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We investigate a phenomenological model for the spin-glass phase of$CuQy, in which it is assumed
that holes doped into the Cy@lanes localize near their Sr dopant, where they cause a dipolar frustration of
the antiferromagnetic environment. In absence of long-range antiferromagnetic order, the spin system can
reduce frustration, and also its free energy, by forming a state with an ordered orientation of the dipole
moments, which leads to the appearance of spiral spin correlations. To investigate this model, a nonlinear
sigma model is used in which disorder is introduced via a randomly fluctuating gauge field. A renormalization-
group study shows that the collinear fixed point of the model is destroyed through the disorder and that the
disorder coupling leads to an additive renormalization of the order-parameter stiffness. Further, the stability of
the spiral state against the formation of topological defects is investigated with the use of the replica trick. A
critical disorder strength is found beyond which topological defects proliferate. Comparing our results with
experimental data, it is found that for a hole density0.02, i.e., in the entire spin-glass regime, the disorder
strength exceeds the critical threshold. In addition, some experiments are proposed in order to distinguish if the
incommensurabilities observed in neutron-scattering experiments correspond to a diagonal stripe or a spiral
phase.
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[. INTRODUCTION spin waved;® has, perhaps unfairly, received scant attention
of late. A potential weakness of the approach is the semiclas-
sical treatment of spindargeS), which implies the assump-
This paper discusses the influence of disorder on the proion of a large AF correlation length, whereas in the super-
erties of weakly hole doped cuprate materials. In cuprateg;onducting phase the spins are believed to form some kind of
the superconducting state emerges through chemical dopingantum disordered spin liquid. The scattering of holes by
of a parent compound which is insulating and shows antiferspin excitations would then be qualitatively different at large
romagnetiqAF) order with a high critical Nel temperature scales. However, while the semiclassical theory is formulated
of typically a few hundred Kelvin. As a consequence offor large scales, the structure and energy of the resulting
chemical doping, the compounds are intrinsically disorderediwo-hole bound state is determined by the shortest cutoff in
Especially at weak doping concentrations, disorder is knowtthe systent, where AF correlations are still intact. Further-
to strongly influence the behavior of these materials. This isnore, the correlation length can be substantial even in super-
evident in the simplest cuprate superconductorconducting samples, e.g., it exceeds 200 A in the stripe com-
La,_,Sr,Cu0Q,, where the superconducting phase emergepound La ,4Nd, ;S 1:CuQ,.® Thus, the pairing mechanism
via doping directly from a low-temperature spin-gldS5) suggested by the semiclassical picture may hide some truth
phase. Recently, glassy characteristics were detected evepspite the absence of long-range order.
inside the superconducting phasee Ref. 1 for a summary While a semiclassical approach to the superconducting
of the available experimental data regime may or may not be valid, at sufficiently low hole
Understanding the very weak doping regime of cupratesgoncentrations, where static AF correlations are still domi-
the insulating AF and SG regime, should be relativelynant, i.e., in the SG and AF phase, a semiclassical treatment
simple. This optimism is based on the belief that this regimeof spins is certainly justified. However, at these low densi-
is dominated by the behavior of isolated holes in presence dfes, where the system is still a Mott insulator, screening is
well-developed AF moments. The single hole propertiesrery poor and long-range Coulomb interaction leads to a
seem now to be quite well understood and early theories oftrong disorder potential which must be taken into account.
high-temperature superconductivity were constructed fronHere we discuss a model in which the entire charge distribu-
these one-hole wave functions. Shraiman and Stggimo-  tion is assumed to be quenched. Each hole, localized close to
posed a theory of interacting hole quasiparticles based on then ionized dopant, is assumed to produce a long-ranged
one-hole picture and predicted the formation of spiral corredipolar-shaped frustration of the AF, similar to the one
lations with a pitch proportional to the hole density. Experi- known to be produced by delocalized holes. A polarization of
ments have to date, however, not found any evidence of sudhe dipole moments then implies the appearance of spiral
spiral correlations inside the superconducting phase. Theorrelations.
pairing mechanism suggested by this semiclassical picture, a It is known that the spiral state described by Shraiman and
dipole-dipole interaction between holes mediated by sofSiggia, if one ignores disorder, is unstable toward a local

A. Generalities
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enhancement of the spiral pitch. This instability arises from
the fermionic susceptibility of the holes and may signal an
instability towards charge density formation or phase
separatior.However, if the holes are quenched this instabil-
ity is suppressed. Therefore, disorder takes a prominent role
in the creation of a spiral state.

We here develop a renormalization approach for disor-
dered spiral phases, where we study the scaling of the spin
stiffness and of the disorder. The importance of topological
defects of the spiral texture is analyzed and their relevance
for the physics of the spin-glass phase is discussed.

B. Undoped and weakly doped cuprates

Undoped LaCuQ, is a charge-transfer insulator with an £ 04
antiferromagnetically ordered ground state. It is well de- maoz
scribed by a simple square lattice spin-1/2 Heisenberg model 0'0
151 (¢)
Hy=J .S
H=32 S-S, (D) = s

E 10

with the antiferromagnetic exchange-1200 K. The sum is 2
over nearest-neighbor pairs of sites &jdare spin-1/2 op- 2 5

erators. o

In the study of magnetism of LE&uO,, an approach
based on the quantum-nonlinearmodel (QNLoM) has D
been highly successful. It correctly describes the long wave- sh

length hydrodynamic modespin waves of the Heisenberg FIG. 1. Phase diagram as seen/$R, with data obtained from

r_nodel‘.3 In thi; continuum model, it.is assumed that the an- 5, SrCu0, (open symbolsand Y, ,CaBa,CuO; (closed sym-
tiferromagnetic correlation length is much larger than theygg o, is the hole concentratiora) Doping dependence of the
lattice spacing and the model describes slow fluctuations a{ge| temperatureTy,, freezing transition temperatur®;, spin-
the locally well-defined staggered magnetizatiofwith n”  gjass transition temperatur€,, and superconducting transition
=1). The QNLoM action is temperatureT... (b) Normalized average internal field &it=1 K.
(c) Root mean square deviatidxB at T=1 K. Figure from Nied-
ermayeret al1°
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2% . dr | d°xj (d,n) +—C2(a7n) . 2
ing is observed inside the AF phase below a temperafgre

The spin stiffnesps and the spin-wave velocity should be  which scales linearly with the Sr concentratiof;
viewed as phenomenological parameters to be determined (815 K)x for 0<x<Xg. This spin freezing is inferred
either from experiment or from other techniques such asrom a broad distribution of extremely slow relaxation times
spin-wave theory or numerical simulations. The couplingmeasured with local probes such’@4 a nuclear quadrupole
constant of the model ig=#cA/ps (A is a high-frequency resonanck (NQR) and muon spin resonanég uSR). Sur-
cutoff). There is a zero-temperature quantum phase transitioprisingly, while at higher temperatures doping leads to a re-
atg=g.~4m from a phase with long-range ordey<g.,  duction of the local staggered moments, at temperatures
“renormalized classical regimg’to a phase which exists for |ower than about 30 K the staggered moments recover and at
g>9. and which is quantum disordered with only finite spin zero temperature they are practically doping independent and
correlations and no static magnetic order. It is now firmlyapproach the value of the undoped compotird,see the
believed that the&s=1/2 Heisenberg model described by Eq. middle panel of Fig. 1. However, the distribution of stag-
(1) hasg<g.. Measurements of the correlation length of gered moments is broad at finite doping, with a variance
La,CuQ, have been fitted extremely well with the Q&M which is again simply linear ix, see Fig. 1 bottor®® Both
predictions for the renormalized classical regitne. the recovery of the staggered moments and the broad distri-
Once holes are added to the Gu@lanes, the magnetism bution of relaxation times are reminiscent of a transverse
becomes rather complex. Figure 1 summarizes the magnetspin-glass state, in which the transverse spin-wave modes of
phase diagram at weak doping concentrations othe AF freeze in a static but random pattern. These are clear
La,_,Sr,Cu0Q, and Y;_,CaBa,CuQ,.'° Here, we concen- signatures of disorder in the weakly doped AF phase. This is
trate on La_,Sr,CuQ,. For very small Sr concentration, the further corroborated by transport measurements, which show
most dramatic effect is a rapid reduction ®f, with the a behavior typical for random systerhsAt temperatures
complete destruction of long-range order occurring at a critibelow ~50 K the conductivity roughly follows variable
cal doping value of roughly,~0.02. Further, a spin freez- range hopping characteristics while at higher temperatures a
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thermally activated conductivity is observed, with activationnetization shows a dipolar pattern in real space identical to
energies of about 19 meX. This indicates that the holes the one produced by an isolated ferromagnetic bond, see Sec.
localize near the randomly distributed Sr donors. IMA.

Both the presence of finite staggered magnetic moments The Sr impurity position, located above the center of a Cu

and the broad distribution of slow relaxation times persist{?Iaq“‘?’tt‘ir*1 has a high symmtehtr)t/ g\nd coup(ljes N bé)th sublat-
also abovex>x, where long-range order is destroy¥d. Ices In the same way, So that the pseudospin aegeneracy
Again. there i § ecovery of the stagaered moments at erment|oned above should survive also in the bound hole state.

gain, IS a recovery stagy S Al V€¥he pound hole state is a superposition of plane-wave states

low temperatures, although the zero-temperature moment {§oscribing the mobile hole. For sufficiently weakly bound
now slightly smaller than in the undoped compound. Xhe hgles, we expect the main weight of the bound hole wave
dependence of; follows now roughly a 24 scaling. The  function to remain at wave vectors closekigor equivalent
regime 0.02.x<<0.05 is well described as a conventional SGpositions, and, depending on the relative phases and the
and shows characteristic nonergodic beha¥idihe freezing  weight of these pockets, dipolar or quadrupolar frustration is
transition temperatur€; in this regime can thus be identified associated with the localized hole. We note that dipolar frus-
as a SG transition temperatufg. The fact that staggered {ration was also suggested by Aharoeyal. for O doped
moments persist also above=0.02 is important and ex- systems, caused by a localization of holes in the O site with

cludes the possibility that the transitionyat 0.02 is a dis- the !iberation of one of the spins_ from t_he @ state’?

. . . . leading to an effective ferromagnetic coupling for the two Cu
ord-ermg- transition driven by.quantum fluptuanons as de'spins joint by the O. While the microscopic origin of frus-
scribed in the QNirM formulation above. It is often argued rati0n in the Aharony model is very different from the

that upon hole doping, the reshuffling of the spins by mobilegantum-mechanical one that we assume here, the phenom-
holes leads to enhanced quantum fluctuations of the spinsnological spin-only model we employ below is not sensitive
which would eventually drive the spin system past the quanto the microscopic details. In either case, the dipole moment
tum critical point of the QNI model, driving the AF into a of the localized hole state is characterized by two vectors,
spin liquid phase. As the transitionsat=0.02 is not followed ~ one in spinspace and one in real space. The real-space vector
by a spin liquid phase but rather a SG this scenario does néharacterizing the dipole is simply the orientation of the fer-
apply for the AF-SG transition. romagnetic bond in the Aharony picture while it is deter-
Only recently, it was found that the short-ranged magnetiémm':'d by the four coefficientsy,, and by the e‘?'“"’"’_"e”t

order in the SG regime is incommensurate, with a maximunyjvave vectors of the bound hole wave function in the
of the imaginary part of the susceptibility located at the in-duantum-mechanical model. The coupling to the spin back-

. . ground is then identical in both models. Here we simply
gl:pae WV\rlwae\:gaviicttr?; (Clut‘elaét/ti‘g’ ségzjn%’l/—%)ﬁelpe L(;nilésthoef assume that the localized hole produces dipolar frustration

: bl hich hiv foll B his | and, rather than relating our phenomenological coupling pa-
incommensurability which roughly follow$=x. This in- 5 meters to a microscopic model, we derive our parameters

commensurability has often been interpreted as diagongjom 4 comparison to experiments. As we discuss below, the
stripe formation, even though no signatures of a charggjipole model can quite well explain all the important char-
modulation were observed. Rather, all experiments point toacteristics of the magnetism of the weakly doped AF and SG
ward a quenched charge distribution and we thus argue thatghase. Let us further mention that for Sr doping, it was pro-
more likely explanation is the formation of short-ranged spi-posed that a chiral spin current is induced on the four Cu
ral order. sites closest to the Sr impurity which leads to a Skyrmion-
In La,_,Sr,CuQ, static AF moments are strong for small like distortion of the AF, where the mechanism of frustration
x and the holes seem to localize at low temperatures wheris again the coupling between spin and background magne-
transport experiments indicate a relatively weakly boundization current$’
hole with a localization length of a few lattice constants. In Sec. Il we introduce the dipolar frustration model, sum-
Thus, one might hope to gain considerable insight into thesgarize the main results of previous studies on this model,
phases by solving the one-hole problem first and to procee@nd discuss how they compare with experiments. In Sec. Il
from there on. As mentioned in the beginning, the underwe first derive an extension of the model to allow for non-
standing of the spin-polaron state arising from one hole in agollinear correlations which arise from dipole ordering. We
antiferromagnetic background is by now quite maftté®  perform a renormalization-groufRG) calculation to under-
For thet—J model, the bottom of the dressed hole band liesstand the influence of disorder and discuss the importance of
at the zone face centetg=(+ w/2,= w/2) and the band- topological defects of the spin texture. Finally, in Sec. IV our
width scales with). Because of the presence of two sublat-results are compared with neutron-scattering data on the SG
tices, there exists a pseudospin degeneracy for leaeictor. ~ Phase of La_,Sr,Cu0Q,. We find that the SG phase can be
An important characteristic of the hole wave function is thatdescribed as a strongly disordered spiral phase in which to-
it describes a long-ranged dipolar distortion of the AF orderPological defects proliferate.
which arises from a coupling of the spin current carried by
the hole to the magnetization current of the AF backgratind.
Relative to the position of the moving hole, the Fourier trans-

form of the transverse spin deviations is then proportional to e briefly sketch here the basis of the dipolar frustration
(gt qy)/qz,18 whereq=q— (, ), i.e., the staggered mag- model and the results of previous studies of this model in the

Il. THE AF PHASE AND DIPOLAR FRUSTRATION
MODELS
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\ * ; f model (NLoM), should be well suited for a treatment of this
problem. While the dipole spin structure discussed above is a
solution of the harmonic theory, it is not a solution of the 2D
\ f / ~+— FM moment NLoM. Nonetheless one can study the dipole model within
the NLoM, if one introduces the dipolar frustration through
\ \-_—/ / — FM bond a minimal coupling scheme. As mentioned in Ref. 23, the
dipolar frustration can be reproducézh the harmonic levgl
via a coupling of the dipoles to the gradient of the order
\ f / parameten of the NLoM. Thus, within a NLoM approach,
the reduced Hamiltonian of the model can be writtef?&
\ ‘ f (the factorB=T'is included in the Hamiltonian and we set
kg=1)
FIG. 2. Dipolar distortions produced by a ferromagnetic bond. o o
_Us 2 2 s 2
collinear limit. The model as presented in this section is ap- HCO'_EJ d™(,m7+ ?f ATy, 9,0 ©
plicable only for the antiferromagnetic phase in which the
dipoles do not have a preferred direction. At high temperawheren®=1, p is the spin stiffnes¢renormalized by quan-
tures, the collinear theory can be used. We will show in thdum fluctuationg T is the temperaturey is a three compo-
following section, however, that the collinear model is notnent unit vector representing the local staggered moment and
able to describe the low temperature and/or strong disorddy, is a field representing the dipoles. We did not include here
regime, where noncollinear behavior emerges. small corrections which lower the spin symmetry from
In the dipole model, it is assumed that each localized holdleisenberg toXY or Ising. While these are known to be
produces dipolar frustration. It is then possible to study thepresent both in the undoped and weakly doped compotinds,
magnetism of the hole doped materials completely ignoringhey have a very small characteristic energy scale and, as a
the charge degrees of freedom and to work with the spidirst approximation, we set them to zero. Note, however, that
sector only. Further, as there are clear indications of static Athese terms dominate the static magnetic susceptibility near
correlations forx<<0.05, the antiferromagnet should be well the Neel transition. For a random distribution of localized
described within the renormalized classical regime of thedipoles we write
QNLoM. In this regime, quantum fluctuations simply lead to
a renormalization of the coupling constant of the classical
model. A classical model should thus suffice to describe the
relevant physics in the AF and SG regime.

f,L<x)=MZ S(x—x))a,(x)M;, (4)

where the sum is over the impurity sites,are lattice unit
A. Ferromagnetic bonds as an example of dipolar frustration vectors,M; are unit vectors in spin space, and measures
the strength of the dipoles. While there is no dipole-dipole
interaction term in Eq(3), fluctuations of then field gener-
_ate a spin-wave mediated interaction. This can be seen once
short scale fluctuations are integrated out under a renormal-
ization proceduré® An integration over the short scale fluc-
tuations up to a scale>1/\/x (but L<¢ where¢ is the 2D
e Spin correlation lengthleads to an effective interaction term

Dipolar frustration was first discussed in the general con
text of insulating spin glasses by Villaf3.The simplest way
of producing dipolar spin textures is by placing a ferromag
netic bond in an otherwise AF magnet, whose order para
eter we denote by. At a distancex away from the ferro-
magnetic bond, this leads to a deviation of theeNerder
on~f,x,Ix?. Here,f, is a vector both in spin and lattic
space, wherg.=1,2 are the indices of the two-dimensional ©f the form
(2D) lattice vector. The spin part corresponds to the local 5
ferromagnetic momentwith f, 1 n) produced by the bond HI{M }]= psM 2 JM:-M-. (5)
and the lattice part corresponds to the orientation of the bond ' 2T vt
on the lattice(see Fig. 2 This can be easily derived in a
harmonic continuum approximation, where the energy denwith
sity of the magnet away from the impurity is proportional to
[4,(dn)]% and the classical equation of motion ¥&(5n) 1 (xij-a) (xij-a)
=0. For any impurity distribution, the solution fain can Jij= 2 a-q |, (6)
thus be written in a multipole expansion. As the monopole g
moment is energetically too costfythe lowest-order contri- g xi;=X —X; . Thus, for an average separation of dipoles
butions, consistent with the symmetry of the one-bond prob-_ 1, /x there is a random interaction among dipoles with a
lem, are dipolar. characteristic energy ~ p.M ?x/4ar. It was further showf?
that at high temperaturdd<T the presence of dipoles lead
to a renormalized effective stiffnesp.s=ps(1—U/T).

Because of the long-range nature of dipolar frustration, a'hus, the correlation length at high temperatui@sd small
continuum field theory, such as (@lassical nonlinearo  x) has the form

27-rxi2j X

B. Collinear Model
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tions, a disordered striped phase has been proposed, similar
to the ordered striped phase found ngarl/8. While there
is indeed an instability in the striped phase toward a disor-
gty Qoo ) dered phase at low,? it is unlikely that the stripes will
s survive in presence of strong disorder. In fact, recent numeri-
3 cal simulations of Shraimann-Siggia dipoles with disorder
] have shown that the latter leads to a destruction of the stripe
phase®®

In the spin-glass regime, there are two competing length
1 scales. The first is related to the average separation between
1 . disorder center$Sr iong €4 which scales a£d~1/\/§. The
10303L5‘;”1'5;2'53'3'54 other is the scaling of the periodicit§, associated with the

T,/T incommensurability, which scales &g~ 1/x. For smallx,

€4<fs. In a stripe scenario the charge distribution would

FIG. 3. R;=(T¥) ! data from*3%.a NQR relaxation measure- also have a periodicity which scales with. Thus, in a

6
10° e

EIkBTf = 8.940.5

3

1

sasal

-
o
S
T T T
S
2l

ments for La_,Sr,CuQ, and variousx<0.02, from Ref. 11. striped phase the charge can not take full advantage of the
disorder. The stripes must either break up into short segments

27 Pt 2mps  2mpU or reduce their on—_stripe charge Qensity considerably to take

&~ ex;{ T )= T - > |- (7) advantag_e of t_he disorder potential. Instead we propose here

T a theory in which the charges are completely disordered and

This result agrees to lowest ordersinwith that obtained by the incommensurability exists only in the spin sector. Then,
Cherepanowet al?* in a related RG calculation where they there is no conflict between the two scalgsand {4 as ¢
calculatedp up to orderx?. From a comparison with cor- relates only to the spins whereég characterizes the charge
relation lengths obtained from neutron-scattering data at higHistribution. _ _
temperatures, they estimated-20p.x. The doping depen- Note that even in the case that short segments of stripes
dence ofT was also found to be consistent with the dipole Should be present, these stripes would lose their antiphase
model2 domain wall character and instead act like a row of ferro-
A second independent test of the valueLbis to consider magnetic bonds, again causing dipolar frustration. Thus, the

the spin-relaxation times inside the AF phase. This can b&1€0ry we present here applies both to the case of localized

understood already within the theoretical framework just pref0l€ states which produce dipolar frustration as it does to a
ystem of randomly placed stripe segments. We view the

sented using arguments similar to those from Ref. 26 wheré ) : .
spin relaxation has been discussed within a slightly differenfCenario of localized holes, however, as the more plausible
frustration model. The relaxation rates inside the AF phas@"€:
can be explained within the dipole theory if one assumes that
the relaxation is driven by the interaction among dipoles and
hence controlled by the parametdr At temperatures well ) .
above the actual freezing temperature, an Arrhenius law is It is easy to see how the dipole model can lead to IC
observed, with a characteristic enery: 8.9T;~ 7250 Kx, correla_tlonsg. The Hamiltonian Eq(3) favors the formation
see Fig. 3. The above estimatelofcorrectly reproduces the Of @ spiral phase, with a nonzero average twjgt of the AF
linear scaling of the relaxation energy witrand also gives a Order and a simultaneous alignment of the dipolds,)

good estimate for the slope. With=20px, ps~24 meV?*  #0, as long as the lattice and spin degrees of freedom of
one obtainsU~5500 Kx. Considering that this is a very dipoles are annealed and free to orient themselves. The lat-
rough approximation, the value is not too far off from the tice position of the Sr dopanttocated above the center of a

experimental one. We mention further that the linear scalind>U Plaquett® which pin the holes, suggests that this free-
of the width of the distribution of local staggered moments isdom indeed exists. We emphasize that a spatially homoge-
also consistent with a dipole mod@l. neous distribution of dipoles is not required for the formation

of spiral correlations.
The preferred orientation of the lattice part of thevec-
tor is determined by the nature of the localized hole state and
therefore should reflect the symmetries of the underlying lat-
While the dipole model presented above can well explairtice. Thus a discrete set of favored lattice vectors for the
the temperature and doping dependence of the correlatidiormation of the spiral exists. Tha-b (or square lattice
length not just in the AF but also, to some extent, in the SGsymmetry breaking associated with the formation of spiral
regime?* theoretical investigations of the model have alwayscorrelations can therefore have truly long-range order. The
predicted (or rather assumedshort-ranged commensurate continuous symmetry of spin space on the other hand inhibits
antiferromagnetism. The recent observation of incommensueng-range magnetic order in the 2D system for either finite
rate (IC) correlations for the regime 0.62x<<0.05 requires temperatures or disorder. The experimental observation of a
therefore a new approach to the SG ph&se. macroscopi@-b asymmetry® but very short spin correlation
As a possible explanation for the presence of IC correlalengths thus clearly motivate the study of the dipole model.

A. Dipole ordering

IIIl. NONCOLLINEAR CORRELATIONS AND DIPOLE
ORDERING
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lattice spinsS at sitesr; can be parametrized in a spiral

configuration with the use of thed as(with nz=n;xn
collinear non- 9 18 ( 3 1 2)

Eallinear S /S=n;cog kg rj) —n,sin(kg-r;). (8)

A perfectly ordered spiral is described by E&) with con-
stant, i.e., space independant. To allow for spatial fluc-
tuations of the spins around the spiral order, Klee and Mura-
FIG. 4. The order parameter of collinear magnets, which arematsu introduced a slowly varying field via®%33
invariant under rotations around the collinear axis, can be repre-
sented by a unit vectdleft), whereas noncollinear order parameters  S(r;) N-+alL

require three orthonormal vectogsght). s J1+2aN-L+alL?

B. Continuum description of spiral phases —a’[(N-L)L+3L2N—3(N-L)°N]+0(a%),

Here we investigate the dipole model allowing for the 9
presence of nonzero ordered moments but assume a random ) ]
spatial distribution of the dipoles. First, however, we need aVhereN=n,cosks:rj) —nzsin(ks-r;) with now slowly fluc-
proper theoretical description of the homogeneous spiral@ting fieldsn. The continuum theory can then be found
phase. upon expressing in the lattice Heisenberg model the spin

In collinear magnets, the rotationa(® symmetry of the ~Operators in terms of tr_maK andL_fie_Ids, expanding the terms
system is broken down to a ground state witf2Osymme-  Up to ordera® and taking the limita—0 in the end. After
try, as rotations around the magnetization axis leave th&étegrating out thel fields, one finds an effective Hamil-
ground state invariantthis is schematically shown on the tonian which can be written in the classical limit in the gen-
left-hand side of Fig. % The order parameter of collinear €ral forn?? (again we include the factgg=T"" into H)
magnets is then an element of3YO(2). This group is iso-
mo.rphi.c to the group of three-di_mensional .unit.vectors H= lf d2xpi, (9,n)2+s f d?xn;-d,n,.  (10)
which is the representation used in the Hamiltonian, Bj. 2 pe ” K
Further, in absence of dipoles, the Hamiltonian, B).is _ o _
invariant with respect to @) rotations of the lattice vari- T7h1|s description is valid for length scales larger than
ables. The spin and lattice symmetries are decoupled andsl - The stiffnesses of the order parametgrare given
independent for the collinear AF. A spiral ground state, oninitially by PlfpszSZCOSGsMa_)/(ZT) and p3,=0, but
the other hand, breaks the(3) spin symmetry completely. ywll change under a renormahzatlon. of the model. 2We will
Moreover, in a spiral state the lattice symmetries and the spiignore for the most part the small anisotrofof orderqsa?)
symmetries are no longer decoupled and the order-parameté the stiffnesse,,, and just writep,. The vectors is to
space of such a state becomes more involved. lowest order given by=Jqs/T. The term with thes,, pre-

For spirals, the combined symmetry of lattice and the spirfactor makes this Hamiltonian unstable, which simply ex-
space is O(3XO(2). As discussed in detail by Azaria Presses the fact that the pure Heisenberg model does not
et al,® the coupling of the spin and lattice degrees of free-support a spiral phase ground state. Bjeterm will, how-
dom in frustrated spin systems leads to an order paramet&ver, be canceled by a similar term originating from the cou-
which results from a symmetry breaking of the combinedpling of the spins to the ordered fraction of the dipoles, re-
lattice and spin degrees of freedom and is in general of théting the incommensurability self-consistently to the
form O(3)>< O(q)/O(q) Whereq depends on the Symmetries ordered moment of the dipOIGS. In other Words, the ordered

=N+a[L—(N-L)]

of the lattice. For a spiral phase, one fiffdg= 2. dipoles stabilize the spiral phase, as expected. _
A convenient representation of the order parameter is in It must be stressed that because the continuum model is
terms of orthonormaty, k=1, . . . ,3,with nn2=5,,. Klee only valid at length scales larger than the period of the IC

and Muramatsi have derived a continuum field theory for structure, there is a relatively large uncertainty in the esti-
the n, order parameters from the lattice Heisenberg modelMates of thepy,, . There is always a fundamental problem in

Eq. (1), assuming an IC spiral state with an ordering wave'€/ating the continuum model parameters to those of the
vectorks= (/a, m/a) +qs. Here,qs measures the deviation original microscopic lattice model, but in this case this prob-

from the commensurate AF wave vector, see Fig. 5. Th&€™m is especially severe. The continuum model parameters
must be obtained from an average over one period of the

spiral which, for small incommensurabilities, can be rather
NN  SmN r Ny S large. Thus, the above estimates for thg,’s should be

SN ey SN} S taken with care.
NN AN Y e N A
>N ? A * f =N f ;- C. Disorder coupling: a gauge glass model
,fn Now we must include the coupling of the dipolar frustra-
: tion centers to the spiral order parameter. While there is no
FIG. 5. Spin texture of an AF spiral. microscopic derivation of this coupling at hand, the fact that
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the coupling in the collinear model can be expressed withina The model defined by Eq12) is in fact far more general
minimum coupling scheme allows for a simple generaliza-than its derivation might suggest. In absence of disorder it is
tion of the model to noncollinear spin states. We first observepplicable to other types of frustrated spin systems with a
that the ordering wave vector of the spimgd is entirely  noncollinear ground state, such as, e.g., the Heisenberg
determined by the average orientation of the dipoles. Simimodel on a triangular latticg>**°It is conceivable that cer-
larly, local variations of the density or orientation of the di- tain types of randomness in such lattices may be well de-
poles should also modify the local ordering wave vector.scribed by the disorder coupling employed here. More im-
Further, to reproduce the strong canting produced by the diportantly, the model Eq(12) can be viewed as a general
poles, the coupling should be of first order in the spatialmodel to investigate diluted spin glasses, in which a spin
derivative of the spiral order parameter. To generate the frussystem is frustrated by a small number of impurities. There
tration produced by the dipoles we thus introduce a minimahave been investigations of similar models of spin glasses in
coupling* in the first term of Eq.(10), i.e., we replace the past, most notably by Hert?,which however did not
(aﬂnk)2 with [(ﬂM—iBML)nk]2 where B, is a random account for noncollinear correlations which are known to be
gauge field, representing the dipoles. The components of essential in spin glassé$Our approach has the appeal that
are 3X3 matrix representations of angular momenta whichit can interpolate between collinear and noncollinear states
generate rotations about the three spin axes, with and thus offers the possibility to study the transition from an

ordered collinear magnet to a disordered noncollinear one

—iB,-Ln =B, Xn. (11)  continuously.

This coupling has the advantage of relative simplicity com- o

bined with a clear physical interpretation: the dipolar fields D. Renormalization

define the locally preferred wave vector of the spiral, and we now investigate the renormalization of the model un-
fluctuations of the dipole fields lead to fluctuations of theder a change of scale, with the objective to understand the
wave vector. Further, it reproduces the correct form of thenfluence of the dipoles on the correlation length of the
dipole coupling in the collinear limit, as shown below. Let us model. For carrying out the RG calculation, it is of advan-

write B,=[B,]p+Q, so that[Q,]p=0, where[---]p is  tage to use a S(2) representation of the mod&l(see also
the disorder average. We then obtain the following Hamil-Appendix A). We therefore write
tonian for the spiral in presence of disorder,

1 ng= 3t o?go*g 1], (15)
H= Ef dzxpkﬂ(aﬂnk)%f d?xpyd, N QX Ny, where o are Pauli matrices ande SU(2). Wefurther in-
troduce the field¥
(12)
where the ordered part of the dipole field cancels the second a_ T.r a -1
term in Eq.(10). Thus, Au=5tlo%g 2,01, (16)
Pud N [B,Ip X Ny+S,N5 - 9,n,=0. (13  which are related to the first spatial derivativesipthrough

. _ _ o &ﬂnﬁ‘=26ijkAiMnja. Equation(12) then acquires the form
As (s s, this equation relates the incommensurability lin-
early to the density of ordered dipoles. The remaining part of 1 oo 22 ) o emb
the dipole fieldQ, is a quenched variable with zero mean H= t_f d“x[A,+bA, ]+zf d“XPy €ijk €abcA N NKQ

and we assume Gaussian short-ranged statistics, " (17)

[Q5OOQUYN =N (X=Y) Sapdy - (14 wheret,*=2(p1,+Ps,) andb=(p1,—P3,)/(P1,+ Ps,)-
At the point b=0 the symmetry is enhanced to O(3)
In absence of disorder, the Hamiltonian defined by Eq.x O(3)/O(3)=0(4)/0(3) while at b=—1 the model is
(12) has the desired O(3)0(2)/0(2) symmetry. The @)  collinear. For spirals, we have initially=1.
symmetry is associated with the spin indic@®f the n{, We first discuss the dimensional scaling behavior of the
while the Q2) symmetry is associated with the lattice indi- models(12) and(17). We assign the dimension 1 to each
cesk and arises because;,=p,,. Hence, the equality spatial dimension sé, has dimension 1. It follows that the
P1.= P2, is directly related and enforced by the symmetriesA , fields have a scaling dimension of 1. The scaling dimen-
of the spiral. Note that if allp,,, are identical, the lattice sion of the first term in Eq$12) and(17) is then 2-d where
symmetry is enhanced to(®. We further see now, that the hered=2. Thus, this term is marginal and a RG analysis is
model reduces to the collinear model E§) in the case required to study the scaling of theg, b parameters. Local
P12=0 with p3=ps/T, nz=n and f,=Q,Xn. Unfortu-  terms containing more than twl, terms have positive di-
nately it is not possible to reach the collinear limit by send-mensions and are irrelevant. Hence, such terms, while they
ing gs— 0. The reason is that the parametpgs are, within  are generated in the perturbative expansion we discuss be-
the approximation used in their derivation, independent ofow, need not be considered.

the size of the unit cell of the spiral, i.e., in the lingg As was pointed out in Ref. 24, for the disorder chdit4)
—0, the unit-cell size diverges while the parametprg  the model defined by Ed3) has a lower critical dimension
remain unaffected. of two and is thus renormalizable in two dimensions, as can
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be shown with a general Imry—Ma-type argument. The same
argument can be used for the present model. The disorder
coupling in Eq.(12) can be rewritten in momentum space as
a random-field coupling of the form

J

hk(Q):ipquﬂf dZX(QMX nk)eiQ-x,

where the random fields,(q) have disorder correlations
with a momentum dependencéhﬁ‘(q)hi‘,’(q’)]Doc5(q

2

(Zgznk(—q%hk(q);

The coupling term in Eq(17) produces theH.q, ...

PHYSICAL REVIEW B39, 014424 (2004
H1=2t;1f d*XA), 9, ¢! o e (1- b8, +2b3;,),
szzt;lf dxd,0'A,(1+b3,,),
H3=4bt;1f d?Xe, i A% @l A

H4:4bt;1f d3X[ (e,jke'A%)2 = (AL) 2+ AL oA, ).

1HC4

—q")|q|® with ®=2. According to general arguments by terms,

Imry and Ma®® in models with continuous symmetries ran-
dom fields will destroy long-range order as long &s 4

— 0. This implies that in our casé=2 is the lower critical
dimensio* and a renormalization-group analysis of both the
stiffness and the disorder coupling is required.

We now derive the one-loop RG equations. For this, we
split the original SW2) field g into slow and fast modeg
=gexple?c? and trace out the fast modes which have
fluctuations in the rangeA ~1,1], where we set the original
UV cutoff equal to 1. For the one-loop calculation, we need
an expansion of Eq17) up to second order igp? (higher-
order terms will only contribute at higher loop order of the
RG). For the fieldsn, andA, the expansion readsee Ap-
pendix B for more details

o . . U
ALL:ALL‘I‘ (9M§DI + EinQDJ(?lung‘l‘ Zeijng]A,u_ZAlu‘Pz
+2A .00+ 0(¢),
nf=nf+ 260 Ng+ ¢l o* R+ O(0°),
where

%=3tr{o%g(dlo'd*~jolo*o' —Fo'alaM)g .

The expansion of the energy functional?) reads

1 ~ ~ w
H= Ef d*X[AZ+D(AZ)2]+Heo+H, +H,,  (18)

with

—F=In

— 2 Al RazcAb
Hco—2J' d“XPy . €ijk €abcA N NKQ

Hp:Hl+ H2+ H3+ H4+ HC1+ HC2+ HC3+ HC4'

The first two terms in the expansion bf have exactly the
same form as the original function@l?), but are now func-
tionals of the slow fieldsH,, is quadratic ing and has the
form

H

H01:4f dzxpkgeijkeabc[Eklmﬁ?ﬁ?nz‘;—i_Ejlm‘ﬁgﬁﬁ\AL
+ emn AT 0' QY
H02=2f dzxpkueijkeabcﬂu@iﬁ?ﬁEQza
HC3:2f dZka#Eijkfabo[z\L(ﬁ?RﬁﬁJfﬁﬁRﬁrj])fpl<Pm
+2?1?ﬁﬁ(;‘w-qogoi—AL¢2)+4(AL61|mekpqﬁfnﬁg
+Z\r:fnmkaqﬁaﬁ?‘Fz,Tfnmfquﬁgﬁﬁ)<Pp<P|]QZ,
c4:2f dzxpk,ueijkeabc[z(eklmﬁ?ﬁcm+ Ejlmﬁ%ﬁﬁ)é’,ﬁpi@'

[~a~ciAb
+ €imd, @M niNKQ, .

The integration over the fagt fields is performed with

| Plonexs—Hpex—y =e 7 [ Dloexs—H,).

here F is obtained from a cumulant expansion

| Pteexa—rpem—ry =

n! <HE><,DC

. -3
f Dle'lexp—H,) i
(19

and(- - - ), indicates that only connected diagrams are to be
considered.

1. Renormalization of the spin stiffness

We ignore the(small anisotropy of the, parameter and

1
H@ZGI dzx[(ﬁﬂ‘P)z"'b(a#@Z)Z]'

H,., ... ,H, are generated by the first term in E4.7) and
are given by

simply use the isotropic mean= 't t, in the RG analysis
below. We collect all terms in the perturbative expansion
which are bilinear irf&'ﬂ. After performing the disorder av-

erage ofF, the renormalized stiffnesses of tﬁéb fields is
found to be(see Appendixes C and D 1
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1 1 [2(1-b) (2—b+b?\
i > CcX(0),
te s ts ts
b b [2b(3+b) b(5+b)x
i 5 CX(0).
t, s ts ts

With €=In A and

X(0)— 5
C{(0)=7=InA

one finds the RG equations

g1 1-b (2—b+b*)\

ity 2w At '

g b (3+b)b (5+b)b)

Wty 2w 4wty

This yields

1-b, 2-b+b? -
ﬁts_ 2 ts+ A Ms. (20

dJ b(1+b b(1+b)(3—b
I, bED)  bI+bE-b)

14 T s Qa7

For \=0, these equations describe the RG of a clea

PHYSICAL REVIEW &8, 014424 (2004

2. Renormalization of disorder coupling

As we discuss below, the renormalizationhofs given by
terms proportional totg andA2. As the disorder enters the
renormalization ofts only in the combination\t [see Eq.
(20)], we can neglect the renormalization)ofaltogether for
t\, i.e., at high temperaturesve havet,xT/J). How-
ever, for low temperatures the renormalizatiom\ofnust be
taken into account. To calculate the renormalization of the
disorder we follow the approach used in Ref. 24. In this
approach, the renormalized disorder variance is defined by
the variance of all terms in the perturbative expansion which

couple to the quenched disorder fields and are Iine@r,jn
Note, however, that there exists no symmetry argument
which guarantees that the functional form of the disorder
coupling remains unchanged under the RG. It is thus pos-
sible that new disorder terms are generated so that a simple
renormalization of\ is not sufficient. This is indeed the situ-
ation we encounter for generél#0 and discuss in more
detail below, where we find the generation of new coupling
terms at orden?. To find the complete renormalization of
the model one would have to include all generated new terms
into the original model, which is a rather laborious process
which we did not pursue. Nonetheless, as we have just
shown above, there are only two possible fixed points even
in absence of disordeln=0 andb= — 1. Rather than trying
to categorize all possible disorder couplings, we therefore
focus on a discussion of the RG of the disorder near these
two possible fixed points and discuss their stability under the
flow.

We begin with the collinear case= —1. In this case, the

renormalized variance of the terms Iinearﬁh is given by
[see Appendixes D2 and D 3, E@13)]

Y - . 2 1
s 2 X\ 2 y\2 _ -
tgf d x([(AM) +(A) ](1 —tdnA—o—\InA

~ 1
+(A%)2 — .

(A7) 27_r)\ln/\] (22
What is evident from this result is that the renormalized
disorder coupling is no longer of the original form
Prd N QX Ny Such a coupling has a variance which in-
cludes a prefactor of (£b)? of (A%)2. According to Eq.
(21), b=—1 is not changed under the influence of the origi-
nal disorder coupling. A renormalization which retains the

r{orm of the original coupling can then not lead to a renor-

Spira|,35 while for the collinear poin'b: —1, the equations malized disorder variance with a finite prefaCtOf szluoz at
reproduce the RG of the stiffness for disordered collineal=—1. Such a term is however present in Eg2) from
models** From Eq.(21) it is seen that there are two fixed Which we conclude that a different type of disorder coupling
points forb (the asymptotic freedom of the model prevents ais generated @ = —1. This is perhaps easier to see in Fou-

true fixed point in 2D ag, always diverges The collinear

rier space, where the original disorder coupling can be writ-

pointb=—1 is unstable whereds=0 is stable, irrespective ten as a correlated random-field couplimg—q) - hi(a), see
of the disorder. The RG flow df, andb is shown in Fig. 6 EQ. (18). For the original minimal coupling one hdg(q)

for A=0. The flow does not change qualitatively for finite

«py and thus, in the collinear limib=—1 (or p;=0), only

as long as\ <t,. Hence, the coupling to weak disorder doesns is affected by this coupling. We can then interpret the
not lead to any new fixed points, although the disorder renorfinite prefactor of the Ai)z term in the disorder variance as

malizes the stiffness.

the generation of correlated fields which couple alsote
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even atb=—1. It is evident that such a coupling will drive is finite, as can be inferred from an integration of the RG
the system away frorh=—1 and thus destroy the collinear equation withb=0, yielding éxexgC(tn+Ay/2) 1] with
fixed point. Thus, even if the original AF order is collinear some cutoff dependent consta@t Thus, even aff=0, ¢
(i.e., in absence of dipole orderipghe disorder drives the «exp(Z\,?) is finite. While the disorder scales to strong
system to a noncollinear state. An analysis which presupeoupling, the relative disorder strength with respect to the
poses collinear order is thus not valid in the presence oétiffness\/t, always scales to zero so that at long wave-
dipoles and cannot describe the low-temperature regime cofengths the disorder becomes less relevant. This is surpris-
rectly. Physically, one would also expect the appearance dhgly different to the situation witlh= — 1 fixed?* where the
noncollinearity. The random canting of spins leads to a ranratio A/t was found to diverge below a certain initial value
dom local deviation of the spins from the ordering axis andof )\ ,/ty, which was interpreted as the scaling toward a new
thus destroys the remaining(®) spin symmetry of the col- disorder dominated regime. Thus, if one correctly takes into
linear model. account the noncollinearity, this disorder dominated phase
To make contact with the RG result obtained from thedisappears. The absence of a sharp cross over from a weak
collinear model in Ref. 24, we note that we can reproducelisorder to a strong disorder regime is certainly surprising,
the result Cherepanoet al. obtained for the disorder renor- especially as the experiments clearly observe a transition into
malization if we ignore noncollinear modes. We can theng spin-glass phase at a finite temperatdr&he finite tem-
define the renormalization of just by the terms which are perature transition may be related to the presence of inter-
present in a purely collinear theory, i.e., by t[](az\;‘L)Z layer coupling. We argue below, however, that topological
+(~A>/L)2] term in Eq.(22). Then defects can alter the RG behavior considerably and may bg a
more natural explanation for the appearance of a strong dis-

d N 2\ A2 order regime.

e 2 29
. . E. Topological defects: saddle-point treatment
which, using Eq(20) leads to poiog P )
The RG results presented above do not take into account
a3, topological defect® of the spiral as only spin-waves excita-
ﬁh_ EA ' (24 tions enter the calculation. As is well known froxy spin

models, topological defects can play an important role and
drive finite temperature transitioi$.The neglect of topo-
: ; ~ logical defects has been a source of criticism toward the
used in Ref. 24 by a factor tyoWe emphasize that this NLsM approach to frustrated magnets, which gives contro-
result ignores the role of noncollinearity in the problem.  \ersial results fore=1,2 in ane expansion around =2

We now turn to the poinb=0, the only remaining pos- 4 ¢ dimensiong! For two-dimensional systems, the kM
sible fixed point of the model. At this highest symmetry point egyits were, however, found to be in very good agreement
we find that no new coupling terms are generated. The variyith numerical simulations as long as the temperatures were
ance of the renormalized disorder coupling takes the form gygficiently low“2 Only at higher temperatures, a deviation

from the NLoM predictions for the temperature dependence

This, together with Eq(20) are the RG equations found in
Ref. 24 (note that our stiffnesk; differs from the stiffness

A il 72 4ts+3)\| N )
E XA,u 1—Tn . (5)
Thus,
dg N 1n 3\ o6
g mt amg (26

which yields the RG equation, valid far=0 but any initial
ratio of Mt

d A2

%A:E' (27

Using Eq.(20), we can simplify this througlz=t;+\/2 to
get

d 1

=2
Mz 2772. (28)

of the correlation length was observed which was attributed
to the appearance of isolated topological defects. In the nu-
merical simulations the high-temperature region showed
some resemblance to the high-temperature regiorXsf
modelé? which indicates that this region is characterized by
free defects. However, at present a good understanding of the
influence of such defects in noncollinear systems is still
lacking**

The topological defects of spirals have their origin in the
chiral degeneracy of the spiral, i.e., the spiral can turn clock-
wise or anticlockwisé! At a topological defect, the spiral
changes its chirality. As the chirality takes only two possible
values, the defects a®, defects.

It is then straightforward to find topological defect solu-
tions of the saddle-point equations of a clean spitalhe
saddle-point equations can be obtained from the perturbative
expansion of the energy density, Eq48) and (19). One
finds that extremal solutions must satisfy for egehx,y,z
the equations

So for b=0 the presence of disorder leads to an additive

renormalization of the stiffness,—ts+A/2. In presence of
any amount of disorder, the IC correlation lengttat T=0

(1+b3;,)3,A, = 2be, ALAY, (29
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wherej is not summed over. Fdr>—1 one finds solutions B N B e N BT
f the fornt® I NN | N T IN | SN I
0 e for - P S 7 — e
/o L7 N 7NN 7 TN NN
F TN TN L 2 DI TN | N TN
i N M F P N
~ ~ . ~ A ~
- a_a N Ve T\ N V2
o= oy . %0 IR AR A
P o s SIS —— ~
i - : SINEEN N e
where m is a space independent unit vector aiidx) a /’:5?55:* I NS [ 7/:;M§:\\
. . . i /o ~ N\
scalar function. With this Ansatz, one ha#,(x) ;,:y;jzi\\ U:::N 5?7::%\ ;;3\§ o
=im'9,¥(x) and thus, upon insertion into E¢R9), one /::\J/:I\ \ NN R FA AN ( N\ ViguN
i M Lo . B e Y RV A
finds for m and W the equations j( is again not summed SN Y = PN s
oven BN PN B AVt o (R 7 et
Ea — e N Ve N — L~
2o _ - ) NN P S BN o B Vo
(1+b3,)mid, W (X) = bezmm s, ¥ ()]~ (3D e e P Ve B ot e
. ) ) ) . I ENEN AV SN IS VAN B A 17
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RN/ D AN M
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E= mInR. (33 RN N NS SN v N B SN I
2t RN RN A I A VA I (S S
SN //_\M//“\\ I//_.\\ ?/_\

Because of this logarithmic divergence of the energy, iso- ) ) .
lated defects are not present in absence of disorder and at FIG. 7. Single topological defedtop) and topological defect
sufficiently low temperatures. It can also be shé&imat a  Pair (bottom of a spiral withb<0 (small-scale AF fluctuations are
bound state of defect pairs, described iy g,gs, with Ot ShOWn.
0s1.2= exil(i/2)my - oarctari(y—y12)/(x—x,9)], has a fi-
nite energy ifm; +m,=0. Therefore, while isolated defects a phase with algebraically decaying spin correlations to a
may be absent, defect pairs will be present at any finite temphase which shows an exponential decay, as occub§Yin
perature. Figures 7 and(8ottom show such a pair of topo- models, is clearly ruled out. While IdY models topological
logical defects folbb<<0 andb>0, respectively. defects can be relatively easily incorporated into the analysis

This situation is reminiscent of the one encountered in thévecause they can be decoupled from the spin waves, this is
XY model where at low temperatures also only defect pairsiot the case for frustrated Heisenberg models. If fluctuations
are present. The pairs unbind at the critical Kosterlitz-around the saddle-point solution are taken into account, the
Thouless temperature. An unbinding of defects at a criticallefects of spirals couple to the spin waves already at second
temperature or critical disorder strength is also expected inrder in an expansion in the fluctuatiofisThese difficulties
the present model. The topological defects of the spiral difhave to date prevented a good understanding of defect un-
fer, however, in important aspects from those of ¥  binding in frustrated systems.
model. Spiral defects have &, charge whileXY defects A comparison toXY models is nonetheless quite illumi-
haveZ charges. More importantly, as the present model posnating. The kind of disorder coupling we have used for the
sesses asymptotic freedom, it has a finite correlation lefigth spiral phase is closely related in spirit ¥0Y models with
at any finite temperature even in absence of free defects. Thimndomly fluctuating phases, where the disorder is also intro-
implies that the logarithmic divergence in E@3) appears duced in the form of a fluctuating gauéfelf one ignores
only up to a scaleR<¢. It is therefore not clear how a vortices, the influence of the disorder was shown to amount
defect-unbinding would affect the system. A transition fromto a simple renormalization of the spin stiffness, at all orders
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where the second term contains the corrections due to the
disorder coupling,

Zd:f dZyEX[<_2f dzxpkeijkeabcALnfnﬁQz , (35)

with A, n, obtained from Eqgs(15), (16), and (30). With
use of the replica trickIn Zylp=limy_ o(1/N)In[Z}]p, we
have, assuming<O0,

(2To= [ dys-- -,
N
Xexp 2\p2 > fdzxﬁﬂ\lfn&,}lfn/ :
1

nn' =

with W (xX) =WV (x—y,). We write

Sy - - -
~ ) e - -
1
2 — 2
s o o R f d xaﬂ\lfnﬂﬂ\lfn,——EAnn,JrV , (36)

e R 7N

~ - NN P N T~ .
N N R A R AR with V?=27InR and A, =4 Inly,—y,|.*® For large
N N N R R ARV separationgy,—Yy,| we approximateA =4 InR while
N N R ANV RR AL NN f Il distances\,, i ligible. To find the highest
e AN AR L PN e or small distances\,, is negligible. To find the highest
R e A B/ I R A A VI weight configuration, the replicas are grouped together in
N R RS N R AV N/m sets containing eac replicas, with small distances

~ VRS — - e AN - y

TN T P ANTI N LD e . O . ;
Tl 1 2;2,\:;; § iijj N :/221_ AR between replicas within a set and large distance for replicas
//‘: -~ \\/ -7 Ve /.////‘ . . N .
2 ;;;;::/; N N A in different sets[Z]p then scales witlR as

R TN ) VNN \\///,(j///‘
A B INE AN RS AR N AN mp2N2+ ma[2(N/m) — 4w\ p2N(N—m)]
N ARl N o N N Lo [Zg]o~R™™ L - @37
et e T N4 A N . T S
A ??ii:;ff ‘ :jiﬂit// g §§:5§:;§§;:: In the limit N— 0, maximization is replaced by minimization
SN I N Iy with respect tam in the range &m=<1, so
A A AR SRRl s . )
I AR A A N B S o BF=[2pym—MiNg<pm<1(2iM+4rpimm)]InR. (38)
R R e N e :

- ’ - — H

I RV R B AR VAN B ANV SN For 2xpf7<1 one findsBF=2[p,;7(1—2Ap;) —1]InR so
N I N DALY VNS IV AN Y SN
- NS Vi NV

that forp,7(1—2\p;) =<1 free defects are favorable. This is
the phase boundary for thermal creation of defects. At low
temperatures, )Qp§w>l, one obtains BF=2mp4(1
—+8\/7)InR and a critical disorder strength,= 7/8 be-
yond which the disorder favors isolated defects evef at

in a perturbative treatment of the disorder cougfff§and ~ —0- Similar considerations for the cage=0 lead to the

no disordering transition as a function of the disorderS@me critical disorder strength and the conditiarp,
strength is found. However, once topological defects are in-t Pa)[1=A(pa+ps)]<2 for thermal creation of free de-
cluded in the analysis, the coupling of vortices to the random{€Cts: o .

gauge field can lead to a disordered phase ev@r-at. This Let us flrst dls-cus.s the resu!ts fo_r thg dlsorde.r free case
transition is driven by the creation of unpaired defects if thed =0- The situation is summarized in Fig. 9, which shows
fluctuations of the gauge field are stronger than some criticd{'€ i@ separating the regime where free vortices exist from
value**4® The critical disorder strength beyond which suchthe regime in which all defeqts are bound. Note th-at-the
defects appear can be estimated quite accurately when oh@PINding temperature goes linearly to zero in the limit
calculates the free energy of an isolated defect in presence of ~1- Atb=—1, free defects are present at any finite tem-
disorde*#7 It turns out that a similar analysis of a single Perature. This is expected, asta&—1 and finitets, the
defect in a spiral in presence of disorder can be carried oJPPOlOg'Ca| defec'ts we discuss here Ipse their meaning as.the
with some modifications, at least at the level of saddle-poin{st'ﬁ”ess for rotations around the collinear ordering axis dis-

solutions. Within this approximation, the free energy of an@Ppears and the model becomes @@(2) model which
isolated spiral defect is given by has no finite temperature transition. Whether or not free de-

fects are present exactly at the pdint —1, t;=0 depends
14 (m)% on how this point is approached. To see this, we note that the
F= L)WMR—UH Zalo, (34y  symmetry of the model in the limips—c but finite p,
215 reduces to arXY symmetry as fluctuations of the; vector

FIG. 8. Single topological defedtop) and topological defect
pair (bottom) of a spiral withb=0 (small-scale AF fluctuations are
not shown.
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t, 4 disorder strength? This form of the correlation length has a
free vortices divergence of¢ at A=\, which cannot be correct for the
spiral because, as discussed above, even without vortices, the
coupling of any finite amount of disorder to the spins will
lead to a finite correlation length. The correct dependence of
the correlation length ai=0 on the disorder is expected to
bound vortices be an interpolation between the MM result and thexXY
behavior.
Certainly, the free-energy argument is not expected to
i , work as well in the present model as it does XoY models.
- 0 1 The parameters andt, flow to strong coupling and thus the
b predictions of the free-energy argument also become scale
dependent. In other words, while at some small scale the
system might look stable against the creation of free defects,
at some larger scale the system will become unstable accord-
ing to the free-energy argument. There does not seem to be a
get SUppreSSEd which forces all fluctuations of the Orthonorsimp|e answer as to which scale is the correct one for app|y_
mal pairn; , to lie within a plane. Therefore one obtains an ing the argument. Note that such problems do not arise in the
XY model with stiffnesg;. In terms of theb, t; parameters, XY model where the stiffness remains unchanged under the
this limit is approached as—0 andb— —1 with finite (1  RG as long as vortices are ignored. In view of the divergence
+b)/ts=4p;. Thus, depending on whether one approachesf the A andt, parameters in the NkM, one possible sce-
the point 1+b=t;=0 with a slope larger or smaller than the nario would be that free defects will always be present at
critical one given by (¥ b)/t;=4/m, one arrives at the dis- sufficiently large length scales. Numerical results do, how-
ordered phase or the ordered phase ofXhemodel. This  ever, not support such a scenario and rather point to the
behavior is correctly reproduced by the free-energy arguexistence of a finite critical temperatufeBelow we shall
ment. The validity of the critical curve (tb)/t;=4/7 also  apply the free-energy argument with the bare parameters,
for finite 1+b>0 is at least plausible, as topological defecti.e., at the smallest possible scale, which, if anything, would
solutions also survive in this limit. Below this line, the RG overestimate the stability of the system against free defect
Egs.(20) and(21) hold and the system should scale towardsformation.
the pointb=0. We can only speculate, however, what hap-
pens above that line. At least for some finite regime riear
= —1 the unbinding transition would presumably driygto
Zero, as it does in th¥XY model, and affect the renormaliza- Let us now compare our results with experimenta| data on
tion of p3 only weakly. Thus, the appearance of free defectghe SG phase of La,Sr,Cu0,. Neutron-scattering data
will probably modify the RG equations at high temperatureshave revealed an incommensurability of the spins which
in such a way that the SyStem will flow back to the CO”inearsca|es rough|y |inear|y withx. At very smallx, a small de-
point b=—1 as long as ¥+ b remains small enough. For viation from the linear dependence is observed. Both features
largerb the nature of the RG is unclear. Numerical simula-can be explained within the dipole model. The linear scaling
tions on triangular Heisenberg mod&i&’ have found how- s reproduced if the fraction of the dipoles which are ordered
ever, clear evidence for a defect unbinding transition. As thgs doping independent, i.e., the number of ordered dipoles
triangular Heisenberg model is believed to have initidlly scales linearly with doping. The deviation from linearity
=1, it s likely that an unbinding transition indeed occurs might be explained with the increase of the average separa-
for every initial value ofb. As no RG equations are available tion between dipoles at smatland a resulting diminished
which can describe the transition, the form of the correlationtendency of the dipoles to align.
length near this transition is unknown. It was however The same experimental data also shows the strong one-
argued® that the temperature dependence of the correlatiogimensional character of the IC modulation, i.e., the incom-
length should cross over from the MM behavior to anrXY — mensurability is observed only in one diagonal of the Cu
behavior when the defects unbind. Numerical results seem tattice (b direction and thus breaks the symmetry of the
support such a scenartd. square lattice. This phenomenon is usually interpreted as be-
Let us now turn to the case with disorder. Disorder will ing due to the existence of charge and spin stripes running
lead to the formation of free defectsNt> /8. According to along the other diagonal(direction. However, this IC is
the free-energy argument above, this critical disorderlso expected for a spiral along thedirection because its
strength is independent of the stiffnesggsand is thus also  chirality breaks the translation symmetitcan spiral clock-
valid in the XY limit discussed above. For strong enoughwise or anticlockwisg In addition, this symmetry breaking
disorder, free topological defects will exist already Bt is expected to show long-range order because the dipoles
=0, invalidating our NloM analysis and producing very prefer a discrete set of lattice orientations.
short low-temperature correlation lengths for the spiral. For Another important consequence of the spiral chirality is
XY models, the correlation length @&t=0 behaves like¢  the formation of topological defects. To judge, whether or
cexp®/+VA—A\,) (with some constanB) near the critical not topological defects play a role in the LSCO SG phase,

4 1

FIG. 9. The critical line for the thermal unbinding of topological
defects is shown i, tg space.

IV. COMPARISON WITH EXPERIMENTS
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we need an estimate af. We can use as a lower bound for entation of the dipole moment is no longer annealed but
\ the result obtained from the collinear analyéiwhere a becomes quenched. Another effect of the breaking of the
disorder parameter equivalent to ours, but defined on a mucsublattice symmetry is that the weight of the bound hole
smaller scale of the AF unit cell, was used. From a fit of thewave function near the wave vectorf2,7/2) or equivalent
x dependence of the correlation lengthxat0.02 and large points will be reduced. As it is these wave vectors which are
temperatured >T,, one obtains\=20x. In this regime of responsible for frustrating the spin background, one would
x, the low-temperature phase has long-range AF order and @xpect a reduction or possibly a complete destruction of the
collinear analysis is well justified. We assume that the lineaffrustration caused by the hole. Hence, the effective density of
dependence of the disorder parameterxp\=20x, also  dipoles will be renormalized t&— x(1— yz) wherey must
holds in the SG regime. This view is supported by measurebe calculated from a microscopic thedgxperiments indi-
ments, which found that the width of the distribution of in- cate thaty is of order 2.°* Codoping with Zn then has two
ternal magnetic fieldgi.e., local staggered moment:n-  effects: first, it lowers the amount of frustration in the sample
creases simply linearly with doping, with no detectableand thus increases the correlation length, which would ex-
change on crossing the AF/SG phase bountfasee also plain the experimentally observed increaseTfwith z for
Fig. 1. It is remarkable that with our above estimate for thex=0.017>%°! Furthermore, the effect of quenching the di-
critical disorder strength..= /8 we find a critical doping pole moments will be the same as destroying them altogether
concentratiorx,~0.02. Considering that=20x is a conser-  With respect to the incommensurability, as the incommensu-
vative lower bound of at the long length scales relevant to rability is determined solely by the ordered moments. Thus,
spirals, we conclude that in the entire SG phase, free topg=odoping with Zn will lead to a decrease of the incommen-
logical defects will be present already B0, leading to a  surability by a factor * yz. In contrast, within a stripe pic-
strongly disordered spiral phase. Experiments have in fadure, codoping with Zn is not expected to change the incom-
shown that the correlation lengths in the SG regime arénensurability as the hole density is not affected by Zn
rather short and of the same order as the periodicity of the I@oping. Previous measurements in the superconducting
modulation*® While this is in accordance with the expected phase ¥=0.12 andx=0.14), where the stripe model is be-
presence of topological defects, the correlation lengths are digved to be valid, have shown that the incommensurability
short that the conditiog>|q¢ % is not fulfilled. The regime  indeed remains intact upon codoping with Zn*®Within a
where spiral correlations become dominant is thereforétripe picture, the only effect of Zn codoping in the SG re-
barely reached, and the RG scaling predictions cannot bgime should be pinning of stripes, which would lead to a
well tested. reduced correlation lengfi. Therefore, neutron-scattering
While qualitatively the experimental data supports a de-experiments within the SG regime of Zn codoped samples
scription of the SG phase as a strongly disordered spiragould clarify the debate, if the magnetic incommensurability
state, both the extremely short correlation lengths and oupbserved in the SG regime is to be interpreted within a stripe
limited understanding of topological defects prevent a moreor a frustration based model.
guantitative comparison. It is interesting that symmetry arguments similar to those
However, our suggestion that the incommensurability oflust used to discuss Zn codoping also give a simple explana-
the spins is related to ordered dipolar frustration centers cation for the absence of any incommensurate signal in Li
be directly tested experimentally on co-doped samplegloped LaCu; _,Li,O,. For smally, these compounds show
La,_,SrZn,Cu,_,0,. Zn replaces Cu in the CuOplanes a magnetic phase diagram which is almost identical to Sr
and effectively removes one spin. Zn doping leads therefordoped sampl€$with the notable exception that the magnetic
to a dilution of the AF but does not introduce frustration. correlations always remain commensurdtust as Sr, each
Dilution is not very effective in destroying the AF order and Li atom introduces an excess hole in the Guilane which,
pure Zn doping(with x=0) leads to a destruction of long- at least for small doping concentrations, remains weakly lo-
range order only at percolation threshold that occursxfor calized to its dopant. The important difference is that Li re-
~41% 30 Surprisingly for very small Sr concentratiox places Cu in the crystal and thus has a different symmetry
<0.02 it was found that codoping with Zn can increaseWwith respect to the magnetic sublattice ordering than a Sr
Ty .2 This is remarkable as both kinds of impurities lead tohole. Specifically, the sublattice position of the Li atom
a reduction ofTy, in singly doped samples. A possible expla- Preaks the pseudospin degeneracy present in Sr doped
nation for this behavior was suggested by Korenétial > samples. Assuming that, otherwise, the origin of frustration
They put forward an argument that Zn impurities, if placedis the same, the only difference between Sr and Li doped
close enough to the localized hole state, will destroy thesamples is that the dipole moment assigned to the Li bound
frustrating nature of the hole bound state. While their micro-hole is quenched, whereas the one of the Sr hole is annealed.
scopic picture of frustration is a classical one, a Zn impurityThus, ordering of these moments and the development of
is also expected to strongly influence the properties of théncommensurate correlations cannot occur in Li doped
bound hole state within a more realistic quantum-mechanicafamples.
picture of frustration. Although Zn couples only weakly to
the spin degrees of freedom, if placed near a Sr donor, it
disturbs the symmetry around the Sr atom and modifies the
nature of the bound hole state. As the Zn impurity breaks the In conclusion, we have presented a detail picture of the
sublattice pseudospin degeneracy of the bound hole, the orilipole model of frustration and discussed its applicability to

V. CONCLUSION
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SPIN-GLASS PHASE OF CUPRATES PHYSICAL REVIEW &9, 014424 (2004
the weakly doped regime of cuprate materials. Most of the
key characteristics of these materials were already known to
be in accordance with the model and we showed that incom-
mensurate correlations appear also naturally within the di-
pole picture. We extended the commensurate model to allow
for a description of the resulting disordered spiral spin
phases. Finally, we suggested an experiment which would
allow to verify whether the frustration based dipole model or
the stripe picture is realized within the weakly doped regime
of cuprates.

ni=3tr{o*g explie- o) o'exp( i 0)g 1}

~ i - . 1 - .
=n+ Etr{oag[q} o0]g B+ Etr a'ag( e-ode o

L+ 0(e3)

1 2 i1 2|
—5(@ )0 —50(e-0)%|g

=N+ 260 NE+ (pJ(ka L+ O(pd), (B1)

where

ACKNOWLEDGMENTS
- I I B S O S B A "N\ |
We acknowledge fruitful discussions with V. Gritsev, V. Ric=2tr{o"g(olo'o" - olo"o! - 3 ololol)g ™).
Juricic, B. Normand, and B. Simovic. C.M.S. is supported by
the Swiss National Foundation under Grant No. 620-
62868.00.

It turns out that in the RG we will only need the diagonal
components o Jk ' with j =k which have the much simpler

form R2= 2(equ) n? (we put hergj =k=z to make clear
that z is not a silent index, the equation also holds for

APPENDIX A: SU(2) REPRESENTATION =x,y). Similarly, we find

The orthonormal basig, can be related to an elememt
of SU(2) throughgo*g~*=n,- o, or A . ~_q.~ . ~i
AM:Etr{aexp(—uo-a)[aM%—g d,9lexplie- o)} =A,
ni=3tr{odga*g 1. (A1) 1

+
2tr

: 1 ~
o"( d,¢ 0+ E[qo-(r,ﬂﬂgo-(r]+i[AM-(r,go-o']
For the derivative one finds, using,(gg™1)=0,

1.
2 0'(¢'0')2)]

. _ _ ~k
+O(<p3)=A'M+ 9,9+ eijkgolaﬂgok—i- ZEiJkQDJA#

~ 1
+¢ oA, o0 0— E(qo-o')ZA co— A
1
aﬂnﬁ‘:Etr{aaaMgakg*le o?go*s,g™

1 a

79,9 (A2)

_1 K -1 ~ ~ .
=ztr{o"[g" 9,91} — 2R, 2+ 2R 00!+ O(¢°). (B2)
Introducing g~%d,g=iA - o and with [o',0)]=2i ;0"

one finds APPENDIX C: PROPAGATOR OF THE ¢' FIELDS

As already mentioned, there is a small spatial anisotropy
in the stiffnesse®y, , i.e., px1# Pro- We shall keep here the
spatial dependence of the stiffnesggg up to first order in
the anisotropy, assuming that the anisotrogywhich we
define throughp,;/pxo=1+ «, is independent of thé& in-
dex. Thus we can absorb the anisotropy intotthparameter
while b remains isotropic. We then defing= yt;t, andt, ,
= (1% «/2)ts. For future use, we also define the isotropic
stiffnessey= Vpx1Pkz- It is not clear whether the isotropy
of bis preserved under the RG and we have made no attempt
to write down the RG equations in presence of anisotropy. In
principle, if b remains isotropic, the results obtained below
allow us to determine the flow of the anisotropy parameter
under the RG. For possible future use, we will therefore keep
the perturbative expansion with the anisotropy. The results
used in the body of this work have, however, been obtained
for an isotropict, =ts, i.e., k=0.

We need to expand the exponential explp) and inte-

np= 26k A, N’ (A3)

Therefore, we havéwith p;,=p,,)

P (9 ,M) %= 4Py . ( EijkAiun?)zz 4pku(€ijk)2(Ai)2

= E[A2 +b(A%)?] (A4)
t# M 1% !

with t,'=2(p;,+pa,) andbt, *=2(p1,—ps,).

APPENDIX B: EXPANDING THE ENERGY FUNCTIONAL
IN &'

To do the RG, we introducg=g exple¢- o), where ¢?

are fast fields fluctuating with wavelengtha ~*,1] andg

has only slow fluctuations in the rang®,A ~']. For the
1-loop calculation, we need to expangd andA'; up to sec-
ond order inp?. We then find

grate out thep' fields. Taking the average over tip fields

is done with the Gaussian terhh, of Eq. (18). The propa-
gator for thee' is thus quite S|mple and becomes, to lowest
order in the anisotropy
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_ _ _ tg d2k  elkx terms involving them do not contribute. This can be shown
C'(x)=(¢'(X)¢'(0)),= 5(1+b3 )f PR for each term in a way similar to the one just shown. .
iz (2m) We want to find the RG equations up to second ordey,in
22 andX. In thenth order of the cumulant expansion #f Eq.
1 "2 (19, we only need to consider terms which have a total
x| 1+ Y (k,A)=Y(k,1)]. C1 ' . .
( “ 2k? [Y(kA) (k)] €D number ofe andQ,, fields less than 2+2. This is because

each term of orden carries a factors; " from the prefactors
of the terms irtH, and each pair o (Q,,) produces a factor
ts (V).

We begin first with the terms renormalizirtg, and b,
where we give a detailed calculation only for the terms up to
second order i, . The calculation of higher-order terms is
quite lengthy although conceptually easy and we therefore
just present the results of the calculation.

The IR cutoff is provided by the functiolf (k,A). A sharp
cutoff Y(k,A)z@(k—Afl) has the disadvantage of pro-
ducing a long rangedC' and we therefore adopt instead
Y (k,A)=[1+(kA) 2]~%, which render<C' short ranged.

In our RG calculation we will mainly nee@'(0) which
has the form

1
CX(0)=CY(0)= 4t—;|n A+0O(k?), CH0)= mCX(O).

. 1. Terms which renormalizet, and b
Another useful formula is

a. First order in H,

1 -
t;lf d?x(a,C*)?= ECX(O) +O(k?). (C2 There is only one term quadratic &), which contributes,
H, (the ¢' average oveH; is zerg.

APPENDIX D: RENORMALIZATION

b e,
We can immediately discard all terms of third or higher —(Ha)gc= _Aﬂf dzx[fzikfzi’k’AZAm‘PJ‘P] )e
power in 5\# as these~terms are irrelevant in a RG sense. T L T
Terms second order iA, renormalizet, and b, whereas — (A (e'¢ >¢+AMAM<¢ ¢)el
terms linear inA,_L are responsible for the renormalization of b 5 Ko
the disorder variancg. :_4§f dx] (€zji) “(A,) cl(0)

First, we note that the terms, andH do not contribute
to the renormalization, as was pointed out for the calculation - -
of the RG for the disorder free system in Ref. 43. This is —(AZ)ZEI C|(0)+(AZ)ZCZ(0)}
because these terms are lineapimhile they do not involve
a disorder fieldQ,, . For an abelian theory, such terms cannot
contribute because the fagt fields and the sIovaAM fields
have their support in orthogonal parts of the wave vector
space. Here for the nonabelian case, this argument is not b. Second order in H

sufficient because th@M fields are not linearly related to the

. | _
fieldsg. For the present nonabelian theory this is nonetheles]sb r-rL?;m?hve\lltP:nd dd d?:(;rr]éjeerrsa\?:raoreQ{fhzrrZ ;(raéothzf;egr?lertwo
true, although an explicit calculation is required to see this, g thee ge. y

R 2 2 2
For exampleH3 does not contribute, because its contriby-1€"MS We need to consided,; andHg, (Hcs has a total of

tion is built from terms of the form{we omit the upper SiX ¢! aninM fields and does not contribute akig terms do
indices ofC' andAiM here for simplicity

not contribute as mentioned abdv&or HZ we have

=—4pt,* f d?x[ A% —3(A%)2]CX(0). (D3)

fdzxf d?'A ,(X)A,/(X')3,d, C(x—x"). (D) %[<H§>¢c]D

To evaluate this term, we change to center of ma3safid

relative (') coordinates and then perform a gradient expan- = _<H§>¢C:2t;ltj1j d2xdzx'ﬂiﬂ(x)ﬂi',(x')

sion in the relative coordinate. Only the lowest-order contri- 2 a a

buuon is of interest, as hr:gher-qrder terms '|nvolve. a local X €ij€ir (1= 08, +208,) (1~ by, +208;,)
coupling of the typeA,,(d,)"A,» with n>0 which are irrel-

evant from a scaling point of view. The lowest-order term is X((?M(pj(x)(pk(x)(?w(pj’(X’)(pk’(X')>¢. (D4)
then

The four-point average can be decomposed according to
—f dzyzu(y)ﬁﬂr(Y)f d%’'9,3,/C(y’), (D2)  Wick's Theorem. Nonzero contributions arise from the con-
tractions(jk’)(j'k) and (jj’')(kk’). We again employ an
which vanishes because the last integral is zero. In the folexpansion on in the relative coordinate and keep only the
lowing we will omit H, andH; from the analysis, because zeroth order term of the expansion. This yields
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1 - .
§<H§>¢Cz2t;}f d?>X AL A e (1-bd, +2b35;,)
X(l_b5i’z+2b5j'z)(ﬁjj’5kk'_5kj'5jk')
X f d?ya,Cl(y)a,C(y)
:4t;2f dX(A)) (i) (1 — b8, +2b5;,) (1

—bs,+bs,+ bakz)J d?ya,Cl(y)a,CH(y).
(D5)
With use of Eq.(C2), we finally find

1 . ~
§<H§>¢C=2t;lf d?X[A%(1+b)+(AZ)%b(b—3)]C*(0)
(D6)

The other second-order contribution is
1 2
§[<Hcl><pC]D

— 22y’
—Sf d Xd X pk,upk’,u’fijkfi’j’k’fabcfa’b’c’
THanC Al CRaqpi TRancam
X{6k|mnj nmA +Ej|mnknmA +6i|mn-nkA#}

a'~c' ~i’ c/'~a' ~i’
a

X{Ek/|/m/n n A +GJ/|/m/nk,n ,AIP'/

+E|'I’m’n ”k/ }5”' (x— X)[Q (X)Q (X )b
(D7)
Using [Q5(X)Q%, (X)1o= 8piy 8, S(X—X)N, €apc€arber

= 0aa' Occ’ — Oac Ocar » @nd the orthonormality of thi,, we
find after some algebra

1 ~ ~
SLH2) el =200, 2 [ @R + (R])7ICX0)
o9
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—[(HiHHeo) oelo=—2At, b f d>X[A%(1+h)

+(A2)2(b—3)]CX(0). (DY)

We further need to consider terms of the typél 4
+Hs)?H,. Only HZ,H, has less than eight andQ, fields
and even powers of both fields. We find

—2\btg ! f d*x[AZ

—3(A2)2]CX0).

2[< c2 4>(pC]D

d. Fourth order in H,

Possible contributions arise from the termid (- HCl
+Hes)2(Heo+ Hes)?. Discarding terms with ten or morg'
andQ,, fields, we are left W|tH-|C2H2 and chH g How-
ever, the connected part of tleé average oH2,HZ, is zero
(its finite disconnected parts enter the renormalization of the
disorder, see belowand the only contribution is therefore

1 a ~
ZUHGHD clo= g, f d*[A%(2+b)(1+b)

+(A2)%0(b—7)]C¥(0). (D11)

Terms of the formH ,(H.,+ H4)® do not contribute because
their disorder average is zero. Higher-order termsijndo

not contribute because they either involve more than @ur
terms and are therefore of higher order tharor they do not
contain finite connected parts. For example, the term
(H4HL) oo decomposes into products of averagegtof) .

or <H4H02>¢>c and<ch>tpc

2. Terms which renormalize A

To find the renormalization of the variance of the disorder

distribution, we first collect all connected terms Iineaﬁfp.
We list the contributions order by order below.

a. First order in Hy,

Only three terms are linear iA),, Hy, Hg, andHcs.
However, bothtH; andH; have a zerap' average and only

Higher-order terms can be evaluated in much the same waly1ca)c CONtributes.
as the first- and second-order terms, although the large num-

ber of indices makes their evaluation more tedious. We there-

b. Second order in H

fore refrain here from a detailed presentation of these terms At second order there are contributions frghs;H¢,)

and just state the results.

c. Third order in H,

Terms of second order m2 are produced byH;+H.;
+Hes)2(Hep+Heg). However only the termsH(H.;

+Hcs)(Heo+Hes) have even powers of,. Terms with

and(H;H¢4),c. There is no contribution to second order in
\, t, of the disorder renormal|zat|on frofH 3Hca) o bE-
cause this term has SQ' , Q.

c. Third order in H,

There are contributions from (HcchzHM)‘PC,

eight or moreg and Q,, fields again do not contribute to <Hc3Hc2><pC’ and (H;HZ,) .. The terms(Hg3Hg,) . and

second order in\, t
H{H:He. We find

we

Thus we are left with only <H1Hc4><pc do not contribute, as they contain eight or more

QM , ¢ fields.
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d. Fourth order in H,, ) 2o 21 [ 2o Rz Kyi2
. Ho,H H =4\t “to | d A+ (A b
Only one term contributes(H;HZ,H) . All other [(HezHes)ecHeolo pos J XA ()]

terms have ten or mor@iM, ¢ fields or more than thre@,, =712 «
fields and thus do not contribute. The same argument applies —(A,)72b(1+b)}CX0),
to all terms generated by higher ordertof . —[(H1H22H 2 ecHeolo
C c4/¢c'lc
3. Calculating the renormalized disorder variance _ 2)\2t;2t;1j dzx{[(hAZ)2+(Z\i’L)2](1+ b)
We now must calculate the variance of all terms at the
length scale\ ~* which are linear irﬁ'ﬂ. These are the terms X (24 b)+(ﬂi)22(1+ b)(1—b)2CX(0),
just found above plu$i;y. Thus, we need to calculate the
variance of L ~ ~
(HaHe)Zelo =207, 70 [ oPx(T (R 2+ (R 7102

_Hc0_<Hc3><pc+<Hc1Hc2><pc+<H1Hc4><pc -

1 1 +(AZ)%(2+t4t, )b CX(0),
_<HclH02Hc4><pc_ §<H§2H03>¢C_ §<H§2Hl>¢c _ _
ZH(HIHG) S o =22, M2 J d2{[(A%)+(A)?](1+b)?

1
2
+ §<H1chHc4>¢c- (D12 T (R%)2(1-b)21CX(0)
i )
To order\?, the following terms contribute to the variance. ~[{H1HZ) oolHetH o) oelo
c2/ec\"clt'c2/¢c
[Hio]D:M,sz d2X{[(A%)2+ (AY)?]+ (AZ)4(1+Db)?}, =—2>\2t;2t;1f d2{[ (A%)2+ (AY)2]b(1+b)

+(AZ)?2b(b—1)}CX(0).

20(HesoeHeolo= 80,2 | 0P (A2 (&7
The sum of the above terms (e now again set, =t)

—(A%)22b(1+b)}CX(0), - -
) xt;zf dzx[[(A;)ZjL(A{L)?]
_2[<H1Hc4><chcO]D
4(b—1)t+(b2—3)\ § e ,
=—4>\t;2f d2X{[(A%)2+ (AY)?](1+b) x| 1+ . CH0) |+ (AL (1+Db)
3 2
+ (A2)2(1-b)%(1+b)}CX(0), ><_4(1+b) ts+t(3+6b+b A CX(O))]. 013
2[<H01H°2H°4>“’°H colo a. On the calculation of disorder terms

As an illustration, we give details for the calculation of
the variance terms for a relatively simple term,
- [(Hea)ocHeolps, and a  more  involved  one,
z\2 2_ ¢
+(AL)2b(b"=1)}CX(0), [<Hc1H§2Hc4>¢cho]D- For [(Hcs)ocHeolo we have

= 2)\2t;3f d2{[(A%)2+(AY)?]b(1+b)

_ 2yA2 Iy =c i’ ~azcRi ~cTaxm
[<HC3>¢CHC0]D_8j d<xd X'pkﬂpk’,u'fijkfi'j'k'fabcfa'b'c'c (O)nj,nk/AM,{ZE“mEanmnqAM"‘26i|m€k|qnqnjA’u

+ 26€i1m €j1qNANEAT — NAEAL (( €i1m) 2+ (€j1m) >+ (€am D QLX) QY (X)) ]

~ale A~ ~

= 16)\f dzxpkﬂpk/ﬂeijkei ik Eabcfa/bclni nE,A;{(E“mEHqﬁﬁqﬁgAiﬂ"‘ €i|m6k|qngﬁ?ﬁA’T
+ €ilm€jigNaNEAT C'(0) —iMFA) (24 (1+b) "1 CX(0)}
=16\ f d2X(€ik) (AL A Pij uC'(X) + PE,CH(X) + PiuPi . CH (%)
+ PryuPi . CX) + P, CH(X) + PiuP; . CH(X) — (24 (14 b) ") CX(O)(Pf, + PPy )} (D14)
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where we again used the orthonormality of tiie Performing the summation over the silent indices, one finally obtains

=16\ f d2{[ (A%)2+ (AY)?](p3, — p3,) + (AZ)2(4p3,p1,—4p3,)}CX(0)

— -2 2 AX\2 AY\2 NZ\2
=4\t fd X{[(A})*+(A))?1b—(A%)“2b(1+Db)}C*(0).
We now turn to the more lengthy evaIuation[«éH1H§2HC4)¢CH00]D. We have

-1 ~i’
H]_H(2;2Hc4: 16f dZXdZX!dZXI!dZXH/pkMt#, pk’,u’ pk"/_L”pk/"/.L"'Eijk €j Tk’ Ei//J'//k//Ei///jmk//leabcfa/brcr Ea//b//cuEa///b///CmA#,(1_ b5l 1z

Ul Undold b” "

HQ "
(D15)

-C

+2b6] Z)n ,,nknn ,,,ﬂk,,,{219MQD (2] (Ekd|n|n +Eld|n| nk)+(P (?M(P E|d|n nk}& rQD (‘D (? H(P (9 WQD Q Q

We now need to perform the average over théields. For  vanish as?,C*(0)=0. Although not immediately apparent,
convenience, we spliH,H%,H.=A+B into two terms, terms involving the pairingi”i”) also do not contribute to
where A corresponds to the part cyf|1|.|§2|.|C4 which in-  one loop order. This can be seen only after the computation
volves the first term in the curly brackets in E@15) andg ~ ©f the disorder averagg.A) cHcolp and a gradient expan-

corresponds to the second term in the curly brackets. FoHon similar to the one employed below E@1). Using the

(A) e, we need to calculate the average same arguments as we used for the tébd), all (i"i"")
contractions can then be shown to give no contribution. Fur-

i d it K [yt N i thermore, all contractions which are identical up to a permu-

I CIET 000 OO NI (e (X(I;>1¢; tation of the indices” andi” will give the same contribu-
tions after the disorder average is taken, as discussed below.

which can be easily done via Wick’s Theorem. However, notwe therefore only write down half of the permutations and

all possible permutations of pairings will contribute. All indicate the others by’—"}. Thus, we only need to keep

terms involving either of the contractionsd) or (j'k’)  the following terms,

(9,0 0@ ), @ (X ) (X ), (X) 3, (X)),
— 81 Bgin Ot 9,1 CH(X—=X") 8 CUX=X") 3, C" (X = X") + Biyr Byyin 810, C' (X—X") 9 ,nCY
X(X=X")3,,19,mC" (X' =X") + 8ijn 8gjs Syrim 40 C (X=X, CUx=X") 3, C" (X' = X")
+ 85y 811 49 Cl (X=X ) CHX=X") 9,19, C" (X' = X") +{"—""}. (D17)

Let us now perform the disorder averdged) ,cHqolp - For this, we need to calculate

[Q2()Q0Q% () Q%n(X") Tp, (D18)

where the variables carrying a tilde arise from Hhg term. Again, we can use Wick's Theorem to decompose the average. Of
the three possible permutations of pairings, two involve either of the two contra¢tdis or (bb”). Neither permutation
contributes. This is easily seen for t{ieb”) contraction and the explicitly written terms in E@17) because they all involve
after the contraction a derivative 6*(0) and thus vanish. The same terms also do not contribute for the casébbf’a
contraction, which again can be seen with a gradient expansion and using arguments analogous to those lBlbw Eq.
Therefore, only one term of the disorder average must be kept

b~ "oon "o ~ _—
[Q;(X)Qi(X)Qz,,(X )QZ///(X )]D—>)\Ztsbb(sbrrbmtslulu6MHMW5(X X) 5()( ) (Dlg)
The terms in Eq(D17) which only differ by a permutation of the double primed and triple primed variables give then identical
contributions, as such a permutation simply relabels the variables associated with tHe,ttesms in[(A) ,cHcolp . With

Egs.(D17) and(D19) we then have
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[<A>¢CHC0]D: 128\2f dZXdZX/dZX”t;rl(pinMn‘F pk”,u,”pj”,u,")z( Girrjukn)zéi ' reriu,(l— b6| ’Z+ 2b5j 'Z)

X{_FA,kLpi,upk,uEkdi+’A,|(Lpd,upkp€idk_z‘i;,p§ﬂeijd _RLpiMpdﬂfjdi}[5ij ' 84in Orind, 9, CH(X—X")
X 3,1 CUx=X") 3, C" (X' =X") + Sy 84in 81173, C (X—=X" ) CUX—=X") 3,1 3, C"" (X' —X")

X CY(x=x")d,,1d,,C" (X' =x")]. (D20)

The integration ovex” can now be performed with _ _
[(A) eHealo=3202, %3 | 0P TR+ (7]

t;,,lf d?X" 3 ,nC¥(X—X") 3 ,nC(X" = X") 2

4p1
X (p1+p3)2+m ((p1+p3)?
1
= ECX(X—X’HO(KZ)- (D21) +2p5+2p1ps) +(AL)?8(1—b)
The remaining double integral overandx’ can then again X (p3+p1Ps)(py+ ps)# C*(0). (D23

be approximated with a gradient expansion in the relative ) )
coordinate and employing E4D21). We then obtainwe  The calculation off(B),cHcolp can be done in much the
denote the center of mass coordinate agaix)y same way as just shown fp{.A) ,cHcolp . One arrives at

[(B)ocHcolp=— 320, *t3 f dzx{[@;)%(ﬂm
2

[<A><pCH CO]D: 16}\2t5f d2X( pi//‘f' pknpju)z( fiujnkn)z
(py+ )2+ &
P1TP3 1+b

X

~r + 2+ “Az 2
X 1o AL (108, +2b8)1,) BiBa (P1tPg)™F(AL)

X fidk{z\ipmpkfrAipdupkﬂ+ALpgﬂ

+’AJ H 5’6 '"5 ryn ’ . . .
uPiPa L8y air Sycrin Bi Finally, expressing alp, throughb andt, one obtains for
_5ikl5di”6j’i"ﬂjl_5ii”5dj/5k’i”ﬁk’ [<A+B>¢CHCO]D

><8<1—b>pi<p1+p3>2]CX<0>. (D24)

[(H1HGHea) ocHeolo=2021, " f ([ (AL)?+(AL)?]

wherep, is defined througtB, = 8,=1, B3=(1+ b) !and . X(1+b)(2+b)+ (A2)22(1+b)
Pits/t, =Py, - After some straightforward algebra, one fi- “
nally finds X (1—Db)?}CX(0). (D25)
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