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Reconstruction of charged surfaces: General trends and a case study
of Pt„110… and Au„110…
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The stability of missing-row reconstructions of~110! surfaces with respect to surface charging has been
investigated usingab initio theory, taking Pt and Au as representative systems. A thermodynamic formulation
is derived to compare the relative stability of charged surfaces either in constant-potential or constant-charge
mode. By generalizing Koopmans’ theorem to charged metallic surfaces, we obtain an expression for the
surface~excess! energy as a function of charge~or potential! in terms of the neutral surface energy, work
function, and the position of the image plane. A surface is shown to reconstruct in constant-charge mode if and
only if it reconstructs in constant-potential mode. We next address the question of whether a positive~negative!
surface charge can lift~induce! the reconstruction, as suggested in the literature. This turns out not to be the
case. Instead the following consistent picture arises: at small surface charges, the effect of the charge follows
the difference of the work functions; i.e., positive charge favors a surface having a smaller work function and
vice versa. Larger charges, either positive or negative, tend to stabilize the reconstructed surface or, more
generally, the 13r reconstruction with largerr. The latter essentially results in that the 132 reconstruction in
either Pt or Au is never lifted in our study, although the 133 surface in Au eventually becomes more stable.
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I. INTRODUCTION

In ultrahigh vacuum~UHV!, the ~110! surface of the late
5d metals Ir, Pt, and Au exhibits a 132 missing-row recon-
struction, in which every other close-packed row in the^110&
direction is missing. In some circumstances the 132
missing-row reconstruction can be lifted or, on the contra
can develop a more severe 133 reconstruction~Fig. 1!. The
~110! surface of the isoelectronic 4d and 3d metals does no
reconstruct, but the 132 missing-row reconstruction occur
on some of them~Ag, Cu, Pd, and Ni! upon a submonolaye
adsorption of an alkali metal, such as Li, K, and Cs~see, e.g.,
Refs. 1 and 2 and references therein!. Similar effects have
been observed on the~100! surface, which under UHV con
ditions takes on a quasihexagonal ordering~called the 5
320 reconstruction!, and also on the~111! surface~the A3
322 reconstruction on gold, for example, which develop
distinctive ‘‘herringbone’’ pattern!. A shared feature amon
all of these reconstructions is an increase in the densit
atoms at the boundary between metal and vacuum~or elec-
trolyte, if in the electrochemical environment!. The 132 and
133 reconstructions, for instance, can be viewed as a tr
formation of the flat~110! surface into microfacets of th
~111! surface, which is close packed.

The fact that a reconstruction appears for a numbe
different systems suggests that there may be general phy
reasons behind it, rather than being dependent on spe
details of the electronic structure of individual meta
Hence, three~possibly related! questions arise:~1! why do
the surfaces of the end-of-the-row transition metals tend
reconstruct,~2! why does this tendency increase with ro
number, and~3! is there any physical quantity which ca
drive the reconstruction back and forward?
0163-1829/2003/68~24!/245416~18!/$20.00 68 2454
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Here, we do not attempt to provide a complete overvi
of the long-standing discussion of this subject. We shall s
ply summarize the current understanding of the pheno
enon, referring the reader to original papers and recent
views ~such as Refs. 3 and 4! for details. The answer to the

FIG. 1. Missing-row reconstruction at the~110! surface of fcc
metals~side view!. Shadowed and white atoms lie in planes d
placed bya0 /A2 orthogonal to the plane of the picture, wherea0 is
the lattice constant of the bulk crystal.
©2003 The American Physical Society16-1
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first question seems to lie in the peculiar character of
interatomic interaction in metals with nearly filledd shells.5

The driving force for the reconstruction is the decrease
kinetic energy of the delocalized surface electrons when t
are provided with a larger effective surface area.6 The in-
crease of the reconstruction tendency in going down the
riodic table@question~2!# has been attributed to a relativist
effect.7,8 Other consequences of this effect are still be
discovered.9

The third question is directly related to the subject of t
current paper and therefore requires more comments. In
dition to invoking the 132 reconstruction at the~110! sur-
face of 3d and 4d metals~see above!, the alkali-metal ad-
sorption can further transform the~already reconstructed!
132 surface of 5d metals to 133.10 On the other hand, the
missing-row reconstruction in the 5d metals has been foun
to disappear upon adsorption of CO, NO, and Cl2 molecules:
132→131 ~see, e.g., references in Ref. 11!. Hence it is
plausible to suggest that surface charge alone could be
sponsible for invoking or lifting the reconstruction.1,6,10,12

In this mechanism, the adsorbed alkali atoms act as e
tron donors, oversaturating the surface with electro
whereas molecules like CO, Cl2, etc., can be regarded a
electron acceptors. In other words,the addition of electrons
favors the more reconstructed surface: 131→132→133
~hereafter we shall refer to the 13r reconstructed surfac
with largerr as the surface with a more extended reconstr
tion or, simply, as the more reconstructed surface!.

On the other hand, it is equally possible that the spec
interaction between adsorbed atoms and the metallic sur
affects the reconstructed state of the surface, and there
strong arguments for that.2,13 These two effects are com
monly referred to as thelong-range~surface charge driven!
and thelocal ~adsorbate driven! mechanisms of the surfac
reconstruction, respectively.

Electrochemical experiments could provide an indep
dent way to address the problem, because charged sur
are a necessary accessory there and also because pla
and gold are commonly used as electrodes. A large bod
available experimental data shows that the reversible tr
formation between 132 reconstructed and 131 unrecon-
structed Au~110! surfaces appears at a positive potential~i.e.,
when the surface is positively charged!, the actual magnitude
of which is electrolyte dependent.3 In addition, the 132
→133 transformation has been found to occur at so
negative potential.14 The 132 surface of Pt, however, is su
prisingly stable.3,15

Regarding the above dilemma of whether a surface cha
or adsorbate-substrate interaction invokes~or lifts! the sur-
face reconstruction, electrochemical studies are still una
to give a definite answer, as the discrimination between
two effects is as difficult as in UHV experiments. Howev
this can be achieved in a straightforward way within t
first-principles density functional approach. Although the
exist a number of electronic structure calculations in wh
the reasons for the missing-row reconstruction have b
thoroughly investigated, only in few of them has their ene
been directly calculated as a function of external charge

Fu and Ho12 suggested that the~110! surface of silver
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should undergo a 131→132 missing-row reconstruction a
a negative surface charge of 0.03e per surface site, wheree is
the electron charge. Bohnen and Kolb16 considered the~100!
surface of gold and found a 132→131 transition at a posi-
tive charge of20.4e/(surface site). According to anothe
~unpublished! calculation of the Au~110! surface by Bohnen
mentioned in Ref. 4, a 132→131 transition is expected a
a positive charge of20.09e/(surface site) and a 133→1
32 transition occurs at about20.04e/(surface site): the 1
33 neutral surface has been found to be marginally m
stable in this study.

Based on the results of an electrochemical study of
Au~111! surface with adsorbed organic molecules, W
et al.17 argue that the effect of adsorbate and charge are
comparable magnitude; hence the driving force for surf
reconstruction should contain a contribution from both.

Such a conclusion suggests that a careful considera
must operate rather with atendencythan with a definite re-
sult. Therefore, one of the purposes of our study was to cl
fying, usingab initio density functional theory~DFT! calcu-
lations, whether positive~negative! charging of the~110!
surface of Pt and Au indeed alwaysfavors a less~more!
reconstructed surface. Our results do not support such a
jecture for either constant-charge or constant-poten
modes: these two modes correspond to different experim
tal conditions and must be treated differently, Sec. II.

More generally, we believe that many similar questio
could be clarified in a relatively simple way as charged m
tallic surfaces in vacuum appear to be a thermodynamic
tem obeying rather simple rules, thanks to Koopmans’ th
rem. It will be shown, in particular, that the behavior
surface energy of a charged system can be satisfactorily
scribed if only properties of a neutral system are known.
Sec. III A we discuss the underlying thermodynamics with
the previously developed model18 in which the charged sur
face is represented by Guggenheim’s surface layer plus
electric field stored outside in afinite region of vacuum. A
generalization of Koopmans’ theorem to charged surfa
within the above model constitutes Sec. III B. Section III
describes how to use the results of DFT supercell calc
tions as input for the model. The discussed corrections
further summarized specifically for the case of reconstruct
energies in Sec. III D. Computational details are given
Sec. IV.

The rest of the paper concerns conclusions that can
drawn from the model andab initio data. Using the example
of ~110! surfaces of platinum and gold, in Sec. V we discu
general features of the behavior of charged surfaces. Reg
ing the surface reconstruction, adding electrons should fa
a surface with larger work function at small charges. F
larger charges, a more extended reconstruction is favore
both positive and negative charge. The free-energy dif
ences are qualitatively similar in constant-charge~Sec.
V B 1! and constant-potential~Sec. V B 2! modes. In Sec.
V B 3 we demonstrate that if surface energy curves inters
in one mode, they should cross in the other as well. T
leads to a fascinating prediction of the possibility of t
phase separation of charged surfaces forming coexisting
6-2



ie
th
n

u
on

ith
-
ot

t
e
s

s

e
s
f
th

hi
ro

a
. W

ym
ct
an
e
tte
ho
ld

dy

In

l d
e
la
tic

on
io
tc
la
,

p-

an
by
c-

ic
me
ed
k-
ode
d-

a

ex-

e-

-
i-

ling
ef-
s or

ly
a
ite
tro-
re-
he
es;

l

e
ed

red.
i-
an

e-

RECONSTRUCTION OF CHARGED . . . PHYSICAL REVIEW B68, 245416 ~2003!
mains with different reconstructions and different densit
of the surface charge. In Sec. V C we briefly discuss
effect of field-induced atomic relaxation at a surface a
conclude in Sec. VI.

II. CONSTANT-CHARGE OR CONSTANT-CHEMICAL
POTENTIAL

When speaking about the relative stability of charged s
faces, one must distinguish between two possible situati
In the constant-chargemode, hereafter referred to as ‘‘N
5const,’’ the surface under investigation is maintained w
a constant number of electrons,Ne . This means that, irre
spective of the microscopic state of the surface, the t
charge of the system remains unchanged. An example is
surface of a large sample of metal placed in a constant
ternal electric field; to screen the field, charge accumulate
the surface, whose magnitude~per unit surface area! is de-
termined by the magnitude of the applied field via Gaus
theorem.

The constant-potentialmode~referred to as ‘‘m5const’’!
is the one in which the surface~the working electrode! is
kept at a fixed potential relative to a reference system~the
reference electrode!. A physical realization is a parallel-plat
capacitor connected to a battery, where one of the plate
the reference electrode and the other plate the system o
terest. The battery fixes the potential difference between
two plates. In the language of density functional theory, t
setup corresponds to the chemical potential of the elect
me being fixed.

The difference between constant-charge and const
potential modes has been noted by several investigators
et al. in their study of the Au~111! surface reconstruction17

recalculated the initial data to constant-charge mode. S
metrically, to compare the reconstructed and unreconstru
Au~100! surfaces kept at the same potential, Bohnen
Kolb16 converted theab initio energy-charge curves into th
energy-potential ones and found no crossover of the la
whereas the former did cross. For the conversion, the aut
employed experimental data in the capacity of a go
electrolyte interface.

It is important to stress that the appropriate thermo
namic potential in the ‘‘m5const’’ case is not the total~or
free! energy, but rather its grand canonical equivalent.
deed, if a system is allowed to fluctuate inNe at fixed tem-
perature and surface area, it requires a grand canonica
scription. A detailed discussion of the differences betwe
the constant-charge and constant-potential modes and re
computational aspects can be found in recent theore
publications.18–20

III. THEORY

We shall be comparing the stability of 13r surfaces,
wherer 51, 2, or 3 denotes the extent of the surface rec
struction. The system to be considered is the surface reg
large enough that its properties far from the surface ma
those of the bulk crystal to which it is attached, and simi
on the vacuum side@Fig. 2~a!#. According to Guggenheim
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this is referred to as the ‘‘surface layer.’’21 In ab initio cal-
culations, the surface layer of different surfaces will be re
resented with corresponding slabs@Fig. 2~b!#.

The key feature of our thermodynamic model18 is the way
to deal with the divergence of the electrostatic energy of
infinite charged surface. This divergence is avoided
means of explicit inclusion of an oppositely charged ele
trode ~the reference electrode! and hence of the electrostat
energy stored in the electric field in vacuum into the sche
@Fig. 2~a!#. A similar idea has been recently implement
within the jellium model framework by Ibach and Schmic
ler to calculate the step line tension on a metal electr
surface.20 An alternative development within the embedde
atom method has been suggested by Haftel and Rosen22 and
applied to study the reconstruction of the Au~100! surface.19

A. Thermodynamics

For thermodynamic variables, we take pressurep, tem-
peratureT, and surface areaA0. The latter is understood as
projection of a ‘‘real’’ surface on the surface plane.23 In the
constant-charge mode one additionally has to specify the
cess charge of the surface regionq:

q5Ne2ZNi , ~1!

whereNe and Ni are the number of electrons and ions, r
spectively, andZ is the ionic number~within the current
paper, we only consider elemental crystals!. In the constant-
potential mode, the variableq is replaced with a surface elec
tric potentialE, which is equal to the negative of the chem
cal potentialme of the electrons in the metal:24

E52me . ~2!

The above equation exemplifies a general problem in dea
with charged infinite systems—namely, the choice of the r
erence point to define the energy zero. For neutral surface
charged but finite systems,25 the reference point can be safe
specified at ‘‘infinity’’—i.e. an infinite distance away. Such
choice is no longer satisfactory if a surface is both infin
and charged: the chemical potential as well as the elec
static energy at infinity diverges. A second important requi
ment for a proper definition of the energy zero is that t
reference point must be consistent for the different surfac
otherwise meaningful comparisons cannot be made.

A possible solution18 is to set the electrostatic potentia
ves to zero at some sufficiently large but finite distanceL:

ves~r !uz5L50, ~3!

where thez axis is normal to the surface. This can b
achieved, for example, by placing an oppositely charg
earthed electrode~the reference electrode! at L. The job of
this electrode is twofold:~1! to terminate the electric field
outside, and hence to make its energy finite, and~2! to define
the energy zero independently of the surface conside
Since boundary condition~3! is adopted, the electron chem
cal potentialme becomes the energy required to remove
electron from inside the metal and place it at the planez
5L, where its electrostatic energy is zero by definition. B
6-3
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FIG. 2. ~Color online! ~a! A thermodynamic system considered in our study: metallic surface1reference electrode placed at some fin
distance away. The energy stored in the electric fieldE in vacuum is a part of the total free energy of the system.~b! General setup used in
the supercell calculations. The zero of electrostatic potential is defined by the position of the reference electrodeR, characterized by the
distanceL measured from the center of the charged slab. Electroneutrality of the supercell is achieved by placing a plane of oppos
on the cell boundary. The plane of countercharge need not coincide with the reference electrodeR ~although it does in the present study!.
After the self-consistent DFT calculation is done, the charged plane is removed, Eq.~30!, and the effective potentialve f f is aligned such that
ves(6L)50. ~c! Planar-averaged effective potential of the gold 131 slab, processed as described above. The slab is charged posi
s520.1667e/(surface site). Solid circles indicate the position of atomic layers. The reference electrodeR is at the cell boundary:L
5Lz/2513.61 Å.
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sides its mere convenience, the introduction of the refere
electrode represents a real physical situation, in whic
counterelectrode must be always present. In particular, thE
variable acquires the meaning of the potential bias betw
the reference electrode and the surface of interest@Fig. 2~a!#.

In the ‘‘N5const’’ mode, the most stable surface is t
one which gives the lowest Gibbs free energyG(p,T,A0 ,q)
of the corresponding surface layer. Finding the most sta
surface is, in fact, minimization of a thermodynamic pote
tial with respect to the extent of the surface reconstructior,
which plays here the role of a discrete internal variable.
then introduce the surface excess of the Gibbs free ener

Gs~p,T,A0 ,q!5G~p,T,A0 ,q!2m0~p,T!N0 , ~4!

whereN05Ni is the number of atoms in the surface lay
and m0 is their chemical potential in the bulk of the meta
With the above definitions in mind and assuming that at e
particularr the system is at local minimum and no extern
strain is applied to the sample, the surface excess Gibbs
energyGs of our system can be shown to satisfy~see the
Appendix!

Gs~p,T,A0 ,q!52Eq1gA0 , ~5!
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dGs52SsdT1Vsdp2Edq1gdA0 , ~6!

whereSs andVs are the surface excess entropy and volum
and g denotes the surface energy~the reversible work of
formation of unit area of new surface by cleavage!.26 In the
thermodynamics of solid electrodes the latter is referred to
the superficial work.23

In the constant-potential mode,Gs has to be replaced by
its grand-canonical equivalentJs.18–20Application of the ap-
propriateq-E Legendre transformation leads to

Js~p,T,A0 ,E!5Gs1Eq5gA0 , ~7!

dJs52SsdT1Vsdp1qdE1gdA0 ; ~8!

thus the surface energyg times surface areaA0 is simulta-
neously the thermodynamic potential to minimize in t
constant-potential mode.

If during the reconstructionA0 does not change, compa
ing Gs or Js is equivalent to comparingg5Gs/A0 or g
5Js/A0, respectively.27 From Eqs.~5! and ~7!,

g~p,T,E!5g~p,T,s!1Es, ~9!
6-4
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RECONSTRUCTION OF CHARGED . . . PHYSICAL REVIEW B68, 245416 ~2003!
wheres5q/A0 is the surface charge density. Due to Eq.~9!,
at s50 ~i.e., for a neutral system! both g and g are equal
and coincide with the standard definition of the surface
ergy for a neutral slabg0. Hereafter we shall be referring t
g as the surface excess energy, whileg will be called just the
surface energy.

From Eq.~6! and the definition ofg ands, it follows that

S ]g

]s D
p,T,A0

52E. ~10!

Similarly, from Eq. ~8!, the first derivative of the surfac
energy with respect to the potential bias is

S ]g

]ED
p,T,A0

5s. ~11!

Relation~11! is the Lippmann equation28 ~a particular case o
the Gibbs adsorption isotherm for the case of charge exce!,
where we are using the sign convention thats in Eq. ~11!
measures the surface charge in numbers of electrons:s,0
for positively charged surfaces, Eq.~1!.

The second derivative of the surface energy defines
differential capacitance,4

~]2g/]E 2!p,T,A0
5~]s/]E!p,T,A0

52C, ~12!

and is related to the second derivative of the surface ex
energy as

~]2g/]E 2!p,T,A0
52~]2g/]s2!p,T,A0

21 , ~13!

which is simply a property of the Legendre transformati
~7!.

B. Koopmans’ theorem for a charged metal surface

Koopmans’ theorem for metals states that the relation

me~s50!5«F2ve f f
0 ~`!52f ~14!

is exact.30 Here «F is the position of the Fermi level an
ve f f

0 (`) is the effective potential far from the surface—i.e.
vacuum zero. We shall be using the superscript zero to
note quantities which correspond to a neutral system~except
the work functionf which is a property of a neutral surface!.

For a charged surface, one can specify a reference
for an electron as being at some large but finite distancL
from the surface~Sec. III A!. Then it is possible to ask how
much work is required to take an electron from inside
metal and put it atz5L. The same argument30 of stationar-
ity of the total energy with respect to an infinitesimally sm
perturbation of the electron density can be applied, and
arrives at

me~s!5«F2ve f f~s;L!. ~15!

Ideally, calculatingme from either Eq. ~15! or Eq. ~10!
should give identical results. This has been verified for b
Pt~110! and Au~110! surfaces. The result for Pt is shown
Fig. 3.
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An asymptotic form for anxy-averaged effective potentia
ve f f(s;z) of a surface carrying the charge densitys is given
by a simple electrostatic expression31–33

ve f f~s;z!5ve f f
0 ~z!24ps@z2zc~s!#, ~16!

where zc(s) is the center of gravity of the excess surfa
chargedr(s;z)5r(s;z)2r0(z) of the semi-infinite crystal:

zc~s!5
1

sE2`

1`

zdr~s;z!dz. ~17!

Because of the form of Eq.~16!, zc is often referred to as the
position of the image plane. Substituting Eq.~16! into ~15!
and identifyingv0(L) with v0(`) for a neutral system, one
arrives at

me~s!52f14ps@L2zc~s!#. ~18!

Differentiating the above expression with respect to char
one can find the differential capacitance of the meta
reference-electrode system as

C~s!5F]me~s!

]s G21

5$4p@L2zc~s!2szc8~s!#%21.

~19!

On the other hand, combining Eqs.~2!, ~10!, and ~18!, we
can integrateg to arrive at

g~s!5g02fs14pE
0

s

t@L2zc~ t !#dt, ~20!

FIG. 3. Pt~110!: ~a! electron chemical potentialme as a function
of charge obtained as a position of the Fermi level relative to
potential at the cell edges, Eq.~15! ~circles!, and as]g/]s, Eq.~10!
~lines!. The solid line and solid circles correspond to the 132 re-
constructed surface, the dashed line and open circles correspo
the 131 unreconstructed surface. The vertical dotted line marks
neutral slab: correspondingme are the negative of the respectiv
work functions~Table III!. ~b! Difference of the two curves shown
in ~a!, Dme5me(132)2me(131). Solid circles represent the dif
ference ofme obtained from Eq.~15!; the solid line gives the dif-
ference of the derivatives]g/]s of the respective surface exces
energies interpolated separately. Note that slopes ofme(s) curves
areL dependent (L5Lz/2.12.54 Å here!, whereasDme(s) does
not depend onL. The plots demonstrate that both ways of calc
lating me give similar results. The same level of agreement has b
obtained for the gold surfaces~not shown!.
6-5
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ALEXANDER Y. LOZOVOI AND ALI ALAVI PHYSICAL REVIEW B 68, 245416 ~2003!
where by settings50 we identify the integration constan
g0 as the surface energy of a neutral system. Equations~18!–
~20! can be considered as ageneralization of Koopmans
theorem to charged surfaces.

Expression~20!, in particular, proves to be extreme
helpful in answering the main question of our study: name
how the reconstruction energies depend on charge. Con
two different states of a surface: reconstructeda and unre-
constructedb. In the difference of the respective energies t
dependence onL disappears:

Dg~s![ga~s;L!2gb~s;L!5Dg02Dfs

24pE
0

s

tDzc~ t !dt. ~21!

If we additionally neglect the dependence ofDzc on charge
@Dzc(s).Dzc

0#, then we obtainDg(s) as a quadratic func
tion of s:

Dg~s!.Dg02Dfs22ps2Dzc
0 . ~22!

As we shall see below, the competition between the lin
and quadratic terms largely determines theDg(s) depen-
dence for all the cases considered. Equation~22! tells one
that the linear term favors a state with a larger work funct
for a negative charge (s.0) and the state with a smalle
work function for a positive charge (s,0), whereas the
quadratic term always favors a state having its extra cha
farther away, irrespective of its sign. The latter is usually
case for a reconstructed surface as it becomes atomi
rough ~see Sec. V B 1!. Equivalently, one can say that a r
construction increases the capacitance of the m
1reference electrode system as

DC21~s!524p@Dzc~s!1sDzc8~s!#.24pDzc
0,0.

~23!

So far the above discussion referred to a constant-ch
setup. Transition to the constant-potential mode is straig
forward. From Eqs.~2!, ~9!, and~18!,

g~E!5g014pE
0

s(E)

t@L2zc~ t !#dt2
~E2f!2

4p@L2zc~s!#
,

~24!

where thes(E) dependence can be found from

s@L2zc~s!#5
f2E
4p

. ~25!

In particular, ifzc(s).zc
0 , Eq. ~24! simplifies to

g~E!5g02
~E2f!2

8p~L2zc
0!

. ~26!

In this approximation,
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Dg~E!.Dg02
1

8p
DS f2

L2zc
0D 1

1

4p
DS f

L2zc
0D E

2
Dzc

0

8p~L2zca

0 !~L2zcb

0 !
E 2; ~27!

i.e., at large potential the reconstructed state is again favo
It is important to note that the dependence ofDg on L does
not disappear; in constant-m mode, the distance between th
metal and reference electrode is an essential param
Physically, the reason for this is obvious: differently charg
surfaces generate different electric fields in vacuum wh
energies do not cancel when subtracted.

C. DFT calculations

Theab initio contribution to the above scheme is to obta
the surface excess energyg as a function of the surface
charge densitys5q/A0 at a given external pressurep and
temperatureT. Within the present study, we consider the ca
of zero pressurep50 and neglect all temperature effec
originating from ions, although the temperature is trea
explicitly for the electrons.34

1. General scheme

To find the surface excess energyg, one needs the Gibb
free energy of the surface layerG and the bulk Gibbs free
energy per atomm0:

g~s!5
1

A0
@G~q!2m0N0#. ~28!

m0 can be easily obtained from a standard calculation o
neutral bulk material, whereas findingG is more tricky as it
should be calculated such that the boundary condition,
~3!, in which L is measured from the center of the slab,
satisfied. In addition, if the self-consistent solution of t
Kohn-Sham equations is sought within the supercell
proach, each supercell should be neutral and include
plane of countercharge to neutralize a charged slab@Fig.
2~b!#. In practice, the distribution of the countercharge h
finite width which results in an undesirable contribution
both the energy and effective potential of the cell.

We therefore consider the following steps to findG(q).
~1! We temporarily assume that the reference electrod

at the cell boundary,L5Lz/2.
~2! At each particular value ofq we find the self-

consistent electron densityr(r ) and corresponding effective
potentialṽe f f(r ), the electrostatic part of which satisfies th
boundary condition~3! with L5Lz/2, Fig. 2~c! ~we use a
tilde to mark the quantities which are the output of the el
tronic structure calculations for a neutralized cell!.

~3! The correction due to the finite width of the counte
charge is applied to the effective potential, energy, and
electron chemical potential, Sec. III C 2.

~4! The above quantities are recalculated to any arbitr
L ~if needed!, Sec. III C 3.
6-6



er
hi

u

ne

. I
e

rg

al

-
to

a
od-
lcu-

tance
be

ic

the
ries
i-

rge

u-
ion

to
e

im-
ing

a
of

rk

s
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2. Correction due to the finite width of the Gaussian
charge distribution

We assume that a charged slab is symmetric and cent
aroundz50, whereas the countercharge is distributed in t
sheets on the cell boundary with a Gaussian profile, widtha:

rG~r ![nG~z!52
q

AaAp
(
nPZ

expF2S z2~2n11!Lz/2

a D 2G ,
~29!

whereA is the cell area parallel to thexy plane,Lz is the size
of the cell along thez direction, andq is the charge of the
slab. The width of the Gaussian is chosen to be small eno
to avoid any charge overlap.

We align the electrostatic potential of the Gaussian pla
vG(z) such thatvG(6Lz/2)50:

vG~z!5
2Apaq

A
@h~z!2h~Lz/2!#,

where

h~z!5expF2S z2Lz/2

a D 2G1expF2S z1Lz/2

a D 2G
1ApF S z1Lz/2

a DerfS z1Lz/2

a D
1S z2Lz/2

a DerfS z2Lz/2

a D G .
The effective potential due to the slab only,ve f f(r ), is then
found by subtractingvG(z) from the ‘‘raw’’ effective poten-
tial ṽe f f(r ):

ve f f~r !5 ṽe f f~r !2vG~z!. ~30!

If a is small enough~i.e.,Lz /a@1), vG(z) is flat everywhere
in the cell apart from the small region near the cell edges
particular,vG(z) is constant in the region occupied with th
charged slab which ensures that after correction~30! the po-
tential ve f f remains self-consistent.

The corresponding correction to the electrostatic ene
of the slabEes is

Ees5Ẽes1A2p
aq2

A
, ~31!

whereẼes is the electrostatic energy given by supercell c
culation.

In accordance with Eq.~30!, the electron chemical poten
tial me calculated as a position of the Fermi level relative
the electrostatic potential at the cell boundary@i.e., by using
Eq. ~15!# can be obtained from the ‘‘supercell’’ onem̃e as

me5m̃e1
2Apaq

A
. ~32!
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3. Correction due to the reference plane position

This type of correction might be useful, for instance, if
particular position of the reference electrode has to be m
eled, or, simply, if the surfaces to be compared were ca
lated using supercells of different size alongz. So far we
assumed that the reference electrode is placed at the dis
L5Lz/2 measured from the center of the slab. This can
recalculated for any arbitraryL as

Ees~L!5Ees~Lz/2!1
pq2

A S L2
Lz

2 D , ~33!

me~L!5me~Lz/2!1
2pq

A S L2
Lz

2 D , ~34!

whereEes(Lz/2) andme(Lz/2) are given by Eqs.~31! and
~32!, respectively~remember our sign convention:q gives
the ‘‘electron charge’’ of the slab—i.e.,q,0 if the slab is
positively charged!.

Formulas~33! and~34! are valid as long as the electron
charge density in the vacuum space betweenz5L and z
5Lz/2 is negligible. As we have already assumed that
electronic charge density of the slab at the cell bounda
z56Lz/2 is vanishingly small, this condition is automat
cally satisfied for anyL.Lz/2. If a smaller value ofL is
necessary, then some explicit modeling of the countercha
distribution might be recommended.

D. Reconstruction energy

In this section, we summarize for convenience the form
las of Sec. III C specifically for the case of the reconstruct
energy calculations. Suppose that theab initio simulation has
been performed for two symmetric slabsS8 and S9, repre-
senting two~differently! reconstructed surfaces, and refers
the situation in which the reference electrode is at distancL
from the center of the slabs. The slabs containN08 and N09
atoms per periodic unit, which need not be equal. For s
plicity, we assume that the both calculations were done us
the same supercell dimensionsA3Lz ; thus the surface are
A052A. As before, we assume that the electroneutrality

TABLE I. Pt~110! neutral surface: convergence of the wo
functionf and surface energyg0 with respect to the slab width.Nat

is the number of atoms per supercell:Nat516(20) corresponds to
the 8~10! layer slab for the 131 surface and to the 9~11! layer slab
for the 132 surface.DN gives the difference between quantitie
corresponding to 16- and 20-atom slabs;D rec is the difference be-
tween quantities corresponding to 132 and 131 slabs.

f ~eV! g0 (meV/Å2)
Nat 16 20 DN 16 20 DN

132 5.708 5.666 0.042 147.9 147.0 0.9
131 5.523 5.474 0.049 154.9 153.8 1.1
D rec 0.185 0.192 20.007 27.0 26.8 20.2
6-7
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TABLE II. Experimental and theoretical equilibrium bulk lattice constanta0, work function f, and surface energyg0 of Pt~110!:
unreconstructed (131) and reconstructed (132). In addition, the relaxationErel and reconstructionDg0 energies are also listed:Erel is the
energy gain due to the relaxation of the surface atoms from their bulk truncated positions; the reconstruction energy is defined aDg0@(1
3m)→(13n)#5g0(13n)2g0(13m), Eq. ~35!.

Method LDA or a0 ~Å! f ~eV! g0 (meV/Å2) Erel (meV/Å2) Dg0 (meV/Å2) Ref.
GGA? (131) (132) (131) (132) (131) (132) (131)→(132)

Experiment 3.92 5.84a ~137.5! b ,0
Sutton-Chen 3.92 67.6 66.6 21.0 43
Potentials 3.92 68 67 21.0 44
EAM 3.92 109 45
SEAM 3.92 212.1 46
MEAM 123.7 9.6 47
TB 3.90 185 48
SKKR LDA 6.10 49
LCAO LDA 3.89 5.54 172 50
LMTO-FCD GGA 4.019 176 51
Plane-wave GGA 3.968 5.39 112 14 9.4 52
Pseudopot. GGA 3.97 28.7 53

GGA 3.940 100 92 28 54
LDA 3.940 5.52 5.71 155 148 11 12 27 Present

study

aReference 41.
bPolycryst., Ref. 42.
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the cell is maintained by thin sheets of countercharge wit
Gaussian half-widtha placed between the periodic images
the slab.

On the output of the calculations, one has the Gibbs f
energy of the system as a function of the slab charge,G̃8(q)
andG̃9(q), and the electron chemical potentials,m̃e8(q) and

m̃e9(q). These quantities are those taken directly from
supercell calculations; i.e., no electrostatic corrections h
yet been applied. To decide which of the surfaces is m
stable one has to find the sign of the difference of the
evant thermodynamic function of the both slabs. In consta
charge mode, this is the difference of the surface excess
ergiesDg at given chargeq ~or surface charge densitys
5q/2A):

Dg~s![g8~s!2g9~s!5
1

2A
@DG~q!2m0DN0#, ~35!

whereDG(q)5G̃8(q)2G̃9(q) andDN05N082N09 .
In constant-potential mode, one needs first to obtain

potential biasE between the slabs and the reference electr
as a function of the surface density of the excess charges,

E~s!52m̃e~q!24s@Apa2p~L2Lz/2!#, ~36!

and then invert theE(s) dependence into thes(E) one. The
more stable surface at given potentialE can be then identified
by looking at the sign of the surface energy differen
Dg(E):
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Dg~E![g8~E!2g9~E!5
1

2A
@DG~E!2m0DN0#1EDs~E!

12pFA2

p
a1~L2Lz/2!GDs2~E!, ~37!

where DG(E)5G̃8„q8(E)…2G̃9„q9(E)…, Ds(E)5s8(E)
2s9(E), andDs2(E)5s8(E)22s9(E)2.

Equation~35! shows that the relative stability of the su
faces kept at the same charge can be found using just
‘‘raw’’ energies, G̃(q), as it does not depend onL @cf. Eq.
~21!#. Indeed, the energy of the electrostatic field stored o
side the slab, which entersG̃ implicitly, cancels out if the
surface charge density and the supercell size remain
same.12 This is no longer the case for surfaces kept at
same potential, where some extra charge due to recons
tion ~deconstruction! appears at the surface, the magnitude
which is L dependent, Eq.~36!. Consequently, the electri
field localized between the surface and the reference e
trode becomes different, which contributes to the overall
ergy balance, Eq.~37!.

IV. CALCULATION DETAILS

Free surfaces of Pt~110! and Au~110!, unreconstructed
(131) and reconstructed (132 and 133 for Au and 132
for Pt!, were represented in our calculations by periodica
repeated slabs constructed symmetrically to avoid any
dipole in the supercells. The charge of the slabs was balan
by planes of opposite charge with Gaussian distributiona
50.1 Å) at the cell boundaries.

The lateral dimensions of the supercells were based on
6-8
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TABLE III. Experimental and theoretical equilibrium bulk lattice constanta0, work functionf, and surface energyg0 of Au~110!: unreconstructed (1
31) and reconstructed: (132) and (133). Definition of the listed quantities is the same as in Table II.

Method LDA or a0 ~Å! f ~eV! g0 (meV/Å2) Erel (meV/Å2) Dg0 (meV/Å2) Ref.

GGA? (131) (132) (133) (131) (132) (133) (131) (132) (133) (131)→(132) (132)→(133)

Experiment 4.08 5.37a ~83.20! b ,0 .0

Sutton-Chen 4.08 40.3 39.7 39.8 20.58 10.14 43

Potentials 4.08 41 41 20.62 44

EAM 4.08 61 45

4.08 59.8 58.0 21.87 55

SEAM 4.08 82.2 26.2 22

MEAM @4.08# 61.7 8.0 47

TB 4.06 115 48

SKKR LDA 5.86 49

Mixed-basis LDA 4.10 86.1 81.8 3 6 24 6

Pseudopot. LDA 83.0 78.0 77.1 4.4 6.7 7.3 24.9 20.9 56

LDA 86.8 16

LMTO-GF LDA 5.40 111 57

LMTO-FCD GGA 4.198 78.0 51

Plane-wave LDA 4.09 5.41 5.38 37

Pseudopot. LDA 4.051 5.39 5.38 5.32 97 91 92 4 5 5 25 10.3 Present

study

aReference 41.
bPolycryst., Ref. 42.
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equilibrium lattice constants taken from bulk calculatio
~Tables II and III!. Neutral surfaces were relaxed with r
spect to the positions of atoms which were then kept
changed~‘‘frozen’’ ! upon charging. The neglect of the field
induced relaxation is quite common in the calculation
charged surfaces12,35 and is well justified for relatively smal
fields. We shall give a brief account of the effect of th
additional atomic relaxation in Sec. V C. The results p
sented in Sec. V B are for the frozen surfaces, as the neg
of the field-induced relaxation does not affect our conc
sions qualitatively~for small fields also quantitatively!.

In choosing the amount of vacuum, we arranged the
percell boundaries sufficiently far to ensure negligible ov
lap of the tails of electron distribution with the charge
planes. Negatively charged slabs required special atten
as, if the surface charge exceeds a certain value, elec
begin to leave the slab and gather at the plane of oppo
charge. This effect is well-known inab initio calculations:36

it appears when the Fermi level rises above the effec
potential at the plane of countercharge. In our study, the
currence of such electron leakage was controlled by b
checking the electron density profile and the position of
Fermi level. Whenever any leakage was detected, the re
of a corresponding calculation was considered unphys
and removed from a subsequent analysis.

A novel requirement which arises when the energies
charged surfaces have to be compared is that the supe
must be constructed in a consistent manner such that ch
slab widths and vacuum would not introduce any additio
contribution to the total energy. Otherwise this contributio
being of comparable magnitude with typical energy diffe
ences, can lead to artifactual results. As usual, whenever
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a problem appears one needs to consult the experim
which simulations aim to model. In the experiment, the el
trodes are clamped: only surface atoms can rearrange th
selves to form a suitable 13r reconstruction. This led us to
the following setup: 8-layer slabs separated with 10~11! in-
terlayer spacings of vacuum represented the 131 surface of
Pt ~Au! ~two central layers were kept fixed!, while the
132 surface of Pt~Au! was modeled with 9-layer slabs~the
first and ninth layers contained missing rows! having the
layers positioned in between the respective layers of
131 slab~three central layers were kept fixed!. These slabs
were separated with 9~10! interlayer spacings of vacuum
The 133 gold surface corresponded to a 10-layer slab, h
ing 8 central layers aligned with the layers of the 131 slab
~2 central layers fixed!; the amount of vacuum was 9 inte
layer spacings.

To verify the effect of the width of the slabs, a test calc
lation for neutral Pt surfaces was undertaken in which
increased the number of atomic layers but kept the vacu
and other parameters constant. The results of the test~Table
I! estimate the absolute convergence of the work function
0.05 eV, close to the estimation of a finite-size error of 0.
eV given by Fallet al.37 The difference of the work functions
of reconstructed and unreconstructed surfaces conve
much better~0.007 eV!. A similar picture arises for the sur
face energies: the absolute convergence is within 1 meV/2,
whereas the reconstruction energy changes by o
0.2 meV/Å2. Although not exhaustive, these estimates
germane for our later discussion, which relies on the num
cal significance of the work function and surface energy d
ferences.
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ALEXANDER Y. LOZOVOI AND ALI ALAVI PHYSICAL REVIEW B 68, 245416 ~2003!
In the lateral dimension, both the 131 and 132 cells of
Pt were simulated with a (132) unit cell. For gold such a
strategy would be too expensive, as it requires a (136) unit
cell for all surfaces. Instead, we used (131), (132), and
(133) cells to represent respective surfaces, correspo
ingly changing the Monkhorst-Packk-point sampling of the
Brillouin zone—that is, using the 631232, 63632, and
63432 meshes, respectively. For Pt, the 63432 mesh
was employed. Bulk chemical potentials were obtained us
the same supercells as in surface calculations.

The remaining details are as follows: the calculatio
were performed within the local density approximati
~LDA ! using the plane-wave pseudopotential method
implemented in theCPMD code.38 The ionic cores of Pt and
Au were represented by the optimally smooth
pseudopotential39 and the Troullier-Martins pseudo
potential,40 respectively, with a 40 Ry~Pt! and 50 Ry~Au!
plane-wave cutoff energy.

V. RESULTS

A. Neutral surfaces

Tables II and III compare our results for the work fun
tions and surface energies with experimental data and o
calculations. Experimental work functions usually cover
considerable range, as they are sensitive to the cleane
the surface. For both Pt and Au, we list the experimen
values given in the CRC handbook,41 although other data
could be also mentioned. Fallet al.,37 for example, cite lower
experimental results for the work function of Au~110!:
namely, 5.12 and 5.20 eV. In turn, inab initio calculations
the work function fluctuates with the thickness of t
slab.58,59 Within the estimated finite-size error of 0.05 e
~see Sec. IV!, the work functions obtained in the prese
study are in good agreement with those reported in Refs.
50, and 57, higher than in Ref. 52 and significantly low
than in Ref. 49. Our results show that the 131→132 re-
construction increases the work function of platinum, b
leaves the work function of gold almost unaffected. The l
ter is slightly reduced by the 132→133 reconstruction.

Work functions are generally larger for surfaces with
higher surface density of atoms. This is usually interprete
terms of Smoluchowski smoothing60: electrons redistribute
to a certain extent in between the surface atoms, thus lo
ing the surface dipole barrier. Applying this argument to t
case of missing-row reconstruction is less straightforwa
On the one hand, the overall density of the surface ato
does become lower with the reconstruction, which can re
in a lowering of the work function; on the other hand, t
reconstructed surface forms close-packed~111! facets, which
should make the work function larger. Roughly speaki
one can consider the change of the work function as
result of the competition between these two effects: the w
function first increases on~111! facets, but then is lowered
due to the redistribution of the electrons to the regions
tween@ 1̄10# ridges.

Regarding the surface energies, we are not aware of
experimental data corresponding to the~110! surface either
24541
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for Au or for Pt. In the tables, we include an estimation
these for polycrystalline material near the melting tempe
ture, given by Tyson and Miller.42 Extrapolating the surface
energy of gold to zero temperature42 increases the value
listed in Table III up to 93.6 meV/Å2 (1 eV/Å2

516.021 77 J/m2).
The calculated results listed in the tables show some s

ter. Semiempirical methods tend to give lower values th
those obtained from first principles. Comparing the latter
seems important whether or not the generalized gradient
proximation~GGA! is employed. According to Ref. 51, us
ing the GGA usually decreases the surface energy: the e
is small for simple metals and most pronounced in the end
the d series. We however are especially optimistic about
agreement of thedifferencesof the surface energies obtaine
in the present study and in otherab initio
calculations.6,37,53,54,56Regarding the work function differ-
ences, the small number obtained for Au~110!-132 and
Au~110!-131 surfaces in our study,20.01 eV, compares
rather well with the result of Ref. 37,20.03 eV, and also
agrees with the reported61 small difference of the potential
of zero charge obtained in the electrochemical experim
using perchloric acid solution~known for its weak ion ad-
sorption!, '20.02 V.

The parameters of structural relaxation of the conside
surfaces are in reasonable agreement with those obtaine
otherab initio calculations and experimental studies. We
not reproduce these here, but the data are available from
authors upon request.

B. Charged surfaces

1. Constant charge

The dependence of the surface excess energyg on charge
s, after all the necessary corrections having been applied
shown in Fig. 4 for 131 and 132 surfaces of gold. As the
132 curve always lies below the 131 we deduce that the
reconstruction is not lifted. Some general features can
noted about the curves. They cross thes50 line at respec-
tive surface energies of the neutral systems,g0, with slope
(2f), Eq. ~20!. At negative charges~i.e., on thes.0 side!
they approach a minimum, which corresponds tome52E
50, Eq. ~10!. At this point the Fermi level coincides with
the reference zero of energy; i.e., this is a maximum nega
charge beyond which the electrons become free~‘‘field emis-
sion’’!. The curvature is everywhere positive as]2g/]s2

5C21.0, Eqs.~12! and ~13!, whereC is the differential
capacitance of the system comprising the charged sur
and the reference electrode. Both the curvature@Eq. ~19!#
and the position of the minimum@Eq. ~25! with E50] de-
pend on how one chooses the distance between the
trodes~the L parameter!. However, the difference betwee
two curves—and in particular, whether there is a crossove
does not depend onL @Eq. ~21! or ~35!#. The reconstruction
energiesDg(s) for all cases considered are shown in Figs
and 6. As is expected from Fig. 4, there is no crossover
the 132→131 transition in gold@Fig. 6~a!#: a crossover
occurs whereDg changes sign. The 132 surface in Pt is
6-10
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RECONSTRUCTION OF CHARGED . . . PHYSICAL REVIEW B68, 245416 ~2003!
also more stable than the 131 ~Fig. 5!. The only case of
crossover we have encountered is for the 132 and 133
surfaces of gold@Fig. 6~b!#.

It is convenient to analyze the general behavior of
Dg(s) curves in Figs. 5 and 6 in terms of Eq.~21!. At s

FIG. 5. Pt~110! in constant-charge mode: the difference of t
surface excess energies of 132 and 131 surfaces,Dg5g(132)
2g(131) ~solid line with open circles!, and its approximation with
linear~dash-dotted line! and quadratic~dashed line! terms, Eq.~22!.
NegativeDg means that the 132 surface is more stable. The ve
tical dotted line indicates the neutral surface. The slope of the
gent line gives the correct trend, whereas the second-order app
mation ~dashed line! satisfactory describesDg(s) up to usu
.0.05ueu per surface site. The plot indicates no lifting of the reco
struction, asDg(s) never crosses zero.

FIG. 4. Surface excess energyg of Au~110!, Eq. ~28! ~constant-
charge mode!: 132 reconstructed~solid circles!, and 131 unre-
constructed~open circles!. Solid and dashed lines represent a po
nomial fit for the 131 and 132 surfaces, respectively. Respecti
curve for the 133 reconstructed surface is hardly distinguisha
from that of the 132 surface on the scale of the plot. Vertical lin
denotes the neutral surface. Theg(s) curves approach a minimum
at me52E50; their curvature is the reciprocal differential capa
tance 1/C.0, Eqs.~12! and~13!. The plot shows that the missing
row reconstruction is never lifted.
24541
e

50, Dg approaches the difference of surface energies of
neutral systems,Dg0, with the slope (2Df). Hence, the
difference of the work functions correctly describes the tre
at small charges. Inclusion of a quadratic term~dashed lines
in Figs. 5 and 6! appears to be a rather satisfactory appro
mation for Dg(s) in the whole range of charges and pr
vides an almost perfect fit up tousu.0.05ueu per surface site
@in our study 1ueu/(surface site)5138.5mC/cm2 for Au and
146.0mC/cm2 for Pt# which corresponds to electric field
slightly less than 1 V/Å . We thus continue our analysis us
Eq. ~22!, which is Eq. ~21! truncated at the second-orde
term. The coefficients in Eq.~22! are properties of the un
charged systems: the difference of surface energiesDg0,
work functions Df, and image-plane positionsDzc

0 . The
latter is related to the difference of the inverse capacitan

n-
xi-

-

FIG. 6. Au~110!: the difference of the surface excess energies
~a! 132 and 131 surfaces and~b! 133 and 132 surfaces
~constant-charge mode!. Notation is the same as in Fig. 5. The plo
show that the 132 reconstruction is never lifted~a!, but becomes
less stable than the 133 reconstruction at a positive charge
20.034e per surface site~b!. Note again that the quadratic approx
mation~dashed line! satisfactory reproduces the behavior ofDg(s)
curves up tousu.0.05ueu per surface site.
6-11
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ALEXANDER Y. LOZOVOI AND ALI ALAVI PHYSICAL REVIEW B 68, 245416 ~2003!
as D(1/C0)524pDzc
0 . Therefore, if the surface energ

work function, and capacitance~or image-plane position! for
neutral systemsare known or can be reasonably estimat
the behavior of the charged ones can be predicted in muc
the experimentally relevant range. A similar procedure
used in electrochemistry where theg(E) dependence is re
stored by means of the double integration of theC(E) curve,
taking the potential of zero charge as a substitute for
work function.62

Another feature seen in Figs. 5 and 6 is the negative
vature of allDg curves, which means that large charges
pear to favor a more reconstructed surface. In terms of
~22!, this is to say that a reconstruction should always mo
the image plane outwards or, equivalently, to increase
capacitance of the metal-surface–reference-electrode
denser. To understand the reasons behind this, we exa
the redistribution of the excess charge density near the
face. This is shown in Fig. 7 for gold surfaces. The tende
for the excess charge to accumulate mainly on top of
surface atoms is clearly seen in the plots; the same trend
been noted in previous work.12,63,64 Upon reconstruction, a
surface becomes atomically rough, which means that s
atoms move farther toward vacuum. The screening cha

FIG. 7. ~Color online! Location of excess charge at Au~110!
surfaces:~a! 131, ~b! 132, and~c! 133. Surfaces are charge
positively with s520.052e per surface site. Contours start
6531025e/a.u.3 and are drawn with an increment of 1024e/a.u.3.
Red solid and green dotted contours correspond to positive

negative charge, respectively. The sectioning plane is (112̄). Black
dots show the positions of the ions. The buildup of the exc
charge on top of the surface atoms contributes tos2 terms in the
electrostatic energy and favors a surface with a more extende
construction. Same type of plots holds for negatively charged
faces.
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can redistribute itself to the top of these atoms and thus b
efits in moving a certain distance along the electric fie
lines. The resulting energy gain is proportional tos2 and
always favors reconstruction at sufficiently large charge. T
same idea can be expressed in a simpler way: a reconstru
surface possesses an enhanced freedom in arranging it
cess charge along the surface normal to minimize the sur
energy.

Being essentially electrostatic, the above argument sho
be equally applicable to other phenomena dealing with
outward displacement of part of the atoms on the interato
distance scale. This can be compared to the results of Fe
man’s recent calculations of adatom diffusion on Pt~100! in
electric fields.36 It was found that the farther an adatom lie
from the surface, the faster its binding energy decreases
field.

To summarize, at small charges the effect of the cha
follows the difference of the work functions, which can be
either sign. At larger charges, the more extended reconst
tion is always favored. Overall, the effect of the charge is
sufficient to cause a reconstruction~by the exception of 1
32→133 transition in gold where the energy difference
indeed very small!. A similar picture arises in constant
potential mode, which we consider next.

2. Constant potential

In Fig. 8 we plot the surface energyg(E) curves for the
131 and 132 surfaces of gold—i.e., analogous to tho
shown in Fig. 4 but in constant-potential mode. In acc
dance with Eq.~11!, the curves are a maximumg0 at the

nd

s

re-
r-

FIG. 8. Au~110!: surface energyg as a function ofme52E
~constant-potential mode!. Solid circles and dashed line correspon
to the 132 reconstructed surface; open circles and solid line c
respond to the 131 unreconstructed surface. Vertical dotted lin
denotes the neutral 132 surface. The curves are a maximum f
respective neutral surfaces; their curvature is the negative of
differential capacitanceC, Eqs.~12!. Both the curvature ofg(me)
and the range ofme depend on parameterL ~here L5Lz/2
.13.61 Å). Note that at large potentialg becomes negative, indi
cating system instability.
6-12
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RECONSTRUCTION OF CHARGED . . . PHYSICAL REVIEW B68, 245416 ~2003!
potential corresponding to neutral surfaces~the ‘‘potential of
zero charge’’ in electrochemistry!. The curvature of the pa
rabolas is negative, in agreement with Eq.~12!. The appro-
priate second-order approximation of the surface energ
given by Eq.~26!.

An interesting new feature can be noticed in Fig. 8:
some stageg becomes negative. This implies an instabil
of the system to create more surface. From a naive poin
view such an effect seems natural: extra charge in me
always resides at the surface and hence produces electro
repulsion which should sooner or later overcome the cos
creating a new piece of surface. In practice, however,
type of instability will compete with another process leadi
to surfacedestruction: under the influence of a sufficientl
large electric field charged ions start to escape from the
face. The latter phenomenon is well known~and extensively
used! in field ion microscopy~FIM! experiments. In particu-
lar, this is exactly the way to prepare a~metastable! unrecon-
structed Pt~110! surface for low-temperature experiments.65

The behavior ofDg(E) curves~Figs. 9 and 10! is very
similar to that ofDg(s) described previously~Figs. 5 and
6!. The curvatures ofDg and Dg are of the same sign b
virtue of Eq.~13!: sinceC is positive,DC21.0 if and only
if D(2C).0. An important question is, however, wheth
the g(s) curves and the respectiveg(E) curves always in-
tersect simultaneously. Indeed, this is precisely the case
all the systems considered here. But is this a general p
erty? On the face of it, one might be tempted to say no, si
in the constant-potential mode the reconstruction ener
areL dependent, whereas in the constant-charge mode
are not. Perhaps, the similarity which we observe is sim
due to the closeness of the work functions of reconstruc

FIG. 9. Pt~110!: the difference of the surface energiesDg of the
132 and 131 surfaces~constant-potential mode! for L5Lz/2
.12.54 Å. Contrary to the constant-charge case,Dg is L depen-
dent: Equations~36! and ~37! describe how to recalculate it from
oneL to another. The vertical dotted line indicates the position
the neutral 132 surface. Note the similarity in the behavior of th
Dg andDg curves~the latter is plotted in Fig. 5!. In particular, the
Dg plot does not show any lifting of the reconstruction in consta
potential mode either.
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and unreconstructed surfaces? The correct answer is h
ever, yes, but this is only half of the answer. We brie
consider this interesting issue in the next subsection.

3. Charge separation

The simplest way to attack the problem is to resort to
quadratic approximations ofDg andDg, Eqs.~22! and~27!.
If g(s) curves intersect in constant-charge mode, the q
dratic ~22! should have a non-negative discriminant. T
same is true forDg, Eq. ~27!. After some tedious but
straightforward algebra, one does arrives at the result
both discriminants are of the same sign, provided thatL
2zc

0) is positive~as it must be!. Other dependences onL in
the ‘‘constant-potential’’ discriminant disappear, thus reso
ing the apparent paradox.

f

-

FIG. 10. Au~110!: the difference of the surface energiesDg ~a!
of the 132 and 131 surfaces~i.e. those shown in Fig. 8! and~b! of
the 133 and 132 surfaces~constant-potential mode!. Notation is
the same as in Fig. 9. Note again the similarity between this fig
and Fig. 6, including presence or absence of the crossover.
6-13
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ALEXANDER Y. LOZOVOI AND ALI ALAVI PHYSICAL REVIEW B 68, 245416 ~2003!
The above answer turns out not to be only restricted
quadratic approximations, but to have a rigorous thermo
namic reason. Suppose there is a crossing between twog(s)
curves corresponding to two different surfaces in consta
charge mode, such as we found for the 132→133 transi-
tion in gold or 131→132 reconstruction in silver, as re
ported by Fu and Ho.12 What happens to the system if th
crossover chargesc is reached? The thermodynamical
stable state in this case should be amixture of two phases
defined by a common tangent line drawn to the twog(s)
curves. The slope of the tangent line gives the point at wh
g(E), the Legendre counterparts ofg(s), intersect. This is
akin to textbook examples considering the equilibrium
liquid-vapor mixture either at constant volume or const
pressure. Charge is an extensive variable and plays her
role of volume.

In the above reasoning we have neglected the energ
phase boundaries and possible interactions between dom
of reconstructed surfaces. The former in fact defines the s
on which the phase separation takes place. Concerning
latter, it has been demonstrated by Vanderbilt66 that the long-
ranged domain-domain interaction always favors the ph
separation due to its 1/r 3 falloff.

To summarize, the behavior of surface energy differen
Dg(E) in constant-potential mode is analogous to that of
surface excess energiesDg(s) in constant-charge mode
However, in contrast-charge mode, a phase coexistenc
the two surfaces can occur over a range ofs, whereas in
constant-potential mode, the surface is either fully rec
structed or unreconstructed depending ofE, except if one
happens to lie precisely on the phase coexistence line,
fined by the crossover conditionDg(E)50.

C. Field-induced surface relaxation

All the results mentioned so far have been obtained
glecting any additional atomic relaxation which can
brought upon by the surface charge. The effect of this
proximation has been checked for the gold surfaces. As
been previously noted by Lam and Needs,32 in large electro-
static fields, slabs dilate. We have obtained a similar res
up to surface charges of (0.1–0.15)ueu/~surface site! which
correspond to fields of about 2 V/Å , the effect of the expa
sion is negligible. Thereafter it grows rapidly and its effect
to favor a more extended reconstruction. This is dem
strated in Fig. 11 in which we compareDg obtained with and
without the field-induced relaxation. Overall, the inclusion
relaxation makes the preference of a reconstructed surfa
higher charges even more pronounced. The reasons for
behavior can be understood using the same electrostati
gument: atoms~essentially, ions! on reconstructed surface
experience higher field due to the local enhancement ef
and hence move farther. A related result was obtained
Neugebauer and Scheffler67 who studied Na adatom on th
Al ~111! surface. They found that an electric field causes
outward displacement of the adatom which makes differ
adsorption sites~fcc hollow and on-top positions! nearly de-
generate in energy at the electric field of 0.4 V/Å .
24541
o
y-

t-

h

f
t
the

of
ins
le
he

se

s
e

of

-

e-

-

-
as

lt:

-

-

f
at
ch

ar-

ct
y

n
t

If one continues to increase the charge on the surface,
certain point the ions begin to escape, leading to field eva
ration. This instability first arises for the 133 surface, then
at higher field for the 132 surface, and finally for the unre
constructed 131 surface.

VI. CONCLUSIONS

In this paper we discuss general behavior and report
culation results of surface energyg ~constant-potential
mode! and surface excess energyg ~constant-charge mode!

FIG. 11. Au~110!: the reconstruction energyDg as a function of
the surface charges ~a! for the 131→132 transition and~b! for
the 132→133 transition. Dashed lines and solid circles corr
spond to surfaces initially relaxed ats50 and then kept ‘‘frozen’’
~same as in Fig. 6!; solid lines and open circles represent the s
faces fully relaxed in an external field. The plots show that
effect of the field-induced atomic relaxation favors the surface w
a more extended reconstruction.
6-14
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RECONSTRUCTION OF CHARGED . . . PHYSICAL REVIEW B68, 245416 ~2003!
of reconstructed and unreconstructed~110! charged surfaces
of platinum and gold.

~i! By the surface excess energyg we understand the en
ergetic excess of a surface region~possibly carrying some
charge! over the equivalent amount of~neutral! bulk mate-
rial. This energy includes the energy stored in the elec
static field outside the surface up to a certain reference pl
where we imagine having an ideal earthed opposit
charged plane, the reference electrode. The distance to
reference electrode is characterized by an additional~arbi-
trary! parameterL. Hence,g is the Gibbs free energy~per
unit surface area! of a condenser. In constant-potential mod
the grand-canonical equivalent ofg is needed:g5g1Es. In
our study, we callg the surface energy; in the thermodynam
ics of charged electrodes,g is referred to as the superficia
work and indeed has the meaning of the surface energy~‘‘the
reversible work of formation of new surface by cleavage’’23!.
There is a potential source of confusion regardingg andg, as
both reduce to the surface energy in neutral systems.

~ii ! Combining the thermodynamic approach with Koo
mans’ theorem~generalized to charge metal surfaces! allows
one to express the surface~excess! energy of a charged sys
tem through the surface energy and work function of a n
tral system and a position of the image plane. This allo
one to access some general properties ofg(s) andg(E) and
their differencesDg(s) andDg(E). In particular, the depen
dence of reconstruction energies on charge can be un
stood as a competition between the linear ‘‘work-functio
and quadratic ‘‘image-plane’’ terms.

~iii ! In all the cases considered, the behavior of the rec
struction energy is close to parabolic, especially in the reg
usu<0.05ueu per surface site. At sufficiently large charges t
quadratic ins term always favors 13r reconstruction with
larger r. The reason for this appears to be of electrosta
origin: on the reconstructed surface, the screening charge
move farther along the lines of electric field, bringing upon
decrease in energy, quadratic ins. The effect can be viewed
as an increasing of the capacitance of the slab—refere
electrode system or as moving of the image plane outwa
with reconstruction.

To first order in surface charges, adding electrons favors
a surface with a larger work function. This conclusion do
not support the statement discussed in the Introduction@add-
ing electrons favors the~more! reconstructed surface#: they
would have been equivalent if the reconstruction had alw
increased the work function. Such a correlation is not es
lished at present; according to our results, Au represen
counterexample.

~iv! The behavior of the energy difference curves
constant-charge and constant-potential modes is qualitati
similar. In particular, if they cross zero in one mode, th
should do so in the other mode as well. In our calculatio
this was only observed for the 132→133 reconstruction in
gold. For 132 surfaces of either Au or Pt, which are mo
stable than the 131 surfaces, the reconstruction can in pri
ciple be lifted only in the linear regime. However, the effe
of the surface charge is not sufficient to overcome the ene
difference and to lift the reconstruction.

~v! Finally, by analogy with the thermodynamics of bu
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coexistence, we note here the remarkable possibility of
phase coexistence~in constant-charge mode! of two differ-
ently reconstructed surfaces carrying unequal density of
face charge, such that their integrated surface ener
match. A possible candidate for this could be a 132→1
33 transition in gold although the respective energy gain
rather small. Fu and Ho’s results12 on Ag~110! can be taken
as a clue in looking for another system.
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APPENDIX: THERMODYNAMIC POTENTIALS
OF A CHARGED SURFACE IN CONSTANT-

CHARGE AND CONSTANT-POTENTIAL MODES

In this appendix we present a detailed derivation of E
~2! and ~6!–~8! from Sec. III A.

1. Definitions and basic relations

We shall be referring to a system which consists o
surface layer, possibly charged, and an oppositely char
thin plane in vacuum atz5L @Fig. 2~a!#, where thez axis is
normal to the surface. The energy of a neutral system d
not depend on the zero of energy. It is convenient to de
the energy zero by setting the electrostatic potential to zer
z5L, Eq. ~3!. As natural variables, we consider pressurep,
temperatureT, and surface areaA0. Any strain effects are
neglected here, although can be incorporated along the l
of Ref. 29.

In the ‘‘N5const’’ mode, we choose the number of ion
Ni , and electrons,Ne , as additional variables. The Gibb
free energyG(p,T,Ni ,Ne ,A0) is then an appropriate ther
modynamic potential for our system. Thinking of the ele
trons and ions of the system as certain species,24 we shall
formally treat G in the same way as in multicompone
crystals,68 namely,

G5meNe1m iNi1gA0 , ~A1!

whereg is the surface energy. Infinitesimal changes in t
Gibbs free energy are given by

dG52SdT1Vdp1m idNi1medNe1gdA0 . ~A2!
6-15
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Equation ~A2! can be taken as the definition of the lay
quantities: the entropyS, volumeV, chemical potentialsme
andm i , and the surface energyg. In particular, the chemica
potential of electronsme can be found as

me~p,T,A0 ,Ni ,Ne!5S ]G

]Ne
D

p,T,A0 ,Ni

~A3!

and similarly for the ions. The physical meaning ofme is the
minimal work required to remove an electron from inside t
slab and put it at the reference plane atz5L, where its
energy is zero by virtue of Eq.~3!. For neutral surfacesme
becomes the negative of the work functionf provided that
the planez5L is sufficiently far away in vacuum, which w
assume is always the case. Hence,me is a well-defined quan-
tity. This conclusion equally applies tom i .

In the ‘‘m5const’’ mode the system is allowed to hav
variable number of electrons such as to bring the Fermi le
to a desired position. Hence a grand-canonical descriptio
suitable. The relevant thermodynamic potentialJ can be con-
structed fromG by means of the Legendre transformation

J~p,T,m i ,me ,A0!5G~p,T,Ni ,Ne ,A0!2meNe2m iNi

5gA0 ~A4!

or, in differential form,

dJ52SdT1Vdp2Nidm i2Nedme1gdA0 , ~A5!

where we used Eq.~A1! in the second equality in Eq.~A4!.
The Gibbs-Duhem equation reads

A0dg1SdT2Vdp1Nidm i1Nedme50. ~A6!

2. Charge-potential variables

The rather general consideration above can be simpli
if one takes into account some additional properties spe
for the system and species under consideration. First of
up to the present point we have treated the variablesNe and
Ni as independent. However, it will be recognized that
chemical potentials of electrons and ions are related:

Zme~p,T,Ni ,Ne ,A0!1m i~p,T,Ni ,Ne ,A0!5m0~p,T!,
~A7!

wherem0 is the chemical potential of the neutral atom. Equ
tion ~A7! expresses the fact that removing a nucleus
chargeZ, together withZ electrons, amounts to removing
neutral atom from the bulk, and the workm0 required to do
so is independent of the surface charge.

Relation ~A7! represents an additional constraint on t
thermodynamic variables. A simple way to take it into a
count in the constant-charge mode is to change the varia
from (Ni ,Ne) to (N0 ,q):

Ni5N0 , Ne5q1ZN0 , ~A8!

whereq has the meaning of uncompensated~surface! charge
andN0 is the number of atoms in the surface layer.

In new variables, Eq.~A2! takes the form
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dG52SdT1Vdp1m0dN02Edq1gdA0 , ~A9!

where the chemical potential of the neutral atomsm0 and the
potential biasE are related tome andm i as

me52E, m i5m01ZE. ~A10!

The first equation in Eqs.~A10! is Eq. ~2! of the main body
of the paper~a derived result, not an assumption!. The sec-
ond equation gives the desired property~A7!; in addition,N0
andq are now fully independent variables.

A second useful property we wish to incorporate into t
theory is the assumption that the surface layer is in equi
rium with the underlying bulk material.69 According to the
Gibbs phase rule, this should reduce the number of deg
of freedom~or the number of independent variables! by 1.
Indeed, consider the Legendre transformation

Gs5G2m0N0 ~A11!

followed by the application of the Gibbs-Duhem equation
the bulk crystal,

dm052s0dT1v0dp,

wheres0 andv0 are the bulk entropy and volume per atom
This eliminatesm0 as an independent variable, leavingp, T,
A0, andq. In this way, we arrive at

Gs~p,T,A0 ,q!52Eq1gA0 , ~A12!

dGs52SsdT1Vsdp2Edq1gdA0 , ~A13!

where Ss5S2N0s0 and similarly for Vs. The quantities
marked with superscripts ~calculated per the interfac
unit area! aresurface excesses,23,68 the reference componen
being the neutral atom. From Eqs.~A12! and ~A13! one
can easily obtain the Gibbs-Duhem equation in n
variables:

A0dg2qdE1SsdT2Vsdp50. ~A14!

Instead of repeating the whole derivation in the consta
potential mode, one can take advantage of a convenient f
of our previous expression forJ, Eq. ~A4!, and use the
Gibbs-Duhem equation~A14! to arrive at

Js~p,T,A0 ,E!5J~p,T,A0 ,E!5gA0 , ~A15!

dJs52SsdT1Vsdp1qdE1gdA0 , ~A16!

where the first equality in Eq.~A15! recognizes the fact tha
grand-canonical potentials are simultaneously the surface
cess grand-canonical potentials.

Equations~A12! and ~A13! are Eqs.~5! and ~6! from the
main body of the paper, whereas Eqs.~A15! and ~A16! co-
incide with Eqs.~7! and ~8!, respectively.
6-16
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