This, together with Eq.~20! are the RG equations found i
Ref. 24~note that our stiffnessts differs from the stiffnesst
used in Ref. 24 by a factor two!. We emphasize that thi
result ignores the role of noncollinearity in the problem.

We now turn to the pointb50, the only remaining pos
sible fixed point of the model. At this highest symmetry po
we find that no new coupling terms are generated. The v
ance of the renormalized disorder coupling takes the for

l

ts
2E d2xH Ãm

2 S 12
4ts13l

4p
ln L D J . ~25!

Thus,

]

],

l

ts
2

52
1

p

l

ts
2

3

4p

l2

ts
2

, ~26!

which yields the RG equation, valid forb50 but any initial
ratio of l/ts ,

]

],
l5

l2

4p
. ~27!

Using Eq.~20!, we can simplify this throughz5ts1l/2 to
get

]

],
z5

1

2p
z2. ~28!

So for b50 the presence of disorder leads to an addit
renormalization of the stiffness,ts→ts1l/2. In presence of
any amount of disorder, the IC correlation lengthj at T50
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is finite, as can be inferred from an integration of the R
equation withb50, yielding j}exp@C(ts01l0/2)21# with
some cutoff dependent constantC. Thus, even atT50, j
}exp(2Cl0

21) is finite. While the disorder scales to stron
coupling, the relative disorder strength with respect to
stiffnessl/ts always scales to zero so that at long wav
lengths the disorder becomes less relevant. This is surp
ingly different to the situation withb521 fixed,24 where the
ratio l/ts was found to diverge below a certain initial valu
of l0 /ts0 which was interpreted as the scaling toward a n
disorder dominated regime. Thus, if one correctly takes i
account the noncollinearity, this disorder dominated ph
disappears. The absence of a sharp cross over from a w
disorder to a strong disorder regime is certainly surprisi
especially as the experiments clearly observe a transition
a spin-glass phase at a finite temperature.15 The finite tem-
perature transition may be related to the presence of in
layer coupling. We argue below, however, that topologi
defects can alter the RG behavior considerably and may
more natural explanation for the appearance of a strong
order regime.

E. Topological defects: saddle-point treatment

The RG results presented above do not take into acco
topological defects39 of the spiral as only spin-waves excita
tions enter the calculation. As is well known fromXY spin
models, topological defects can play an important role a
drive finite temperature transitions.40 The neglect of topo-
logical defects has been a source of criticism toward
NLsM approach to frustrated magnets, which gives cont
versial results fore51,2 in an e expansion aroundD52
1e dimensions.41 For two-dimensional systems, the NLsM
results were, however, found to be in very good agreem
with numerical simulations as long as the temperatures w
sufficiently low.42 Only at higher temperatures, a deviatio
from the NLsM predictions for the temperature dependen
of the correlation length was observed which was attribu
to the appearance of isolated topological defects. In the
merical simulations the high-temperature region show
some resemblance to the high-temperature region ofXY
models42 which indicates that this region is characterized
free defects. However, at present a good understanding o
influence of such defects in noncollinear systems is s
lacking.41

The topological defects of spirals have their origin in t
chiral degeneracy of the spiral, i.e., the spiral can turn clo
wise or anticlockwise.41 At a topological defect, the spira
changes its chirality. As the chirality takes only two possib
values, the defects areZ2 defects.

It is then straightforward to find topological defect sol
tions of the saddle-point equations of a clean spiral.39 The
saddle-point equations can be obtained from the perturba
expansion of the energy density, Eqs.~18! and ~19!. One
finds that extremal solutions must satisfy for eachj 5x,y,z
the equations

~11bd jz!]mAm
j 52bez jkAm

z Am
k , ~29!
4-10
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wherej is not summed over. Forb.21 one finds solutions
of the form39

gs~x!5expS i

2
masaC~x! D , ~30!

where m is a space independent unit vector andC(x) a
scalar function. With this Ansatz, one hasAm

i (x)
5 1

2 mi]mC(x) and thus, upon insertion into Eq.~29!, one
finds for m and C the equations (j is again not summed
over!

~11bd jz!m
j]m

2 C~x!5bez jkm
zmk@]mC~x!#2. ~31!

The weight of the configuration described bygs is given by
~we settm5ts)

H@gs#5
1

ts
E d2x@Am

2 1b~Am
z !2#

5
1

4ts
@11b~mz!2#E d2x~]mC!2. ~32!

We see that forb,0, the energy is minimized for (mz)2

51 whereas forb.0 the vectorm is preferably orientated
within the x-y plane withmz50. For both cases, Eq.~31!
reduces to the two-dimensional Laplace equation“

2C(x)
50. This equation allows for topological defect solutio
with C(x,y)5arctan(y/x). In the top of Figs. 7 and 8 the spi
distribution around isolated defects is shown for bothb,0
and b.0. Using Eq.~32! one finds that the energy of
topological defect solutionC(x,y) diverges logarithmically
with the linear system sizeR,

bE5
11~mz!2b

2ts
p ln R. ~33!

Because of this logarithmic divergence of the energy, i
lated defects are not present in absence of disorder an
sufficiently low temperatures. It can also be shown43 that a
bound state of defect pairs, described byg5gs1gs2 with
gs1,25exp@(i/2)m1,2•sarctan„(y2y1,2)/(x2x1,2)…#, has a fi-
nite energy ifm11m250. Therefore, while isolated defec
may be absent, defect pairs will be present at any finite t
perature. Figures 7 and 8~bottom! show such a pair of topo
logical defects forb,0 andb.0, respectively.

This situation is reminiscent of the one encountered in
XY model where at low temperatures also only defect p
are present. The pairs unbind at the critical Kosterli
Thouless temperature. An unbinding of defects at a crit
temperature or critical disorder strength is also expecte
the present model. The topological defects of the spiral
fer, however, in important aspects from those of theXY
model. Spiral defects have aZ2 charge whileXY defects
haveZ charges. More importantly, as the present model p
sesses asymptotic freedom, it has a finite correlation lengj
at any finite temperature even in absence of free defects.
implies that the logarithmic divergence in Eq.~33! appears
only up to a scaleR,j. It is therefore not clear how a
defect-unbinding would affect the system. A transition fro
01442
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a phase with algebraically decaying spin correlations to
phase which shows an exponential decay, as occurs inXY
models, is clearly ruled out. While inXY models topological
defects can be relatively easily incorporated into the anal
because they can be decoupled from the spin waves, th
not the case for frustrated Heisenberg models. If fluctuati
around the saddle-point solution are taken into account,
defects of spirals couple to the spin waves already at sec
order in an expansion in the fluctuations.39 These difficulties
have to date prevented a good understanding of defect
binding in frustrated systems.

A comparison toXY models is nonetheless quite illum
nating. The kind of disorder coupling we have used for t
spiral phase is closely related in spirit toXY models with
randomly fluctuating phases, where the disorder is also in
duced in the form of a fluctuating gauge.44 If one ignores
vortices, the influence of the disorder was shown to amo
to a simple renormalization of the spin stiffness, at all ord

FIG. 7. Single topological defect~top! and topological defect
pair ~bottom! of a spiral withb<0 ~small-scale AF fluctuations are
not shown!.
4-11
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HASSELMANN, CASTRO NETO, AND MORAIS SMITH PHYSICAL REVIEW B69, 014424 ~2004!
in a perturbative treatment of the disorder coupling45,44 and
no disordering transition as a function of the disord
strength is found. However, once topological defects are
cluded in the analysis, the coupling of vortices to the rand
gauge field can lead to a disordered phase even atT50. This
transition is driven by the creation of unpaired defects if
fluctuations of the gauge field are stronger than some crit
value.44,46 The critical disorder strength beyond which su
defects appear can be estimated quite accurately when
calculates the free energy of an isolated defect in presenc
disorder.44,47 It turns out that a similar analysis of a sing
defect in a spiral in presence of disorder can be carried
with some modifications, at least at the level of saddle-po
solutions. Within this approximation, the free energy of
isolated spiral defect is given by

bF5
11~mz!2b

2ts
p ln R2@ ln Zd#D , ~34!

FIG. 8. Single topological defect~top! and topological defect
pair ~bottom! of a spiral withb>0 ~small-scale AF fluctuations ar
not shown!.
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where the second term contains the corrections due to
disorder coupling,

Zd5E d2yexpS 22E d2xpke i jkeabcAm
i nj

ank
cQm

b D , ~35!

with Am , nk obtained from Eqs.~15!, ~16!, and ~30!. With
use of the replica trick@ ln Zd#D5limN→0(1/N)ln@Zd

N#D , we
have, assumingb,0,

@Zd
N#D5E d2y1•••d2yN

3expS 2lp1
2 (

n,n851

N E d2x]mCn]mCn8D ;

with Cn(x)5C(x2yn). We write

E d2x]mCn]mCn852
1

2
Dnn81V2, ~36!

with V2.2p ln R and Dnn8.4p lnuyn2yn8u.
46 For large

separationsuyn2yn8u we approximateDnn8.4p ln R while
for small distancesDnn8 is negligible. To find the highes
weight configuration, the replicas are grouped together
N/m sets containing eachm replicas, with small distance
between replicas within a set and large distance for repl
in different sets.@Zd

N#D then scales withR as

@Zd
N#D;R4lpp1

2N21maxm[2(N/m)24plp1
2N(N2m)] . ~37!

In the limit N→0, maximization is replaced by minimizatio
with respect tom in the range 0<m<1, so

bF5@2p1p2min0<m<1~2/m14lp1
2pm!# ln R. ~38!

For 2lp1
2p,1 one findsbF52@p1p(122lp1)21# ln R so

that forp1p(122lp1)<1 free defects are favorable. This
the phase boundary for thermal creation of defects. At l
temperatures, 2lp1

2p.1, one obtains bF52pp1(1
2A8l/p)ln R and a critical disorder strengthlc5p/8 be-
yond which the disorder favors isolated defects even aT
50. Similar considerations for the caseb>0 lead to the
same critical disorder strength and the conditionp(p1
1p3)@12l(p11p3)#<2 for thermal creation of free de
fects.

Let us first discuss the results for the disorder free c
l50. The situation is summarized in Fig. 9, which show
the line separating the regime where free vortices exist fr
the regime in which all defects are bound. Note that
unbinding temperature goes linearly to zero in the limitb
→21. At b521, free defects are present at any finite te
perature. This is expected, as atb521 and finite ts , the
topological defects we discuss here lose their meaning as
stiffness for rotations around the collinear ordering axis d
appears and the model becomes a O~3!/O~2! model which
has no finite temperature transition. Whether or not free
fects are present exactly at the pointb521, ts50 depends
on how this point is approached. To see this, we note that
symmetry of the model in the limitp3→` but finite p1
reduces to anXY symmetry as fluctuations of then3 vector
4-12
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SPIN-GLASS PHASE OF CUPRATES PHYSICAL REVIEW B69, 014424 ~2004!
get suppressed which forces all fluctuations of the orthon
mal pairn1,2 to lie within a plane. Therefore one obtains a
XY model with stiffnessp1. In terms of theb, ts parameters,
this limit is approached asts→0 andb→21 with finite (1
1b)/ts54p1. Thus, depending on whether one approac
the point 11b5ts50 with a slope larger or smaller than th
critical one given by (11b)/ts54/p, one arrives at the dis
ordered phase or the ordered phase of theXY model. This
behavior is correctly reproduced by the free-energy ar
ment. The validity of the critical curve (11b)/ts54/p also
for finite 11b.0 is at least plausible, as topological defe
solutions also survive in this limit. Below this line, the R
Eqs.~20! and~21! hold and the system should scale towar
the pointb50. We can only speculate, however, what ha
pens above that line. At least for some finite regime neab
521 the unbinding transition would presumably drivep1 to
zero, as it does in theXY model, and affect the renormaliza
tion of p3 only weakly. Thus, the appearance of free defe
will probably modify the RG equations at high temperatu
in such a way that the system will flow back to the colline
point b521 as long as 11b remains small enough. Fo
largerb the nature of the RG is unclear. Numerical simu
tions on triangular Heisenberg models48,49 have found how-
ever, clear evidence for a defect unbinding transition. As
triangular Heisenberg model is believed to have initiallyb
51,35 it is likely that an unbinding transition indeed occu
for every initial value ofb. As no RG equations are availab
which can describe the transition, the form of the correlat
length near this transition is unknown. It was howev
argued39 that the temperature dependence of the correla
length should cross over from the NLsM behavior to anXY
behavior when the defects unbind. Numerical results seem
support such a scenario.42

Let us now turn to the case with disorder. Disorder w
lead to the formation of free defects ifl.p/8. According to
the free-energy argument above, this critical disor
strength is independent of the stiffnessespk and is thus also
valid in the XY limit discussed above. For strong enou
disorder, free topological defects will exist already atT
50, invalidating our NLsM analysis and producing ver
short low-temperature correlation lengths for the spiral. F
XY models, the correlation length atT50 behaves likej
}exp(B/Al2lc) ~with some constantB) near the critical

FIG. 9. The critical line for the thermal unbinding of topologic
defects is shown inb, ts space.
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disorder strength.44 This form of the correlation length has
divergence ofj at l5lc which cannot be correct for the
spiral because, as discussed above, even without vortices
coupling of any finite amount of disorder to the spins w
lead to a finite correlation length. The correct dependenc
the correlation length atT50 on the disorder is expected t
be an interpolation between the NLsM result and theXY
behavior.

Certainly, the free-energy argument is not expected
work as well in the present model as it does forXY models.
The parametersl andts flow to strong coupling and thus th
predictions of the free-energy argument also become s
dependent. In other words, while at some small scale
system might look stable against the creation of free defe
at some larger scale the system will become unstable acc
ing to the free-energy argument. There does not seem to
simple answer as to which scale is the correct one for ap
ing the argument. Note that such problems do not arise in
XY model where the stiffness remains unchanged under
RG as long as vortices are ignored. In view of the diverge
of the l and ts parameters in the NLsM, one possible sce-
nario would be that free defects will always be present
sufficiently large length scales. Numerical results do, ho
ever, not support such a scenario and rather point to
existence of a finite critical temperature.49 Below we shall
apply the free-energy argument with the bare paramet
i.e., at the smallest possible scale, which, if anything, wo
overestimate the stability of the system against free de
formation.

IV. COMPARISON WITH EXPERIMENTS

Let us now compare our results with experimental data
the SG phase of La22xSrxCuO4. Neutron-scattering data16

have revealed an incommensurability of the spins wh
scales roughly linearly withx. At very smallx, a small de-
viation from the linear dependence is observed. Both featu
can be explained within the dipole model. The linear scal
is reproduced if the fraction of the dipoles which are orde
is doping independent, i.e., the number of ordered dipo
scales linearly with doping. The deviation from lineari
might be explained with the increase of the average sep
tion between dipoles at smallx and a resulting diminished
tendency of the dipoles to align.

The same experimental data also shows the strong
dimensional character of the IC modulation, i.e., the inco
mensurability is observed only in one diagonal of the
lattice (b direction! and thus breaks the symmetry of th
square lattice. This phenomenon is usually interpreted as
ing due to the existence of charge and spin stripes runn
along the other diagonal (a direction!. However, this IC is
also expected for a spiral along theb direction because its
chirality breaks the translation symmetry~it can spiral clock-
wise or anticlockwise!. In addition, this symmetry breaking
is expected to show long-range order because the dip
prefer a discrete set of lattice orientations.

Another important consequence of the spiral chirality
the formation of topological defects. To judge, whether
not topological defects play a role in the LSCO SG pha
4-13
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we need an estimate ofl. We can use as a lower bound fo
l the result obtained from the collinear analysis24 where a
disorder parameter equivalent to ours, but defined on a m
smaller scale of the AF unit cell, was used. From a fit of
x dependence of the correlation length atx,0.02 and large
temperaturesT.TN , one obtainsl.20x. In this regime of
x, the low-temperature phase has long-range AF order a
collinear analysis is well justified. We assume that the lin
dependence of the disorder parameter onx, l.20x, also
holds in the SG regime. This view is supported by measu
ments, which found that the width of the distribution of i
ternal magnetic fields~i.e., local staggered moments! in-
creases simply linearly with doping, with no detectab
change on crossing the AF/SG phase boundary,10 see also
Fig. 1. It is remarkable that with our above estimate for
critical disorder strengthlc5p/8 we find a critical doping
concentrationxc;0.02. Considering thatl.20x is a conser-
vative lower bound ofl at the long length scales relevant
spirals, we conclude that in the entire SG phase, free to
logical defects will be present already atT50, leading to a
strongly disordered spiral phase. Experiments have in
shown that the correlation lengths in the SG regime
rather short and of the same order as the periodicity of the
modulation.16 While this is in accordance with the expecte
presence of topological defects, the correlation lengths ar
short that the conditionj@uqsu21 is not fulfilled. The regime
where spiral correlations become dominant is theref
barely reached, and the RG scaling predictions canno
well tested.

While qualitatively the experimental data supports a
scription of the SG phase as a strongly disordered sp
state, both the extremely short correlation lengths and
limited understanding of topological defects prevent a m
quantitative comparison.

However, our suggestion that the incommensurability
the spins is related to ordered dipolar frustration centers
be directly tested experimentally on co-doped samp
La22xSrxZnzCu12zO4. Zn replaces Cu in the CuO2 planes
and effectively removes one spin. Zn doping leads there
to a dilution of the AF but does not introduce frustratio
Dilution is not very effective in destroying the AF order an
pure Zn doping~with x50) leads to a destruction of long
range order only at percolation threshold that occurs fox
'41%.50 Surprisingly for very small Sr concentrationx
<0.02 it was found that codoping with Zn can increa
TN .51 This is remarkable as both kinds of impurities lead
a reduction ofTN in singly doped samples. A possible expl
nation for this behavior was suggested by Korenblitet al.52

They put forward an argument that Zn impurities, if plac
close enough to the localized hole state, will destroy
frustrating nature of the hole bound state. While their mic
scopic picture of frustration is a classical one, a Zn impur
is also expected to strongly influence the properties of
bound hole state within a more realistic quantum-mechan
picture of frustration. Although Zn couples only weakly
the spin degrees of freedom, if placed near a Sr dono
disturbs the symmetry around the Sr atom and modifies
nature of the bound hole state. As the Zn impurity breaks
sublattice pseudospin degeneracy of the bound hole, the
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entation of the dipole moment is no longer annealed
becomes quenched. Another effect of the breaking of
sublattice symmetry is that the weight of the bound h
wave function near the wave vector (p/2,p/2) or equivalent
points will be reduced. As it is these wave vectors which
responsible for frustrating the spin background, one wo
expect a reduction or possibly a complete destruction of
frustration caused by the hole. Hence, the effective densit
dipoles will be renormalized tox→x(12gz) whereg must
be calculated from a microscopic theory~experiments indi-
cate thatg is of order 2!.52 Codoping with Zn then has two
effects: first, it lowers the amount of frustration in the samp
and thus increases the correlation length, which would
plain the experimentally observed increase ofTN with z for
x50.017.52,51 Furthermore, the effect of quenching the d
pole moments will be the same as destroying them altoge
with respect to the incommensurability, as the incommen
rability is determined solely by the ordered moments. Th
codoping with Zn will lead to a decrease of the incomme
surability by a factor 12gz. In contrast, within a stripe pic-
ture, codoping with Zn is not expected to change the inco
mensurability as the hole density is not affected by
doping. Previous measurements in the superconduc
phase (x50.12 andx50.14), where the stripe model is be
lieved to be valid, have shown that the incommensurabi
indeed remains intact upon codoping with Zn.53–55 Within a
stripe picture, the only effect of Zn codoping in the SG r
gime should be pinning of stripes, which would lead to
reduced correlation length.56 Therefore, neutron-scatterin
experiments within the SG regime of Zn codoped samp
could clarify the debate, if the magnetic incommensurabi
observed in the SG regime is to be interpreted within a str
or a frustration based model.

It is interesting that symmetry arguments similar to tho
just used to discuss Zn codoping also give a simple expla
tion for the absence of any incommensurate signal in
doped La2Cu12yLi yO4. For smally, these compounds show
a magnetic phase diagram which is almost identical to
doped samples57 with the notable exception that the magne
correlations always remain commensurate.58 Just as Sr, each
Li atom introduces an excess hole in the CuO2 plane which,
at least for small doping concentrations, remains weakly
calized to its dopant. The important difference is that Li r
places Cu in the crystal and thus has a different symm
with respect to the magnetic sublattice ordering than a
hole. Specifically, the sublattice position of the Li ato
breaks the pseudospin degeneracy present in Sr do
samples. Assuming that, otherwise, the origin of frustrat
is the same, the only difference between Sr and Li dop
samples is that the dipole moment assigned to the Li bo
hole is quenched, whereas the one of the Sr hole is anne
Thus, ordering of these moments and the developmen
incommensurate correlations cannot occur in Li dop
samples.

V. CONCLUSION

In conclusion, we have presented a detail picture of
dipole model of frustration and discussed its applicability
4-14
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SPIN-GLASS PHASE OF CUPRATES PHYSICAL REVIEW B69, 014424 ~2004!
the weakly doped regime of cuprate materials. Most of
key characteristics of these materials were already know
be in accordance with the model and we showed that inc
mensurate correlations appear also naturally within the
pole picture. We extended the commensurate model to a
for a description of the resulting disordered spiral sp
phases. Finally, we suggested an experiment which wo
allow to verify whether the frustration based dipole model
the stripe picture is realized within the weakly doped regi
of cuprates.
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APPENDIX A: SU„2… REPRESENTATION

The orthonormal basisnk can be related to an elementg
of SU~2! throughgskg215nk•s, or

nk
a5 1

2 tr$sagskg21%. ~A1!

For the derivative one finds, using]m(gg21)50,

]mnk
a5

1

2
tr$sa]mgskg211sagsk]mg21%

5 1
2 tr$sk@g21sag,g21]mg#%. ~A2!

Introducing g21]mg5 iAm•s and with @s i ,s j #52i e i jksk

one finds

]mnk
a52e i jkAm

i nj
a . ~A3!

Therefore, we have~with p1m5p2m)

pkm~]mnk!
254pkm~e i jkAm

i nj
a!254pkm~e i jk !2~Am

k !2

5
2

tm
@Am

2 1b~Am
z !2#, ~A4!

with tm
2152(p1m1p3m) andbtm

2152(p1m2p3m).

APPENDIX B: EXPANDING THE ENERGY FUNCTIONAL
IN w i

To do the RG, we introduceg5g̃ exp(iw•s), wherewa

are fast fields fluctuating with wavelengths@L21,1# and g̃
has only slow fluctuations in the range@0,L21#. For the
1-loop calculation, we need to expandnk andAm

k up to sec-
ond order inwa. We then find
01442
e
to
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i-
w
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ni
a5 1

2 tr$sag̃ exp~ i w•s!s iexp~2 i w•s!g̃21%

5ñi
a1

i

2
tr$sag̃@w•s,s i #g̃21%1

1

2
trH sag̃S w•ss iw•s

2
1

2
~w•s!2s i2

1

2
s i~w•s!2D g̃21J 1O~w3!

5ñi
a12e i jkw j ñk

a1w jwkRjk
ai1O~w3!, ~B1!

where

Rjk
ai5 1

2 tr$sag̃~s js isk2 1
2 s jsks i2 1

2 s is jsk!g̃21%.

It turns out that in the RG we will only need the diagon
components ofRjk

ai with j 5k which have the much simple

form Rzz
ai522(ezqi)

2ñi
a ~we put herej 5k5z to make clear

that z is not a silent index, the equation also holds forj
5x,y). Similarly, we find

Am
i 5

1

2i
tr$s iexp~2 i w•s!@]m1g̃21]mg̃#exp~ i w•s!%5Ãm

i

1
1

2
trH s i S ]mw"s1

1

2i
@w"s,]mw"s#1 i @Ãm"s,w"s#

1w"sÃm"sw"s2
1

2
~w"s!2Ãm"s2

1

2
Ãm"s~w"s!2D J

1O~w3!5Ãm
i 1]mw i1e i jkw j]mwk12e i jkw j Ãm

k

22Ãm
i w212Ãm"ww i1O~w3!. ~B2!

APPENDIX C: PROPAGATOR OF THE w i FIELDS

As already mentioned, there is a small spatial anisotro
in the stiffnessespkm , i.e., pk1Þpk2. We shall keep here the
spatial dependence of the stiffnessespkm up to first order in
the anisotropy, assuming that the anisotropyk, which we
define throughpk1 /pk2511k, is independent of thek in-
dex. Thus we can absorb the anisotropy into thetm parameter
while b remains isotropic. We then definets5At1t2 and t1,2
.(16k/2)ts . For future use, we also define the isotrop
stiffnessespk5Apk1pk2. It is not clear whether the isotrop
of b is preserved under the RG and we have made no atte
to write down the RG equations in presence of anisotropy
principle, if b remains isotropic, the results obtained belo
allow us to determine the flow of the anisotropy parametek
under the RG. For possible future use, we will therefore ke
the perturbative expansion with the anisotropy. The res
used in the body of this work have, however, been obtai
for an isotropictm5ts , i.e., k50.

We need to expand the exponential exp(2HP) and inte-
grate out thew i fields. Taking the average over thew i fields
is done with the Gaussian termHw of Eq. ~18!. The propa-
gator for thew i is thus quite simple and becomes, to lowe
order in the anisotropyk
4-15
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Ci~x!ª^w i~x!w i~0!&w5
ts

2~11bd iz!
E d2k

~2p!2

eik•x

k2

3S 11k
k1

22k2
2

2k2 D @Y~k,L!2Y~k,1!#. ~C1!

The IR cutoff is provided by the functionY(k,L). A sharp
cutoff Y(k,L)5Q(k2L21) has the disadvantage of pro
ducing a long rangedCi and we therefore adopt instea
Y(k,L)5@11(kL)22#21, which rendersCi short ranged.

In our RG calculation we will mainly needCi(0) which
has the form

Cx~0!5Cy~0!5
ts

4p
ln L1O~k2!, Cz~0!5

1

11b
Cx~0!.

Another useful formula is

tm
21E d2x~]mCx!25

1

2
Cx~0!1O~k2!. ~C2!

APPENDIX D: RENORMALIZATION

We can immediately discard all terms of third or high
power in Ãm as these terms are irrelevant in a RG sen
Terms second order inÃm renormalizetm and b, whereas
terms linear inÃm are responsible for the renormalization
the disorder variancel.

First, we note that the termsH2 andH3 do not contribute
to the renormalization, as was pointed out for the calculat
of the RG for the disorder free system in Ref. 43. This
because these terms are linear inw while they do not involve
a disorder fieldQm . For an abelian theory, such terms cann
contribute because the fastw i fields and the slowÃm fields
have their support in orthogonal parts of the wave vec
space. Here for the nonabelian case, this argument is
sufficient because theÃm fields are not linearly related to th
fieldsg. For the present nonabelian theory this is nonethe
true, although an explicit calculation is required to see th
For example,H2

2 does not contribute, because its contrib
tion is built from terms of the form~we omit the upperi
indices ofCi andAm

i here for simplicity!

E d2xE d2x8Ãm~x!Ãm8~x8!]m]m8C~x2x8!. ~D1!

To evaluate this term, we change to center of mass (y) and
relative (y8) coordinates and then perform a gradient exp
sion in the relative coordinate. Only the lowest-order con
bution is of interest, as higher-order terms involve a lo
coupling of the typeAm(]n)nAm8 with n.0 which are irrel-
evant from a scaling point of view. The lowest-order term
then

2E d2yÃm~y!Ãm8~y!E d2y8]m]m8C~y8!, ~D2!

which vanishes because the last integral is zero. In the
lowing we will omit H2 andH3 from the analysis, becaus
01442
e.

n

t

r
ot

ss
.

-

-
-
l

l-

terms involving them do not contribute. This can be sho
for each term in a way similar to the one just shown.

We want to find the RG equations up to second order intm
andl. In thenth order of the cumulant expansion ofF, Eq.
~19!, we only need to consider terms which have a to
number ofw andQm fields less than 2n12. This is because
each term of ordern carries a factorsts

2n from the prefactors
of the terms inHp and each pair ofw (Qm) produces a factor
ts (l).

We begin first with the terms renormalizingtm and b,
where we give a detailed calculation only for the terms up
second order inHp . The calculation of higher-order terms
quite lengthy although conceptually easy and we theref
just present the results of the calculation.

1. Terms which renormalize tµ and b

a. First order in Hp

There is only one term quadratic inÃm which contributes,
H4 ~the w i average overH3 is zero!.

2^H4&wc524
b

tm
E d2x@ez jkez j8k8Ãm

k Ãm
k8^w jw j 8&w

2~Ãm
z !2^w lw l&w1Ãm

z Ãm
l ^wzw l&w#

524
b

tm
E d2xF ~ez jk!

2~Ãm
k !2Cj~0!

2~Ãm
z !2(

l
Cl~0!1~Ãm

z !2Cz~0!G
524btm

21E d2x@Ãm
2 23~Ãm

z !2#Cx~0!. ~D3!

b. Second order in Hp

Terms with odd numbers ofw i or Qm are zero after per-
forming thew i and disorder average. There are then only t
terms we need to consider,H1

2 andHc1
2 (Hc3

2 has a total of
six w i andQm

i fields and does not contribute andH2 terms do
not contribute as mentioned above!. For H1

2 we have

1

2
@^H1

2&wc#D

5
1

2
^H1

2&wc52tm
21tm8

21E d2xd2x8Ãm
i ~x!Ãm8

i 8 ~x8!

3e i jke i 8 j 8k8~12bd iz12bd jz!~12bd i 8z12bd j 8z!

3^]mw j~x!wk~x!]m8w
j 8~x8!wk8~x8!&w . ~D4!

The four-point average can be decomposed according
Wick’s Theorem. Nonzero contributions arise from the co
tractions ^ jk8&^ j 8k& and ^ j j 8&^kk8&. We again employ an
expansion ofH1

2 in the relative coordinate and keep only th
zeroth order term of the expansion. This yields
4-16
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1

2
^H1

2&wc.2tm
22E d2x Ãm

i Ãm
i 8e i jke i 8 j 8k8~12bd iz12bd jz!

3~12bd i 8z12bd j 8z!~d j j 8dkk82dk j8d jk8!

3E d2y]mCj~y!]mCk~y!

54tm
22E d2x~Ãm

i !2~e i jk !2~12bd iz12bd jz!~1

2bd iz1bd jz1bdkz!E d2y]mCj~y!]mCk~y!.

~D5!

With use of Eq.~C2!, we finally find

1

2
^H1

2&wc52tm
21E d2x@Ãm

2 ~11b!1~Ãm
z !2b~b23!#Cx~0!

~D6!

The other second-order contribution is

1

2
@^Hc1

2 &wc#D

58E d2xd2x8pkmpk8m8e i jke i 8 j 8k8eabcea8b8c8

3$eklmñj
añm

c Ãm
i 1e j lmñk

cñm
a Ãm

i 1e i lmñj
añk

cÃm
m%

3$ek8 l 8m8ñ j 8
a8ñm8

c8 Ãm8
i 8 1e j 8 l 8m8ñk8

c8ñm8
a8 Ãm8

i 8

1e i 8 l 8m8ñ j 8
a8ñk8

c8Ãm8
m8%d l l 8C

l~x2x8!@Qm
b ~x!Qm8

b8 ~x8!#D .

~D7!

Using @Qm
b (x)Qm8

b8 (x8)#D5dbb8dmm8d(x2x8)l, eabcea8bc8
5daa8dcc82dac8dca8 , and the orthonormality of thenk , we
find after some algebra

1

2
@^Hc1

2 &wc#D52lb2tm
22E d2x@Ãm

2 1~Ãm
z !2#Cx~0!.

~D8!

Higher-order terms can be evaluated in much the same
as the first- and second-order terms, although the large n
ber of indices makes their evaluation more tedious. We th
fore refrain here from a detailed presentation of these te
and just state the results.

c. Third order in Hp

Terms of second order inÃm
2 are produced by (H11Hc1

1Hc3)2(Hc21Hc4). However, only the termsH1(Hc1
1Hc3)(Hc21Hc4) have even powers ofQm . Terms with
eight or morew and Qm fields again do not contribute t
second order inl, tm . Thus we are left with only
H1Hc1Hc2. We find
01442
ay
m-
e-
s

2@^H1Hc1Hc2&wc#D522ltm
22bE d2x@Ãm

2 ~11b!

1~Ãm
z !2~b23!#Cx~0!. ~D9!

We further need to consider terms of the type (Hc2

1Hc4)2H4. Only Hc2
2 H4 has less than eightw andQm fields

and even powers of both fields. We find

2
1

2
@^Hc2

2 H4&wc#D522lbts
21tm

21E d2x@Ãm
2

23~Ãm
z !2#Cx~0!. ~D10!

d. Fourth order in Hp

Possible contributions arise from the terms (H11Hc1
1Hc3)2(Hc21Hc4)2. Discarding terms with ten or morew i

and Qm fields, we are left withHc2
2 H1

2 and Hc2
2 Hc1

2 . How-
ever, the connected part of thew i average ofHc2

2 Hc1
2 is zero

~its finite disconnected parts enter the renormalization of
disorder, see below!, and the only contribution is therefore

1

4
@^Hc2

2 H1
2&wc#D5lts

21tm
21E d2x@Ãm

2 ~21b!~11b!

1~Ãm
z !2b~b27!#Cx~0!. ~D11!

Terms of the formH4(Hc21Hc4)3 do not contribute becaus
their disorder average is zero. Higher-order terms inHp do
not contribute because they either involve more than fourQm
terms and are therefore of higher order thanl2 or they do not
contain finite connected parts. For example, the te
^H4Hc2

4 &wc decomposes into products of averages of^H4&wc

or ^H4Hc2
2 &wc and ^Hc2

2 &wc .

2. Terms which renormalize l

To find the renormalization of the variance of the disord
distribution, we first collect all connected terms linear inÃm

i .
We list the contributions order by order below.

a. First order in Hp

Only three terms are linear inÃm
i , H1 , Hc1, and Hc3.

However, bothH1 andHc1 have a zerow i average and only
^Hc3&wc contributes.

b. Second order in Hp

At second order there are contributions from^Hc1Hc2&wc
and^H1Hc4&wc . There is no contribution to second order
l, tm of the disorder renormalization from̂Hc3Hc4&wc be-
cause this term has sixQm

i , w i .

c. Third order in Hp

There are contributions from ^Hc1Hc2Hc4&wc ,
^Hc3Hc2

2 &wc , and ^H1Hc2
2 &wc . The terms^Hc3Hc4

2 &wc and
^H1Hc4

2 &wc do not contribute, as they contain eight or mo
Qm

i , w i fields.
4-17
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d. Fourth order in Hp

Only one term contributes,̂H1Hc2
2 Hc4&wc . All other

terms have ten or moreQm
i , w i fields or more than threeQm

fields and thus do not contribute. The same argument app
to all terms generated by higher order ofHp .

3. Calculating the renormalized disorder variance

We now must calculate the variance of all terms at
length scaleL21 which are linear inÃm

i . These are the term
just found above plusHc0. Thus, we need to calculate th
variance of

2Hc02^Hc3&wc1^Hc1Hc2&wc1^H1Hc4&wc

2^Hc1Hc2Hc4&wc2
1

2
^Hc2

2 Hc3&wc2
1

2
^Hc2

2 H1&wc

1
1

2
^H1Hc2

2 Hc4&wc . ~D12!

To orderl2, the following terms contribute to the varianc

@Hc0
2 #D5ltm

22E d2x$@~Ãm
x !21~Ãm

y !2#1~Ãm
z !2~11b!2%,

2@^Hc3&wcHc0#D58ltm
22E d2x$@~Ãm

x !21~Ãm
y !2#b

2~Ãm
z !22b~11b!%Cx~0!,

22@^H1Hc4&wcHc0#D

524ltm
22E d2x$@~Ãm

x !21~Ãm
y !2#~11b!

1~Ãm
z !2~12b!2~11b!%Cx~0!,

2@^Hc1Hc2Hc4&wcHc0#D

52l2tm
23E d2x$@~Ãm

x !21~Ãm
y !2#b~11b!

1~Ãm
z !22b~b221!%Cx~0!,
01442
es

e

@^Hc2
2 Hc3&wcHc0#D54l2tm

22ts
21E d2x$@~Ãm

x !21~Ãm
y !2#b

2~Ãm
z !22b~11b!%Cx~0!,

2@^H1Hc2
2 Hc4&wcHc0#D

522l2tm
22ts

21E d2x$@~Ãm
x !21~Ãm

y !2#~11b!

3~21b!1~Ãm
z !22~11b!~12b!2%Cx~0!,

@^Hc1Hc2&wc
2 #D52l2tm

22ts
21E d2x$@~Ãm

x !21~Ãm
y !2#b2

1~Ãm
z !2~21tstm

21!b2%Cx~0!,

1

4
@^H1Hc2

2 &wc
2 #D5l2tm

21ts
22E d2x$@~Ãm

x !21~Ãm
y !2#~11b!2

1~Ãm
z !2~12b!2%Cx~0!,

2@^H1Hc2
2 &wc^Hc1Hc2&wc#D

522l2tm
22ts

21E d2x$@~Ãm
x !21~Ãm

y !2#b~11b!

1~Ãm
z !22b~b21!%Cx~0!.

The sum of the above terms is~we now again settm5ts)

lts
22E d2xH @~Ãm

x !21~Ãm
y !2#

3S 11
4~b21!ts1~b223!l

ts
Cx~0! D1~Ãm

z !2S ~11b!2

32
4~11b!3ts1~316b1b2!l

ts
Cx~0! D J . ~D13!

a. On the calculation of disorder terms

As an illustration, we give details for the calculation
the variance terms for a relatively simple term
@^Hc3&wcHc0#D , and a more involved one
@^Hc1Hc2

2 Hc4&wcHc0#D . For @^Hc3&wcHc0#D we have
@^Hc3&wcHc0#D58E d2xd2x8pkmpk8m8e i jke i 8 j 8k8eabcea8b8c8C
l~0!ñ j 8

a8ñk8
c8Ãm8

i 8 $2e j lmeklqñm
a ñq

cÃm
i 12e i lmeklqñq

cñj
aÃm

m

12e i lme j lq ñq
añk

cÃm
m2ñ j

añk
cÃm

i ~~e i lm!21~e j lm!21~eklm!2!%@Qm
b ~x!Qm8

b8 ~x8!#D

516lE d2xpkmpk8me i jke i 8 j 8k8eabcea8bc8ñ j 8
a8ñk8

c8Ãm
i 8$~e j lmeklqñm

a ñq
cÃm

i 1e i lmeklqñq
cñj

aÃm
m

1e i lme j lq ñq
añk

cÃm
m!Cl~0!2ñ j

añk
cÃm

i ~21~11b!21!Cx~0!%

516lE d2x~e i jk !2~Ãm
i !2$pkmpj mCi~x!1pkm

2 Ci~x!1pkmpimCj~x!

1pkmpimCk~x!1pkm
2 Ck~x!1pkmpj mCk~x!2~21~11b!21!Cx~0!~pkm

2 1pkmpj m!%, ~D14!
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where we again used the orthonormality of thenk . Performing the summation over the silent indices, one finally obtains

516lE d2x$@~Ãm
x !21~Ãm

y !2#~p1m
2 2p3m

2 !1~Ãm
z !2~4p3mp1m24p1m

2 !%Cx~0!

54ltm
22E d2x$@~Ãm

x !21~Ãm
y !2#b2~Ãm

z !22b~11b!%Cx~0!.

We now turn to the more lengthy evaluation of@^H1Hc2
2 Hc4&wcHc0#D . We have

H1Hc2
2 Hc4516E d2xd2x8d2x9d2x-pkmtm8

21pk8m8pk9m9pk-m-e i jke i 8 j 8k8e i 9 j 9k9e i- j-k-eabcea8b8c8ea9b9c9ea-b-c-Ãm8
i 8 ~12bd i 8z

12bd j 8z!ñ j 9
a9ñk9

c9ñ j-
a-ñk-

c-$2]mw iwd~ekdlñl
cñ j

a1e jdl ñl
añk

a!1wd]mw le idl ñ j
añk

c%]m8w
j 8wk8]m9w

i 9]m-w i-Qm
b Qm9

b9 Qm-
b- .

~D15!
F

no
ll

t,

tion
-

ur-
u-

low.
nd
p

We now need to perform the average over thew fields. For
convenience, we splitH1Hc2

2 Hc45A1B into two terms,
where A corresponds to the part ofH1Hc2

2 Hc4 which in-
volves the first term in the curly brackets in Eq.~D15! andB
corresponds to the second term in the curly brackets.
^A&wc , we need to calculate the average

^]mw i~x!wd~x!]m8w
j 8~x8!wk8~x8!]m9w

i 9~x9!]m-w i-~x-!&w ,
~D16!

which can be easily done via Wick’s Theorem. However,
all possible permutations of pairings will contribute. A
terms involving either of the contractionŝid& or ^ j 8k8&
01442
or

t

vanish as]mCx(0)50. Although not immediately apparen
terms involving the pairinĝ i 9i-& also do not contribute to
one loop order. This can be seen only after the computa
of the disorder average@^A&wcHc0#D and a gradient expan
sion similar to the one employed below Eq.~D1!. Using the
same arguments as we used for the term~D1!, all ^ i 9i-&
contractions can then be shown to give no contribution. F
thermore, all contractions which are identical up to a perm
tation of the indicesi 9 and i- will give the same contribu-
tions after the disorder average is taken, as discussed be
We therefore only write down half of the permutations a
indicate the others by$9→-%. Thus, we only need to kee
the following terms,
e. Of

Eq.

ntical
^]mw i~x!wd~x!]m8w
j 8~x8!wk8~x8!]m9w

i 9~x9!]m-w i-~x-!&w

→d i j 8ddi9dk8 i-]m]m8C
i~x2x8!]m9C

d~x2x9!]m-Ci-~x82x-!1d ik8ddi9d j 8 i-]mCi~x2x8!]m9C
d

3~x2x9!]m8]m-Ci-~x82x-!1d i i 9dd j8dk8 i-]m]m9C
i~x2x9!]m8C

d~x2x8!]m-Ci-~x82x-!

1d i i 9ddk8d j 8 i-]m]m9C
i~x2x9!Cd~x2x8!]m8]m-Ci-~x82x-!1$9→-%. ~D17!

Let us now perform the disorder average@^A&wcHc0#D . For this, we need to calculate

@Qm̃
b̃
~ x̃!Qm

b ~x!Qm9
b9 ~x9!Qm-

b- ~x-!#D , ~D18!

where the variables carrying a tilde arise from theHc0 term. Again, we can use Wick’s Theorem to decompose the averag
the three possible permutations of pairings, two involve either of the two contractions^bb9& or ^bb-&. Neither permutation
contributes. This is easily seen for the^bb9& contraction and the explicitly written terms in Eq.~D17! because they all involve
after the contraction a derivative ofCx(0) and thus vanish. The same terms also do not contribute for the case of a^bb-&
contraction, which again can be seen with a gradient expansion and using arguments analogous to those below~D1!.
Therefore, only one term of the disorder average must be kept

@Qm̃
b̃
~ x̃!Qm

b ~x!Qm9
b9 ~x9!Qm-

b- ~x-!#D→l2dbb̃db9b-dmm̃dm9m-d~x2 x̃!d~x92x-!. ~D19!

The terms in Eq.~D17! which only differ by a permutation of the double primed and triple primed variables give then ide
contributions, as such a permutation simply relabels the variables associated with the twoHc2 terms in@^A&wcHc0#D . With
Eqs.~D17! and ~D19! we then have
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@^A&wcHc0#D5128l2E d2xd2x8d2x9tm8
21

~pk9m9
2

1pk9m9pj 9m9!
2~e i 9 j 9k9!

2e i 8 j 8k8Ãm8
i 8 ~12bd i 8z12bd j 8z!

3$2Ãm
k pimpkmekdi1Ãm

k pdmpkme idk2Ãm
j pdm

2 e i jd2Ãm
j pimpdme jdi%@d i j 8ddi9dk8 i 9]m]m8C

i~x2x8!

3]m9C
d~x2x9!]m9C

i 9~x82x9!1d ik8ddi9d j 8 i 9]mCi~x2x8!]m9C
d~x2x9!]m8]m9C

i 9~x82x9!

1d i i 9dd j8dk8 i 9]m]m9C
i~x2x9!]m8C

d~x2x8!]m9C
i 9~x82x9!1d i i 9ddk8d j 8 i 9]m]m9C

i~x2x9!

3Cd~x2x8!]m8]m9C
i 9~x82x9!#. ~D20!
tiv

fi-
The integration overx9 can now be performed with

tm9
21E d2x9]m9C

x~x2x9!]m9C
x~x82x9!

5
1

2
Cx~x2x8!1O~k2!. ~D21!

The remaining double integral overx andx8 can then again
be approximated with a gradient expansion in the rela
coordinate and employing Eq.~D21!. We then obtain~we
denote the center of mass coordinate again byx)

@^A&wcHc0#D.16l2tsE d2x~pk9
2

1pk9pj 9!
2~e i 9 j 9k9!

2

3e i 8 j 8k8Ãm
i 8~12bd i 8z12bd j 8z!b ibd

3e idk$Ãm
k pimpkm1Ãm

k pdmpkm1Ãm
j pdm

2

1Ãm
j pimpdm%@d i j 8ddi9dk8 i 9bk8

2d ik8ddi9d j 8 i 9b j 82d i i 9dd j8dk8 i 9bk8

1d i i 9ddk8d j 8 i 9b j 8#C
x~0!. ~D22!

wherebk is defined throughb15b251, b35(11b)21 and
pkts /tm5pkm . After some straightforward algebra, one
nally finds
01442
e

@^A&wcHc0#D.32l2tm
22ts

3E d2xH @~Ãm
x !21~Ãm

y !2#

3S ~p11p3!21
4p1

2

11bD ~~p11p3!2

12p1
212p1p3!1~Ãm

z !28~12b!

3~p1
21p1p3!~p11p3!2J Cx~0!. ~D23!

The calculation of@^B&wcHc0#D can be done in much the
same way as just shown for@^A&wcHc0#D . One arrives at

@^B&wcHc0#D.232l2tm
22ts

3E d2xH @~Ãm
x !21~Ãm

y !2#

3S ~p11p3!21
4p1

2

11bD ~p11p3!21~Ãm
z !2

38~12b!p1
2~p11p3!2J Cx~0!. ~D24!

Finally, expressing allpk throughb and ts , one obtains for
@^A1B&wcHc0#D

@^H1Hc2
2 Hc4&wcHc0#D52l2tm

22ts
21E d2x$@~Ãm

x !21~Ãm
y !2#

3~11b!~21b!1~Ãm
z !22~11b!

3~12b!2%Cx~0!. ~D25!
1M.-H. Julien, Physica B329-333, 693 ~2003!, and references
therein.

2B.I. Shraiman and E.D. Siggia, Phys. Rev. Lett.61, 467 ~1988!.
3B.I. Shraiman and E.D. Siggia, Phys. Rev. Lett.62, 1564~1989!.
4B.I. Shraiman and E.D. Siggia, Phys. Rev. B40, 9162~1989!.
5M.Yu. Kuchiev and O.P. Sushkov, Physica C218, 197 ~1993!.
6S. Wakimotoet al., Phys. Rev. B67, 184419~2003!.
7T. Dombre, J. Phys.~France! 51, 847 ~1990!; A. Auerbach and

B.E. Larson, Phys. Rev. B43, 7800~1991!.
8S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B39,

2344 ~1989!.
9R.J. Birgeneauet al., Phys. Rev. B59, 13 788~1999!.
10Ch. Niedermayeret al., Phys. Rev. Lett.80, 3843~1998!.
11F.C. Chouet al., Phys. Rev. Lett.71, 2323~1993!.
12F. Borsaet al., Phys. Rev. B52, 7334~1995!.
13B. Keimeret al., Phys. Rev. B46, 14 034~1992!.
14C.Y. Chenet al., Phys. Rev. B51, 3671~1995!.
15S. Wakimotoet al., Phys. Rev. B60, R769~1999!; ibid. 61, 3699

~2000!; S. Wakimoto, S. Ueki, Y. Endoh, and K. Yamada,ibid.
62, 3547~2000!.

16M. Matsudaet al., Phys. Rev. B61, 4326~2000!; ibid. 62, 9148
~2000!.

17M. Fujita et al., Phys. Rev. B65, 064505~2002!.
18G.F. Reiter, Phys. Rev. B49, R1536~1994!.
4-20



E.

tte

-

v.

ro

y

ys

t-

, J.

n,

B

.

.

SPIN-GLASS PHASE OF CUPRATES PHYSICAL REVIEW B69, 014424 ~2004!
19A. Ramsak and P. Horsch, Phys. Rev. B57, 4308~1998!.
20R.J. Gooding, Phys. Rev. Lett.66, 2266~1991!.
21A. Aharony, R.J. Birgeneau, A. Coniglio, M.A. Kastner, and H.

Stanley, Phys. Rev. Lett.60, 1330~1988!.
22J. Villain, Z. Phys. B33, 31 ~1979!.
23L.I. Glazman and A.S. Ioselevich, Z. Phys. B: Condens. Ma

80, 133 ~1990!.
24V. Cherepanov, I.Y. Korenblit, A. Aharony, and O. Entin

Wohlman, Eur. Phys. J. B8, 511 ~1999!.
25A.N. Lavrov, Y. Ando, S. Komiya, and I. Tsukada, Phys. Re

Lett. 87, 017007~2001!.
26R.J. Gooding, N.M. Salem, and A. Mailhot, Phys. Rev. B49,

6067 ~1994!.
27C. Goldenberg and A. Aharony, Phys. Rev. B56, 661 ~1997!.
28N. Hasselmann, A.H. Castro Neto, and C. Morais Smith, Eu

phys. Lett.56, 870 ~2001!.
29N. Hasselmann, A.H. Castro Neto, and C. Morais Smith, Ph

Rev. Lett.82, 2135~1999!.
30B.P. Stojkovicet al., Phys. Rev. B62, 4353~2000!.
31P. Azaria, B. Delamotte, F. Delduc, and T. Jolicoeur, Nucl. Ph

B 408, 485 ~1993!.
32S. Klee and A. Muramatsu, Nucl. Phys. B473, 539 ~1996!.
33T. Dombre and N. Read, Phys. Rev. B39, 6797~1989!.
34J.A. Hertz, Phys. Rev. B18, 4875~1978!.
35W. Apel, M. Wintel, and H.U. Everts, Z. Phys. B: Condens. Ma

ter 86, 139 ~1992!.
36K. Binder and A.P. Young, Rev. Mod. Phys.58, 801 ~1986!.
37A.M. Polyakov, Phys. Lett. B59, 79 ~1975!.
38Y. Imry and S.K. Ma, Phys. Rev. Lett.35, 1399~1975!.
39M. Wintel, H.U. Everts, and W. Apel, Europhys. Lett.25, 711

~1994!.
01442
r

-

s.

.

40J.M. Kosterlitz and D.J. Thouless, J. Phys. C6, L97 ~1973!.
41H. Kawamura, J. Phys.: Condens. Matter10, 4707~1998!.
42M. Wintel, H.U. Everts, and W. Apel, Phys. Rev. B52, 13 480

~1995!.
43M. Wintel, Ph.D. thesis, Universita¨t Hannover, Germany, 1993.
44S. Scheidl, Phys. Rev. B55, 457 ~1997!.
45D.S. Fisher, Phys. Rev. B31, 7233~1985!.
46T. Nattermann, S. Scheidl, S.E. Korshunov, and Mai Suan Li

Phys. I5, 565 ~1995!.
47M.-C. Cha and H.A. Fertig, Phys. Rev. Lett.74, 4867~1995!.
48B.W. Southern and A.P. Young, Phys. Rev. B48, 13 170~1993!.
49B.W. Southern and H.-J. Xu, Phys. Rev. B52, R3836~1995!.
50O.P. Vajk, P.K. Mang, M. Greven, P.M. Gehring, and J.W. Lyn

Science295, 1691 ~2002!; O.P. Vajk, M. Greven, P.K. Mang,
and J.W. Lynn, Solid State Commun.126, 93 ~2003!.
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