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Quantum form of the double-exchange interaction
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A quantum form of the Hamiltonian for a double-exchariBé&) system, based on the results of Anderson
and Hasegawa's semiclassical treatment, is presented together with several predictions. The magnetization
decreases mainly in 3/2 and 5/2 powers of temperature at low temperature but incllilé=rm. The Curie
temperature, in a rescaled DE coupling enex@®b{2S?)J4 unit, is dependent on hole concentratioand has
highest value that is about 1/3 that of ordinary Heisenberg magnet=&t5. The susceptibility at high
temperatures lacks aTl9 term and has a characteristic temperature in rescaled DE coupling units that is about
3/4 that of Heisenberg magnet in molecular-field theory.
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[. INTRODUCTION ever, MHD’s treatment puts a strong restriction that magnetic
ground state is completely determined by the atomic states of
Colossal magnetoresistan@@MR) material$ attract con-  two nearest-neighbor magnetic ions and omits an intermedi-
siderable attentions due to their potential for applications an@te case, namely, the motional electron is in neither of the
their rich physical phenomena for scientific interests. Thewo sites that leads to loss of the explicit motional character
exotic phenomena arise from the strong coupling amonéFermion operatopsin their effective Hamiltonian. There-
charge, spin, and lattice in which the double excha(rﬁyfe)z fore, in our opinion, thes-d model needs further improve-
plays an important role. Anderson and Haseghsiadied ment to describe DE system. In this paper, we have extended
DE in great detail and showed that the transfer element iénderson and Hasegawa’s SCT on DE to obtain a quantum-
proportional to cosf2), whered is the angle between the mechanical Hamiltonian for DE. A temperature-dependent
neighboring ionic spins. This was confirmed by studies orflouble-time Green functidfi ** solution for the DE mag-
layered manganitésHowever, their semiclassical treatment netic system is obtained. The results show that at low tem-
(SCT) is based on the simplest case of only two magnetideratures the magnetization of localized spin expands in the
ions with one electron traveling between them. In real mateT*%  T%2 T72 series which is typical Heisenberg
rials there are a large number of ions and electrons. Theehaviot*~*®but an additionall® term is predicted, charac-
hopping of electrons is unavoidably affected by other deterizing the motional and hole-concentration-dependent na-
grees of freedom, e.g., lattice effect as pointed out by Millisture of the DE. The Curie temperature in a rescaled DE cou-
et al® To study the interplay among spin, charge, and latticepling unit is hole-concentration dependent and about 1/3 that
degrees of freedom dynamically, it is insightful to treat theof Heisenberg magnet at=0.5. The susceptibility at high
DE problem in a quantum-mechanical form. temperatures lacks aT term and exhibits a ratio of char-
However, there are two features of DE that make it quiteacteristic temperature and rescaled DE coupling constant of
different from the usual form of exchange interaction andabout 3/4 that of Heisenberg magnet from molecular-field
these make its treatment very difficult. One is the half-anglgheory.
dependence of the interaction in SCT and the other is the
extra degree of freedom allowed by the electron’s motion.
Kubo and Ohataused as-d model to describe the problem
and a projector method was introduced to show the equiva- In CMR materials there are two valances of Mn ions that
lence between DE anstd model. This projector method is are responsible for their magnetism. One is*Mrthat has
also used by Shen and Wdnand Izyumov and Skryabiffi.  three localized @ electrons and spi. This localized spin is
Recently, Greert al.” used a many-body coherent potential defined as theore spinfor the convenience of our discus-
approximation to study this-d model and showed that there sjon. Another is MA™ that also has three localized 2lec-
are unphysical behavior in magnetic susceptibility at half-trons and an extrd electron that is motional. The motion of
filling and no magnetic transition for any finite s These  the extra electron between two Mn ion neighbors generates a
indicate thats-d model is not completely equivalent to double-exchange interactiérivin®* is referred to asl hole
Anderson and Hasegawa’s semiclassical DE model. As @ith a concentratiorx in DE system. We start with the fol-
matter of fact, it compares the SCT and thd Hamiltonian,  lowing Hamiltonian for DE system
one may find that there are some hidden factors in the hop-
ping amplitude of thes-d model that are important to make 34(£.0) S-S,
thes-d Hamiltonian to be completely equivalent to Anderson Hop=— >, —— ( 1+Db ) (¢ ch—cic)

1. MODEL

and Hasegawa’s semiclassical model. For example, Muller- 2 s?
Hartmann and Dagott® (MHD) pointed out that the hop-
ping amplitude for nearest-neighbor sites depends on both +'“§f: ey,

the spin values at the two sites and their projections. How-
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1.2 T T T T 1’ t>0
A,B].=AB=BA, =
1 [AB]. 60=10 <o
and single angular brackets denote an average with respect to
the canonical density matrix of the system at temperature
08 The equation of motion of(A(t);B)) in Fourier form is
T o0s . 1 .
= E((A:B))e=5_[AB]. +(([A(D),HI;B)e.
04f ;gg)s:g/ﬂms(e)wz The correlation functiofBA(t)) can be extracted from the
solution of above equation through the relation
0z . # ((AB) hw+ie = ((AB ) ho+ie
(BAW)=lM. o | o i fwlkgT) 1
0 L L L
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0 (xm) _ _
FIG. 1. Comparison between cé® and f(6)=(1/1/2)(1 (AB(1))=lim, _oi (AB o rie = (ABD rusie

+b cosé) with b=2—-1. expholkgT)—1

—iwt
where the parametel,(f,h) describes the usual hopping xexpholkgT)e " do. 2

1 _— + 1 1 . - .
between Mn ionsb=2-1, c{ (c;) is the operator which In our calculation, we shall need four kinds of correlation

preates(destroyﬁsad eleqtron With_spin paralle_:l to the Iogal- functions (Se,(t) Sns(t)), (S7(1)S: (1), (cf (t)ey(t)), and
ized core spin at théth site, andu is the chemical potential. (ci()ey (1)), however,(S,(t)Sn,(t)) is only used to de-

'I_'he addition of the chemical potenugl term allows the deV'a'couple the entanglement between the core spin and motional
tion of the occupied state of the motion electron from Ander-

son and Hasegawa'’s ideal two-body stated deals with the elecitron. v)’é,’ne sha’II therefore+study t\fvo Green's fqnctions
fluctuation induced dynamical occupation number change 0?<Sf (1);"5, (t))) arjd((cf (t)’c.h(t .)>>’ wherew IS a
moving electron on a Mn ion. parameter used to derJve magnetization. The equations of

First we show that this DE Hamiltonian is a good approxi—mOtlon for these Green’s functions are
mation for half-angle dependence in the SCL when the ma- =~ 1. N WS
terial is in the ferromagnetitEM) state. In classical limit, the  E((Sy ;€ 7S )) = 2715t S 1+ ([SF (1), H]; &S )),
(12)[1+Db(5-S,/S?)] becomes (1/2)(1+b cosby)
=f(6;,), while f(6;,) fits quite well to cosg;/2) for O 1
<#6;,<m/2, although a discrepancy appears fol2< 6;, E((c/ ;Ch»:ﬂ{cr Crp((Lef (1), HIsen)).-
<1 as shown in Fig. 1. In SCL4;,=0 andw represent the . . . .
material is in FM and antiferromagnetidF) states, respec- To _conven|er_1tly descylbe solutions of above .equatlons, we
tively. Correspondingly, we expect the DE Hamiltonian is adefine some intermediate parameters and their space-Fourier
good description for material in FM states. For AF states, th&€omponents, namely,
approximation may generate an inaccurate phase diagram C(f,h)=(cicy)—(cici),G(f,h) =(S-S,),
border between FM and AF regions.

Next, we show the temperature-dependent Green function 1
solutiont' %8 for the DE Hamiltonian. To describe the mag- Clo=g % e “(=Nc(t,hy,
netic properties of a DE system, we also add a Zeeman term ’
in the Hamiltonian 1
G(k)= % e < (=NG(f,h),

H= —2 Ja(f.0) 1+bSf 28”) (cicp—cic) whereN is the number of magnetic atom in the material and
ENF] S f and h represent the atom positior® and R,,. We use

S; Callen decouplinty to decouple the core spins and Tayab-

+MZ cfcf—gMBHZ (sz+ Z—Sch*cf)_ likaff decoupling®*®to do the disentanglement among core

spin Fermion, and Fermion-Fermion. Some manipulations

The temperature-dependent retard Green functio?(IeIdS

({(A(t);B)) is defined®* by 1 1 (k) +Eg
X=5— 5= 2, tanh —-——|, (3
. 2 2N % 2kgT
((A(1);B))=—i6(t)([A(1),B]-),
. : (k) +E
whereA andB are either Fermi or Bose operators and cor- C(k)=tan 0 )
respondingly the commutator 2kgT |’
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C

E Jq(K)=3J4(0)[ cosk.a+cosk,a+cosk,a], Jq(0)=23y,
G<k>=<sz>2+<sz>cotr(ﬁ hereas 1 s tion num

) 5 wherea is the NN distance angis the coordination number.
The quantitiesp(k) andEy, in Egs.(3)—(5) become

(S D)1+ D)5+ (S+ 1+ D)PSTE

(S) n . (6
(1+@)>t - p2ert ¢(k)5@d<k>{1+§—ml(o) > J(—kG(K) |,
where ¢ K @
Ei): _M"'g/-LBH%: <Sz>
E§=2q<sz>[Jd<0>—Jd<k>]{ 3 N3O
b1

$()=12| 3a(k)+ 5 [ Zerda(k—k)G(K) |, (n)
£+ (k) X2 Jo(kDe(k) | +gueH| 1+ 55|, (®)
is the energy spectrum of charge wave for motional elec- o
trons: where the new quantity is

. V2p(s) 1 , , , V2b 1

Ei=—g N2 (k)= Ju(k—k)IC(K) 1= NI 0] 2 Ju(—KCK). ©)

2

. J2b(s,) 1 S [3g(—kytky) —Jgk—ki—ky)] W define(S;)=(S,)[1+((n)/2S)] which includes the con-

St NZKi ks tribution from motional electron. In our calculatigm) has
been set to be a constant-X, thus the temperature depen-
dence is mainly frondS,). Following the techniques used by
Dyson?* Callert® and Thahir-Khelli and ter Haaf, we ob-
tain series solutions for the following three interesting tem-
perature ranges. At low temperatures,

()
is the spin-wave energy spectrum for core spiggk)
=1/expEi/ksgT)—1, (nNy=(cc)=1-x%, P=1NZ, (k).
In deriving Eq.(1), identities

X ¢(kz)C(ky)+gugH

3 33
(S;)=S—Ligy1) 73/2—Z7T|-i5/2(1) 75/2—3—2772|-i 1) 7"

1 1
= — + = —
x=1-(co)=5 2 #(k)+E} sz C x
T ke ~ 7 3bsrprs) HedD|Hen g
and —-Oo(—---, (10)
| —
1—2x= % s tanf{% where 7=3kgT/4mwzJ;S following Dyson’s notatiol* for
K B

simple cubic,J_d=(\/§b/282)Jd is rescaled]y, andLi,(y)

are used. Equation®) and(4) come from the space-Fourier =Zp-1y"/n™ is a polylogarithm function which becomes
components of the correlation function&; c,), (csc;),  the Riemanns function wheny=1. The polylogarithm
and(S;-S,) that are obtained through relatiof® and (2). function allows us to express the coefficients of temperature
Equation(6) can be obtained following Callen’s meth&d. series for Fermi distribution in which is negative. The fea-
These are Coup|ed equations on paramﬂ@, G(k), and ture of the core Spin of DE is that it has similar tel’ﬁ’%z,

(S,)). TheC(k) andG(k) represent the dynamical character T3 -|-.7/2' ... as that of Heisenberg system and a new term
of motional electrons and core spins. The couplingC¢k) T3. This newT? term comes from motional character of DE
andG(k) with each other reflects the interplay between the"®Presenting a characteristic feature for DE system. On the
charge wave and spin wave. Our derivation for the couple@ther hand, the dominant terms in the series®} are 3/2
equations is not restricted to special crystal structure an@nd 5/2 terms indicate the DE system behavior is close to a

nearest neighbaiNN) for the exchange interaction. localized Heisenberg system. This is consistent with the
experimentg! If the temperature is just beloWc, we can

expandG(k) and thus(S;,) in powers of 1T. Since the
spectrum in the Fermi distribution does not incly&) fac-

To reveal some characteristics of DE systems we shalior explicitly, the expansion of this part has no meaning.
discuss some interesting asymptotical solution of DE equaHowever, we can expand the Bose distribution to express the
tion. For the sake of simplicity, the material is assumed to beCurie temperature by a parametgrand usingS,)—0 we
simple cubic and the DE to be with NN. In that case,obtain

IIl. RESULTS AND DISCUSSION
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V2¢?

(=)= (S+1)Jac—p—
(11
where we follow Callen’s definitior(n)=1/NZ{[J4(0)
—Ju(k)1/34(0)}" and F(-1) has been evaluated by
Watsort® to have a value of 1.516 38. TheT./J, for DE
has a factorq.y2S%b comparing with that of ordinary
Heisenberg system. Thg, can be determined from two

coupled equations derived from the Fermi distribution with
independent variables. andu,

keTc  2z(S+1
Jg 9F%(—1

;[(4S+ 1)F

\2b1 B
qC_EN 2 (k)tan)—{z—%[y(k)—u]], (12
1 1 )
Xzz—m; tan?—{z—qc[y(k)—u]}, (13)
where

Ja(k)

Y(k):Jd(O)’

B 3V2F(—1)[(2bS+3S+2b)F(—1)—2b(S+1)]
B 2S(S+1)[(4S+1)F(—1)—(S+1)] ’

- 3uSF(—1)
 \2[(2bS+3S+2b)F(—1)—2b(S+1)]34(0)

It is clear from the two equations thgt is dependent on the
hole concentration, as well as the crystalline geometry fac-
tor F(—1) of the materials. Th dependence of. for
simple cubic can be obtained by a numerical metfedth
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FIG. 2. The hole concentrationdependence of Curie tempera-
ture T¢ with S=32, J,=0.2 eV.

with experiments. In the high-temperature region, we obtain
a series expansion in inverse pow@rir the susceptibility,

ol o

where T is a characteristic temperature given byTS/J_d

=/(22/3b)S*(S+1). We do not find the T term in agree-
ment with Anderson and Hasegawa’s resuétnd further-

more,kBTS/Fd is about 77% of that of a Heisenberg magnet
derived from molecular-field theotyfor S=3/2 andz=6.

1-x
2S
2kgT

1+

2
QZMB
Xt=

Ts

T

1+

IV. CONCLUDING REMARK

S=3/2 for CMR manganites. From the above results, we can We have investigated the magnetic properties of a DE

estimate the Curie temperatulies. Figure 2 shows the
dependence of ¢ with J4~0.2 eV as used by Milliet al®

The T has highest value at=0.5, andkgT/J4 is about

system by using a quantum form of the Hamiltonian. The
results for Curie temperature and the high-temperature series
expansion of the susceptibility nicely reproduce those from

33% that of ordinary Heisenberg magnet. The calculatedn€ semiclassical treatment on DE. The core spin behavior is

Tc~1050 K forx=1/3 is much higher than the experimen
Tc~250 K (Ref. 20 for Lay gCa 3dMnO3. However, this is

t Close to that of Heisenberg magnet at low temperatures and

thus may explain the recent experiméhThese provide that

consistent with the theoretical result obtained from SCT byih€ Hamiltonian we have obtained is a reasonable description

Millis et al® who pointed out that a lattice degree of freedom
might be added to explain CMR. As a matter of fact, accord-

ing to band-structure calculatictisof La; _,CaMnO; that
include the lattice distortion effect];~52 meV and this
value givesT-~270 K for x=1/3. Note that in our calcula-

for DE interaction.
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