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Phonon transport in nanowires coated with an amorphous material:
An atomistic Green’s function approach

N. Mingo and Liu Yang
Eloret Corporation, Mail Stop N229-1, NASA-Ames Research Center, Moffett Field,
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~Received 31 October 2002; revised manuscript received 10 September 2003; published 11 December 2003!

An approach is presented for the atomistic study of phonon transport in real dielectric nanowires via Green’s
functions. The formalism is applied to investigate the phonon flow through nanowires coated by an amorphous
material. Examples for a simple model system and for real Si nanowires coated by silica are given. New
physical results emerge for these systems, regarding the character of the transition from ballistic to diffusive
transport, the low-temperature thermal conductance, and the influence of the wire-coating interface on the
thermal transport. An efficient treatment of phonon scattering by the amorphous coating is also developed,
representing a valuable tool for the investigation of thermal conduction through amorphous-coated nanowires.
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I. INTRODUCTION

The problem of phonon transport through dielectric wir
of nanometer thickness1 is of special interest at present, sin
accurate measurements of thermal conduction in these
tems begin to be available.2–4 Theoretically, this problem ha
been considered by different approaches. Some of these
the Boltzmann transport equation~BTE!,5 Molecular dynam-
ics ~MD!,6,7 and the transmission function approach.8–13 The
BTE has been succesfully used in nanowire transport at h
temperatures, for systems where the resistive length of
wire is long enough for the transport to be diffusive. Molec
lar dynamics has the advantage that it can accurately
sider the anharmonic interactions between the atoms.
was applied to nanowires in Ref. 6, for example. It is non
theless difficult to study low temperatures using MD, since
provides a classical description of the system.

The transmission function approach is very well suited
study cases when phonons flow ballistically or semiballi
cally. In the limit of very low temperatures, an elastic co
tinuum model provides a good description of the phon
flow. This model has yielded new insight into the problem
phonon scattering by surface roughness, for example, w
the transition from ballistic to diffusive transport8 and the
low-temperature ‘‘dip’’ in the quantized therma
conductance11 have been investigated. Transmission funct
approaches have also been successfully applied to stud
heat flow through a mesoscopic link,14 a nanocrystal,15 and
monatomic chains.9 Despite these excellent works, and u
like the case of electron transport, the use of the transmis
function approach in phonon transport is still scarce.

In this paper we develop a transmission function a
proach, and apply it to study a problem that has not b
theoretically investigated before: the phonon transport al
nanowires in which part of the length is surrounded by
thick coating of amorphous material. This is an importa
problem, since most dielectric nanowires are naturally coa
by a layer of amorphous material.1,16

After explaining the general formalism, its use is illu
trated by the study of phonon transmission through two c
crete systems: a 1D~one-dimensional! chain partially coated
with an amorphous layer and real 3D nanowires with par
0163-1829/2003/68~24!/245406~12!/$20.00 68 2454
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their length coated by a silica layer. Three main phenom
are investigated.

~a! The transition from ballistic to diffussive transpor.
Explicit curves of how this transition takes place are show
as a function of frequency and coated length.

~b! The low-temperature conductance. It is found that a
phenomenon similar to the dip occurring in rough-edge
coated wires,11 occurs also in amorphous-coated wires,
though displaying some differences with respect to
former case.

~c! The effect of the wire-coating interface. We find an
interesting saturation effect as a function of the coupl
strength between the atoms at the interface. We also show
important influence of the interatomic link number and co
figuration on the phonon transmission.

Our approach is different from other studies in many
spects, given as follows.

~1! An atomistic description is used. This is necessa
since we are interested in how the atomic structure of
interface between the wire and the coating affects transp
This also enables to consider the whole dispersive spectr
and not only the lower frequencies. Although excellent a
mistic investigation of transport through monatomic cha
was done in Ref. 9, we have not been able to find any o
transmission function atomistic study of larger systems, s
as the Si nanowires considered here. Despite the metho
similar to that of tight-binding electron transport, it is impo
tant to provide a complete and independent derivation of
formulas in the phonon framework, specially for those rea
ers not familiar with the theory of electron transport. Part
the paper is devoted to do this in detail.

~2! We present a method that allows us to treat the am
phous overlayer in an efficient manner. As we will see,
presence of the amorphous overlayer introduces a proble
overwhelming computational demand. We develop a te
nique that is able to yield the thermal conductance in
limit of thick overlayer, with much less computational effor
The validity of this approach is explicitly shown with on
example.

The structure of the paper is as follows. Section II e
plains the formalism. An introduction to the transmissi
function concept~Sec. II A! is followed by the core of the
©2003 The American Physical Society06-1
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method, Sec. II B, where we derive the formulas to comp
the phonon transmission function. Afterwards, Sec. II C
scribes the specific self-consistent technique that enable
to treat the amorphous coating surrounding the wires. S
tion III shows results for the two examples treated. Conc
sions are summarized in Sec. IV.

II. METHOD

A. The transmission function in thermal conductivity
and conductance

Both the thermal conductivity and the thermal condu
tance can be obtained by the same single approach. Le
imagine a perfectly harmonic and translationally invaria
nanowire, totally free of defects. The wire is free standing,
that there is no heat leakage from the boundary. The har
nicity assumption implies that, unless there is scattering
to disordered defects or impurities, the thermal conducta
of the whole wire would be independent of its length. In th
situation, the heat flux associated with a small tempera
differenceDT between the two wire ends is given by th
sum of the contributions of the individual phonon
subbands:10

JQ5(
a

E
0

p/a

DT
]

]T F 1

e\va(k)/kBT21G ]va

]k
\va~k!

dk

2p

5DT(
a

E
va

init

va
f in ]

]T F 1

e\va(k)/kBT21G\v
dv

2p
,

wherea labels the phonon subbands,a is the wire’s unit-cell
length,kB is Boltzmann’s constant,k is the wave vector in
the axial direction,va(k) is the dispersion relation of sub
banda, va

init ( f in) is the lower-~upper-! frequency limit of
the subband, andv is the frequency. We note that th
phonons inside the wire have a nonequilibrium distribut
different from the Bose-Einstein type. As it is clear from t
second line, it is not necessary to know the dependenc
va on k, but only the frequency limits of the subband.

The ~length independent! thermal conductance for thi
limit is then

ssat5(
a

E
va

init

va
f in ]

]T F 1

e\v/kBT21G\v
dv

2p
. ~1!

In general, however, one has a nanowire with disorde
scattering sources along a finite length. In such a case w
longer have translational periodicity, and we cannot defi
anything like a ‘‘phonon band dispersion.’’ Nevertheless,
concept of transmission channels is still valid. As it w
shown by Landauer,17 no matter how scatterers are distri
uted in the system, one can always calculate a transmis
functionJ(v), which describes the propagation of quasip
ticles between two reservoirs connected to the system,
different chemical potentials. In contrast to translationa
periodic systems, where the conduction channels alw
yield integer quanta of transmission, now the waves can
partially reflected resulting in nonintegral transmissio
Thus in this case, instead of Eq.~1!, we have
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J~v!
]

]TF 1

e\v/kBT21G\v
dv

2p
, ~2!

where the phonon spectrum extends between frequenci
andv f in. Equation~2! is of general validity and involves no
approximations.~This equation is rigorously derived in Se
II B 3.! In the following section we explain howJ is calcu-
lated exactly for independent phonons.

Scattering causes the conductance to vary with
nanowire’s length. For 3D systems in the diffusive regim
the conductance varies inversely proportional to the syste
lengthL. Because of this one usually defines a ‘‘conduct
ity,’’ as

k5
Ls~L !

s
, ~3!

where s is the sample’s cross section. However, for nan
wires, the length dependence ofs cannot be just assumed t
have a 1/L form, but needs to be calculated. For shortL, s
saturates tossat . For long L the behavior depends on th
type of scattering and the wire properties. The transition
tween the two limits also constitutes an important probl
~studied in Sec. III!. In order to attack these issues, the tran
mission function has to be calculated for the atomically d
scribed, nonperiodical, infinite system. The formalism allo
ing to do this is explained in the following section.

B. Calculation of the transmission function

1. Interatomic potentials and the dynamical matrix

The system’s motion is determined by its dynamical m
trix, obtained from the interatomic potentials of the system18

The nondiagonal elements of the dynamical matrixK are
calculated as

ki j 5
]2E

]ui]uj
, ~4!

whereE is the energy andui is the displacement of thei th
degree of freedom with respect to its equilibrium value. T
diagonal elements arekii 5( j Þ i2ki j .19

The dynamical equation of the system is

~v2M1K !ū50̄, ~5!

whereM is a diagonal matrix with elements correspondi
to the masses of the constituent atoms, andv is the vibra-
tional frequency. This problem is analogous to that posed
a nonorthogonal Hamiltonian in the case of electrons, if
replace the energy, Hamiltonian, and overlap, by the squ
frequency, dynamical matrix, and mass matr
respectively.20,21

The presence of matrix M instead of the identity mat
introduces mathematical difficulties, if Green’s functions a
used. The issue has been elegantly dealt with in the theor
nonorthogonal tight binding:21 the ‘‘nonorthogonal’’ problem
is equivalent to the ‘‘orthogonal’’ one

~v2I1M21/2KM 21/2!ū50̄. ~6!
6-2
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The elements of the ‘‘orthogonalized’’ dynamical matrix e
ements are explicitly defined as

k̃i j 52
ki j

AMiM j

, ~7!

and the dynamic equation is recast as

~v2I2K̃ !ū50̄, ~8!

which now can be treated using Green’s function method

2. Local heat current density

We are faced with the problem of calculating the loc
heat flow. The following paragraphs derive the necess
equations. The section following this one will express all t
equations in terms of Green’s functions, so that there is
need to calculate individual wave functions.

Let us consider an arbitrary wave~not necessarily an
eigensolution! ui(t), propagating in the system. The tot
energy can be expressed as a sum over each degree of
dom,E5( iEi , with

Ei52
1

2 (
j

uiki j uj1
Mi

2
u̇i

2 . ~9!

Using Miüi52ki j uj , the local change of energy with tim
is

dEi

dt
5

1

2 (
j

~ u̇iki j uj2uiki j u̇ j ![(
j

Ji j . ~10!

The local current between each pair of local degrees of f
dom is thus naturally defined as

Ji j 5
1
2 ~ u̇iki j uj2uiki j u̇ j !. ~11!

For a given phonon of frequencyv we rewriteu andu̇ in
terms of the complex wavef(t)[ceivt:

ui~ t !5Re@f i~ t !#/AMi[f i
R~ t !/AMi , ~12!

u̇i~ t !52vIm@f i~ t !#/AMi[2vf i
I~ t !/AMi . ~13!

Hence, the current associated with that particular phonon
tween thei and j local degrees of freedom is

Ji j 5
1
2 v~f i

Rk̃i j f j
I2f i

I k̃i j f j
R!5

v

2
Im~f i* k̃i j f j !. ~14!

f are solutions of the eigenvalue problem, Eq.~8!. The
normalization condition for the phonon amplitude follow
from equating the wave’s energy to\v as

(
i

uf i u252\/v. ~15!

3. The total current

We now proceed to derive the expression for the total h
current given exclusively in terms of Green’s functions.
24540
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this end, we subdivide the whole system into three regio
as indicated in Fig. 1. The two interfaces define four spe
groups of atoms labeleda, a, b, andb, as depicted in the
figure. An atom belongs to one of these groups if there i
nonzero element of the dynamical matrix linking it to a
other atom on the opposite side of the interface. In w
follows, a bar on top of a symbol, sayw̄, indicates the one
column matrix formed by the values ofw i at each degree o
freedom of the particular group of atoms considered. A
renthesis denotes the subsystem: for example,w̄(a) is
formed by values ofw at the atoms of subgroupa only, and
its dimension is three times the number of atoms ina. Simi-
larly, a bar below the symbol, sayw, denotes a one row
matrix. We denote the traveling-wave solutions of the to
system byF̄n . The total current in terms of them is the
given by @see Eq.~14!#

J5(
n

Nn

vn

2
Im@Fn* ~b!k̃bbF̄n~b!#, ~16!

whereNn is the number of phonons in staten.
Using standard scattering theory20 one can express th

eigenfunctions of the total system,Fn in terms of the re-
tarded Green’s-function matrix of the total systemG and the
eigenfunctions of the decoupled system at the left of int
face 1 ~that is, with the coupling betweena and a set to
zero!. Denoting these wave functions for the decoupled s
tem asf̄(a), one has for the waves propagating froma
towardsb,

f̄n~b!5Gbak̃aaf̄n~a!, ~17!

f̄n~b!5Gbak̃aaf̄n~a!5gbbk̃bbGbak̃aaf̄n~a!, ~18!

wheregaa andgbb are the retarded Green’s-function mat
ces corresponding to the decoupled systems~i.e., with k̃aa

50 and k̃bb50).
Inserting these expressions in the equation for the cur

we have

J5
Im

2 (
n

DNvvnfn* ~a!k̃aaGab* k̃bbgbbk̃bbGbak̃aaf̄n~a!

5
1

2(n
DNvvn

3Tr@ Im$f̄n~a!fn* ~a!k̃aaGab* k̃bbgbbk̃bbGbak̃aa%#,

~19!

FIG. 1. Nomenclature used in Sec. II B 3. The semi-infin
leads 1 and 2 are projected onto subsetsa and b, and the total
Green’s function for susbsystem 3 only needs to be computed
tween atoms of subsetsa andb.
6-3
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N. MINGO AND LIU YANG PHYSICAL REVIEW B 68, 245406 ~2003!
where the sum extends to all states of the uncoupled
system 1, and

DN[N12N25
\v

kBT2

e\v/kBT

~e\v/kBT21!2
DT ~20!

is the occupation difference between phonons traveling
wards and backwards.

It is not feasible to explicitly compute the eigenfunctio
f̄n for a semi-infinite system. This can be avoided by e
pressing everything in terms of Green’s functions, which
low to project semi-infinite systems on the atomic grou
considered. From the normalization condition, Eq.~15!, and
the well-known relation between Green’s function and
density of states,19 it follows that, at any infinitesimal fre-
quency square interval,$e,e1de%,

(
n(vn

2P$e,e1de%)

vnf̄n~a!fn* ~a!52
\

p
Im@gaa~e!#de,

~21!

wheree[v2. Using this relation, the expression for the cu
rent, Eq.~19!, becomes

J5E
0

`\v

2p
DN~v!J~v!dv, ~22!

J~v!54Tr@ k̃aaIm@gaa# k̃aaGab* k̃bbIm@gbb# k̃bbGba#,
~23!

where the transmission functionJ(v) has been defined. Th
thermal conductance, Eq.~2!, follows straightforwardly from
Eq. ~22!. Now we only need to compute Green’s functionsg
andG, and then use Eqs.~23! and ~22! to calculate therma
currents.

4. Calculation of Green’s functions for infinite systems
without translational periodicity

The system we are treating is infinitely extended in
heat propagation direction, but it does not have translatio
symmetry. Therefore, the calculation of Green’s functio
requires the use of projection techniques. The most effic
way to obtain the Green’s function of the semi-infinite sy
tems 1 and 2 projected at subsystemsa andb is to use the
decimation technique,22 which is based on a renormalizatio
procedure. Aftergaa andgbb are calculated in this way, on
can calculate the total retarded Green’s function of the s
tem everywhere in subsystem 3~Fig. 1! as

G~v2!5@v2I2 k̃2S1~v2!2S2~v2!#21, ~24!

where the self-energy matrixS1 is defined ask̃aagaak̃aa on
the elements belonging to subseta, and zero otherwise, an
S2 is defined similarly on subsetb.

C. Self-consistent flux model for efficient computation
of boundary scattering

If we know the dynamical matrix, the formalism ex
plained in the previous paragraphs is capable of accoun
24540
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for any type of scattering mechanism other than anharmo
ity ~for the role played by anharmonicity, see the Appendi!.
It is straightforward to include isotopes by varying the ma
of given atoms; substitutional impurities may be introduc
by varying both the mass of selected atoms and the link
their neighbors; vacancies would be included by remov
single atoms and allowing the system to relax; etc. We mi
thus be tempted to treat boundary scattering in this sa
spirit, by including surface adsorbates or imperfections t
can lead to effective boundary scattering in the nanow
Adding single adsorbed impurities is a rather simple mat
but could one consider an amorphous overlayer on the s
footing? For example, it is known that Si nanowires are co
ered by an amorphous SiO2 overlayer, several nanometers
thickness,1 and it is important to know how this overlaye
affects the phonon scattering. A brute force approach wo
be to input the atomic positions of all constituents in t
silica overlayer, as well as the wire, and then calculate
dynamical matrix of the whole system and compute its tra
mission.

This procedure, however, is a nearly impossible task
practice. The added overlayer considerably increases the
of the system, and it also results in an extremely irregu
transmission function, which has to be computed at a v
large number of different frequencies. The integration
such a transmission in Eq.~2!, consequently, becomes cum
bersome. To solve these difficulties, we have developed
self-consistent~SC! flux model. This model’s basic idea con
sists in taking the limit of an infinitely thick overlayer. In th
same spirit of the Bethe lattice approach, as used for am
phous materials,19 we consider the nanowire connected
Bethe lattice branches of the amorphous material~see Fig.
2!. The phonon mean free path in amorphous materials i
the order of the interatomic spacing.23 Therefore, the lack of
connectivity in the Bethe lattice approach does not repres
a problem. The adequacy of the Bethe lattice approach
the study of amorphous systems has been investigate
Refs. 24 and 25.

When the overlayer is substituted by an infinitely thi
one, an essential difference appears. Now the self-ener
associated with the overlayer do not correspond to clust
Therefore, they are no longer purely real, but contain a fin
continuous imaginary part. In other words, if one calcula
the transmission of the system by Eq.~23!, part of the pho-
non flux will be effectively lost through the side branche
since now they are infinite and allow for the current to
away without returning. However, this is not physically co
rect, for we know that the overlayer is finite and the he
current must eventually come back to the wire and esc
through the contacts. In a steady state, this means tha
must allow for an equivalent amount of phonon flux to ree
ter the system through each of the side branches. One
find a self-consistent solution to this problem in the form
an iterative procedure. This is indeed not necessary, for
self-consistent solution can be directly found by an algebr
method, as we show below.

To clarify the nomenclature in the following discussion,
general scheme of the nanowire with part of its length coa
is shown in Fig. 2, left. The represented nanowire is th
dimensional, thus each black dot in the figure stands fo
6-4



t
p

ho
t

ug

to
th

si

m
ic
Th
he
it

lly

to

t
by

ode
e-

the

e
tion
SC

no
I C
4

PHONON TRANSPORT IN NANOWIRES COATED WITH . . . PHYSICAL REVIEW B68, 245406 ~2003!
group of atoms, and each line joining dots stands for a se
interatomic links. The dotted line encloses the wire’s grou
of atoms that are coated. Bethe lattices are attached to t
groups of atoms, as shown in the figure. Phonons enter
system through group 1 and exit at the other lead thro
groupn. First of all, we obtain the partial transmissivitiesT
between every pair of branches in the system, using Eq.~23!,

Ti j 5
4

N
Tr@ k̃ i i 8Im@gi 8 i 8# k̃ i 8 iGi j* k̃ j j 8Im@gj 8 j 8# k̃ j 8 jGj i #,

~25!

wherei andi 8 label neighboring atomic subsets belonging
the branch and wire, respectively, for the first branch of
pair, and equivalentlyj and j 8 for the second branch.N is the
number of degrees of freedom in nodei 8 or j 8. ~All nodes
are assumed to contain the same number of atoms for
plicity.!

We recall that each link to a branch in Fig. 2 may co
prise interactions with several atoms, in the three geometr
directions, so Green’s functions above are matrices.
transmissivity from one branch to itself is not defined by t
above formula. Instead, we must define it as the reflectiv

Ti i 512(
j Þ i

Ti j . ~26!

We define the ‘‘injected’’ and ‘‘outflowing’’ flux arrays,j̄ i

and j̄ o as the fluxes coming ‘‘into’’ and ‘‘out of’’ the system
via its surrounding nodes~see Fig. 2!. The total flux arrayj̄
is then

FIG. 2. Left: scheme of a linear chain system showing the
menclature used in the self consistent flux technique of Sec. I
Right: scheme of 1D wire with Bethe lattices of coordination
attached.
24540
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j̄ 5 j̄ i2 j̄ o ~27!

and it must fulfill

j ~1!5 j i~1!2 j o~1!5 j o~n! ~28!

because all the flux coming in through node 1 must fina
exit through noden. Also, there is no flux injection from
noden, so

j i~n!50. ~29!

All the other modes must fulfill

j ~ l !5 j i~ l !2 j o~ l !50, ; lÞ1,n. ~30!

We can express Eqs.~28!–~30! in matrix form as

j i5A j o , ~31!

with

A55
1 0 0 ••• 0 1

0 1 0 ••• 0 0

0 0 1 ••• 0 0

A A A � A A

0 0 0 ••• 1 0

0 0 0 ••• 0 0

6 . ~32!

On the other hand, the outflowing currents are related
the injected ones by

j̄ o5T j̄ i , ~33!

which implies

j̄ o5TA j̄ o . ~34!

Therefore, the self-consistent arrayj̄ o is proportional to
the eigenvectorv̄1 of TA with eigenvalue 1, such tha
TAv̄15 v̄1. The existence of eigenvalue 1 is guaranteed
the way we have definedTi i @Eq. ~26!# and by the fact that
columns 1 andn in matrixTA coincide.

The transmission corresponds to the outgoing flux at n
n when there is one unit of incident flux per degree of fre
dom in node 1. Thus, imposingj i(1)[N5 j o(1)1 j o(n),
where the second equality follows from Eq.~28! gives

j̄ o5
N

v1~1!1v1~n!
v̄1 ~35!

and the self-consistent transmission is

J5 j o~n!5N
v1~n!

v1~1!1v1~n!
. ~36!

It can be easily verified that for the uncoated case
calculation using Eq.~36! coincides with that of Eq.~23!.

In the following section we explicitly demonstrate that th
SC flux approach yields the same result that the calcula
using large clusters attached to the wire. Therefore, the

-
.
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flux technique is of tremendous importance, since it enab
to study the otherwise untractable problem of thermal tra
port through thick-amorphous-coated real wires.

III. RESULTS

New physics regarding how the amorphous coating in
ences the thermal transport through a wire can now
learned using the above method: Does the coating affec
frequencies equally or are there important differences in
scattering as a function of frequency? Does diffusive tra
port arise? And, if so, how long a segment has to be coate
order for transport to diffusive rather than ballistic? Ho
does transport depend on the coupling at the wire-coa
interface? etc.

In the following two sections we present results for tw
different systems. First, a one-dimensional model, which
simple enough to allow for a thorough investigation witho
encountering size limitations, and at the same time disp
many general features that apply to real systems. Afterwa
we present results for real 3D silicon nanowires.

A. Study of a one-dimensional model

A wide range of interesting phenomena is obtained
ready in the case where there is only one degree of free
per atom, in a linear chain. Bethe lattices with also one
gree of freedom per atom are attached to a section of
chain. The wire’s properties are determined by the value
spring constantKW . For the Bethe lattices, we assume the
to be linear chains~i.e., Z52 in the nomenclature of Ref
20!, and they are characterized by their spring constantKB .
The third constant involved is the coating-wire interacti
KBW connecting the end of the Bethe lattice to the wire.

1. Comparison between SC flux and cluster calculations

First of all, we provide a particular example that demo
strates the equivalence between the SC flux calculation,
the much more computationally demanding calculation us
large finite clusters for the coating. The transmission w
computed for a system with ten clusters attached to it at
consecutive atoms. Each of the clusters is composed o
overlayer atoms. The transmission, calculated via Eq.~23!, is
shown in Fig. 3~a!. We shall refer to this curve as the ‘‘clus
ter transmission.’’ A large number of closely spaced antire
nances occurs, due to the finite size of the clusters. Thus
curve had to be computed at many different frequen
points.26

The transmission given by the SC flux method is sho
as the thicker line in Fig. 3~b!. We shall refer to it as the ‘‘SC
flux transmission.’’ Its smooth shape has little visual rese
blance with the cluster transmission.

We can now compute the thermal conductance as a fu
tion of temperature, using both the cluster and SC flux tra
missions, and compare the results. We define the dimens
less thermal conductance as

s̃5
6

p

s

kbvD
, ~37!
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wherevD52KB is the Debye frequency of the infinite 1D
atomic chain. Using Eq.~2!, the dimensionless conductanc
can be evaluated in terms of the dimensionless tempera
T̃[(kb /\vD)T and the dimensionless frequencyṽ
[v/vD , as27

s̃5
3

p2E
0

1

J~ṽ!
ṽ2

T̃2

eṽ/T̃

~eṽ/T̃21!2
dṽ. ~38!

The dimensionless conductance calculated from the c
ter transmission is shown as the thick dashed line in Fig
as a function of the dimensionless temperature. Now
curve can be compared with the thermal conductance ca

FIG. 3. Comparison between the transmission calculated by
ing finite clusters as scatterers or the SC flux method with infin
Bethe lattices.~a! Cluster transmission.~Ten clusters comprising 60
atoms each are attached to the chain.! ~b! Thick line—SC flux trans-
mission; thin line—the curve in~a! averaged in a range of frequen
cies around each point. As more atoms are added to the cluster
averaged curve approaches the SC flux result more closely.

FIG. 4. Comparison between the dimensionless thermal con
tance as a function of the dimensionless temperature, calcul
from the cluster transmission~dashed line! and from the SC flux
transmission~solid line!. Although the two transmissions have ve
different shapes~cf. Fig. 3!, the conductances obtained from the
are nearly the same. The conductance obtained from aconstant
transmission function is also shown~dotted line! to stress the im-
portant role played by the frequency dependence of the trans
sion function.
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lated using the SC flux transmission. Remarkably, the la
yields the thick solid curve in Fig. 4; almost exactly the sa
thermal conductance curve than that computed from the c
ter transmission. The reason why the two apparently v
different transmissions yield virtually the same conducta
can be better understood by averaging the cluster trans
sion in a range of frequencies, so as to smooth out its st
ture. We have convolved the curve in Fig. 3~a! with a trun-
cated Gaussian kernel extended6vD/60 around each point
The cluster transmission averaged in this way is shown
the thin line in Fig. 3~b!, and is very close to the SC flu
transmission.

Thus we see that the transmission calculated with the
flux method does indeed yield the same thermal conducta
as if we include the thick coating in the form of large fini
clusters. But the SC flux method requires a much sma
computation, because it yields a smooth transmission cu
while the cluster calculation needs to evaluate a far lar
number of points in order to account for the closely spa
antiresonant structure associated with the finite clusters.

To quantify the difference between thereal conductance
and the one obtained using afrequency independentbound-
ary scattering, the latter is also plotted in Fig. 4, as the t
dotted curve. The value of the constant transmission has b
fixed to yield the same limiting conductance in thev→`
limit as the real conductance curves~see inset of Fig. 4!. As
the figure shows, important differences between the overs
plified constant transmission model and the real transmis
calculation exist up to well above the debye temperature

2. Study of the transmission function

Now we proceed to study the behavior of the transmiss
as a function of the different physical parameters in pl
More concretely, we want to know how the transmissi
depends on frequencyv, coated lengthL, and strength of the
interface spring constantKBW . The analysis will show us
how the system goes from ballistic to diffusive behavior, a
function of these physical parameters.

We setKW to be the unit of spring strength. The mass
all atomsM is defined also as 1. Frequencies are in units
AKW /M . The coated lengthL is given in lattice units, being
equivalent to the number of Bethe lattices attached.

First let us take a look at the behavior of the transmiss
function with frequency, in Fig. 5~for KW /KB51 andKBW
51). We notice that the effect of boundary scattering is
reduce the transmission rather uniformly throughout
whole frequency range. However, it is apparent that the u
assumption of a constant scattering rate23,28–30 is only a
rough approximation to the real scattering in nanowires. T
low-frequency limit behavior displays an important featu
for wires where the coated segment is long enough (n.3 in
the case shown!, the transmission nearv.0 decreases with
increasing frequency. This appears to be the general cas
we will see in the following section. It has a direct physic
consequence: the slope of thermal conductance at very
temperatures decreases below itsT50 value when tempera
ture increases. This fact has been shown to happen also i
case of surface roughness at noncoated wires11 ~the well-
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known dip of Ref. 2!. We explicitly show this for Si nanow-
ires in the following section.

In Fig. 5 we have seen that the shape of the transmis
function varies as a function of the coated length. Doe
attain a limiting shape? And, how is this limit reached? Th
is the subject of thediffusive-ballistic transition. The way it
takes place will become clear from the study of the transm
sion as a function of coated lengthL. In principle, it is not
obvious what type of length dependence one could exp
For pure disorder, for example, an exponential decreas
transmission is obtained in 1D systems due to localizatio31

As another example, for wires with rough edges, an ano
lousL21/2 thermal conductance has also been reported un
certain conditions.8 For amorphous-coated wires, th
asymptotic behavior turns out to be;L21, as we now show.

Analogously to Ref. 32, we write the transmission as

J5J0@11L/l~L !#21. ~39!

This is merely a definition ofl(L), and it does not impose
any limitations on the form of the transmission. For t
present 1D system, the uncoated wire’s transmissionJ0 is
equal to 1 at all frequencies. Now, the form ofl(L), plotted
in Fig. 6, tells us the length dependence of the transmiss
New physical insight can be gained from this figure. Fir
we see thatl(L) quickly tends to an asymptotic value. Th
means that, for amorphously coated wires, the longL behav-
ior of the transmission follows anL21 dependence.33 More
interestingly, the length it takesl(L) to saturate to its
asymptotic value becomes longer as the frequency
closer to zero. Physically, this implies that the lowe
frequency phonons can still travel nearly ballistically for sy
tem lengths at which higher-frequency phonons are tra
ported in an almost totally diffusive fashion. In a practic
measurement of nanowire thermal conductivity, this mig
lead to a wrong estimation of the low-temperature therm
conductivity, if the wire were not long enough.

In the diffusive regime, we can define a frequency dep
dent relaxation lengthl` as the limit

l`~v![ lim
L→`

l~v!. ~40!

FIG. 5. SC flux transmission as a function of frequency
infinite 1D chain, for coated segments of different lengthsL
(5number of lattices attached).
6-7
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A very interesting phenomenon arises when we study h
this relaxation length depends on the strength of the sp
constants coupling the wire to the amorphous coating.
numerically computedl` at frequencyv50.05vD , as a
function of the wire-coating coupling strength. The result
plotted in Fig. 7. For decreasing values of the wire-coat
couplingKBW the relaxation length quickly increases, as e
pected. However, if the coupling is made stronger,l`

reaches a minimum and then it increases again as the
pling is increased, approaching an asymptotic value. The
istence of thisminimum relaxation lengthcan be interpreted
in microscopic terms: there is an optimum value of the c
pling that maximizes the heat-flow exchange to and from
coating, thus maximizing the scattering. For very weak c
plings the heat-flow exchange reduction is intuitively ob
ous. For very strong couplings on the other hand, the lin
atoms would behave more like a rigid cluster, thus acting
a hard wall that also confines the phonons to the wire ra
than let them enter the amorphous region. From a ma
scopic point of view, the relaxation length is minimum wh

FIG. 6. Plot of l(L)[(J0 /J21)21L as a function of the
coated lengthL, for different frequencies.l(L) asymptotically con-
verges to a limiting relaxation length valuel`(v) for long enough
L.

FIG. 7. Phonon relaxation lengthl` as a function of the cou-
pling between the wire and its coating lattices. It reaches a m
mum and then increases, asymptotically approaching a limi
value. ~In the particular case shown here,v50.05vD and l
→2.7.!
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the specularity factor is 0, in the Casimir limit.34 The mini-
mum of l` obtained thus translates to this limit, and spec
larity increases in both ways around this point as a funct
of KBW .

B. Results for Si nanowires

The advantage of the atomistic description used in t
paper is that we can study wires made of ‘‘real’’ materials.
other words, we are dealing with the real phonon spectrum
the system: the bands are dispersive and their frequency
tension is finite, in contrast with the infinitely extended spe
trum in a continuum elastic system.

We proceed to study the transmission of phonons in r
Si nanowires, with an amorphous material coating the w
The phonon dispersion relations of Si are fairly well repr
duced with an interatomic potential that includes only tw
and three-body terms. We use Harrison’s potential.35 The ad-
equacy of this potential for Si is assessed by the satisfac
dispersion relations calculated with it. We show them
bulk Si in Fig. 8. Despite having only two parameters, t
shape and position of the bands are in reasonably g
agreement with experimental results.36,37

The two-body contribution to the energy is

dE0~ i , j !5
1

2
C0

~di , j2d0!2

d0
2

~41!

for every pair of nearest neighborsi and j, wheredi , j is the
distance between the atoms andd0 is the lattice equilibrium
distance. The three-body contribution is

dE1~ i , j ,k!5 1
2 C1dQ i , j ,k

2 ~42!

for every pair of bonds joining atomsi, j, andk, wheredQ is
the deviation with respect to the equilibrium angle betwe
the two bonds in the lattice. ConstantsC0549.1 eV and
C151.07 eV are taken from Table 9-1 of Ref. 35.

For the coating we again consider Bethe lattices c
nected to each vibrational coordinate of the boundary ato
The parameters of the Bethe lattice are chosen to reprod
the frequency range of the known density of states of silic38

i.e., 231014 Hz. A coordination numberZ54 is assumed.
We have considered~011! wires of three different widths,
shown in Fig. 9. The wires are coated by attaching Be
lattices only to the outermost atoms. For the 232 wire all
atoms are at the surface. The 333 wire has 16 surface atom

i-
g

FIG. 8. Phonon dispersion relations calculated for bulk Si us
Harrison’s potential.
6-8
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PHONON TRANSPORT IN NANOWIRES COATED WITH . . . PHYSICAL REVIEW B68, 245406 ~2003!
and 2 core atoms. The 434 wire has 24 surface atoms and
core atoms. The phonon dispersion relations for each of th
is shown in Fig. 10.

The procedure for the calculation is as follows. First, t
nanowire lattice is defined, and the dynamical matrix is o
tained for the periodic unit cell, and for the link between tw
neighboring unit cells. The Bethe lattices are included a
self-energy projected onto their last atom. The self-ene
due to the uncoated parts of the wire is calculated in the w
of Ref. 22. Then the Green’s function of the system is c
culated@Eq. ~24!#. The partial transmissivity between eac
pair of branches@Eq. ~25!# is then calculated, and the SC flu
transmission@Eq. ~36!# is computed.

We show how the phonon transmission depends on
quency, for different values of the coated length. Figure
shows J(v) as the coated length increases from 0 to
coated unit cells. In these curves, all three spatial directi
of each of the surface atoms are attached to Bethe latt
The qualitative behavior is an overall uniform decrease
the transmission curve, which maintains the peaks and c
features of the uncoated wire. This is in agreement with
usual assumption of a constant scattering rate. Howe
quantitatively the boundary scattering rate is not freque
independent, as it is apparent from the relative heights of
peaks at different coating lengths. In the absence of coa
the transmission curve at the lower end of the freque
spectrum has a value of 4. This is always the case, s
there are four lowest-frequency branches at all nanowi
one dilatational, one torsional, and two flexural branche39

The two flexural branches have a quadratic rather than lin
dispersion, as we can see in Fig. 10, being a consequen
the soft character of those modes.

The transmission at the lowest frequency decreases m
slowly than that around the first peak (;20 THz), as the
coated length becomes larger. Thus scattering is weake
the lowest-lying modes than for the bulk of transver
modes. This results in a flattening of the transmission aL
increases. The narrower the wire, the more pronounced
effect becomes.

The low-frequency behavior of the transmission functi
also has important physical implications. Similarly as wh
we saw in the 1D example of Sec. III A, for real Si nan
wires the transmission function also decreases below itv
50 value for small values of the frequency, and increa
again as the frequency rises further~see inset in Fig. 12!. The
result is that, at low, finite temperatures, the thermal cond
tance divided byT decreases with respect to its zer

FIG. 9. Cross sections of the three Si nanowires studied:
32,’’ ‘‘3 33,’’ and ‘‘4 34.’’
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temperature value, thus displaying a dip~see Fig. 12!. A dip
in s(T)/T has been reported in Ref. 2, and theoretica
explained in Ref. 11 to be the result of surface roughn
scattering. In our case of amorphous-coated nanowires
see that an analogous dip occurs, although the system
sidered here is basically different from that one, and the c
ductance reduction phenomenon cannot be considered t
the same one. Some essential differences exist in the ca
scattering by amorphous coating with respect to the rou
ness scattering case. One is that, at zero frequency, the
tering rate is zero in the case of roughness scattering, wh
is different than zero in the case of amorphous-coating s
tering. As a result, it is possible to measure a conducta

FIG. 10. Phonon dispersion relations for the three Si nanow
in Fig. 9.
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FIG. 11. SC flux transmission
for Si nanowires. Left: transmis-
sion of the 232 wire for 0, 1, 2,
3, 4, and 5 unit cells coated. Cen
ter: transmission for the 333 wire
with 0, 1, and 5 unit cells coated
Right: same, for the 434 wire.
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close to four times the quantum of conductance at unco
wires, but for wires with a thick amorphous coating the me
surement will in general yield smaller values at the ve
low-temperature limit. Another difference pointed out earl
is the exponential decrease of conductance with length in
rough wires, as compared with the inversely proportio
dependence in the long length limit for amorphous-coa
wires.

We have also calculated the relaxation lengthl` @Eq.
~40!# as a function of the Bethe lattice coverage, in Fig. 1
The abscissa corresponds to the number of Bethe lat
attached to each pair of surface atoms of the 434 nanowire.
Since there are three spatial directions, we can attach u
six lattices to each of the pairs. We showl` as a function of
the number of directions attached, for different ways of
tachment. The directions in which the Bethe lattices are
tached, and the number of them, are depicted schemati
near the points in the graph. The calculation shows that
relaxation length is strongly dependent on the characte
the bonding to the coating material. For a densely cove

FIG. 12. Low-temperature behavior of the thermal conducta
divided by temperature, for the 434 nanowire with 5 unit cells
coated, showing a dip similar to the one studied in Ref. 11.~The
ordinate axis unit is (6/p)\/kB

2 .! Inset: detail of the transmissio
functionJ(v) at low frequencies, for the 434 wire with 1 ~dotted
line! and 5~solid line! unit cells coated.
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wire, the relaxation length becomes of the order of the wir
core diameter. On the other hand, if the surface bonds to
coating are less dense, with one dominant direction and
much weaker links in the other two directions, then the
laxation length can attain values between two and four tim
the diameter. When there is only partial bonding of part
the surface atoms, the relaxation length increases further.
way in whichl approaches its saturation value,l` is shown
in the inset of Fig. 13. With only one link per surface ato
~solid curve!, it is necessary to coat a considerable length
order to attain the diffusive limit. With more interface link
the diffusive limit is reached at shorter coated lengths. I
observed that not only the number of links but also th
orientation has an influence on the relaxation length.

A larger number of interface links does not necessa
imply a shorter relaxation length. A fully covered surfa
with three links per atom, for example, displays a larger
laxation length than a surface with only half of the surfa
atoms directly attached to the coating~Fig. 13!. This is an-

e
FIG. 13. Phonon relaxation lengthl` in 434 wire at frequency

v516 THz, for different ways of attachment between the coat
and the wire surface atoms, in units of the wire’s diameterD. The
scheme near each data point represents the directions in whic
Bethe branches are attached to each surface pair of atoms. The
shows l vs the coated lengthL ~in unit-cell lengths!, for three
particular attachment configurations.
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PHONON TRANSPORT IN NANOWIRES COATED WITH . . . PHYSICAL REVIEW B68, 245406 ~2003!
other manifestation of the phenomenon noted in Sec. III
where we saw that a very strong interaction between w
and coating can result in longer relaxation lengths.

IV. CONCLUSIONS

We have presented a formalism to calculate the pho
transmission function of an atomically described syste
With this formalism we have studied the problem of phon
transport in nanowires with part of their length coated by
amorphous material. A self-consistent approach, has been
veloped that uses Bethe lattices to treat the amorphous
terial. The efficiency of the approach, and its equivalence
a much more computationally demanding cluster calcula
have been explicitly illustrated via direct comparison by
example.

We have studied two examples of amorphous-coa
wires: a 1D model and silica coated Si nanowires. In
examples studied, specific physical phenomena for co
systems have arisen, given as follows.

~1! Ballistic-diffusive transition. We explicitly showed the
evolution of the phonon transmission in the transitional
gime, beforel(v,L) asymptotically approaches its limitin
value. In the limit of long coated length the transmissi
attains a 1/L behavior.~In contrast, for rough-boundary un
coated wires, an exponential decrease with length ta
place.11!

~2! Low-temperature conductance. Nearv50, the trans-
mission is found to decrease with respect to itsv50 value,
as the frequency is increased. As a result, amorphous-co
wires display a low-temperature dip in the plot of the therm
conductance divided by temperature, having certain simil
ties with the dip reported for rough uncoated wires.11

~3! Coating-wire interface structure effects. A phenom-
enon is found, which is specific of coated wires: as the in
atomic bonds between wire and coating atoms are m
stronger, starting from zero, the transmission of a long coa
wire @or equivalently,l(L,v)] decreases, but only up to
certain limit; once the bond strength reaches a certain thr
old, the transmissionincreasesagain as the bond is mad
stronger. When the bond strength tends to infinity the rel
ation length asymptotically saturates to a finite value.
analogous behavior was found to take place as a functio
the number of interface links. The structure of the interfa
was shown to have an important effect on the relaxat
length.
g
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It is hoped that the method and results presented here
help to estimate further atomistic research in the field
phonon transmission through nanowires, as well as exp
mental research on amorphous-coated nanowires.
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APPENDIX: THE ROLE OF ANHARMONICITY

In one dimension, there is no three-phonon anharmo
scattering, since it is not possible to have a process in wh
all three phonons belong to the same polarization branc35

Therefore, anharmonicity is not an issue in the first exam
given in Sec. III A.

The role of anharmonicity in the thermal conductivity
Si nanowires has been studied in Ref. 41. For the wires s
ied in Sec. III B, its influence is negligible. An estimatio
can be made using the Mathiessen rule. The total relaxa
length, expressed in terms of the boundary and anharm
relaxation lengths, is

l51/~lb
211la

21!. ~A1!

Now, lb;D, whereD is the system’s thickness~around 2
nm, for the wires considered here!. Also, la;c/@1.73
310219(s/K)Tv2e2137.3K/T#, where c is the Si speed of
sound.40 The role of anharmonicity is largest for the highe
frequencies. But even for the highest frequency available
Si, ;95 THz, the anharmonic relaxation length at room te
perature is stillla;20 nm. This, in the case of the nano
wires of Sec. III B, using Eq.~A1! and the estimate jus
given for lb , affects the transmission by less than 10
~Lower frequencies are much less affected.! The influence on
the thermal conductivity is much smaller than this, sin
high modes contribute significantly less than the low
energy modes. Experimentally it has been observed that e
for nanowires 37 nm thick, the effect of anharmonicity o
the thermal conductivity is minimal compared to that
boundary scattering, up to 300 K. This is evident from t
fact that the thermal conductivity stays constant withT near
room temperature, rather than decrease~see Refs. 40 and 41!.
. B
1Yi Cui, Lincoln J. Lauhon, Mark S. Gudiksen, Jianfang Wan
and Charles M. Lieber, Appl. Phys. Lett.78, 2214~2001!.

2K. Schwab, E.A. Henriksen, J.M. Worlock, and M.L. Rouke
Nature~London! 404, 974 ~2000!.

3W. Fon, K.C. Schwab, J.M. Worlock, and M.L. Roukes, Ph
Rev. B66, 045302~2002!.

4P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. Rev. Le
87, 215502~2001!.

5J. Zou and A. Balandin, J. Appl. Phys.89, 2932 ~2001!; A. Ba-
,

.

.

landin and K.L. Wang, Phys. Rev. B58, 1544~1998!.
6S.G. Volz and G. Chen, Appl. Phys. Lett.75, 2056~1999!.
7P.K. Schelling, S.R. Phillpot, P. Keblinski, Phys. Rev. B65,

144306~2002!.
8A. Kambili, G. Fagas, V.I. Fal’ko, and C.J. Lambert, Phys. Rev

60, 15 593~1999!.
9A. Ozpineci and S. Ciraci, Phys. Rev. B63, 125415~2001!; A.

Buldum, S. Ciraci, and C.Y. Fong, J. Phys.: Condens. Matter12,
3349~2000!; S. Ciraci, A. Buldum, and I.P. Batra,ibid. 13, R537
6-11



M

ci-

s

s,

.

a

n
s to
the

s
o,

P.
,

ating
ting

s

ns.

.

N. MINGO AND LIU YANG PHYSICAL REVIEW B 68, 245406 ~2003!
~2001!.
10L.G.C. Rego and G. Kirczenow, Phys. Rev. Lett.81, 232 ~1998!;

A. Greiner, L. Regglani, and T. Kuhn,ibid. 81, 5037~1998!.
11D.H. Santamore and M.C. Cross, Phys. Rev. B63, 184306

~2001!; ibid. 66, 144302~2002!; Phys. Rev. Lett.87, 115502
~2001!.

12D.E. Angelescu, M.C. Cross, and M.L. Roukes, Superlattices
crostruct.23, 673 ~1998!.

13M.P. Blencowe, Phys. Rev. B59, 4992~1999!.
14K.R. Patton and M.R. Geller, Phys. Rev. B64, 155320~2001!.
15D.M. Leitner and P.G. Wolynes, Phys. Rev. E61, 2902~2000!.
16D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, and S.T. Lee, S

ence299, 1874~2003!.
17Y. Imry and R. Landauer, Rev. Mod. Phys.71, S306~1999!.
18W. Jones and N. H. March,Theoretical Solid State Physics~Do-

ver, New York, 1985!.
19E. N. Economou, Green’s Functions in Quantum Physic

~Springer-Verlag, Berlin, 1983!.
20N. Mingo, Liu Yang and Jie Han, J. Phys. Chem. B,105, 11 142

~2001!.
21E.C. Goldberg, A. Martı´n-Rodero, R. Monreal, and F. Flore

Phys. Rev. B39, 5684~1989!.
22F. Guinea, C. Tejedor, F. Flores, and E. Louis, Phys. Rev. B28,

4397 ~1983!.
23P. G. Klemens, inSolid State Physics, edited by F. Seitz and D

Turnbull ~Academic, New York, 1958!, Vol. 7, p. 1.; P.G. Kle-
mens, Proc. R. Soc. London, Ser. A208, 108 ~1951!.

24L. Martı́n Moreno and J.A. Verge´s, Phys. Rev. B42, 7193~1990!.
25R.B. Laughlin and J.D. Joannopoulos, Phys. Rev. B16, 2942

~1977!.
26As it is customary in Green’s function cluster calculations,
24540
i-

small imaginary partid is added to the frequency to smoothe
singularities. To avoid spurious effects, the imaginary part ha
be smaller when the density of singularities increases near

band edges, sod}A22cos2ṽ/A2 was used.
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