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Intrinsic lifetimes and anharmonic frequency shifts of long-wavelength optical
phonons in polar crystals

G. Deinzer, M. Schmitt, A. P. Mayer, and D. Strauch
Institut fir Theoretische Physik, Universtt®Regensburg, D-93040 Regensburg, Germany
(Received 13 June 2003; revised manuscript received 14 October 2003; published 30 January 2004

Quantitative calculations of phonon lifetimes due to anharmonic three-phonon processes require knowledge
of cubic anharmonic coupling coefficients. In order to determine the temperature dependence of phonon
frequencies, anharmonic force constants of up to fourth order are needed. In polar crystals, the macroscopic
electric field gives rise to nonanalytic terms in these coefficients. It is shown how these non-analytic terms can
be determined from other physical quantities including higher-order dipole moments, Raman coefficients, and
nonlinear susceptibilities. The contribution of these terms to the intrinsic damping of the long-wavelength
optical phonon modes in GaAs has been determined bgbainitio calculation.
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[. INTRODUCTION polar crystals that leads to the Lyddane-Sachs-Teller
splitting? In the following section, we derive the form of
In pure insulating crystals, the intrinsic lifetimes of these nonanalytic terms and relate them to other physical
phonons are due to anharmonic multi-phonon processes. #uantities. In the case of cubic anharmonic coupling coeffi-
energy and momentum conservation allow for three-phonofients, these are the dielectric tensor, the second-order non-
processes to occur, these are usually the dominant ones. THgear susceptibility tensor, the first-order and second-order
finite lifetimes of long-wavelength optical phonons give risedipole moments, and the first-order Raman tensor. Once
to nonzero widths of the Raman lines and are relevant ifh€se quantities are known, the cubic coupling coefficients
other physical situations too. In polar semiconductors, th&€levant for the lifetimes of long-wavelength LO and TO
lifetimes of longitudinal opticalLO) phonons play an im- phonons may be calculated using either of the two ap-

- ; - . : roaches. In Sec. Ill, we preseat initio data for the differ-
portant role in the dynamics of highly excited free carrfers. P ’ ) . . :
A precise knowledge of the decay efficiencies of Iong-ence of LO and TO da_mpmg functions in GaAs. The influ-
. ence of the macroscopic field on the temperature dependence

Bf the zone-center optical frequencies is briefly discussed in

required for a quantitative interpretation of experiments Cargee |V which is followed by concluding remarks

ried out on nonequilibrium phonon dynamics in GaP.
For covalent semiconductors, the width of the Raman line
has been calculatedb initio in very good agreement with

experiment=® The cubic anharmonic coupling coefficients  The dynamical matrix of a polar crystal contains a contri-
needed for these calculations have been determined in twisution from the long-range Coulomb interaction of the ions,
different ways: In their pioneering work, Debernagtial®  which is not analytic as a function of the wave vectpat
have applied the “A+1 theorem” by Gonze and Vignerén g=0 (Ref. 9. As a consequence of this contribution, the
to determine the cubic coefficients directly in the frameworklimit g— 0 is not unique and depends on the direction from
of density-functional perturbation theoryDFPT). Lang  which the center of the Brillouin zone is approached. Analo-
et al®> have combined DFPT with the frozen phonon ap-gous terms exist in the Fourier-transformed anharmonic
proach to calculate cubic coupling coefficients as numericalorce constants. They are the subject of this work.
derivatives of dynamical matrices with respect to a frozen-in To identify these nonanalytic terms in the anharmonic
displacement pattern corresponding to an optical zone-centeoupling coefficients of polar crystals, we conveniently start
mode. This method was also used to determine lifetimes ofvith an expression for the potential energy of a crystal in a
vibrational adlayer modésin this way, fourth-order anhar- macroscopic electric field that contains the Fourier ampli-
monic force constants have also been determined that atadeskg,(q) of the macroscopic fiel&E(R) as explicit vari-
needed for a calculation of the temperature dependence ables in addition to the Fourier transformg(x|q) of the
zone-center phonon frequencrds.Debernardi has com-  atomic displacement vectons(€«). Here, a=x,y,z is a
bined these two methods in his calculation of fourth-orderCartesian index{ labels the unit cells, and the sublattices
coupling coefficients by taking numerically a first derivative of the polar crystal. We adopt the definitions
of third-order force constants determined by DFPT for non-
equilibrium configurations. 1 _

In the case of polar crystals, both approaches have to be ER)=§ > E(qeR,
modified to account for nonanalytic terms that occur in the a
anharmonic coupling coefficients due to the long-range Cou-
lomb interactions giving rise to macroscopic 'electric f_ields. U(fK)= i 2 u(re|q)eid RO, 2.1
They are analogous to the term in the dynamical matrices of N

II. CUBIC ANHARMONIC COUPLING COEFFICIENTS
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whereR(¢) is the position vector of théth unit cell, N is E.(Q)=—iq,#(q). The Euler-Lagrange equations obtained
the number of unit cells, and the crystal volume. From the from Eg. (2.3 are the equations of motion for the atomic
very beginning, we assume periodic boundary conditions angisplacements,
vanishing homogeneous macroscopic fieE{q)=0 for q

=0]. This is in accordance with the treatment of the elec-

tronic system based on density-functional the(sge Ref. mKﬁa(K|q)=—L, (2.49)
10). Aok —q)
To simplify the notation, we invoke the summation con- coupled to the equation
vention for repeated Cartesian indices. Up to third order of
the displacements and the macroscopic field the potential
energy® is JP 0 (2.5

Ip(—aq)
_ 1 =~ , , The latter is merely Maxwell’'s equatiowi - D=0, whereD
(D_% [E E Caplalrex")Ua(xl@)ug(x’| =) is the dielectric displacement field. Equatié®.5) can be
' solved for¢(q) iteratively to second order in to yield

1
->z Eo(—0) = £ usEa(QE 4(—
% Zatl OO~ g Bl DB q)] ¢<q>=8<q>{—iqa§ Z,15( k) ug( k]

+E 1 E E ( ! l| ! /I)
~ o 7 ’_ - K . 12 ’
b [ e R +id E,[qa(qﬁ—qﬁ)Pam(K)S(q—q)

’

q k

XUq(k|Q)ug(x'[q")u, (k" —q=q") 1
L X (8, =0 Zy) (k) F 5 X dat5(d, — 0
=5 2 Map(@'[kk")Ea(@ug(x]a’)
oK XS(q,)q;)me(K)S(q_q,)(qo_q:r)ztﬂv(’(,)

1
Xuy(K’|_q_q’)_ E g Paﬁ\'y(K)Ea(q,)EB(_q u'u(K|q/)uV(K/|q_q/) )

1
- Ean al/.LV(q,|KKl)

1
—a)u(xla) — X3, Ea(E(a)E,(—a—d') | 29
For convenience, we have defing() =114,z ,509;]-
(2.2 Equation(2.6) may now be used to eliminate the electrical
potential ¢(q) in the equation of motior{2.4) for the dis-

The above expansion, which we have truncated after cubiglacement amplitudels#(xlq’), which then takes the form
terms, is the Fourier-space version of E@s5.1) and(6.5.2

in Ref. 9. It is understood that the wave vectqrandq’ are
in the neighborhood of the center of the Brillouin zone mKUa(KM):—E Cap(—alrx"ug(x'|q)
whenever they are associated with the macroscopic electric '
field. The coefficients occurring if2.2) have the following 1
meaning. _ - I
(i) Ma|57(q’|;<f<’) are the second-order dipole moments. 2 ?‘ ;}( Capy(—0.0".0
These quantities have been calculated from first principles
for polar semiconductors very recently. —q'[kx" K ug(k'[q")u("[q—1q"),
(ii) Pop,(x) are the first-order Raman coefficients, for 5
which ab initio calculations were performed earliér® 2.7)
(iii) Xﬁfﬁ)y are the second-order nonlinear susceptibilitieswhere q is a wave vector near the center of the Brillouin
They have been determineb initio using DFPT by Dal zone.
Corsoet all* The Fourier-transformed harmonic force constants have
We now introduce the Lagrangian the well-known form

1 _ , Coplalr")=Cop(alrx’)+0,Z,1o(K)S(A) G, Z, 5(k").
L=35 2 2 mu, (kU («|-a)—® (2.3 (2.8
‘o For the cubic anharmonic Fourier-transformed force con-
and consider as being a function of the displacement am-stants, we first consider the caseqadindq’ being both wave
plitudes u,(«x|q) and the Fourier amplitudes of the scalar vectors near the center of the Brillouin zone. One then ob-
potential, ¢(q), rather than of the electric field, with tains
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Capy(—0,0",0— Q' kK" k")
=Copy(—0,0",0= 0| k&' k") +3Z,,(K)M 5, Ol &' &), S(A) A+ 3M 100l k&) Z,, (k") T, S(Q") 0,
+3M a0l k") Z, 5k ) (0= a,) S(A= ") (A= 0) = 3P ol K) Zy (k") Z1 ("), S(9") 0, (9, — ) S(A—q")
X (A= 00) = 3P uuip( k) Zpo( ) Zg), (") 0, S(A)0,(9,—d;)S(q—q")(d,—q,,)
= 3P (K" Zp oK) Z 4 5(<")9,S(A) 0,0, S(a")a;,
+ X, Zun1a 1) Z 1 5(K ) Z 1 (K1) 1, (), 9,S(07)q,,(,~a,)S(A— ") (A =1 (2.9

These expressions can be simplified by making use of thin part including the nonanalytic terms on the right-hand
symmetry of the crystal under consideration. In particularside of (2.9), the complete Fourier-transformed cubic cou-
the T4 symmetry of the 1lI-V semiconductors implies that pling constants are obtained that are needed for the calcula-
S(q)=1/(g%¢..) with &.. being the high-frequency dielectric tion of lifetimes of zone-center optical modes.

constant, and the tensdrEq5(<) 1, [Pagl,(x)], and[X%y] We emphasize that within a rigid-ion model of a polar
have only one independent component. crystal, there are no _ nonana}Iytlc terms in the Fourier-

If in Cop,(—0.",q—q’) the wave vectoq' is not situ- transformed anhafmonlc _coupllng coefficients of any order,
ated in the neighborhood of the Brillouin-zone center, onlybeCause the_ nonlinear d'PO.'?_ mome_nts,_ the_ Raman tensor,
the first two terms in Eq(2.9) have to be kept. and the nonlinear susceptibilities vanish in this model.

In applications of DFPT for the calculation of anharmonic
force constants via the i2-1 theorem, the coefficients
Cup,(—a,0",9—q'| k' k") are calculated on a grid of wave
vectors in the first Brillouin zone. By subtracting the nonana- The lifetime 74 Of @ phonon with wave vectay belong-
lytic terms in Eq.(2.9) from these coefficients and transform- ing to branchj is a well-defined quantity, if the self-energy of
ing the remaining temﬁ;aﬁy(_q,q',q_q'|,<,<',<") into real j[his phon.on mode is a slowly varying function of frequency
space, one obtains force constants, which may be expected ifb the neighborhood of the phonon frequensy; . 7; may
be of sufficiently short range to lend themselves to Fouriefh€n be calculated from the imaginary part of the self-energy,
interpolation.(The spatial range of the third-order force con- —Tgj(w), via
stants may be further reduced by subtracting the rigid-ion Uy = 2T (wg) (3.2)
part with effective charges that are chosen appropriatédy. a ata '
obtain the complete Fourier-transformed force constants fosnd to lowest order in the anharmonicity, the damping func-
a given pair of wave vectors|,q’, one has to add the tion I'4j(w) is obtained fror
nonanalytic terms for this combination of wave vectors.

For the calculation of Fourier-transformed anharmonic T L -
force constants involving an optical near-zone-center mode, 1'ai(®)=% E Va(—ai.a'i",a=a'i")|H[1+ g
one may also proceed in the following way: 4l

_ Let [Wa(xlqj_)] be the eigenvector of the dyr_1amical ma- FNg_qrjr ] @qjr+ 0g_qjr— ) +2[Ng_grjr
trix corresponding to wave vectar and branchj, and let Cnas o o 3.2
W, (x@j)=lim __ w.(x|€d]). (Here,q=q/|q| is the unit Naj 18wy = 0q-qjr= @)} @.

vector pointing into the direction of the wave vectp) Us-  H€ré,wg; is the phonon frequency amy; the corresponding

ing DFPT, one may then calculate Fourier-transformed forcd0se factor[In writing Eqg. (3.1), it has been assumed theat
constantsc(a’;}(q| xx") for a crystal structure with a displace- is a wave vector close to the center of the Brillouin zone, and

N - . hence no umklapp processes ockiihe coefficientsv; in
ment patterma(EK)_—AWa(K|qj)(//A)\/m_K frgzen n. S(g)btract- Eq. (3.2 are related to the Fourier-transformed cubic anhar-
ing the nonanalytic termq,Z\(x)S™(q")q,Z)(«")

A ! : - monic force constants considered in the preceding section
(Note thatS™(q’) depends orA via the dielectric tensor iy

and also the analytic part of the rigid-ion contribution, and

lIl. LIFETIMES OF LONG-WAVELENGTH OPTICAL
PHONONS

Fourier-transforming into real space, one obtains again short- 4 1/2
ranged force constants depending on the amplitaé the Vi(—qj,q’j’,9—q'j")=

frozen-in displacement pattern. Consequently, one may take Bwqjwgrjr®q—q/j"N
numerically the derivative of these force constants with & S .
respect to A, transform into Fourier space and cal- XVs(—ai.q'j",a=a'j")
culate [o7C(;'2(q’|KK’)/<9A]A=O=Iimé\ocaﬁy(—ea,q’,ea (3.3

—q'|x«’ ") for any wave vectorg’. Adding now the rigid-  with
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N7 P rin 3.0 T T T T T T T
Vs(—0j.q'j",.9-a'j") I
. 2.5 .
W, (k| —
wg(k'q']") w(«"lq—q"j") o
X , (3.9 =
VM, vm,» %
where [w,(«|qj)] is the eigenvector associated with the
phonon modejj, normalized a&,, |w,(«|dj)|?=1. In the i
expression3.2) for the damping function, the sum ovegf ool L

260 270 280 290 300

has to be extended over the first Brillouin-zone. The imme- h
frequency (cm )

diate vicinity of the Brillouin-zone center yields a negligible
contrlputlon to this sum. Therefore, we _do not pay special FIG. 1. Contribution of the nonanalytic terms in the cubic an-
atte’n_t|on to the nonanalytic terms associated wjthand q harmonic coupling constants to the damping function of the zone-
—q’ in Egs.(3.4) and(3.2). center LO mode of GaAs at temperatdfe-0 K. The left (right)

One may now distinguish three causes for the differencerow indicates the TQLO) frequency at the center of the Brillouin
between the lifetimes of longitudinal and transverse opticalgne.

zone-center phonons.

(i) The difference of the frequenciaes o and wg, at
which the damping function has to be evaluated.

(i) The factor 1{/wg; in Eq. (3.3.

(iif) The nonanalytic part of the Fourier-transformed cubic
anharmonic coupling coefficients in E@.4). the two tvbes of atoms

In the analytic part of the Fourier-transformed cubic cou- | F.yp 1 the f : tion ST () =i I -LO
pling constants, the limig— 0 is unique, and if there were n Fig. 1, the function ol'(w)=lim  [1'qLO(w)
no nonanalytic parts, its contribution to the inverse lifetime — (0 4TO/w 4LO)T (TO(w)] is shown for GaAs. This is
would not depend on the direction of the eigenvectorthe contribution of the nonanalytic terms to the damping
[w,(k|qj)] in the degenerate subspace of the optical zonefunction of LO-phonons. Note thal () is independent of
center modes. The nonanalytic part, however, leads to a dify for crystals with zinc blende structure. Fig. 2 shows the
ference of lifetimes for different optical modes even if their functionT" () =lim I si0(@). The data in both Figs. 1
frequencies were the same. This is due to the term o

8V3(—qT0O,0'j’,q—q'j")=0. (3.9

The sign depends on the definition of the eigenvector of the
long-wavelength optic mode, amdy, is the reduced mass of

and 2 refer to zero temperature. The arrows in the figures
indicate the TO and LO frequency as determined indbhe

OVa(~a1,a'1a=-a']") initio calculation (270.7 cm! and 290.3 crl, respec-
1 w,(k|—aj) tively). Using Eq.(3.1), the inverse lifetime, which is equal
=20,5(0)0, > Zju()——— to the full width at half maximum(FWHM) of the corre-
2 K \/m_K sponding line in the Raman spectrum, is found to be
xM,(q'j’,—q'j") 3.5 0.76 cm ! for the zone-center LO phonon mode. An analo-
AGS AT, ' gous calculation ofthe FWHM of the zone-center TO mode
where we have again used the nota@ﬁq/|q| for the unit  Yields 0.44 cm?. The contribution to the value for the LO
vector, and
0~7'I'I'I'I'I'I'I'
M.,(q'j".—a"j") 0.6 F .
wy(kla'i’) wy(x'|=q'j") osf ]

= M, "lkK'") (3.6

K% s(d| m, m.,
in the same way as in the theory of two-phonon infrared
absorption' In the case of cubic diatomic crystals with one
Born effective chargeZ, such as the IlI-V semiconductors, !
this simplifies to o1k i

7 [ AP 0.0 ——— ——
oV3(—qLO.,q'j’,.q—q’j") 260 270 280 290 300
frequency (cm‘l)

zZz .
— + ryr ran
) /mstq”M Aah A, 3.9 FIG. 2. Total damping function of the zone-center LO mode of
GaAs at temperatur@=0 K. The left (right) arrow indicates the
while TO (LO) frequency at the center of the Brillouin zone.
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mode from the nonanalytic terms is 0.00964 ¢mThese The first one is proportional to the Kramers-Kronig trans-
numbers show that the nonanalytic parts of the cubic anhaform of I'yj(w). The second one is given by

monic coupling constants lead to a contribution to the in- ,

verse lifetime of zone-center LO phonons in the case of Awgj=—wgy(a))AVIV, (4.
GaAs which is negligible in comparison to the differencewhereAV is the change of crystal volume due to quantum
between the TO and LO widths. It is even smaller than theand thermal fluctuations of the atomic positions aifd;j) is
accuracy to which the inverse lifetimes or Raman widths canhe Grineisen constant of modgj. From the derivative of
be determined experimentally at present. A compilation okhe Lyddane-Sachs-Teller relation for a diatomic crystal with
corresponding experimental data can be found in Ref. 16espect to the crystal volume we obtain

The partly considerable deviations between various experi-

mental low-temperature values can partly be explained by ~ - V|1 deg 1 de.
the presence of defects and especially of free carriers that Mevol Y(€qTO)— V(EqLO)]:E[

influence the Raman line as well as the lifetimes of coher- (4.2

ently excited phonon modes in coherent anti-stokes Raman . . - _—
: énvolvmg elasto-optic coefficients and volume-derivatives of

éhe Born effective charge. In E.2) ¢, is the static dielec-
tric constant.

with a Lyddane-Sachs-Teller split much larger than the on
of GaAs, the contribution of the nonanalytic terms to the

inverse lifetime of LO phonons may be of a detectable mag- The third contribution to the anharmonic frequency shift
nitude. involves quartic anharmonicity,

1
g — 0l AR 1! R .
IV. ANHARMONIC FREQUENCY SHIFTS &qu 2 %-:, Va(=alal,—q'1".q'] )[an ! 1]
At lowest order of the anharmonic terms in the lattice 4.3
potential, perturbation theory yields three contributions toThe coefficientsV, are related to the Fourier-transformed
the anharmonic shifts of phonon frequencies that are exquartic anharmonic force constants in a way analogous to

pected to be of comparable magnitude at low temperatdres:Egs. (3.3 and(3.4):

h
V — ', "_ /'/’ ry! —
4(—qj,q9j,—q'j",.9q'j") N,

X X Cupun(—9,0,—0",9' [ k1KpK3Ks)

K1, K K3 Ky

W, (K1 —qj) Wﬁ(K2|Qj) W,L(K3|_qll") W, (k4q'j")

(4.9

When identifying the nonanalytic terms in the Fourier-transformed quartic force const@nis,,(—q.q,
—q',q9'|k1koKk3K4), We account only for cases of the wave veagbmot being near the center of the Brillouin zone, since
only those are relevant for the sum over the Brillouin zone in(B@). The following additional terms have to be considered
in the expansiori2.2) of the potential energy:

1
+ 22 5Capula.0.0" — G0~ 0| kakorara) Ugl kel Q) Ug( ol 0 UL (k3| "), (ke — 0= 0" = ")

q,q’,q" K1:K2:K3:Kq

1
5 2 2 Mygu(a .0k’ €)E(@Ug(klq)u,(x'[q")u, (x| -q—a'=q")
q'qI’qH K,K’,K”
l n ! ! 4 ! ! "
~7 2 2 Pugu ke EJADEH AU, (kg (x| -a-a" = q"). (4.5
qu/’q// K,KI
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These terms involve the second-order Raman coefficientdo not only result from the two-phonon density of states, but
Pagl.0(Q"| k"), for which ab initio data exist for covalent also from differences in the matrix elements. In particular,

semiconductors! The coefficientsM 4,,(d’,q"| k&' k")

the matrix elements contain nonanalytic terms as functions

correspond to third-order dipole moments. We are not awar€f the wave vector of the near zone-center phonons that have

of any quantitative evaluation of these quantities so far.

Eliminating the macroscopic field, we finally obtain the

been identified and related to other physical quantities.
Although the lifetime of the LO-phonon mode at the cen-

following for g being a wave vector close to the center of thetr Of the Brillouin zone in polar semiconductors is a quan-
Brillouin zone andq’ corresponding to a short wavelength: fity of fundamental importance, also in view of electronic

Capu(— 40, —0",9"|[K1KkoK3Ks)
=Copu(— 0,0, —0',0' | k1KoK 3Ks)
+0,Z,5(k2) S(A) UMy 0,,,(0,0" | K1 K53K4)
+0,Z,0( k1) S(A)AM | 5,.:(0,0" [ Kok 3K4)
—0yZy)a( k1) S(A)UND, 2,1 p( K2) S(T)

X n Py | K3K4). (4.9

transport processes in semiconductor devices, a theoretical
treatment that would fully include the macroscopic field has
not yet been given, to our knowledge. Our direct computa-
tions of the nonanalytic contributions to the damping func-
tion using ab initio second-order dipole moments have
shown that these contributions are negligibly small for GaAs.
This is not surprising given the good agreement of experi-
mental data for the Raman line shape and temperature-
dependent Raman frequency of the LO mode on the one
hand and calculations that do not account for the effect of the
macroscopic field in the anharmonic coupling constants on

In deriving Eq.(4.6), we have made explicit use of the con- the othef However, the differences may be more significant
dition that the homogeneous part of the macroscopic fieldn highly polar materials that have a larger Lyddane-Sachs-
vanishes. Applying these expressions to crystals with zindeller splitting than GaAs.

blende structure, we find that the nonanalytic tefthg last
three terms on the right-hand side of E4.6)] do not con-
tribute toV4(—qTO,qTO,—q’j’,q’j"), while their contri-
bution toV,(—qLO,qLO,—-q"j’,q"j") is

8V,4(—€qLO,eqlO,—q'j",q'j")

B h
4Nw0Lqu,j ’

z . .
+2 M,(€qLO,—q'j’,q'}’
[ Jie, OMA A0 m A a))

4.7

Z 2
- Aa’\ Pa ir—qli’).
Jm—RJqqﬁ sd']=a'j")

The quantities M.(—qj,q'j’,q—q'j") and P,g(q'j’,
—q’'j") are defined in direct analogy to E.5).

V. CONCLUSIONS

For the calculation of the effects of thermal and zero-point
motion of the atoms on the frequencies of optical zone-center
modes, one also has to account for quartic anharmonicity.
The contributions of the macroscopic field to the quartic cou-
pling constants involve the second-order Raman coefficients
and the third-order dipole moments. Relialale initio data
for the prior quantities are not available yet for polar mate-
rials, while no data at all are known to us for the latter. Since
both quantities are not accessible via linear electronic density
response (8+1 theorem, it is unlikely that a complete
evaluation of the quartic nonanalytic terms will be possible
in the near future.
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