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Intrinsic lifetimes and anharmonic frequency shifts of long-wavelength optical
phonons in polar crystals
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Quantitative calculations of phonon lifetimes due to anharmonic three-phonon processes require knowledge
of cubic anharmonic coupling coefficients. In order to determine the temperature dependence of phonon
frequencies, anharmonic force constants of up to fourth order are needed. In polar crystals, the macroscopic
electric field gives rise to nonanalytic terms in these coefficients. It is shown how these non-analytic terms can
be determined from other physical quantities including higher-order dipole moments, Raman coefficients, and
nonlinear susceptibilities. The contribution of these terms to the intrinsic damping of the long-wavelength
optical phonon modes in GaAs has been determined by anab initio calculation.
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I. INTRODUCTION

In pure insulating crystals, the intrinsic lifetimes o
phonons are due to anharmonic multi-phonon processe
energy and momentum conservation allow for three-pho
processes to occur, these are usually the dominant ones
finite lifetimes of long-wavelength optical phonons give ri
to nonzero widths of the Raman lines and are relevan
other physical situations too. In polar semiconductors,
lifetimes of longitudinal optical~LO! phonons play an im-
portant role in the dynamics of highly excited free carrier1

A precise knowledge of the decay efficiencies of lon
wavelength optical phonons into acoustic phonons is a
required for a quantitative interpretation of experiments c
ried out on nonequilibrium phonon dynamics in GaP.2

For covalent semiconductors, the width of the Raman l
has been calculatedab initio in very good agreement with
experiment.3–6 The cubic anharmonic coupling coefficien
needed for these calculations have been determined in
different ways: In their pioneering work, Debernardiet al.3

have applied the ‘‘2n11 theorem’’ by Gonze and Vigneron7

to determine the cubic coefficients directly in the framewo
of density-functional perturbation theory~DFPT!. Lang
et al.5 have combined DFPT with the frozen phonon a
proach to calculate cubic coupling coefficients as numer
derivatives of dynamical matrices with respect to a frozen
displacement pattern corresponding to an optical zone-ce
mode. This method was also used to determine lifetime
vibrational adlayer modes.8 In this way, fourth-order anhar
monic force constants have also been determined that
needed for a calculation of the temperature dependenc
zone-center phonon frequencies.5,8 Debernardi6 has com-
bined these two methods in his calculation of fourth-ord
coupling coefficients by taking numerically a first derivati
of third-order force constants determined by DFPT for no
equilibrium configurations.

In the case of polar crystals, both approaches have to
modified to account for nonanalytic terms that occur in
anharmonic coupling coefficients due to the long-range C
lomb interactions giving rise to macroscopic electric field
They are analogous to the term in the dynamical matrice
0163-1829/2004/69~1!/014304~7!/$22.50 69 0143
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polar crystals that leads to the Lyddane-Sachs-Te
splitting.9 In the following section, we derive the form o
these nonanalytic terms and relate them to other phys
quantities. In the case of cubic anharmonic coupling coe
cients, these are the dielectric tensor, the second-order
linear susceptibility tensor, the first-order and second-or
dipole moments, and the first-order Raman tensor. O
these quantities are known, the cubic coupling coefficie
relevant for the lifetimes of long-wavelength LO and T
phonons may be calculated using either of the two
proaches. In Sec. III, we presentab initio data for the differ-
ence of LO and TO damping functions in GaAs. The infl
ence of the macroscopic field on the temperature depend
of the zone-center optical frequencies is briefly discusse
Sec. IV, which is followed by concluding remarks.

II. CUBIC ANHARMONIC COUPLING COEFFICIENTS

The dynamical matrix of a polar crystal contains a con
bution from the long-range Coulomb interaction of the ion
which is not analytic as a function of the wave vectorq at
q50 ~Ref. 9!. As a consequence of this contribution, th
limit q→0 is not unique and depends on the direction fro
which the center of the Brillouin zone is approached. Ana
gous terms exist in the Fourier-transformed anharmo
force constants. They are the subject of this work.

To identify these nonanalytic terms in the anharmo
coupling coefficients of polar crystals, we conveniently st
with an expression for the potential energy of a crystal in
macroscopic electric field that contains the Fourier am
tudesEa(q) of the macroscopic fieldE(R) as explicit vari-
ables in addition to the Fourier transformsua(kuq) of the
atomic displacement vectorsu(,k). Here, a5x,y,z is a
Cartesian index,, labels the unit cells, andk the sublattices
of the polar crystal. We adopt the definitions

E~R!5
1

V (
q

E~q!eiq•R,

u~,k!5
1

N (
q

u~kuq!eiq•R(,), ~2.1!
©2004 The American Physical Society04-1
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whereR(,) is the position vector of the,th unit cell, N is
the number of unit cells, andV the crystal volume. From the
very beginning, we assume periodic boundary conditions
vanishing homogeneous macroscopic field@E(q)50 for q
50]. This is in accordance with the treatment of the ele
tronic system based on density-functional theory~see Ref.
10!.

To simplify the notation, we invoke the summation co
vention for repeated Cartesian indices. Up to third order
the displacements and the macroscopic field the pote
energyF is

F5(
q H 1

2 (
k,k8

C̄ab~qukk8!ua~kuq!ub~k8u2q!

2(
k

Zaub~k!ub~kuq!Ea~2q!2
1

2
«abEa~q!Eb~2q!J

1(
q,q8

H 1

6 (
k,k8,k9

C̄abg~q,q8,2q2q8ukk8k9!

3ua~kuq!ub~k8uq8!ug~k9u2q2q8!

2
1

2 (
k,k8

Maubg~q8ukk8!Ea~q!ub~kuq8!

3ug~k8u2q2q8!2
1

2 (
k

Pabug~k!Ea~q8!Eb~2q

2q8!ug~kuq!2
1

6
xabg

(2) Ea~q!Eb~q8!Eg~2q2q8!J .

~2.2!

The above expansion, which we have truncated after cu
terms, is the Fourier-space version of Eqs.~6.5.1! and~6.5.2!
in Ref. 9. It is understood that the wave vectorsq andq8 are
in the neighborhood of the center of the Brillouin zo
whenever they are associated with the macroscopic ele
field. The coefficients occurring in~2.2! have the following
meaning.

~i! Maubg(q8ukk8) are the second-order dipole momen
These quantities have been calculated from first princip
for polar semiconductors very recently.11

~ii ! Pabug(k) are the first-order Raman coefficients, f
which ab initio calculations were performed earlier.12,13

~iii ! xabg
(2) are the second-order nonlinear susceptibiliti

They have been determinedab initio using DFPT by Dal
Corsoet al.14

We now introduce the Lagrangian

L5
1

2 (
q

(
k

mku̇a~kuq!u̇a~ku2q!2F ~2.3!

and considerF as being a function of the displacement a
plitudes ua(kuq) and the Fourier amplitudes of the scal
potential, f(q), rather than of the electric field, with
01430
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Ea(q)52 iqaf(q). The Euler-Lagrange equations obtain
from Eq. ~2.3! are the equations of motion for the atom
displacements,

mküa~kuq!52
]F

]ua~ku2q!
, ~2.4!

coupled to the equation

]F

]f~2q!
50. ~2.5!

The latter is merely Maxwell’s equation“•D50, whereD
is the dielectric displacement field. Equation~2.5! can be
solved forf(q) iteratively to second order inu to yield

f~q!5S~q!H 2 iqa(
k

Zaub~k!ub~kuq!

1 i(
q8

(
k,k8

Fqa~qb2qb8 !Pabum~k!S~q2q8!

3~qg2qg8 !Zgun~k8!1
1

2
xabg

(2) qaqb8 ~qg2qg8 !

3S~q8!qr8Zrum~k!S~q2q8!~qs2qs8 !Zsun~k8!

2
1

2
qaMaumn~q8ukk8!Gum~kuq8!un~k8uq2q8!J .

~2.6!

For convenience, we have definedS(q)51/@qa«abqb#.
Equation~2.6! may now be used to eliminate the electric

potentialf(q) in the equation of motion~2.4! for the dis-
placement amplitudesum(kuq8), which then takes the form

mküa~kuq!52(
k8

Cab~2qukk8!ub~k8uq!

2
1

2 (
q8

(
k8,k9

Cabg~2q,q8,q

2q8ukk8k9!ub~k8uq8!ug~k9uq2q8!,

~2.7!

where q is a wave vector near the center of the Brillou
zone.

The Fourier-transformed harmonic force constants h
the well-known form

Cab~qukk8!5C̄ab~qukk8!1qmZmua~k!S~q!qnZnub~k8!.

~2.8!
For the cubic anharmonic Fourier-transformed force c
stants, we first consider the case ofq andq8 being both wave
vectors near the center of the Brillouin zone. One then
tains
4-2
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Cabg~2q,q8,q2q8ukk8k9!

5C̄abg~2q,q8,q2q8ukk8k9!1 1
2 Zmua~k!M nubg~0uk8k9!qmS~q!qn1 1

2 Mmuab~0ukk8!Znug~k9!qm8 S~q8!qn8

1 1
2 Mmuag~0ukk9!Znub~k8!~qm2qm8 !S~q2q8!~qn2qn8!2 1

2 Pmnua~k!Zrub~k8!Zsug~k9!qm8 S~q8!qr8~qn2qn8!S~q2q8!

3~qs2qs8 !2 1
2 Pmnub~k8!Zrua~k!Zsug~k9!qmS~q!qr~qn2qn8!S~q2q8!~qs2qs8 !

2 1
2 Pmnug~k9!Zrua~k!Zsub~k8!qmS~q!qrqn8S~q8!qs8

1xmnr
(2) Zm8ua~k!Zn8ub~k8!Zr8ug~k9!qmS~q!qm8qn8S~q8!qn8

8 ~qr2qr8!S~q2q8!~qr82qr8
8 !. ~2.9!
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These expressions can be simplified by making use of
symmetry of the crystal under consideration. In particu
the Td symmetry of the III-V semiconductors implies th
S(q)51/(q2«`) with «` being the high-frequency dielectri
constant, and the tensors@Zaub(k)#, @Pabug(k)#, and@xabg

(2) #
have only one independent component.

If in Cabg(2q,q8,q2q8) the wave vectorq8 is not situ-
ated in the neighborhood of the Brillouin-zone center, o
the first two terms in Eq.~2.9! have to be kept.

In applications of DFPT for the calculation of anharmon
force constants via the 2n11 theorem, the coefficient
Cabg(2q,q8,q2q8ukk8k9) are calculated on a grid of wav
vectors in the first Brillouin zone. By subtracting the nonan
lytic terms in Eq.~2.9! from these coefficients and transform

ing the remaining termC̄abg(2q,q8,q2q8ukk8k9) into real
space, one obtains force constants, which may be expect
be of sufficiently short range to lend themselves to Fou
interpolation.~The spatial range of the third-order force co
stants may be further reduced by subtracting the rigid-
part with effective charges that are chosen appropriately.! To
obtain the complete Fourier-transformed force constants
a given pair of wave vectorsq,q8, one has to add the
nonanalytic terms for this combination of wave vectors.

For the calculation of Fourier-transformed anharmo
force constants involving an optical near-zone-center mo
one may also proceed in the following way:

Let @wa(kuqj )# be the eigenvector of the dynamical m
trix corresponding to wave vectorq and branchj, and let
Wa(kuq̂j )5 lim

e↘0
wa(kueq̂j ). ~Here, q̂5q/uqu is the unit

vector pointing into the direction of the wave vectorq.! Us-
ing DFPT, one may then calculate Fourier-transformed fo
constantsCab

(A)(qukk8) for a crystal structure with a displace

ment patternua(,k)5AWa(kuq̂j )/Amk frozen in. Subtract-
ing the nonanalytic termqmZmua

(A) (k)S(A)(q8)qnZnub
(A) (k8)

~Note thatS(A)(q8) depends onA via the dielectric tensor!
and also the analytic part of the rigid-ion contribution, a
Fourier-transforming into real space, one obtains again sh
ranged force constants depending on the amplitudeA of the
frozen-in displacement pattern. Consequently, one may
numerically the derivative of these force constants w
respect to A, transform into Fourier space and ca
culate @]C̄ab

(A)(q8ukk8)/]A#A505 lim
e↘0

C̄abg(2eq̂,q8,eq̂

2q8ukk8k9) for any wave vectorq8. Adding now the rigid-
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ion part including the nonanalytic terms on the right-ha
side of ~2.9!, the complete Fourier-transformed cubic co
pling constants are obtained that are needed for the calc
tion of lifetimes of zone-center optical modes.

We emphasize that within a rigid-ion model of a pol
crystal, there are no nonanalytic terms in the Fouri
transformed anharmonic coupling coefficients of any ord
because the nonlinear dipole moments, the Raman ten
and the nonlinear susceptibilities vanish in this model.

III. LIFETIMES OF LONG-WAVELENGTH OPTICAL
PHONONS

The lifetimetqj of a phonon with wave vectorq belong-
ing to branchj is a well-defined quantity, if the self-energy o
this phonon mode is a slowly varying function of frequen
in the neighborhood of the phonon frequencyvqj . tqj may
then be calculated from the imaginary part of the self-ene
2Gqj (v), via

1/tqj52Gqj~vqj ! ~3.1!

and to lowest order in the anharmonicity, the damping fu
tion Gqj (v) is obtained from15

Gqj~v!5
p

2 (
q8, j 8, j 9

uV3~2qj ,q8 j 8,q2q8 j 9!u2$@11nq8 j 8

1nq2q8 j 9#d~vq8 j 81vq2q8 j 92v!12@nq2q8 j 9

2nq8 j 8#d~vq8 j 82vq2q8 j 92v!%. ~3.2!

Here,vqj is the phonon frequency andnqj the corresponding
Bose factor.@In writing Eq. ~3.1!, it has been assumed thatq
is a wave vector close to the center of the Brillouin zone, a
hence no umklapp processes occur.# The coefficientsV3 in
Eq. ~3.2! are related to the Fourier-transformed cubic anh
monic force constants considered in the preceding sec
via

V3~2qj ,q8 j 8,q2q8 j 9!5F \

8vqjvq8 j 8vq2q8 j 9N
G 1/2

3Ṽ3~2qj ,q8 j 8,q2q8 j 9!

~3.3!

with
4-3
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Ṽ3~2qj ,q8 j 8,q2q8 j 9!

5 (
k,k8,k9

Cabg~2q,q8,q2q8ukk8k9!
wa~ku2qj !

Amk

3
wb~k8uq8 j 8!

Amk8

wg~k9uq2q8 j 9!

Amk9

, ~3.4!

where @wa(kuqj )# is the eigenvector associated with th
phonon modeqj , normalized as(a,kuwa(kuqj )u251. In the
expression~3.2! for the damping function, the sum overq8
has to be extended over the first Brillouin-zone. The imm
diate vicinity of the Brillouin-zone center yields a negligib
contribution to this sum. Therefore, we do not pay spec
attention to the nonanalytic terms associated withq8 and q
2q8 in Eqs.~3.4! and ~3.2!.

One may now distinguish three causes for the differe
between the lifetimes of longitudinal and transverse opt
zone-center phonons.

~i! The difference of the frequenciesvLO and vTO, at
which the damping function has to be evaluated.

~ii ! The factor 1/Avqj in Eq. ~3.3!.
~iii ! The nonanalytic part of the Fourier-transformed cu

anharmonic coupling coefficients in Eq.~3.4!.
In the analytic part of the Fourier-transformed cubic co

pling constants, the limitq→0 is unique, and if there were
no nonanalytic parts, its contribution to the inverse lifetim
would not depend on the direction of the eigenvec
@wa(kuqj )# in the degenerate subspace of the optical zo
center modes. The nonanalytic part, however, leads to a
ference of lifetimes for different optical modes even if the
frequencies were the same. This is due to the term

dṼ3~2qj ,q8 j 8,q2q8 j 9!

5
1

2
q̂mS~ q̂!q̂n(

k
Zmua~k!

wa~ku2qj !

Amk

3M n~q8 j 8,2q8 j 9!, ~3.5!

where we have again used the notationq̂5q/uqu for the unit
vector, and

M n~q8 j 8,2q8 j 9!

5 (
k,k8

M nubg~q8ukk8!
wb~kuq8 j 8!

Amk

wg~k8u2q8 j 9!

Amk8

~3.6!

in the same way as in the theory of two-phonon infrar
absorption.15 In the case of cubic diatomic crystals with on
Born effective chargeZ, such as the III-V semiconductors
this simplifies to

dṼ3~2qLO ,q8 j 8,q2q8 j 9!

56
Z

2AmR«`

q̂nM n~q8 j 8,2q8 j 9!, ~3.7!

while
01430
-

l

e
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-

r
-
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d

dṼ3~2qTO ,q8 j 8,q2q8 j 9!50. ~3.8!

The sign depends on the definition of the eigenvector of
long-wavelength optic mode, andmR is the reduced mass o
the two types of atoms.

In Fig. 1, the function dG(v)5 lim
e↘0

@Geq̂LO(v)

2(veq̂TO /veq̂LO)Geq̂TO(v)# is shown for GaAs. This is
the contribution of the nonanalytic terms to the dampi
function of LO-phonons. Note thatdG(v) is independent of
q̂ for crystals with zinc blende structure. Fig. 2 shows t
functionGLO(v)5 lim

e↘0
Geq̂LO(v). The data in both Figs. 1

and 2 refer to zero temperature. The arrows in the figu
indicate the TO and LO frequency as determined in theab
initio calculation (270.7 cm21 and 290.3 cm21, respec-
tively!. Using Eq.~3.1!, the inverse lifetime, which is equa
to the full width at half maximum~FWHM! of the corre-
sponding line in the Raman spectrum, is found to
0.76 cm21 for the zone-center LO phonon mode. An ana
gous calculation ofthe FWHM of the zone-center TO mo
yields 0.44 cm21. The contribution to the value for the LO

FIG. 1. Contribution of the nonanalytic terms in the cubic a
harmonic coupling constants to the damping function of the zo
center LO mode of GaAs at temperatureT50 K. The left ~right!
arrow indicates the TO~LO! frequency at the center of the Brillouin
zone.

FIG. 2. Total damping function of the zone-center LO mode
GaAs at temperatureT50 K. The left ~right! arrow indicates the
TO ~LO! frequency at the center of the Brillouin zone.
4-4
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mode from the nonanalytic terms is 0.009 64 cm21. These
numbers show that the nonanalytic parts of the cubic an
monic coupling constants lead to a contribution to the
verse lifetime of zone-center LO phonons in the case
GaAs which is negligible in comparison to the differen
between the TO and LO widths. It is even smaller than
accuracy to which the inverse lifetimes or Raman widths
be determined experimentally at present. A compilation
corresponding experimental data can be found in Ref.
The partly considerable deviations between various exp
mental low-temperature values can partly be explained
the presence of defects and especially of free carriers
influence the Raman line as well as the lifetimes of coh
ently excited phonon modes in coherent anti-stokes Ra
scattering experiments. However, in highly polar materi
with a Lyddane-Sachs-Teller split much larger than the o
of GaAs, the contribution of the nonanalytic terms to t
inverse lifetime of LO phonons may be of a detectable m
nitude.

IV. ANHARMONIC FREQUENCY SHIFTS

At lowest order of the anharmonic terms in the latti
potential, perturbation theory yields three contributions
the anharmonic shifts of phonon frequencies that are
pected to be of comparable magnitude at low temperature15
01430
r-
-
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f
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The first one is proportional to the Kramers-Kronig tran
form of Gqj (v). The second one is given by

Dvqj52vqjg~qj !DV/V, ~4.1!

whereDV is the change of crystal volume due to quantu
and thermal fluctuations of the atomic positions andg(qj ) is
the Grüneisen constant of modeqj . From the derivative of
the Lyddane-Sachs-Teller relation for a diatomic crystal w
respect to the crystal volume we obtain

lime↘0@g~eq̂TO!2g~eq̂LO!#5
V

2 F 1

«0

]«0

]V
2

1

«`

]«`

]V G
~4.2!

involving elasto-optic coefficients and volume-derivatives
the Born effective charge. In Eq.~4.2! «0 is the static dielec-
tric constant.

The third contribution to the anharmonic frequency sh
involves quartic anharmonicity,

dvqj5
1

2 (
q8 j 8

V4~2qj ,qj ,2q8 j 8,q8 j 8!@2nq8 j 811#.

~4.3!

The coefficientsV4 are related to the Fourier-transforme
quartic anharmonic force constants in a way analogous
Eqs.~3.3! and ~3.4!:
ce
ed
V4~2qj ,qj ,2q8 j 8,q8 j 8!5
\

4Nvqjvq8 j 8

3 (
k1 ,k2 ,k3 ,k4

Cabmn~2q,q,2q8,q8uk1k2k3k4!

3
wa~k1u2qj !

Amk1

wb~k2uqj !

Amk2

wm~k3u2q8 j 8!

Amk3

wn~k4uq8 j 8!

Amk4

. ~4.4!

When identifying the nonanalytic terms in the Fourier-transformed quartic force constantsCabmn(2q,q,
2q8,q8uk1k2k3k4), we account only for cases of the wave vectorq8 not being near the center of the Brillouin zone, sin
only those are relevant for the sum over the Brillouin zone in Eq.~4.3!. The following additional terms have to be consider
in the expansion~2.2! of the potential energy:

1 (
q,q8,q9

(
k1 ,k2 ,k3 ,k4

1

24
C̄abmn~q,q8,q9,2q2q82q9uk1k2k3k4!ua~k1uq!ub~k2uq8!um~k3uq9!un~k1u2q2q82q9!

2
1

6 (
q,q8,q9

(
k,k8,k9

Maubmn~q8,q9ukk8k9!Ea~q!ub~kuq8!um~k8uq9!un~k9u2q2q82q9!

2
1

4 (
q,q8,q9

(
k,k8

Pabumn~q9ukk8!Ea~q!Eb~q8!um~kuq9!un~k8u2q2q82q9!. ~4.5!
4-5
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These terms involve the second-order Raman coeffici
Pabumn(q9ukk8), for which ab initio data exist for covalen
semiconductors.17 The coefficientsMaubmn(q8,q9ukk8k9)
correspond to third-order dipole moments. We are not aw
of any quantitative evaluation of these quantities so far.

Eliminating the macroscopic field, we finally obtain th
following for q being a wave vector close to the center of t
Brillouin zone andq8 corresponding to a short wavelength

Cabmn~2q,q,2q8,q8uk1k2k3k4!

5C̄abmn~2q,q,2q8,q8uk1k2k3k4!

1qgZgub~k2!S~q!qlMluamn~0,q8uk1k3k4!

1qgZgua~k1!S~q!qlMlubmn~0,q8uk2k3k4!

2qgZgua~k1!S~q!qlqg8Zg8ub~k2!S~q!

3ql8Pll8umn~q8uk3k4!. ~4.6!

In deriving Eq.~4.6!, we have made explicit use of the co
dition that the homogeneous part of the macroscopic fi
vanishes. Applying these expressions to crystals with z
blende structure, we find that the nonanalytic terms@the last
three terms on the right-hand side of Eq.~4.6!# do not con-
tribute toV4(2qTO ,qTO ,2q8 j 8,q8 j 8), while their contri-
bution toV4(2qLO ,qLO ,2q8 j 8,q8 j 8) is

dV4~2eq̂LO ,eq̂LO ,2q8 j 8,q8 j 8!

5
\

4Nv0LOvq8 j 8
H 62

Z

AmRe`

q̂gMg~eq̂LO ,2q8 j 8,q8 j 8!

2S Z

AmRe`
D 2

q̂aq̂bPab~q8 j 8,2q8 j 8!. ~4.7!

The quantities Mg(2qj ,q8 j 8,q2q8 j 9) and Pab(q8 j 8,
2q8 j 9) are defined in direct analogy to Eq.~3.5!.

V. CONCLUSIONS

Differences between the lifetimes of longitudinal a
transverse optical near zone-center phonons in polar cry
e
,

01430
ts

re

ld
c

als

do not only result from the two-phonon density of states,
also from differences in the matrix elements. In particul
the matrix elements contain nonanalytic terms as functi
of the wave vector of the near zone-center phonons that h
been identified and related to other physical quantities.

Although the lifetime of the LO-phonon mode at the ce
ter of the Brillouin zone in polar semiconductors is a qua
tity of fundamental importance, also in view of electron
transport processes in semiconductor devices, a theore
treatment that would fully include the macroscopic field h
not yet been given, to our knowledge. Our direct compu
tions of the nonanalytic contributions to the damping fun
tion using ab initio second-order dipole moments hav
shown that these contributions are negligibly small for GaA
This is not surprising given the good agreement of exp
mental data for the Raman line shape and temperat
dependent Raman frequency of the LO mode on the
hand and calculations that do not account for the effect of
macroscopic field in the anharmonic coupling constants
the other.4 However, the differences may be more significa
in highly polar materials that have a larger Lyddane-Sac
Teller splitting than GaAs.

For the calculation of the effects of thermal and zero-po
motion of the atoms on the frequencies of optical zone-ce
modes, one also has to account for quartic anharmoni
The contributions of the macroscopic field to the quartic co
pling constants involve the second-order Raman coefficie
and the third-order dipole moments. Reliableab initio data
for the prior quantities are not available yet for polar ma
rials, while no data at all are known to us for the latter. Sin
both quantities are not accessible via linear electronic den
response (2n11 theorem!, it is unlikely that a complete
evaluation of the quartic nonanalytic terms will be possib
in the near future.
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16U. Rössler and D. Strauch, inSemiconductors, Group IV Ele
ments, IV-IV and III-V Compounds, Lattice Properties, edited by
W. Martienssen, Landolt-Bo¨rnstein, New Series, Group III, Vol
41, Pt.a ~Springer, Berlin, 2001!.

17W. Windl, K. Karch, P. Pavone, O. Schu¨tt, and D. Strauch, Int. J.
Quantum Chem.56, 787~1995!; W. Windl, K. Karch, P. Pavone,
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