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Quantum form of the double-exchange interaction
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A quantum form of the Hamiltonian for a double-exchange~DE! system, based on the results of Anderson
and Hasegawa’s semiclassical treatment, is presented together with several predictions. The magnetization
decreases mainly in 3/2 and 5/2 powers of temperature at low temperature but includes aT3 term. The Curie
temperature, in a rescaled DE coupling energy (A2b/2S2)Jd unit, is dependent on hole concentrationx and has
highest value that is about 1/3 that of ordinary Heisenberg magnet atx50.5. The susceptibility at high
temperatures lacks a 1/T2 term and has a characteristic temperature in rescaled DE coupling units that is about
3/4 that of Heisenberg magnet in molecular-field theory.
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I. INTRODUCTION

Colossal magnetoresistance~CMR! materials1 attract con-
siderable attentions due to their potential for applications
their rich physical phenomena for scientific interests. T
exotic phenomena arise from the strong coupling am
charge, spin, and lattice in which the double exchange~DE!2

plays an important role. Anderson and Hasegawa3 studied
DE in great detail and showed that the transfer elemen
proportional to cos(u/2), whereu is the angle between th
neighboring ionic spins. This was confirmed by studies
layered manganites.4 However, their semiclassical treatme
~SCT! is based on the simplest case of only two magne
ions with one electron traveling between them. In real ma
rials there are a large number of ions and electrons.
hopping of electrons is unavoidably affected by other
grees of freedom, e.g., lattice effect as pointed out by Mi
et al.5 To study the interplay among spin, charge, and latt
degrees of freedom dynamically, it is insightful to treat t
DE problem in a quantum-mechanical form.

However, there are two features of DE that make it qu
different from the usual form of exchange interaction a
these make its treatment very difficult. One is the half-an
dependence of the interaction in SCT and the other is
extra degree of freedom allowed by the electron’s moti
Kubo and Ohata6 used as-d model to describe the problem
and a projector method was introduced to show the equ
lence between DE ands-d model. This projector method i
also used by Shen and Wang7 and Izyumov and Skryabin.8

Recently, Greenet al.9 used a many-body coherent potent
approximation to study thiss-d model and showed that ther
are unphysical behavior in magnetic susceptibility at ha
filling and no magnetic transition for any finite spinS. These
indicate that s-d model is not completely equivalent t
Anderson and Hasegawa’s semiclassical DE model. A
matter of fact, it compares the SCT and thes-d Hamiltonian,
one may find that there are some hidden factors in the h
ping amplitude of thes-d model that are important to mak
thes-d Hamiltonian to be completely equivalent to Anders
and Hasegawa’s semiclassical model. For example, Mu
Hartmann and Dagotto10 ~MHD! pointed out that the hop
ping amplitude for nearest-neighbor sites depends on b
the spin values at the two sites and their projections. Ho
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ever, MHD’s treatment puts a strong restriction that magne
ground state is completely determined by the atomic state
two nearest-neighbor magnetic ions and omits an interm
ate case, namely, the motional electron is in neither of
two sites that leads to loss of the explicit motional charac
~Fermion operators! in their effective Hamiltonian. There
fore, in our opinion, thes-d model needs further improve
ment to describe DE system. In this paper, we have exten
Anderson and Hasegawa’s SCT on DE to obtain a quant
mechanical Hamiltonian for DE. A temperature-depend
double-time Green function11–13 solution for the DE mag-
netic system is obtained. The results show that at low te
peratures the magnetization of localized spin expands in
T3/2, T5/2, T7/2 series which is typical Heisenber
behavior14–16 but an additionalT3 term is predicted, charac
terizing the motional and hole-concentration-dependent
ture of the DE. The Curie temperature in a rescaled DE c
pling unit is hole-concentration dependent and about 1/3
of Heisenberg magnet atx50.5. The susceptibility at high
temperatures lacks a 1/T2 term and exhibits a ratio of char
acteristic temperature and rescaled DE coupling constan
about 3/4 that of Heisenberg magnet from molecular-fi
theory.

II. MODEL

In CMR materials there are two valances of Mn ions th
are responsible for their magnetism. One is Mn41 that has
three localized 3d electrons and spinS. This localized spin is
defined as thecore spinfor the convenience of our discus
sion. Another is Mn31 that also has three localized 3d elec-
trons and an extrad electron that is motional. The motion o
the extra electron between two Mn ion neighbors generat
double-exchange interaction.2 Mn41 is referred to asd hole
with a concentrationx in DE system. We start with the fol
lowing Hamiltonian for DE system

HDE52(
f ,h

Jd~ f ,h!

A2
S 11b

Sf•Sh

S2 D ~cf
1ch2cfch

1!

1m(
f

cf
1cf ,
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where the parameterJd( f ,h) describes the usual hoppin
between Mn ions,b5A221, cf

1(cf) is the operator which
creates~destroys! a d electron with spin parallel to the loca
ized core spin at thef th site, andm is the chemical potential
The addition of the chemical potential term allows the dev
tion of the occupied state of the motion electron from And
son and Hasegawa’s ideal two-body state3 and deals with the
fluctuation induced dynamical occupation number change
moving electron on a Mn ion.

First we show that this DE Hamiltonian is a good appro
mation for half-angle dependence in the SCL when the m
terial is in the ferromagnetic~FM! state. In classical limit, the
(1/A2)@11b(Sf•Sh /S2)# becomes (1/A2)(11b cosufh)
[f(ufh), while f (u f h) fits quite well to cos(ufh/2) for 0
<u f h<p/2, although a discrepancy appears forp/2,u f h
<p as shown in Fig. 1. In SCL,u f h50 andp represent the
material is in FM and antiferromagnetic~AF! states, respec
tively. Correspondingly, we expect the DE Hamiltonian is
good description for material in FM states. For AF states,
approximation may generate an inaccurate phase diag
border between FM and AF regions.

Next, we show the temperature-dependent Green func
solution11–16 for the DE Hamiltonian. To describe the ma
netic properties of a DE system, we also add a Zeeman t
in the Hamiltonian

H52(
f ,h

Jd~ f ,h!

A2
S 11b

Sf•Sh

S2 D ~cf
1ch2cfch

1!

1m(
f

cf
1cf2gmBH(

f
S Sf z1

Sf z

2S
cf

1cf D .

The temperature-dependent retard Green func
^^A(t);B&& is defined13,14 by

^^A~ t !;B&&[2 iu~ t !^@A~ t !,B#6&,

whereA and B are either Fermi or Bose operators and c
respondingly the commutator

FIG. 1. Comparison between cosu/2 and f (u)5(1/A2)(1
1b cosu) with b5A221.
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@A,B#65AB6BA;u~ t !5H 1, t.0

0, t,0;

and single angular brackets denote an average with respe
the canonical density matrix of the system at temperatureT.
The equation of motion of̂^A(t);B&& in Fourier form is

E^^A;B&&E5
1

2p
@A,B#61^^@A~ t !,H#;B&&E .

The correlation function̂BA(t)& can be extracted from the
solution of above equation through the relation

^BA~ t !&5 lim«→0E
2`

` ^^A;B&&\v1 i«2^^A;B&&\v1 i«

exp~\v/kBT!21

3e2 ivtdv, ~1!

^AB~ t !&5 lim«→0i E
2`

` ^^A;B&&\v1 i«2^^A;B&&\v1 i«

exp~\v/kBT!21

3exp~\v/kBT!e2 ivtdv. ~2!

In our calculation, we shall need four kinds of correlatio
functions ^Sf z(t)Shz(t)&, ^Sf

1(t)Sh
2(t)&, ^cf

1(t)ch(t)&, and
^cf(t)ch

1(t)&, however,^Sf z(t)Shz(t)& is only used to de-
couple the entanglement between the core spin and moti
electron. We shall therefore study two Green’s functio
^^Sf

1(t);ewShzSh
2(t8)&& and ^^cf

1(t);ch(t8)&&, wherew is a
parameter used to derive magnetization. The equation
motion for these Green’s functions are

E^^Sf
1 ;ewShzSh

2&&5
1

2p
@Sf

1 ,Sh
2#1^^@Sf

1~ t !,H#;ewShzSh
2&&,

E^^cf
1 ;ch&&5

1

2p
$cf

1 ,ch%1^^@cf
1~ t !,H#;ch&&.

To conveniently describe solutions of above equations,
define some intermediate parameters and their space-Fo
components, namely,

C~ f ,h!5^cf
1ch&2^cfch

1&,G~ f ,h!5^Sf•Sh&,

C~k!5
1

N (
f ,h

e2k•(f2h)C~ f ,h!,

G~k!5
1

N (
f ,h

e2k•(f2h)G~ f ,h!,

whereN is the number of magnetic atom in the material a
f and h represent the atom positionsRf and Rh . We use
Callen decoupling15 to decouple the core spins and Taya
likaff decoupling12,13 to do the disentanglement among co
spin Fermion, and Fermion-Fermion. Some manipulatio
yields

x5
1

2
2

1

2N (
k

tanhFf~k!1E0
I

2kBT G , ~3!

C~k!5tanhFf~k!1E0
I

2kBT G , ~4!
9-2
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G~k!5^Sz&
21^Sz&cothS Ek

c

2kBTD , ~5!

^Sz&5
~S2F!~11F!2S111~S111F!F2S11

~11F!2S112F2S11
, ~6!

where

E0
I 52m1gmBH

^Sz&
2S

,

f~k!5A2FJd~k!1
b

S2

1

N
(k8Jd~k2k8!G~k8!G ,

E0
I 1f(k)

is the energy spectrum of charge wave for motional el
trons;

Ek
c5

A2b^Sz&

S2

1

N (
k8

@Jd~2k8!2Jd~k2k8!#C~k8!

1
A2b^Sz&

2

S4

1

N2 (
k1 ,k2

@Jd~2k11k2!2Jd~k2k12k2!#

3w~k2!C~k1!1gmBHS 11
^n&
2SD

is the spin-wave energy spectrum for core spins,w(k)
51/exp(Ek

c/kBT)21, ^n&5^c1c&512x, F51/N(kw(k).
In deriving Eq.~1!, identities

x512^c1c&5
1

N (
k

1

expFf~k!1E0
I

kBT G11

and

122x5
1

N (
k

tanhFf~k!1E0
I

2kBT G
are used. Equations~3! and~4! come from the space-Fourie
components of the correlation functions,^cf

1ch&, ^cfch
1&,

and ^Sf•Sh& that are obtained through relations~1! and ~2!.
Equation~6! can be obtained following Callen’s method.15

These are coupled equations on parametersC(k), G(k), and
^Sz&. TheC(k) andG(k) represent the dynamical charact
of motional electrons and core spins. The coupling ofC(k)
andG(k) with each other reflects the interplay between
charge wave and spin wave. Our derivation for the coup
equations is not restricted to special crystal structure
nearest neighbor~NN! for the exchange interaction.

III. RESULTS AND DISCUSSION

To reveal some characteristics of DE systems we s
discuss some interesting asymptotical solution of DE eq
tion. For the sake of simplicity, the material is assumed to
simple cubic and the DE to be with NN. In that cas
01440
-

e
d
d

ll
a-
e
,

Jd(k)5 1
3 Jd(0)@coskxa1coskya1coskza#, Jd(0)5zJd ,

wherea is the NN distance andz is the coordination number
The quantitiesf(k) andEk

c in Eqs.~3!–~5! become

f~k![A2Jd~k!F11
b

S2

1

NJd~0! (
k8

Jd~2k8!G~k8!G ,

~7!

Ek
c52q^Sz&@Jd~0!2Jd~k!#F11

^Sz&

S2

1

NJd~0!

3(
k8

Jd~k8!w~k8!G1gmBHS 11
^n&
2SD , ~8!

where the new quantityq is

q[
A2

2

b

S2

1

NJd~0! (
k

Jd~2k!C~k!. ~9!

We definê Stz&5^Sz&@11(^n&/2S)# which includes the con-
tribution from motional electron. In our calculation^n& has
been set to be a constant 12x, thus the temperature depen
dence is mainly from̂Sz&. Following the techniques used b
Dyson,14 Callen15 and Thahir-Khelli and ter Haar,16 we ob-
tain series solutions for the following three interesting te
perature ranges. At low temperatures,

^Sz&5S2Li 3/2~1!t3/22
3

4
pLi 5/2~1!t5/22

33

32
p2Li 7/2~1!t7/2

2•••23S b

bS1b1SD 3/2

Li 3/2~1!ULi 3/2S x

x21D U
2O~t4!2•••, ~10!

where t53kBT/4pzJ̄dS following Dyson’s notation14 for
simple cubic,J̄d5(A2b/2S2)Jd is rescaledJd , and Li n(y)
5(m51

` ym/nm is a polylogarithm function which become
the Riemann-§ function when y51. The polylogarithm
function allows us to express the coefficients of temperat
series for Fermi distribution in whichy is negative. The fea-
ture of the core spin of DE is that it has similar termsT3/2,
T5/2, T7/2, . . . as that of Heisenberg system and a new te
T3. This newT3 term comes from motional character of D
representing a characteristic feature for DE system. On
other hand, the dominant terms in the series of^Sz& are 3/2
and 5/2 terms indicate the DE system behavior is close
localized Heisenberg system. This is consistent with
experiments.17 If the temperature is just belowTC , we can
expandG(k) and thus^Stz& in powers of 1/T. Since the
spectrum in the Fermi distribution does not include^Sz& fac-
tor explicitly, the expansion of this part has no meanin
However, we can expand the Bose distribution to express
Curie temperature by a parameterqc and usinĝ Sz&→0 we
obtain
9-3
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kBTC

J̄d

5
2z~S11!

9F2~21!
@~4S11!F~21!2~S11!#qc

A2S2

b
,

~11!

where we follow Callen’s definitionF(n)[1/N(k$@Jd(0)
2Jd(k)#/Jd(0)%n and F(21) has been evaluated b
Watson18 to have a value of 1.516 38. ThekBTC / J̄d for DE
has a factorqcA2S2/b comparing with that of ordinary
Heisenberg system. Theqc can be determined from two
coupled equations derived from the Fermi distribution w
independent variablesqc andu,

qc5
A2b

2S2

1

N (
k

g~k!tanhH d

2qc
@g~k!2u#J , ~12!

x5
1

2
2

1

2N (
k

tanhH d

2qc
@g~k!2u#J , ~13!

where

g~k!5
Jd~k!

Jd~0!
,

d5
3A2F~21!@~2bS13S12b!F~21!22b~S11!#

2S~S11!@~4S11!F~21!2~S11!#
,

u5
3mSF~21!

A2@~2bS13S12b!F~21!22b~S11!#Jd~0!
.

It is clear from the two equations thatqc is dependent on the
hole concentrationx, as well as the crystalline geometry fa
tor F(21) of the materials. Thex dependence ofqc for
simple cubic can be obtained by a numerical method19 with
S53/2 for CMR manganites. From the above results, we
estimate the Curie temperatureTC . Figure 2 shows thex
dependence ofTC with Jd;0.2 eV as used by Milliset al.5

The TC has highest value atx50.5, andkBTC / J̄d is about
33% that of ordinary Heisenberg magnet. The calcula
TC;1050 K for x51/3 is much higher than the experime
TC;250 K ~Ref. 20! for La0.67Ca0.33MnO3. However, this is
consistent with the theoretical result obtained from SCT
Millis et al.5 who pointed out that a lattice degree of freedo
might be added to explain CMR. As a matter of fact, acco
ing to band-structure calculations21 of La12xCaxMnO3 that
include the lattice distortion effect,Jd;52 meV and this
value givesTC;270 K for x51/3. Note that in our calcula
tion the dynamic effects of lattice and superexchange in
actions are not included. These two factors may reduce
calculatedTC , however the calculatedTC;270 K agrees
sh

d,

01440
n

d

y

-

r-
he

with experiments. In the high-temperature region, we obt
a series expansion in inverse powersT for the susceptibility,

x t5

g2mB
2 S 11

12x

2S D 2

2kBT F11S Ts

T D 2

1OS 1

T4D G , ~14!

whereTs is a characteristic temperature given bykBTs / J̄d

5A(2z/3b)S3(S11). We do not find the 1/T2 term in agree-
ment with Anderson and Hasegawa’s result,3 and further-
more,kBTs / J̄d is about 77% of that of a Heisenberg magn
derived from molecular-field theory15 for S53/2 andz56.

IV. CONCLUDING REMARK

We have investigated the magnetic properties of a
system by using a quantum form of the Hamiltonian. T
results for Curie temperature and the high-temperature se
expansion of the susceptibility nicely reproduce those fr
the semiclassical treatment on DE. The core spin behavio
close to that of Heisenberg magnet at low temperatures
thus may explain the recent experiment.17 These provide that
the Hamiltonian we have obtained is a reasonable descrip
for DE interaction.
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FIG. 2. The hole concentrationx dependence of Curie tempera
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