PHYSICAL REVIEW B 68, 245406 (2003

Phonon transport in nanowires coated with an amorphous material:
An atomistic Green’s function approach
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An approach is presented for the atomistic study of phonon transport in real dielectric nanowires via Green’s
functions. The formalism is applied to investigate the phonon flow through nanowires coated by an amorphous
material. Examples for a simple model system and for real Si nanowires coated by silica are given. New
physical results emerge for these systems, regarding the character of the transition from ballistic to diffusive
transport, the low-temperature thermal conductance, and the influence of the wire-coating interface on the
thermal transport. An efficient treatment of phonon scattering by the amorphous coating is also developed,
representing a valuable tool for the investigation of thermal conduction through amorphous-coated nanowires.
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[. INTRODUCTION their length coated by a silica layer. Three main phenomena
are investigated.

The problem of phonon transport through dielectric wires  (a) The transition from ballistic to diffussive transport
of nanometer thickne$ss of special interest at present, since Explicit curves of how this transition takes place are shown,
accurate measurements of thermal conduction in these syas a function of frequency and coated length.
tems begin to be availabfe® Theoretically, this problem has (b) The low-temperature conductande is found that a
been considered by different approaches. Some of these agphenomenon similar to the dip occurring in rough-edge un-
the Boltzmann transport equati¢BTE),> Molecular dynam-  coated wires! occurs also in amorphous-coated wires, al-
ics (MD),%” and the transmission function approdcf®The  though displaying some differences with respect to the
BTE has been succesfully used in nanowire transport at higformer case.
temperatures, for systems where the resistive length of the (c) The effect of the wire-coating interfac&/e find an
wire is long enough for the transport to be diffusive. Molecu-interesting saturation effect as a function of the coupling
lar dynamics has the advantage that it can accurately corstrength between the atoms at the interface. We also show the
sider the anharmonic interactions between the atoms. MImportant influence of the interatomic link number and con-
was applied to nanowires in Ref. 6, for example. It is nonefiguration on the phonon transmission.
theless difficult to study low temperatures using MD, since it Our approach is different from other studies in many re-
provides a classical description of the system. spects, given as follows.

The transmission function approach is very well suited to (1) An atomistic description is used. This is necessary
study cases when phonons flow ballistically or semiballisti-since we are interested in how the atomic structure of the
cally. In the limit of very low temperatures, an elastic con-interface between the wire and the coating affects transport.
tinuum model provides a good description of the phononThis also enables to consider the whole dispersive spectrum,
flow. This model has yielded new insight into the problem ofand not only the lower frequencies. Although excellent ato-
phonon scattering by surface roughness, for example, whemistic investigation of transport through monatomic chains
the transition from ballistic to diffusive transpbrand the was done in Ref. 9, we have not been able to find any other
low-temperature  “dip” in the quantized thermal transmission function atomistic study of larger systems, such
conductanck have been investigated. Transmission functionas the Si nanowires considered here. Despite the method is
approaches have also been successfully applied to study tk@emilar to that of tight-binding electron transport, it is impor-
heat flow through a mesoscopic litka nanocrystat® and  tant to provide a complete and independent derivation of the
monatomic chaind.Despite these excellent works, and un- formulas in the phonon framework, specially for those read-
like the case of electron transport, the use of the transmissioers not familiar with the theory of electron transport. Part of
function approach in phonon transport is still scarce. the paper is devoted to do this in detall.

In this paper we develop a transmission function ap- (2) We present a method that allows us to treat the amor-
proach, and apply it to study a problem that has not beephous overlayer in an efficient manner. As we will see, the
theoretically investigated before: the phonon transport alongresence of the amorphous overlayer introduces a problem of
nanowires in which part of the length is surrounded by aoverwhelming computational demand. We develop a tech-
thick coating of amorphous material. This is an importantnique that is able to yield the thermal conductance in the
problem, since most dielectric nanowires are naturally coatetimit of thick overlayer, with much less computational effort.
by a layer of amorphous materiat® The validity of this approach is explicitly shown with one

After explaining the general formalism, its use is illus- example.
trated by the study of phonon transmission through two con- The structure of the paper is as follows. Section Il ex-
crete systems: a 1ne-dimensionalchain partially coated plains the formalism. An introduction to the transmission
with an amorphous layer and real 3D nanowires with part ofunction concept{Sec. Il A is followed by the core of the
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method, Sec. Il B, where we derive the formulas to compute Hfin 9 1 dw
the phonon transmission function. Afterwards, Sec. Il C de- o= fo :(w)&—T oFolkeT—1 ﬁwz. 2

scribes the specific self-consistent technique that enables us
to treat the amorphous coating surrounding the wires. Seavhere the phonon spectrum extends between frequencies 0
tion 11l shows results for the two examples treated. Conclu-andw ™. Equation(2) is of general validity and involves no

sions are summarized in Sec. IV. approximations(This equation is rigorously derived in Sec.
I B 3.) In the following section we explain ho® is calcu-
Il. METHOD lated exactly for independent phonons.

Scattering causes the conductance to vary with the
nanowire’s length. For 3D systems in the diffusive regime,
the conductance varies inversely proportional to the system'’s

Both the thermal conductivity and the thermal conduc-lengthL. Because of this one usually defines a “conductiv-
tance can be obtained by the same single approach. Let ity,” as
imagine a perfectly harmonic and translationally invariant
nanowire, totally free of defects. The wire is free standing, so _ Lo(L)
that there is no heat leakage from the boundary. The harmo- =7 ©)
nicity assumption implies that, unless there is scattering due . ) .
to disordered defects or impurities, the thermal conductanc¥€res is the sample’s cross section. However, for nano-
of the whole wire would be independent of its length. In thisWires, the length dependence @fcannot be just assumed to
situation, the heat flux associated with a small temperaturB2ve @ 1L form, but needs to be calculated. For shiori

difference AT between the two wire ends is given by the SIUrates (s, For longL the behavior depends on the
sum of the contributions of the individual phononic type of scattering and the wire properties. The transition be-

A. The transmission function in thermal conductivity
and conductance

subband? tween the two limits also constitutes an important problem
(studied in Sec. Il In order to attack these issues, the trans-
wla 9 1 dw,, dk mission function has to be calculated for the atomically de-
Jo=2 f AT 5| a7 | gk t@a®) 5 scribed, nonperiodical, infinite system. The formalism allow-
« 70 ing to do this is explained in the following section.
ofin 4 1 do
=AT§ Jwi;it&_T el (kT 1 h‘”ﬁ’ B. Calculation of the transmission function

. . . 1. Interatomic potentials and th namical matri
wherea labels the phonon subbandsis the wire’s unit-cell cp ' d the dynamical matrix

length, kg is Boltzmann’s constank is the wave vector in The system’s motion is determined by its dynamical ma-
the axial directionw (k) is the dispersion relation of sub- trix, obtained from the interatomic potentials of the systém.
banda, ™" is the lower-(upper) frequency limit of ~ The nondiagonal elements of the dynamical mattixare
the subband, andv is the frequency. We note that the calculated as
phonons inside the wire have a nonequilibrium distribution 9
different from the Bose-Einstein type. As it is clear from the o J°E
second line, it is not necessary to know the dependence of U auiou;”
w, onk, but only the frequency limits of the subband.
The (length independeptthermal conductance for this

4

whereE is the energy and; is the displacement of thigh
degree of freedom with respect to its equilibrium value. The

fimit is then diagonal elements atg; ==, .;—k;; .*°
.y f’”fﬂm 9 1 i dew . The dynamical equation of the system is
Team L | nigT | eFfeT—1]"C 27 @ (0?M+K)U=0. 5

In general, however, one has a nanowire with disorderesvhereM is a diagonal matrix with elements corresponding
scattering sources along a finite length. In such a case we rto the masses of the constituent atoms, ang the vibra-
longer have translational periodicity, and we cannot defindgional frequency. This problem is analogous to that posed by
anything like a “phonon band dispersion.” Nevertheless, thea nonorthogonal Hamiltonian in the case of electrons, if we
concept of transmission channels is still valid. As it wasreplace the energy, Hamiltonian, and overlap, by the square
shown by Landauéf, no matter how scatterers are distrib- frequency, dynamical matrix, and mass matrix,
uted in the system, one can always calculate a transmissigespectively?*-?:
function Z (w), which describes the propagation of quasipar- The presence of matrix M instead of the identity matrix
ticles between two reservoirs connected to the system, witntroduces mathematical difficulties, if Green’s functions are
different chemical potentials. In contrast to translationallyused. The issue has been elegantly dealt with in the theory of
periodic systems, where the conduction channels alwaysonorthogonal tight binding' the “nonorthogonal” problem
yield integer quanta of transmission, now the waves can b& equivalent to the “orthogonal” one
partially reflected resulting in nonintegral transmissions. __

Thus in this case, instead of E(.), we have (0?1 +M~YKM ~Y2)u=0. (6)
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The elements of the “orthogonalized” dynamical matrix el-
ements are explicitly defined as

By

§§2§§

Kij=— O s e S iy
J il
VMiM;
and the dynamic equation is recast as FIG. 1. Nomenclature used in Sec. Il B 3. The semi-infinite
o leads 1 and 2 are projected onto subsetand 3, and the total
(0?l—K)u=0, (8) Green’s function for susbsystem 3 only needs to be computed be-

. . . tween atoms of subsegsandb.
which now can be treated using Green’s function methods.

. this end, we subdivide the whole system into three regions,
2. Local heat current density as indicated in Fig. 1. The two interfaces define four special

We are faced with the problem of calculating the localgroups of atoms labeled, a, b, and 3, as depicted in the
heat flow. The following paragraphs derive the necessarfigure. An atom belongs to one of these groups if there is a
equations. The section following this one will express all thenonzero element of the dynamical matrix linking it to an-
equations in terms of Green’s functions, so that there is n@ther atom on the opposite side of the interface. In what
need to calculate individual wave functions. follows, a bar on top of a symbol, say, indicates the one

Let us consider an arbitrary wav@ot necessarily an column matrix formed by the values ¢f at each degree of
eigensolution u;(t), propagating in the system. The total freedom of the particular group of atoms considered. A pa-

energy can be expressed as a sum over each degree of fregnthesis denotes the subsystem: for exampia) is

dom, E=ZE;, with formed by values of at the atoms of subgrouponly, and
1 M. its dimension is three times the number of atoms.isimi-
Ei:_E > UikijUj+7|Uiz- (9) larly, a bar below the symbol, say, denotes a one row

matrix. We denote the traveling-wave solutions of the total

the local change of energy with time system byCI_>n. The total current in terms of them is then

Using M;u;= —k;;u. ,
using Miu; ijyj given by[see Eq(14)]

is
dg; 1 . . _ wn P
2D U uku)=3 3. (10 3= 20 Ny M @7 (b)kosPn(B)], (16)
The local current between each pair of local degrees of freeWhere,N” is the number of.phonons In state
dom is thus naturally defined as _ Using s_tandard scattering the6?yo_ne can express the
eigenfunctions of the total systerd®, in terms of the re-
(11) tarded Green’s-function matrix of the total syst&rand the
eigenfunctions of the decoupled system at the left of inter-
face 1 (that is, with the coupling betweea and a set to
zerg. Denoting these wave functions for the decoupled sys-
tem as¢(«), one has for the waves propagating fram

ui(1) =Re (1) ]/ VM= $R(1)/VM;, (12 towardsg,

Ui() = —wIm[ ¢i(D ) VMi=—w¢|(H/\M;. (13 $n(D)=GpKaatbn( @), (17

Hence, the current associated with that particular phonon be- bn(B)= Gﬁa’lzaagn(a') = gBBRBbiaEaagn(a)- (18)
tween thei andj local degrees of freedom is

Jij :%(U|k|JUJ_U|k|JUJ)

For a given phonon of frequeney we rewriteu andu in
terms of the complex wave(t)= ye'“!:

whereg,,, andggg are the retarded Green's-function matri-

~ 1) ~ ces corresponding to the decoupled systénes, with k,,
3=l o} - ol )= im(oKy @y, aa  Zg TN pled syste :
Inserting these expressions in the equation for the current
¢ are solutions of the eigenvalue problem, E8). The e have
normalization condition for the phonon amplitude follows
from equating the wave’s energy fiav as Im

3= 75 2 ANyondh (@)KaaGiuknsgseK s CoaKaa bl @)
> | ¢il2=2hlw. (15) 1
! =52 AN, o,
n

3. The total current

: : X Tr[Im{ ¢, * (@)K 1aG Kb 955K 5oGbaKaa) 1,
We now proceed to derive the expression for the total heat TIM{ én( @) bn (@)K eaGapkns9psk prChakaat]
current given exclusively in terms of Green’s functions. To (19
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where the sum extends to all states of the uncoupled sulfer any type of scattering mechanism other than anharmonic-

system 1, and ity (for the role played by anharmonicity, see the Appendix
It is straightforward to include isotopes by varying the mass
ho  etolksT of given atoms; substitutional impurities may be introduced
AN=N"-N"= AT (200 py varying both the mass of selected atoms and the links to

- 2 holkgT_ 1)2
keT" (e"lkeT—1) their neighbors; vacancies would be included by removing

is the occupation difference between phonons traveling forsingle atoms and allowing the system to relax; etc. We might
wards and backwards. thus be tempted to treat boundary scattering in this same
It is not feasible to explicitly compute the eigenfunctions SPirt, by including surface adsorbates or imperfections that
g for a semi-infinite svstem. This can be avoided by ex-c&" lead to effective boundary scattering in the nanowire.
n"- finte Sy ) ; . Y Adding single adsorbed impurities is a rather simple matter,
pressing everything in terms of Green’s functions, which al

P . “but could one consider an amorphous overlayer on the same
low to project semi-infinite systems on the atomic groupstyoting? For example, it is known that Si nanowires are cov-

considered. From the normalization condition, EIp), and  gred by an amorphous Sj@verlayer, several nanometers in
the well-known rge!atlon between Green's function and theyyickness: and it is important to know how this overlayer
density of states] it follows that, at any infinitesimal fre-  affects the phonon scattering. A brute force approach would

quency square intervale, e+ de}, be to input the atomic positions of all constituents in the

5 silica overlayer, as well as the wire, and then calculate the

> wnbn( @) (@) =2—Im[g,.(€)]de, dynamical matrix of the whole system and compute its trans-
n(wﬁe{e,e+de}) - ™ mission.

(22) This procedure, however, is a nearly impossible task in

practice. The added overlayer considerably increases the size
of the system, and it also results in an extremely irregular
transmission function, which has to be computed at a very
hw large number of different frequencies. The integration of
J:f —AN(w)E(w)dw, (22)  such a transmission in E¢2), consequently, becomes cum-
0 2m bersome. To solve these difficulties, we have developed the
~ ~ ~ ~ self-consistenfSC) flux model. This model’s basic idea con-
E(0)=4TKaolM[Gua]KaaGanknsM 951K soGpal, sists in taking the limit of an infinitely thick overlayer. In the
(23)  same spirit of the Bethe lattice approach, as used for amor-

where the transmission functi@(w) has been defined. The Phous ma_terialé? we consider the nanowire connected to
thermal conductance, E€Q), follows straightforwardly from Bethe lattice branches of the amorphous matesek Fig.
Eq. (22). Now we only need to compute Green'’s functians 2). The phonon mean free path in amorphous materials is of

andG, and then use Eq€23) and(22) to calculate thermal the order of the interatomic spacifgTherefore, the lack of
curren’ts. connectivity in the Bethe lattice approach does not represent

a problem. The adequacy of the Bethe lattice approach for
4. Calculation of Green's functions for infinite systems the study of amorphous systems has been investigated in
without translational periodicity Refs. 24 and 25. _ . o _
L ) When the overlayer is substituted by an infinitely thick
The system we are treating is infinitely extended m_theone’ an essential difference appears. Now the self-energies
heat propagation direction, but it does not have translationalggqciated with the overlayer do not correspond to clusters.
symmetry. Therefore, the calculation of Green's funClionStygrefore, they are no longer purely real, but contain a finite
requires the use of projection techniques. The most efficientontinyous imaginary part. In other words, if one calculates
way to obtain the Green’s function of the semi-infinite sys-i,a transmission of the system by E83), part of the pho-
tems 1 and 2 projected at subsystemandf is to use the  on fiyx will be effectively lost through the side branches,
decimation techmqu@, which is based on a'ren(')rmallzatlon since now they are infinite and allow for the current to go
procedure. Afteg,, andgg are calculated in this way, one  5yyay without returning. However, this is not physically cor-
can calculate the total retarded Green’s function of the sySract” for we know that the overlayer is finite and the heat
tem everywhere in subsystem(Big. 1) as current must eventually come back to the wire and escape
— through the contacts. In a steady state, this means that we
2\ — 2 T 2\ _ 2\1—1 ’

Gl =[w—k=Zy(0) = Za(09)] 7 (24 must allow for an equivalent amount of phonon flux to reen-
ter the system through each of the side branches. One may
find a self-consistent solution to this problem in the form of
an iterative procedure. This is indeed not necessary, for the
self-consistent solution can be directly found by an algebraic
method, as we show below.

To clarify the nomenclature in the following discussion, a
general scheme of the nanowire with part of its length coated

If we know the dynamical matrix, the formalism ex- is shown in Fig. 2, left. The represented nanowire is three
plained in the previous paragraphs is capable of accountindimensional, thus each black dot in the figure stands for a

wheree= w?. Using this relation, the expression for the cur-
rent, Eq.(19), becomes

where the self-energy matriX, is defined ak ,,gaaKa, ON
the elements belonging to subsetand zero otherwise, and
3., is defined similarly on subsét

C. Self-consistent flux model for efficient computation
of boundary scattering
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 (1)=0 i=ji—lo (27)
=0 g lio) and it must fulfil
D) ® HD=Hi(1)=jo(1)=]e(n) (28)
h*@ 5'.' because all the flux coming in through node 1 must finally
"(n—l): : exit through noden. Also, there is no flux injection from
Jo | noden, so
L ji(n=0. (29
i#3) All the other modes must fulfill
- : i(h=ji(H—=jo(h)=0, VI#1n. 30
W3 | IO=5=joM) (30
iH2) 5 5 We can express Eq8§28)—(30) in matrix form as
i ; :
—0-9. T ji=Ajo, (3
o2 | with
: (1 0 1)
. Ji(1)
mw? : 0
o o 1 -- 0
FIG. 2. Left: scheme of a linear chain system showing the no- A= O T (32
menclature used in the self consistent flux technique of Sec. Il C.
Right: scheme of 1D wire with Bethe lattices of coordination 4 o060 - 10
attached. kO 0O 0 --- 0 OJ

group of atoms, and each line joining dots stands for a set of On the other hand, the outflowing currents are related to
interatomic links. The dotted line encloses the wire's groupshe injected ones by

of atoms that are coated. Bethe lattices are attached to those _

groups of atoms, as shown in the figure. Phonons enter the jo="T]i, (33
system th_rough group 1 an_d exit at t_he other Igaq _througovhich implies

groupn. First of all, we obtain the partial transmissiviti&s

between every pair of branches in the system, using Z3), T TAI,. (34)

Jo=
4 ~ ~ ~ . = . .
7i'j:NTf[kiiflm[gi'i']ki'iGﬁ kjj Imlg;; 1k Gji1, Therefore, the self-consistent arrgy is proportional to
25) the eige_nvectorvl of TA with eigenvalue 1, such that

_ _ _ _ _ _ TAv,=v,. The existence of eigenvalue 1 is guaranteed by
wherei andi’ label neighboring atomic subsets belonging tothe way we have defined; [Eq. (26)] and by the fact that
the branch and wire, respectively, for the first branch of thecglumns 1 and in matrix ZA coincide.

pair, and equivalentlyandj’ for the second branciN is the The transmission corresponds to the outgoing flux at node

number of degrees of freedom in nodeor j’. (All nodes  n when there is one unit of incident flux per degree of free-
are assumed to contain the same number of atoms for singom in node 1. Thus, imposing(1)=N=j,(1)+j.(n),

plicity.) where the second equality follows from Eg8) gives
We recall that each link to a branch in Fig. 2 may com-
prise interactions with several atoms, in the three geometrical — N —
directions, so Green’'s functions above are matrices. The Jo:mvl (39)

transmissivity from one branch to itself is not defined by the ) o
above formula. Instead, we must define it as the reflectivityand the self-consistent transmission is

—_ _ v1(Nn)
Ti=1-2 7. (26) E=jo(n)=N (36)

i7i vi(1)+ovy(n)’
It can be easily verified that for the uncoated case the

We define the *injected” and “outflowing” flux arraysj; calculation using Eq(36) coincides with that of Eq(23).

andj, as the fluxes coming “into” and “out of” the system | the following section we explicitly demonstrate that the
via its surrounding nodesee Fig. 2 The total flux arrayj SC flux approach yields the same result that the calculation
is then using large clusters attached to the wire. Therefore, the SC
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flux technique is of tremendous importance, since it enables 1
to study the otherwise untractable problem of thermal trans- a) i an AN b)
port through thick-amorphous-coated real wires. 0.8
Ill. RESULTS 0.6
New physics regarding how the amorphous coating influ- 1l
ences the thermal transport through a wire can now be 0.4
learned using the above method: Does the coating affect all T e cluser
frequencies equally or are there important differences in the 0.2

scattering as a function of frequency? Does diffusive trans-
port arise? And, if so, how long a segment has to be coated in
order for transport to diffusive rather than ballistic? How 00 01 02 03 04 050 01 02 03 04 05

does transport depend on the coupling at the wire-coating ((,)/(,)D)z (w/wa

interface? etc.

In the following two sections we present results for two  FIG. 3. Comparison between the transmission calculated by us-
different systems. First, a one-dimensional model, which isng finite clusters as scatterers or the SC flux method with infinite
simple enough to allow for a thorough investigation without Bethe lattices(a) Cluster transmissior{Ten clusters comprising 60
encountering size limitations, and at the same time displayatoms each are attached to the chalin). Thick line—SC flux trans-

many general features that apply to real systems. Afterward#&pission; thin line—the curve ite) averaged in a range of frequen-
we present results for real 3D silicon nanowires. cies around each point. As more atoms are added to the clusters, the

averaged curve approaches the SC flux result more closely.

A. Study of a one-dimensional model where wp=2Kg is the Debye frequency of the infinite 1D

A wide range of interesting phenomena is obtained alatomic chain. Using Eq(2), the dimensionless conductance
ready in the case where there is only one degree of freedogan be evaluated in terms of the dimensionless temperature
per atom, in a linear chain. Bethe lattices with also one deT=(k, /#wy)T and the dimensionless frequency
gree of freedom per atom are attached to a section of the: /4, , as’
chain. The wire’s properties are determined by the value of a o
spring constanK,,. For the Bethe lattices, we assume them 3 (1 _ @2 ewT ~
to be linear chaingi.e., Z=2 in the nomenclature of Ref. o= ?J E(0)z; —==——do. (38)

20), and they are characterized by their spring conskant 0 T (e 1)
The third constant involved is the coating-wire interaction

. . . The dimensionless conductance calculated from the clus-
Kgw connecting the end of the Bethe lattice to the wire.

ter transmission is shown as the thick dashed line in Fig. 4,
1. Comparison between SC flux and cluster calculations as a function of the dime_nsionless temperature. Now this
: curve can be compared with the thermal conductance calcu-
First of all, we provide a particular example that demon-
strates the equivalence between the SC flux calculation, and 0.2
the much more computationally demanding calculation using
large finite clusters for the coating. The transmission was
computed for a system with ten clusters attached to it at ten
consecutive atoms. Each of the clusters is composed of 60
overlayer atoms. The transmission, calculated via(Eg), is
shown in Fig. 8a). We shall refer to this curve as the “clus-
ter transmission.” A large number of closely spaced antireso-

0.15

8/[mk,00,/6]

nances occurs, due to the finite size of the clusters. Thus, the 0.05 | o e et
curve had to be computed at many different frequency Ay A Constant transmission calc.
26
points? o L& , . . .
The transmission given by the SC flux method is shown 0 0.1 0.2 03 04 0.5
as the thicker line in Fig.(®). We shall refer to it as the “SC T/Tho/2mk, ]
flux transmission.” Its smooth shape has little visual resem-
blance with the cluster transmission. FIG. 4. Comparison between the dimensionless thermal conduc-

We can now compute the thermal conductance as a fundance as a function of the dimensionless temperature, calculated
tion of temperature, using both the cluster and SC flux transfrom the cluster transmission(dashed ling and from the SC flux

missions, and compare the results. We define the dimensioff2nsmissiorisolid line). Although the two transmissions have very
less ther;11al conductance as different shapegcf. Fig. 3), the conductances obtained from them

are nearly the same. The conductance obtained frocorestant
transmission function is also showdotted ling to stress the im-
, (37 portant role played by the frequency dependence of the transmis-
T Kpwp sion function.
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lated using the SC flux transmission. Remarkably, the latter 1

yields the thick solid curve in Fig. 4; almost exactly the same

thermal conductance curve than that computed from the clus- 0.8 |

ter transmission. The reason why the two apparently very

different transmissions vyield virtually the same conductance 0.6 |

can be better understood by averaging the cluster transmis-
sion in a range of frequencies, so as to smooth out its struc- 0.4

ture. We have convolved the curve in FigaBwith a trun-
cated Gaussian kernel extendedvy/60 around each point.
The cluster transmission averaged in this way is shown as
the thin line in Fig. 8b), and is very close to the SC flux
transmission. 0 02 04 06 08 1

Thus we see that the transmission calculated with the SC o/,
flux method does indeed yield the same thermal conductance
as if we include the thick coating in the form of large finite  FIG. 5. SC flux transmission as a function of frequency for
clusters. But the SC flux method requires a much smalleinfinite 1D chain, for coated segments of different lengths
computation, because it yields a smooth transmission curvé;=number of lattices attached).
while the cluster calculation needs to evaluate a far larger
number of points in order to account for the closely spacednown dip of Ref. 2. We explicitly show this for Si nanow-
antiresonant structure associated with the finite clusters. ires in the following section.

To quantify the difference between tieal conductance In Fig. 5 we have seen that the shape of the transmission
and the one obtained usingfrequency independetwound- ~ function varies as a function of the coated length. Does it
ary scattering, the latter is also plotted in Fig. 4, as the thirpttain a limiting shape? And, how is this limit reached? This
dotted curve. The value of the constant transmission has bed the subject of theliffusive-ballistic transitionThe way it
fixed to yield the same limiting conductance in the- takes place will become clear from the study of the transmis-
limit as the real conductance curvese inset of Fig. ¥ As  sion as a function of coated length In principle, it is not
the figure shows, important differences between the oversinfbvious what type of length dependence one could expect.
plified constant transmission model and the real transmissiofior pure disorder, for example, an exponential decrease in

calculation exist up to well above the debye temperature. transmission is obtained in_ 1D Systems due to Iocalizéﬁon.
As another example, for wires with rough edges, an anoma-

lous L ~*2 thermal conductance has also been reported under
certain condition§. For amorphous-coated wires, the
Now we proceed to study the behavior of the transmissiorasymptotic behavior turns out to beL ~1, as we now show.
as a function of the different physical parameters in play. Analogously to Ref. 32, we write the transmission as
More concretely, we want to know how the transmission
E=E[1+L/\(L)] L (39
depends on frequenay, coated lengtly, and strength of the 0

interface spring constar(gy. The analysis will Show us g is merely a definition ok (L), and it does not impose
how the system goes from ballistic to diffusive behavior, as 8, |imitations on the form of the transmission. For the
function of these phyS|caI'param§ters. present 1D system, the uncoated wire's transmis&gnis

We setk,, to b_e the unit of spring strength. The_ mass of qual to 1 at all frequencies. Now, the form)afL), plotted
all atomsM is defined also as 1‘_ Frequenqles are in umts %in Fig. 6, tells us the length dependence of the transmission.
VKw/M. The coated length is given in lattice units, being ey physical insight can be gained from this figure. First,
eqm_valent to the number of Bethe Iattllces attached. _ we see thah (L) quickly tends to an asymptotic value. This

First let us take a look at the behavior of the transmission, a4ns that. for amorphously coated wires, the Ibrigehav-
function With.frequency, in Fig. $for Ky /Kg=1 andKBW_ ior of the transmission follows ah~* dependencé More
=1). We notice that the effect of boundary scattering is ©Onterestingly, the length it takea(L) to saturate to its
reduce the transmission rather _umformly throughout th symptotic value becomes longer as the frequency gets
whole frequency range. However, it is appar_esglt_that the usugloser to zero. Physically, this implies that the lowest-
assumption of a constant scattering faté~*’is only a frequency phonons can still travel nearly ballistically for sys-
rough approxm_atl_on to thg rea_l scatterlng. in nanowires. Theg 1, lengths at which higher-frequency phonons are trans-
low-frequency limit behavior displays an important feature: e in an aimost totally diffusive fashion. In a practical
for wires where the coated segment is long enough & in  easurement of nanowire thermal conductivity, this might
the case shownthe transmission neas=0 decreases with 654 o 4 wrong estimation of the low-temperature thermal
increasing frequency. This appears to be the general case, &nductivity, if the wire were not long enough.

we will see in the following section. It has a direct physical | the diffusive regime, we can define a frequency depen-
consequence: the slope of thermal conductance at very l0yant relaxation length.. as the limit

temperatures decreases belowTits0 value when tempera-
ture increases. This fact has been shown to happen also in the Aoo( @)= lim N (w). (40)
case of surface roughness at noncoated Wirabe well- Lo

02 &

2. Study of the transmission function
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FIG. 8. Phonon dispersion relations calculated for bulk Si using
0 . \ \ Harrison’s potential.
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L [no. of B. lattices] the specularity factor is 0, in the Casimir linift.The mini-
FIG. 6. Plot of \(L)=(E,/E—1)"1L as a function of the Mum of\.. obtained thus translates to this limit, and specu-
coated lengtt, for different frequencies\ (L) asymptotically con-  larity increases in both ways around this point as a function
verges to a limiting relaxation length value () for long enough of Kgw-

L.
B. Results for Si nanowires

A very interesting phenomenon arises when we study how The advantage of the atomistic description used in this
this relaxation length depends on the strength of the springner i that we can study wires made of “real” materials. In
constants coupling the wire to the amorphous coating. Weyther words, we are dealing with the real phonon spectrum of
numerically computed\.. at frequencyw=0.0%wp, 8 @ the system: the bands are dispersive and their frequency ex-
function of the wire-coating coupling strength. The result isiensjon is finite, in contrast with the infinitely extended spec-
plotted in Fig. 7. For decreasing values of the wire-coating,,m in a continuum elastic system.

couplingKgyy the relaxation length quickly increases, as €x-  \we proceed to study the transmission of phonons in real
pected. However, if the coupling is made strongeL  sj nanowires, with an amorphous material coating the wire.
reaches a minimum and then it increases again as the Cotthe phonon dispersion relations of Si are fairly well repro-
pling is increased, approaching an asymptotic value. The exjyced with an interatomic potential that includes only two-
istence of thisminimum relaxation lengtisan be interpreted g4 three-body terms. We use Harrison’s poterfidhe ad-

in microscopic terms: there is an optimum value of the cousquacy of this potential for Si is assessed by the satisfactory
pling that maximizes the heat-flow exchange to and from thgjispersion relations calculated with it. We show them for
coating, thus maximizing the scattering. For very weak couy ik Si in Fig. 8. Despite having only two parameters, the
plings the heat-flow exchange reduction is intuitively obvi- shape and position of the bands are in reasonably good
ous. For very strong couplings on the other hand, the ””ke%greement with experimental resuifs’

atoms would behave more like a rigid cluster, thus acting as ~Tpe two-body contribution to the energy is

a hard wall that also confines the phonons to the wire rather

than let them enter the amorphous region. From a macro- 1 (d j—do)2
scopic point of view, the relaxation length is minimum when OB(i,j)= ECo'T (41)
0
2 ‘ ' ' for every pair of nearest neighborsndj, whered, ; is the
distance between the atoms asglis the lattice equilibrium
Z sl distance. The three-body contribution is
21
<
z SE4(i,j,k)=3C1007 (42)
§ by ] for every pair of bonds joining atonisj, andk, whered® is
g the deviation with respect to the equilibrium angle between
Sos the two bonds in the lattice. Constan®=49.1 eV and
C,=1.07 eV are taken from Table 9-1 of Ref. 35.
For the coating we again consider Bethe lattices con-
nected to each vibrational coordinate of the boundary atoms.

0 0.05 0.1 0.15 0.2

K. JK The parameters of the Bethe lattice are chosen to reproduce
BW W

the frequency range of the known density of states of sffica,
- i i.e., 2X 10" Hz. A coordination numbeZ=4 is assumed.
FIG. 7. Phonon relaxation length, as a function of the cou- ' . : ‘ !
pling between the wire and its coating lattices. It reaches a mini¥Ve have considered11) wires of three different widths,
mum and then increases, asymptotically approaching a limitingshown in Fig. 9. The wires are coated by attaching Bethe
value. (In the particular case shown here,=0.05wp and X\ lattices only to the outermost atoms. For th& 2 wire all
—2.7) atoms are at the surface. Thx3 wire has 16 surface atoms
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R ———

.2
FIG. 9. Cross sections of the three Si nanowires studied: “2 /
X2,""3 X3,"and “4x4." 0Ls , , , , ,
0 0.2 0.4 0.6 0.8 1

and 2 core atoms. TheXd4 wire has 24 surface atoms and 8 k [m/a)
core atoms. The phonon dispersion relations for each of then
is shown in Fig. 10.

The procedure for the calculation is as follows. First, the
nanowire lattice is defined, and the dynamical matrix is ob- 0.8
tained for the periodic unit cell, and for the link between two &'
neighboring unit cells. The Bethe lattices are included as & E 0.6
self-energy projected onto their last atom. The self-energy.,
due to the uncoated parts of the wire is calculated in the way &,
of Ref. 22. Then the Green’s function of the system is cal- —
culated[Eq. (24)]. The partial transmissivity between each S
pair of branche$Eq. (25)] is then calculated, and the SC flux
transmissiof Eq. (36)] is computed.

We show how the phonon transmission depends on fre-
quency, for different values of the coated length. Figure 11
shows = (w) as the coated length increases from 0 to 5
coated unit cells. In these curves, all three spatial directions
of each of the surface atoms are attached to Bethe lattices
The qualitative behavior is an overall uniform decrease of
the transmission curve, which maintains the peaks and curvi %
features of the uncoated wire. This is in agreement with the N’
usual assumption of a constant scattering rate. HoweverE 0.
guantitatively the boundary scattering rate is not frequencye
independent, as it is apparent from the relative heights of the = 0.4}
peaks at different coating lengths. In the absence of coating =
the transmission curve at the lower end of the frequency
spectrum has a value of 4. This is always the case, sinct
there are four lowest-frequency branches at all nanowires 7
one dilatational, one torsional, and two flexural brancties. O’O 02 02
The two flexural branches have a quadratic rather than linea k [w/a]
dispersion, as we can see in Fig. 10, being a consequence of
the soft character of those modes. FIG. 10. Phonon dispersion relations for the three Si nanowires

The transmission at the lowest frequency decreases moie Fig. 9.
slowly than that around the first peak-Q0 THz), as the
coated length becomes larger. Thus scattering is weaker féemperature value, thus displaying a dgee Fig. 12 A dip
the lowest-lying modes than for the bulk of transversein o(T)/T has been reported in Ref. 2, and theoretically
modes. This results in a flattening of the transmissioh. as explained in Ref. 11 to be the result of surface roughness
increases. The narrower the wire, the more pronounced thiscattering. In our case of amorphous-coated nanowires we
effect becomes. see that an analogous dip occurs, although the system con-

The low-frequency behavior of the transmission functionsidered here is basically different from that one, and the con-
also has important physical implications. Similarly as whatductance reduction phenomenon cannot be considered to be
we saw in the 1D example of Sec. Il A, for real Si nano- the same one. Some essential differences exist in the case of
wires the transmission function also decreases below its scattering by amorphous coating with respect to the rough-
=0 value for small values of the frequency, and increasesess scattering case. One is that, at zero frequency, the scat-
again as the frequency rises furtlisee inset in Fig. 2 The  tering rate is zero in the case of roughness scattering, while it
result is that, at low, finite temperatures, the thermal conducis different than zero in the case of amorphous-coating scat-
tance divided byT decreases with respect to its zero-tering. As a result, it is possible to measure a conductance

Ny

w\ \\\K
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3x3

FIG. 11. SC flux transmission
for Si nanowires. Left: transmis-
J sion of the 2x2 wire for O, 1, 2,
3, 4, and 5 unit cells coated. Cen-
ter: transmission for the:83 wire
with 0, 1, and 5 unit cells coated.
Right: same, for the %4 wire.

0 0 . . . . . . . .
0 02 04 06 08 1 0 02 0.42 06 08 1 0 02 0.42 06 08 1
w[10" THz] w[10" THz] o [10" THz]

close to four times the quantum of conductance at uncoatedire, the relaxation length becomes of the order of the wire’s
wires, but for wires with a thick amorphous coating the mea-core diameter. On the other hand, if the surface bonds to the
surement will in general yield smaller values at the verycoating are less dense, with one dominant direction and two
low-temperature limit. Another difference pointed out earliermuch weaker links in the other two directions, then the re-
is the exponential decrease of conductance with length in thiaxation length can attain values between two and four times
rough wires, as compared with the inversely proportionakthe diameter. When there is only partial bonding of part of
dependence in the long length limit for amorphous-coatedhe surface atoms, the relaxation length increases further. The
wires. way in which\ approaches its saturation value, is shown

We have also calculated the relaxation length [Eq.  in the inset of Fig. 13. With only one link per surface atom
(40)] as a function of the Bethe lattice coverage, in Fig. 13.(solid curve, it is necessary to coat a considerable length in
The abscissa corresponds to the number of Bethe latticesder to attain the diffusive limit. With more interface links,
attached to each pair of surface atoms of theddnanowire.  the diffusive limit is reached at shorter coated lengths. It is
Since there are three spatial directions, we can attach up tbserved that not only the number of links but also their
six lattices to each of the pairs. We shaw as a function of  orientation has an influence on the relaxation length.
the number of directions attached, for different ways of at- A larger number of interface links does not necessarily
tachment. The directions in which the Bethe lattices are atimply a shorter relaxation length. A fully covered surface
tached, and the number of them, are depicted schematicallyith three links per atom, for example, displays a larger re-
near the points in the graph. The calculation shows that thi&xation length than a surface with only half of the surface
relaxation length is strongly dependent on the character ofitoms directly attached to the coatiffeig. 13. This is an-
the bonding to the coating material. For a densely covered

4
1.8 f as _ ! st
. 6l o
16 | R, 8
i 15 q
14 1 / ] 1
05 . . . 4 r 4
= Y0 002 004 006 008 [ ] 0 . . !
0 12 ®[10° THz] 0 5 1L0 15 20
4,
2 ®’
I )
1 L RS 5
o o5 o "
O L L L
0.8 - - 0 2 4 6
10 10 n

T/T
? FIG. 13. Phonon relaxation lengkh, in 4 X 4 wire at frequency
FIG. 12. Low-temperature behavior of the thermal conductances=16 THz, for different ways of attachment between the coating

divided by temperature, for the>4 nanowire with 5 unit cells and the wire surface atoms, in units of the wire’s diam&efhe
coated, showing a dip similar to the one studied in Ref.(The  scheme near each data point represents the directions in which the
ordinate axis unit is (Gf)h/ké .) Inset: detail of the transmission Bethe branches are attached to each surface pair of atoms. The inset
function 2 (w) at low frequencies, for the 4 wire with 1(dotted ~ shows\ vs the coated lengti. (in unit-cell lengthg, for three
line) and 5(solid line) unit cells coated. particular attachment configurations.
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other manifestation of the phenomenon noted in Sec. Ill A, Itis hoped that the method and results presented here will
where we saw that a very strong interaction between wirdnelp to estimate further atomistic research in the field of
and coating can result in longer relaxation lengths. phonon transmission through nanowires, as well as experi-
mental research on amorphous-coated nanowires.
IV. CONCLUSIONS

We have presented a formalism to calculate the phonon ACKNOWLEDGMENTS

transmission function of an atomically described system. \We acknow|edge Toshishige Yamada, Fuensanta Aroca,
With this formalism we have studied the problem of phononand Jawad Snoussi for valuable comments on the manu-
transport in nanowires with part of their length coated by anscript, and also A. Balandin and P. Schelling for useful dis-

amorphous material. A self-consistent approach, has been dggssions. This work was supported under NASA contract.
veloped that uses Bethe lattices to treat the amorphous ma-

terial. The efficiency of the approach, and its equivalence to
a much more computationally demanding cluster calculation
have been explicitly illustrated via direct comparison by an In one dimension, there is no three-phonon anharmonic
example. scattering, since it is not possible to have a process in which
We have studied two examples of amorphous-coatedll three phonons belong to the same polarization branch.
wires: a 1D model and silica coated Si nanowires. In theTherefore, anharmonicity is not an issue in the first example,
examples studied, specific physical phenomena for coategiven in Sec. Il A.
systems have arisen, given as follows. The role of anharmonicity in the thermal conductivity of
(1) Ballistic-diffusive transitionWe explicitly showed the  Si nanowires has been studied in Ref. 41. For the wires stud-
evolution of the phonon transmission in the transitional reded in Sec. Il B, its influence is negligible. An estimation
gime, beforex (w,L) asymptotically approaches its limiting can be made using the Mathiessen rule. The total relaxation
value. In the limit of long coated length the transmissionlength, expressed in terms of the boundary and anharmonic
attains a 1/ behavior.(In contrast, for rough-boundary un- relaxation lengths, is
coated wires, an exponential decrease with length takes
placel®)
(2) Low-temperature conductanchear» =0, the trans-
mission is found to decrease with respect todits 0 value, Now, \,~D, whereD is the system’s thicknes@round 2
as the frequency is increased. As a result, amorphous-coatéth, for the wires considered hereAlso, \,~c/[1.73
wires display a low-temperature dip in the plot of the thermalx 10 *%(s/K) Tw?e ¥"¥/T], where ¢ is the Si speed of
conductance divided by temperature, having certain similarisound® The role of anharmonicity is largest for the highest
ties with the dip reported for rough uncoated wités. frequencies. But even for the highest frequency available in
(3) Coating-wire interface structure effectd phenom-  Si, ~95 THz, the anharmonic relaxation length at room tem-
enon is found, which is specific of coated wires: as the interperature is still\,~20 nm. This, in the case of the nano-
atomic bonds between wire and coating atoms are madeires of Sec. Il B, using Eq(Al) and the estimate just
stronger, starting from zero, the transmission of a long coatediven for \,,, affects the transmission by less than 10%.
wire [or equivalently,\ (L,w)] decreases, but only up to a (Lower frequencies are much less affectéthe influence on
certain limit; once the bond strength reaches a certain threshihe thermal conductivity is much smaller than this, since
old, the transmissiofincreasesagain as the bond is made high modes contribute significantly less than the lower-
stronger. When the bond strength tends to infinity the relaxenergy modes. Experimentally it has been observed that even
ation length asymptotically saturates to a finite value. Anfor nanowires 37 nm thick, the effect of anharmonicity on
analogous behavior was found to take place as a function dhe thermal conductivity is minimal compared to that of
the number of interface links. The structure of the interfaceboundary scattering, up to 300 K. This is evident from the
was shown to have an important effect on the relaxatiorfact that the thermal conductivity stays constant withear
length. room temperature, rather than decre@se Refs. 40 and 41
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