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Spin-wave excitations in ribbon-shaped Fe nanoparticles
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It has been found that in highly anisometric ribbon-shaped Fe particles with nanoscale dimensions that the
magnetization decreases with temperature markedly faster than in bulk bcc Fe. This anomalous dependence,
which becomes more remarkable as the length-to-cross section ratio increases, arises from the elongated shape
of the particles. The analytical approximation performed on the thermal spectrum of magnons, compatible with
the sample dimensions, unravels the correlated influences of shape and size on the thermal decreasing rate of
magnetization.
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It has been observed that some magnetic properties
sidered as intrinsic when measured in the bulk exhibit
anomalous behavior when the size of magnetic entities
creases down to the nanoscale.1 In particular, the therma
dependence of the magnetization deviates from that expe
from the Bloch law.2 Since in very small size particles mag
nons with wavelengths larger than the particle dimensi
cannot be excited, a threshold of thermal energy is requ
to create spin waves. In this paper we present a nanos
effect linked to the shape of very small particles. Opposite
the consequences of the known size effect,2 which essentially
contributes to stabilizing the magnetization, the shape ef
analyzed here leads, in the low temperature range, to a
crease of the magnetization with temperature which is fa
than that measured in bulk samples.

The experimental magnetic behavior of wire shap
Cu-15 vol % Fe composite alloys, produced by the hea
working of spray-deposited billets, has been analyzed. A
tailed description of material fabrication has been repor
elsewhere.3 With the cold working proceeding the spheroid
Fe particles, about 1mm in size, become drawn into elon
gated, flattened ribbons oriented along^110& direction with
progressively smaller cross sections. Due to the high
positive enthalpy of mixing that characterizes the Fe-Cu s
tem it is expected that Fe and Cu have not reacted, formin
FeCu solid solution.4 Transmission electron microscop
shows that the thickness of the Fe ribbons decreases with
increase of the drawing strain from 14 nm down to 3.5 n
while the ribbons width drops from 260 nm down to 27 n
Hereinafter, the studied samples will be identified by th
drawing strain measured by the wire diameter after draw
F.

A magnetic characterization below room temperature w
carried out by means of a superconducting quantum inter
ence magnetometer, under a maximum applied field of
strong enough to saturate the samples. Figure 1 shows
thermal dependence of magnetizationM, measured in all the
composite samples. Data corresponding to bulk bcc Fe w
also included in the figure.

It should be remarked from Fig. 1 that the magnetizat
of the composites decreases withT much faster than in bulk
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Fe. In addition, as the length-to-cross section ratio increa
the magnetization decreasing rate enhances and dev
from the typicalT3/2 dependence. For small enough cros
sectional dimensions~i.e., wire diameters of 0.12 and 0.2
mm! a rapid and almost linear decrease with temperatur
observed.

Since the only difference between the samples is rela
to the measured cross section~and consequently the elonga
tion! of bcc Fe nanoribbons, the deviation from the expec
behavior could only be attributed to shape effects. Within
spin wave framework the thermal dependence of magnet
tion is related to the total number of excited magnons
unit volume,(knk , as follows:

M ~T!5M ~0K !F12
1

NS(
k

nkG , ~1!

whereN is the number of atoms with spinSper unit volume
andk is the magnon wave vector.

Relation ~1! leads in bulk materials to the well know
Bloch T3/2 law. The energy of an excitation with wave vect

FIG. 1. Temperature dependence of the magnetization after
ferent drawing strains, i.e., wire diametersF. The cross section
dimensions for the bcc-Fe ribbons are also indicated. The evolu
of bulk bcc Fe is also shown for comparison
©2004 The American Physical Society03-1
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k can be written as«5Dk2, whereD is the exchange stiff-
ness constant that takes a value ofD50,281 eV Å2 for bcc
Fe.5 Note that in a ribbon with lengthl, width w and thick-
nesst the incompatibility of the large wavelength,l, spin
waves with the reduced system dimensions leads to the
lowing dependence of the number of magnons onl: For l
.l.w, k is constrained to be a vector lying along the lo
gitudinal direction. Forw.l.t, k behaves as a two
dimensional~2D! vector lying in the plane defined byl and
w. Finally, for t.l, k becomes a 3D vector similar to th
bulk material case. After taking into consideration the cor
spondingk densities it can be easily found that the number
magnons per unit volume can be written as a function oT
according to

(
k

nk5
1

lwt F l

2p E
2p/ l

2p/w dk

FexpS Dk2

kBT D21G
1

lw

2p E
2p/w

2p/t kdk

FexpS Dk2

kBT D21G
1

lwt

2p2 E
2p/t

` k2dk

FexpS Dk2

kBT D21G G , ~2!

wherekB is the Boltzmann constant. Note that in bulk ma
rials only the last integral of the right hand side holds a
when the integration limits are 0 and infinity it leads direc
to the Bloch law.

From Eqs.~1! and ~2! it is possible to reproduce the ex
perimental curves as shown in Fig. 2 in which the calcula
effect of the aspect ratio on the thermal dependence of m
netization is illustrated for nano-ribbons with 4340-nm2

cross section and different lengths. The experimental cu

FIG. 2. Calculated curves for nanoribbons with 4340-nm2

cross section and different lengths. The experimental data of
f50.26 mm sample (4348-nm2 cross section! have also been
plotted. The ribbon length spreads over a broad range but an a
age value of 2mm could account for the observed behavior acco
ing to the ribbon length dependence shown in the figure.
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corresponding to the sample containing nanoribbons w
similar cross section has also been plotted in the figure.
average ribbon lengthl, that can not be obtained by TEM
has been estimated from the fitting as being close to 2mm.

It is remarkable the influence of shape on the therm
dependence of magnetization. Indeed, as pointed out by
results shown in Fig. 2, the elongated shape is respons
for the extremely fast magnetization decrease observe
samples submitted to the largest drawing strains~see Fig. 1!.
In order to discuss conditions required for the observation
this shape effect let us analyze the thermal dependenc
magnetization as a function of the elongation of the partic
For the sake of simplicity it will be assumed thatt5w and
l 5ht, whereh is the aspect ratio of the particle. In this ca
the second integral in Eq.~2! vanishes and the number o
magnons per unit volume becomes

(
k

nk5
1

2pwt
I 1~h,t,T!1

1

2p2 I 3~ t,T!. ~3!

Consideringt.(2pD/kBT)1/2, a condition that for a ribbon
with t5100 Å holds atT52.1 K, the total number of mag
nons per unit volume given by Eq.~3! can then be written as
~see Appendixes A and B!

(
k

nk5A
~h21!

t
T1BT3/22C

T5/4

t1/2 , ~4!

where

A5@1/~2p!2#kB /D, and B5~kB/4pD !3/2z~3/2!,

z being the Riemann zeta function and

C5@1/~2p3!1/2#~kB /D !5/4.

For the conditions corresponding to our experimental d
t.(2pD/kBT)1/2 and, consequently, expression~4! holds as
a good approximation. That expression~4! contains the well
known term corresponding to the Bloch law for bulk mat
rials, theBT3/2 term, and two additional terms, with coeffi
cientsA andC, linked to the small size of the particles an
vanishing for large size systems~increasingt values!. The
opposite sign as well as the different temperature depend
of both terms enable to distinguish between size,t, and
shape,h, effects, as illustrated in Fig. 3. The positive an
linear withT first term, including coefficientA, contributes to
enhance the number of excited magnons and describes
shape effect through itsh dependence, though also decreas
with the inverse of the size. In particular, the extra number
magnons per unit volume originated by the first term at 3
K is given by 0.0023„(h21)/t@Å #…. Consequently, the influ-
ence of the shape effect for particles witht5104 Å ~1 mm!
requires to be relevant an aspect ratioh as large as 105. The
negative term withC coefficient varies asT5/4 and only de-
pends on size and, oppositely to the first one, decreasest
does. Therefore, the shape effect that gives rise to a fast
linear decrease ofM with T, shown in Fig. 1, is only relevan
for small particle sizes. But even at this range of smallt the
first term influence decreases as the spherical shape is
proached, i.e.,h21!t@Å #. Notice that forh51, only the
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second term in Eq.~3! contributes toSknk and whent de-
creases below (2pD/kBT)1/2, the high temperature approx
mation considered in Eq.~4! is not valid and, as shown in th
Appendix ~B!, I 3 can then be approximated as

I 35
1

2a3/2$A«̂e2 «̂2AL̂e2L̂%, ~5!

with «̂5(D/kBT)1/2(2p/t) and L̂5(D/kBT)1/2(2p/a* ), a*
being the lattice constant of bcc Fe. It is obvious that
negative term includingC coefficient is responsible forh
51 of the cut-off frequency predicted for magnons in ve
small systems.2 This effect is illustrated in the inset of Fig. 3
where the magnetization calculated from Eq.~5! for a par-
ticle with t510 Å andh51 is shown.

In summary, the experimental data on the thermal dep
dence of magnetization of elongated Fe nanoribbons
been analyzed in terms of a spin wave analytical mo
based on the compatibility between the excitable mag
wavelength and the particle dimensions. The analytical
pression given by Eq.~4! for the number of magnons per un
volume, valid at the high temperature range, enables on
directly understand the influence of shape and size on
equilibrium thermal excitation. This expression encloses
standard Bloch term and two additional ones associated
sample morphology and dimensions. Both terms are o
relevant for small dimensions, i.e., smallt; but, whereas the
positive shape effect term contributes to increase the the
decreasing rate of magnetization the negative size effect
tends to delay this thermal decrease. The shape effect
pears as a consequence of the structure of theI 1 integrand in
Eq. ~2! that diverges for anyT different of zero ask approxi-
mates zero. Therefore, the shape effect term in Eq.~4! can be
understood by considering that the contribution ofI 1 to the
total number of magnons sharply increases as the lowe
tegration limit decreases~i.e., ash increases! and the integra-
tion interval (1/t)@12(1/h)# increases~i.e., ast decreases
andh increases!.

FIG. 3. Thermal dependence of magnetization given by exp
sion ~4! for a sample witht5w540 Å and different aspect ratios
h. The inset shows the temperature dependence of the magn
tion in the lowT and/ort limit for h51. The thermal dependenc
for a bulk sample~i.e., Bloch law! is also included.
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The authors are indebted to Dr. D. G. Morris for samp
preparation.

APPENDIX A

Let

I 1~h,t,T!5E
2p/ l

2p/w dk

FexpS Dk2

kBT D21G ,

that can be written as

I 1~«!5E
«

L dk

eak2
21

,

where

«5
2p

l
5

2p

ht
, L5

2p

w
5

2p

t
; a5

D

kBT
.

For aL2<2p ~high T and/or hight limits! the integral be-
comes

I 1~«!5(
Bj

j !a
ajE

«

L

dkk2 j 22,

whereBj are the Bernouilli numbers. Therefore, one obta

I 1~«!>
1

a S 1

«
2

1

L D2S L2«

2 D1
a

36
@L32«3#1OS a3L7

~2p!3D
1OS a3«7

~2p!3D ,

that in first order becomes

I 1~h,t,T!>
kBT

2pD
t~h21!.

APPENDIX B

Let

I 3~ t,T!5E
2p/t

` k2dk

FexpS Dk2

kBT D21G
or

I 3~«!5E
«

L k2dk

eak2
21

,

where «52p/t, L is a high enough number anda
5D/kBT, and

I 3~«!5E
«

L k2dk

eak2
21

[
1

2a3/2 Î 3 ,

where

s-

za-
3-3



.

e,

BRIEF REPORTS PHYSICAL REVIEW B69, 012403 ~2004!
Î 35E
«̂

L̂
dx

x1/2

ex21

and «̂5a1/2« and L̂5a1/2L.
The latter can be written as

Î 35H E
0

`

dx
x1/2

ex21
2E

0

«̂
dx

x1/2

ex21
2E

L̂

`

dx
x1/2

ex21J
5 Î 3u0

`2 Î 3u0
«̂2 Î 3u

L̂

`

and

Î 3u0
`5E

0

`

dx
x1/2

ex21
5

Ap

2
zS 3

2D ,

wherez~3
2! is the Riemann zeta function,

Î 3u
L̂

`
5E

L̂

`

dx
x1/2

ex21
>AL̂e2L̂$11O~1/L̂ !%.

As concernsÎ 3u0
«̂ , two different limits should be considered

~i! For «̂ small enough with respect to 2p, Î 3u0
«̂ can be

approximated as follows:

Î 3u0
«̂5E

0

«̂
dx

x1/2

ex21
5A«̂H 22

«̂

3
1

«̂2

30
2

«̂4

3240
1¯J .

Therefore

I 35
1

2a3/2 Î 3

5
1

2a3/2 HAp

2
zS 3

2D2A«̂H 22
«̂

3
1

«̂2

30
2

«̂4

3240
1¯J

2AL̂e2L̂$11O~1/L̂ !%J ,
g
e-
.
-

r-

01240
or, in first order, I 3(t,T)5Apz(3/2)/2](kBT/D)3/2

2(2p/t)1/2(kBT/D)5/4.
~ii ! For «̂ high enough with respect to unity,Î 3u0

«̂ should
be written as follows:

Î 3u0
«̂5E

0

«̂
dx

x1/2

ex21
5E

0

«̂
dx x1/2e2x(

n50

`

e2nx

5 (
n51

`
g~3/2,n«̂ !

n3/2 ,

whereg(a,z) is the incomplete gamma function. Therefor
Î 3 can be written as follows:

Î 35A«̂ (
n51

`
e2n«̂

n H 11
1

2n«̂
2

1

4n2«̂2

2
1

2Ap
(
j 53

`

~21! j
G~ j 21/2!

nj «̂ j J 2AL̂e2L̂$11O~1/L̂ !%.

By neglecting the addition overj and takingn51,2,3... we
finally obtain

I 35
1

2a3/2 Î 35
1

2a3/2 HA«̂e2 «̂H 11
1

2«̂
2

1

4«̂2

1
e2 «̂

2 S 11
1

4«̂
2

1

16«̂2D1
e22«̂

3 S 11
1

6«̂
2

1

36«̂2D J
2AL̂e2L̂$11O~1/L̂ !%J .
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