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Definition and measurement of the local density of electromagnetic states close to an interface
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We propose in this article an unambiguous definition of the local density of electromagnetiqISEB)
in a vacuum near an interface in equilibrium at temperafuré/e show that the LDOS depends only on the
electric-field Green function of the system but does not reduce in general to the trace of its imaginary part, as
often is used in the literature. We illustrate this result by a study of the LDOS variations with the distance to
an interface and point out deviations from the standard definition. We show nevertheless that this definition
remains correct at frequencies close to the material resonances such as surface polaritons. We also study the
feasibility of detecting such a LDOS with apertureless scanning near-field optical micrd&¥pa/) tech-
nigues. We first show that a thermal near-field emission spectrum above a sample should be detectable and that
this measurement could give access to the electromagnetic LDOS. It is further shown that the apertureless
SNOM is the optical analog of the scanning tunneling microscope, which is known to detect the electronic
LDOS. We also discuss some recent SNOM experiments aimed at detecting the electromagnetic LDOS.
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I. INTRODUCTION and the SNOM signal to electromagnetic LDOS. SNOM
instrument$ have been used to perform different kinds of
The density of state$DOS) is a fundamental quantity emission spectroscopy, such as IuminescéhcRaman
from which many macroscopic quantities can be derivedspectroscopy, or two-photon fluorescencé.For detection
Indeed, once the DOS is known, the partition function can béf infrared light, apertureless technigi®have shown their
computed yielding the free energy of the system. It followsreliability for imaging” as well as for vibrational spectros-
that the heat capacity, forces, etc., can be derived. A wellcopy on molecules? Moreover, recent calculations and ex-
known example of a macroscopic quantity that follows im-Periments have shown that an optical analog of the quantum
mediately from the knowledge of the electromagnetic DOSeOrral could be designed, and that the measured SNOM im-
is the Casimir forcé:? Other examples are shear fortesd ~ @ges on such a structure present strong similarities with the
heat transférbetween two semi-infinite dielectrics. Recently, calculated electromagnetic LDG3° These results suggest
it has been shown that unexpected coherence properties Bfat the electromagnetic LDOS could be directly measured
thermal emission at short distances from an interface sepVith & SNOM. S
rating vacuum from a polar material are due to the contribu- The purpose of this article is to show how the electromag-
tion to the density of states of resonant surface wavesas ~ Nnetic LDOS can be related to the electric Green function, and
also been shown that the Casimir force can be interpreted 4@ discuss possible measurements of the LDOS in SNOM.

essentially due to the surface wave contribution to thé/Ne firstintroduce a general definition of the electromagnetic
DOS 12 LDOS in a vacuum in the presence of materials, possibly

Calculating and measuring the local density of stated0SSy objects. Then, we show that under some well-defined
(LDOS) in the vicinity of an interface separating a real ma-circumstances, the LDOS is proportional to the imaginary
terial from a vacuum is therefore necessary to understanBart of the trace of the electrical Green function. The results

many problems currently studied. The density of states igre illustrated by calculating the LDOS above a metal sur-
usually derived from the Green function of the system byface. We show next that the signal detected with a SNOM

taking the imaginary part of the Green functidhin solid- measuring the thermally emitted field near a heated body is
state physics, the electronic local density of states at thglosely related to the LDOS and conclude that the natural

Fermi energy at the surface of a metal can be measured wiffxperiment to detect the LDOS is to perform a near-field
a scanning tunneling microsco&TM).2 This has been thermal emission spectrum. We discuss the influence of the

proved by several experiments, in particular the so-callediP Shape. We also discuss whether standard SNOM measure-

quantum corral experimentsAlthough one can formally Ments using an external illumination can detect the electro-
. o . H 9,20

generalize the definition of the electromagnetic LDOS bymagnetic LDOS!

using the trace of the imaginary part of the Green tetfsibr,

turns out that this definition does not yield the correct equi- | | 5caL DENSITY OF ELECTROMAGNETIC STATES

librium electromagnetic energy density. IN A VA
. . CUUM
Recently, it has been shown theoretically that the STM
and the scanning near-field optical microsc¢pROM) have As pointed out in the Introduction, the LDOS is often

strong analogies: More precisely, in the weak tip-sample defined as being the imaginary part of the trace of the
coupling limit, it was demonstrated that a unified formalismelectric-field Green dyadic. This approach seems to give a
can be used to relate the STM signal to the electronic LDOSorrect description in some cas€$’ but to our knowledge
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this definition has never been derived properly for electro-

magnetic fields in a general system that includes an arbitrary U(r,w)=4| (&/2) > &(rro)

distribution of matter with possible losses. The aim of this =13

section is to propose an unambiguous definition of the

LDOS. +(pol2) 2, Hi(r.r,o)
Let us consider a system at equilibrium temperatlire =13

Using statistical physics, we write the electromagnetic enso that

ergyU(w) at a givenpositivefrequencyw, as the product of

the DOS by the mean energy of a state at temperdius® ho 1)

that Uire)= [exp(hw/kgT)—1] 7c2

hw
expiw/kgT)—1"

Im T GE(r,r,w)

1) +GH(r,r,w)]. @)

_ _ It is important to note that the magnetic-field Green function
where 27 is Planck’s constant ankl; is Boltzmann’s con-  and the electric-field Green function are not independent. In
stant. We can now introdutea local density of states by fact, one has

starting with the local density of electromagnetic energy
U(r,w) at a given point in space and at a given frequency 2

U(w)=p(w)

W o Ps
. This can be written by definition of the LDO&r,®) as gGH(r,r’,w):[VrX]GE(r,r’,w)~[Vr,><]. ()
fiw A comparison of Eqs(2) and(7) shows that the LDOS of the
Uir,e)=p(r,0) exphw/kgT)—1" @ electromagnetic field reads
The density of electromagnetic energy is the sum of the 1)

electric energy and of the magnetic energy. At equilibrium, it P(r,®@)=—IM T G(r,r,0)+G"(r,r,w)]=f(GF)
can be calculated using the system Green function and the ©)
fluctuation-dissipation theorem. Let us introduce the electric-

and magnetic-field correlation functions for a stationary sysin which f(éE) is an operator that will be discussed more

mc?

tem: precisely in the next section.
1 ; ,
Sij(r,r’,t—t’)z EI do gij(r,rf,w)eflw(t*t ) Ill. DISCUSSION
. The goal of this section is to study the LDOS behavior for
=(Ei(r,H)Ef (r',t")), (3 some well-characterized physical situations, based on the re-
sult in Eq.(9).
H; (r,r’ t—t’)=iJ do M (r,r',w)e ett)
WA 2w AT A. Vacuum

=(Hi(r,OH(r',t"). (4) In a vacuum, the imaginary part of the trace of the

electric- and magnetic-field Green functions are equal. In-
Note that here the integration over goes from—oo to oo. deed, the electric- and magnetic-field Green functions obey
If j(r) is the electric current density in the system, thethe same equations and have the same boundary conditions
electric field readsE(r, ) =iuowfGE(r,r’,w)-j(r')d3’.  in this caseradiation condition at infinity In a vacuum, the
In the same way, the magnetic field is related to the-DOS is thus obtained by considering the electric-field con-
density of magnetic currentsm(r) by H(r,w) tribution only, and multiplying the result by a factor of 2.

< = One recovers the familiar result
=[GH(r,r",w)m(r")d%". In these two expressionSE and

GH are the dyadic Green functions of the electric and mag- 2
netic field, respectively. The fluctuation-dissipation theorem pu(r@)=py(w)=——, (10
i 2,23 77203
yields?
5 which shows in particular that the LDOS is homogeneous
w w H H
Ginre)= [expfiw/kgT)—1] /;077 m Gﬁ(r,r’,w), and fsotropic.
oT)—
) B. Plane interface
ho €ow Let us consider a plane interface separating a vacuum
Hij(r,r',w)= [expfwlkagT) —1] Elm Gi']-'(r,r’,w). (medium 1, corresponding to the upper half-spatem a
B

©6) semi-infinite materialmedium 2, corresponding to the lower
half-space characterized by its complex dielectric constant
If one considers only the positive frequencies, e;(w) (the material is assumed to be linear, isotropic, and
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nonmagnetig Inserting the expressions of the electric andAdding the electric and magnetic contributions yields the
magnetic-field Green functions for this geométrinto Eq.  total LDOS:
(9), one finds the expression of the LDOS at a given fre-
qgquency and at a given height above the interface in
vacuum. In this situation, the magnetic- and electric-field
Green functions are not the same. This is due to the boundary
conditions at the interface which are different for the electric
and magnetic fields. In order to discuss the origin of the
different contributions to the LDOS, we define and calculate
an electric LDOY p&(z,w)] due to the electric-field Green
function only, and a magnetic LDO®"(z,w)] due to the
magnetic-field Green function only. The total LDOS
pE(z,0)=pF(z,0) + p"(z,») has a clear physical meaning It is important to note that the electric and magnetic LDOS
unlike p&(z, ) andp"(z,w). Note thatp®(z,w) is the quan-  have similar expressions, but are in general not equal. The
tity that is usually calculated and considered to be the trugxpression ofoH(r) is obtained by exchanging theeand p
LDOS. In the geometry considered here, the expression giolarizations in the expression pf(r). As a result, the two
the electric LDOS & polarizations have a symmetric role in the expression of the
total LDOSp(r).

The vacuum situation can be recovered from the previous
expression by setting the values of the Fresnel reflection fac-
tors to zero. The same result is also obtained by taking the

1k dk

[J'O . {2+K2[Re(ri282ip“’2/°)

)

pu(@)

p(z,0)=—

K3dk s
W[Im(rIZ)

+ Im(r’l’z)]e‘Zp""Z’C). (13

1k dk

5

py()

y [2+ RdrizeZipr/C)

pE(z,0)=

* K dr

+Re(rgzezipwz/c)(2Kz_1)]+f [Im(r$,) LDOS at large distance from the interface, i.e., for A

1 |pl where\ = 27c/ w is the wavelength. This means that at large
distances, the interface does not perturb the density of elec-

+(2K2— 1)|m(r22)]672|p|w2/0 _ (11) tromagnetic states. In fa(nf?‘p|wz’°.become's neglig'ible. for
the evanescent waves aredP“?° is a rapidly oscillating

This expression is actually a summation over all possibl
plane waves with wave numbeét=w/c(k,p), where p
=1-«k?if k<1 andp=i«k?—1 if kx>1.r5,andrp, are
the Fresnel reflection factors between media 1 and<2aind

p polarizations, respectively, for a parallel wave vector
wklc.?® 0<k=<1 corresponds to propagating waves,
whereask>1 corresponds to evanescent waves. A simila
expression for the magnetic LDOS can be obtained:

pH(Z,w):Pviw)[jolk_g([2+Re(r;l)Zezipwz/C)
. *© K
+Re(r}"Pe7%) (262~ 1)]+ J ——[Im(r?,)
1 |p|
+(2K2—1)|m(r§2)]e—29wZ’C). (12)

r

unction for the propagating waves when integrating aver
he result is that all the terms containing exponential do not
contribute to the integral giving the LDOS in the vacuum.

Conversely, at short distance from the interfaefg, ) is
drastically modified compared to its free-space value. Equa-
tions (11)—(13) show that the Fresnel coefficients and there-
fore the nature of the material play a crucial role in this
modification. For example, as pointed out by Agarfvain
the case of a perfectly conducting surface, the contribution of
the electric and magnetic LDOS vanish, except for their free-
space contribution. In this particular case, one also retrieves
the vacuum result.

We now focus our attention on real materials such as met-
als and dielectrics. We first calculapéw) for aluminum at
different heights. Aluminum is a metal whose dielectric con-
stant is well described by a Drude model for near-uv, visible,
and near-ir frequencieg:

10
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O
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8 10
()]
©
- 104 el S FIG. 1. LDOS versus frequency at different
.*U:)' e ___/-';2/" ) heights above a semi-infinite sample of alumi-
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wf, sponding here to high frequencies, iXx/27<z), the LDOS
€(w)=1- (ot (14)  reduces to the vacuum situation. In this caséz,w)

=2pE(z,0)=2p"(z,w). Around the resonance, the LDOS
is dominated by the electric-field Green contribution. Con-
Sy X versely, at low frequencieg!'(z, ) dominates. Thus, Fig. 3
We plotted in Fig. 1 the LDO$(r,w) in the near-uv— ghoys that we have to be very careful when using the ex-
near-ir frequency domain at four different heights. We f'rStpressionp(z)=pE(z,w). Above aluminum and at a distance
note that the LDOS increases drastically when the distance to_ 1 nm, this approximation is only valid in a small range

the material is red_uced. As discussed ir! the previolus Pargsanveenn=10%rads * andw=1.5x< 106 rad s L.
graph, at a large distance from the material, one retrieves the
vacuum density of states. Note that at a given distance, it is
always possible to find a sufficiently high frequency for
which the corresponding wavelength is small compared to In order to get more physical insight, we have calculated
the distance so that a far-field situation is retrieved. When théhe asymptotic LDOS behavior in the three regimes men-
distance to the material is reduced, additional modes arttoned above. As we have already seen, the far-field regime
present: these are the evanescent modes that are confingd2w<d) corresponds to the vacuum case. To study the
close to the interface and that cannot be seen in the far fielshear-field situation, we focus on the evanescent contribution,
Moreover, aluminum exhibits a resonance arouad as suggested by the results in Fig. 2. WheR2mc/w>z,
=w,/+/2. Below this frequency, the material supports resothe exponential term exp(plwzc) is small only for «
nant surface waveurface-plasmon polaritonsAdditional ~ >\/(47z)>1. In this(quasistatig limit, the Fresnel reflec-
modes are therefore seen in the near field. This produces &ion factors reduce to

increase of the LDOS close to the interface. The enhance-

ment is particularly important at the resonant frequency that e—1

with w,=1.747x 10" rads ! and y=7.596x 10" rad s *.

C. Asymptotic form of the LDOS in the near field

P s
corresponds to Re(w)]=—1. This behavior is analogous lf;r12:4_,<2' (15
to that previously described in Ref. 21 for a SiC surface

supporting surface-phonon polaritons. Also note that in the e—1

low frequency regime, the LDOS increases. Finally, Fig. 1 lim rf,= . (16)
shows that it is possible to have a LDOS smaller than that of K—00 e+l

vacuum at some pa}rtlc_ular distances anq frequencies. F'g“f@symptotically,
2 shows the contributions of propagating and evanescent
waves to the LDOS above an aluminum sample at a distance "

the expressions pf(z,w) andp"(z,w) are

€
of 10 nm. The propagating contribution is very similar to that pE(z,0)= Po 3 T3 (17)
of the vacuum LDOS. As expected, the evanescent contribu- |e+1]* 4kqz
tion dominates at low frequency and around the surface-
plasmon polariton resonance, where pure near-field contribu- Hiz.0) " N €’ 19
; i p(Z,w)=p .
tions dominates. | 16Kz 4le+1|%Kkoz

We now turn to the comparison ¢z, ) with the usual
definition often encountered in the literature, which corre-At a distancez=10 nm above an aluminum surface, these
sponds tpF(z,w). In Fig. 3 we plotp, pF, andp" above an  asymptotic expressions matches almost perfectly with the
aluminum surface at the distanze: 10 nm. In this figure, it  full evanescent contributions«(>1) of p& and p". These
is possible to identify three different domains for the LDOS expressions also show that for a given frequency, one can
behavior. We note again that in the far-field situationrre-  always find a distance to the interfazebelow which the
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—— Density of states

FIG. 3. LDOS at a distance=10 nm above a
semi-infinite aluminum sample. Comparison with
pF(w) andp™(w).

Density of states

2 3 4 56 2 3 4 56 16 2 3 4 56 |17
1y 10 10

dominant contribution to the LDOS will be the one due to density of states near the interfacé§.As soon as the dis-

the imaginary part of the electric-field Green function thattance becomes small compared to the wavelength, the phase
varies like koz) 3 But for aluminum at a distance factors exp(Bwzc) in Eq. (13) are equal to unity. For a
=10 nm, this is not the case for all frequencies. As we menhighly reflecting material, the real part of the reflecting co-
tioned before, this is only true around the resonance. Fogfficients are negative so that the LDOS decreases while ap-
example, for low frequencies, and far=10 nm, the LDOS  proaching the surface. These two regimes are clearly ob-

is actually dominated by, €"/(16ko2). served for aluminum in Fig. 4. The third regime is observed
at small distances as seen in Fig. 4. The evanescent contri-
D. Spatial oscillations of the LDOS bution dominates and ultimately the LDOS always increases

as 1£°, following the behavior found in Eq17). This is the
usual quasistatic contribution that is always found at short
j(}istanceé6 At a frequency slightly smaller than the resonant

Let us now focus on the LDOS variations at a given fre-
guency versus the distaneeto the interface. There are es-
sentially three regimes. First, as discussed previously, at di

tances much larger than the wavelength the LDOS is give equency, surface waves are excited on the surface. These

by the vacuum expressiop, . The second regime is ob- additional modes increase the LDOS according to an expo-
-

served close to the interface where oscillations are observef€ntial law as seen in Fig. 5, a bzeehawor which was already
Indeed, at a given frequency, each incident plane wave on tH@und for thermally emitted field?® At low frequency, the
interface can interfere with its reflected counterpart. ThissDOS dependance is given by E€L8). The 1z magnetic
generates an interference pattern with a fringe spacing th48rm dominates because theetf 1| takes large values. The
depends on the angle and the frequency. Upon adding thtz® contribution equals the 4/contribution for distances
contributions of all the plane waves over angles, the oscillatmuch smaller than the nanometer scale, a distance for which
ing structure disappears except close to the interface. Thithe model is no longer valid.

leads to oscillations around distances on the order of the The main results of this section can be summarized as
wavelength. This phenomenon is the electromagnetic analollows. The LDOS of the electromagnetic field can be un-
of Friedel oscillations that can be observed in the electroni@ambiguously and properly defined from the local density of

6x10°

0 .

o 5

-

©

s

17}

—

o 4 FIG. 4. LDOS versus the distanzgfrom an
_4? — propagating waves contribution aluminum-vacuum interface at the aluminum
g ----- evanescent waves contribution resonant frequency.

[} total contribution

0 37 - ygcuum density of states

2 1 I I 1
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electromagnetic energy in a vacuum above a sample at tenwe assume that an analyzer is placed in front of the detector
peratureT in equilibrium. The LDOS can always be written (polarized detection The direction of polarization of the
as a function of the electric-field Green function only, but isanalyzer is along the direction of the vecjqays.. If the solid
in general not proportional to the trace of its imaginary partangled() under which the detector is seen from the tip is
An additional term proportional to the trace of the imaginarysmall (a condition we assume for simplicjtythe signal
part of the magnetic-field Green function is present in the(S(w)) at the detector, at a given frequeney reads
far-field and at low frequencies. At short distances from the
surface of a material supporting surface mogdasmon or cc
phono_n-polanton)s the LDOS presents a resonance at fre- (S(w))= %|Ed(w)|2r2dﬂ, (19)
guencies such that Rg w)]=—1. Close to this resonance,
the approximatiorp(z,w)=p&(z, ) holds. In the next sec-
tion, we discuss how the LDOS can be measured. wheree, is the permittivity of vacuumg is the speed of light
in vacuumy is the distance between the tip and the detector,
andE, is the electric field at the position of the detector. Let
us denote byE.,p; (experimental fielgl the thermal field,
A. Near-field thermal emission spectroscopy with an emitted by the sample, in the gap region between the tip and
apertureless SNOM the sample. This field can be, in principle, calculated follow-
In this section we shall consider how the LDOS can belNd the approach recently used in Refs. 5 and 21. For sim-
measured using a SNOM. We consider a frequency rangB“C'tyv we shall neglect the thermal emission from the tip
where p is dominated by the electric contributigst. We itself (which is assumed to be cc)ldompar.ed to that of the
note that for an isotropic dipole, a lifeime measurement'®@ted sample. But we do not need, at this stage, to assume a
yields the LDOS, as discussed by Wijnardsl1° However, yveak coupllng'betweer] the 'tlp a_nd the _sample. In partlcular,
if the dipole has a fixed orientation the lifetime is propor- 1N the expressions derived in this section, the experimental
. < . field Ecp is the field emitted by the sample alone, in the
tional 10 Gy and not to the trace db. In order to achieve a 1, oq0nce of the detecting tip. Following the approach of Ref.
direct SNOM measurement of the LDOS, we have to fulill 29 based on the reciprocity theorem of electromagnetfsm,
two requirements. First, all the modes must be excited. Th

. . . . n exact relationship between the si and the ex-
simplest way to achieve this is to use the thermally emme? P 908))

radiation by a body at equilibrium. The second requirement

IV. MEASUREMENT OF THE LDOS

is to have a detector with a flat response to all modes. Tc E"ef )J<e

analyze this problem we use a formalism recently intro- v Y

duced. Eexp -
We consider a SNOM working in the detection mode, and® g 2

detecting the electromagnetic field thermally emitted by a '}1,,/'

sample held at a temperatufe The system is depicted in
Fig. 6. The microscope tip is scanned at close proximity of
the interface separating the solid body from a vacuum. The FIG. 6. Scheme of a scanning near-field optical microscope
signal is measured in the far field, by a point detector sensimeasuring a thermally emitted fielth) Experimental situation(b)

tive to the energy flux carried by the electromagnetic field.Reciprocal(fictitious) situation.
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perimental fieldEe,,, can be established. It can be shown B. Detection of the LDOS by an ideal point-dipole probe

that the signal is given by an overlapping integral. Let us see what would be measured by an ideal probe
To proceed, one considers a fictitious situation in WhiChconsisting of a single electric dipole described by a polariz-
the sample is removed, and a point source, represented bya%ility a(w). Note that such a probe was proposed as a
monochromatic currenk. oscillating at frequencyw, is  model for the uncoated dielectric probe sometimes used in
placed at the position of the detectigee Fig. 6)]. The  photon scanning tunneling microscogySTM), and gives
orientation of this reciprocal source is chosen along the digood qualitative prediction: We assume that the thermally
rection of p0|ari2ati0n of the analyzer used in the eXperimenemitting medium Occupies the ha'f-spaz}éo, and that the
cal situation is denoted byE... Using the reciprocity detector placed in the far field measures the field intensity at

theorem, the field at the detector can be written a given pointry, through an analyzer whose polarization
20 [UEe(RZ0) . g:irfeizec:(ig ;se:(Ijong the vectqge.. In this case, Eq20) sim-
Ed(w)'Jrec_Mow S 9z 'Eexm(R,Z,w) R,

20 ;

( ) Jrec'Ed
where the integration is performed in a plazvez, between ) _
the tip and the sample and=(x,y) are the coordinates — () w® explik|rg—ry) -ﬁ(u ) EqoTe,)
along this plane. Equatiof20) connects the field above the e 4mc2  |rq—ry Jrec' N{Ud)" Eexpt M, @),
surfaceEqyp to the field in the detectdEy along the direc-
tion of the analyzer. Note that the reciprocal fidg.. en- (24)

codes all the information about the detection systémand ] . )
collection opticg. Reporting the expression of the field at the Wherek=/c, ug=(rq—ro)/|rq—r{ is the unit vector point-
detector(20) in Eqg. (19), one finds the expression for the ing from the probe towards the detector ah@ugy)= I
measured signal: —UgUq is the dyadic operator that projects a vector on the

direction transverse tay, | being the unit dyadic operator.

(S(w))= echf f Hij(R,R’,z,0)W;;(R,R’,z,w)dRdR’. The dyadicﬁ(ud) being symmetric, the scalar product in the
8mJ)sts right-hand side in Eq(24) can be transformed using the
@D equality jrec i(Ug) - EexplTt.®) = Eexp(Tt. @) - (Ua) rec-

Equation(21) establishes a linear relationship between theF'na"y' the signal at the detector writes
signal and the cross-spectral density telwgrof the electric

field defined by , o

(S)=la(w)| py—

<Eexpti(R:Z-w)E:xptj(R,uZ-w,)> me

=Wij(R.R".Z,0)d(0—w’). (22 whereA=h(ug) - jec is a vector depending only on the de-
The response functioi;; only depends on the detection tection conditions(direction and polarization Note that if
system(in particular the tip geometry and compositipand ~ rec IS transverse with respect to the directiop, which is

dQ Y, AAFW(rr,0), (25
1]

is given by approximately the case in many experimental setups, then
one simply haA=jqc-
, IEeci(R,Z,0) dE ¢ j(R",Z,w) Equation(25) shows that with an ideal probe consisting of
H;j(R.R",w)= 9z 9z - (23 a signal dipole with an isotropic polarizabilitg(w), one

locally measures the cross-spectral density tensor at the po-

The cross-spectral density tensd¥;; describes the sition r, of the tip. Nevertheless, polarization properties of
electric-field spatial correlation at a given frequengyFor  the detection still exist so that the traceWf; , and therefore
the thermal emission situation considered here, it dependsE(r,w), is not directly measured. A possibility of measuring
only on the dielectric constant, on the geometry, and on théhe trace would be to measure a sig(@) in the direction
temperature of the sample. normal to the surface with an unpolarized detection, and a

Equation(21) is a general relationship between the signalsignal (S,) in the direction parallel to the surface, with an
and the cross-spectral density tensor. It is nonlocal andnalyzer in the vertical directiofS;) would be a sum of the
strongly polarization dependent. This shows that one doetvo signals obtained witf. along thex direction and along
not measure in general a quantity that is proportional tahe y direction.(S,) would correspond to the signal mea-
W,(r,r,), and thus topE(r,w). Nevertheless Eq(21)  sured withj,.. along thez direction. Using Eq(25), we see
suggested thap®(r,w) can be recovered if the response that the signalS)=(S;)+(S,) is proportional to the trace
function Hj; is localized. Indeed, in that case the signal isWy(r¢,r,»), and thus tpE(r,w). Measuring the thermal
proportional toW;;(R,R,z,w), thus topE(r,w). As shown spectrum of emission with an apertureless SNOM whose
in the next section, a dipole tiggmall spherpwould exhibit ~ probe is dipolar is thus a natural way to achieve the measure-
such a response function. ment of p&(r,»). Close to the material resonances, i.e., in
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the frequency domain whege(r, ) matchesp(r, ), such sponding to th.e fre_que_nay are actually excited Note that .
a near-field thermal emission spectrum gives the electromadhis mode of illumination corresponds to that proposed in

netic LDOS. Ref. 33. This similarity, together with the discussion in the
preceding paragraph, allows us to conclude that under these
C. Analogy with scanning (electron) tunneling microscopy operating conditions, a collection-mode SNOM would pro-

) ) ] . duce images that closely resemble the electric LDOS
The result in this section shows that a SNOM measurlnng(r ).

the thermally emitted field with a dipole prolger example, We now turn to the discussion of images produced using
a sphere much smaller than the existing wavelengiea- 5, jjlumination-mode SNOM as used in Ref. 20. The use of
sures the electromagnetic LDOS of the sample in the frégg reciprocity theorem allows us to derive an equivalence

quency range situated around the resonant pulsation. As digatyeen illumination and collection-mode configurations, as
cussed above, the measured LDOS is that of the modes theo\ in Ref. 34. Starting from the collection-mode instru-

can be excited in the thermal emission process in a colghent described above, the reciprocal illumination-mode con-
vacuum. This result was obtained from EB0) assuming @  figyration corresponds to a SNOM working in transmission,
weak tip-sample coupling, i.e., the experimental field is aStne Jight being collected by an integrating sphere over all
sumed to be the same with or without the tip. possible transmission directiormcluding those below and
The same result could be obtained starting from the genzpove the critical angle Under such conditions, the
eraljzed Barde(_en formula derived in Ref. 11. Us_ing this for-j;,umination-mode SNOM produces exactly the same image
malism for a dipole probe, one also ends up with EXp), a5 the collection-mode SNOM using isotropic, spatially in-
which explicitly shows the linear relationship between thecoherent, and monochromatic illumination. This explains

signal andp™(r,w). This derivation is exactly the same as \yny this instrument is able to produce images that closely
that used in the Tersoff-Hamann theory of the STMhis  fo10w the electric LDOSpE(r,w). Finally, note that in Ref.

theory showed, in the weak tip-sample coupling limit, thatoq the transmitted light is collected above the critical angle
the electron-tunneling current measured in STM was Proporaniy, which in principle should be a drawback regarding the
tional to the electronic LDOS of the sample, at the tip posi-| pos imaging. In these experiments, it seems that the inter-
tion, and at the Fermi energy. This result, although pbtaine‘f.‘)retation of the images as maps of the electric LDOS re-
under some approximations, was a breakthrough in undef,ings nevertheless qualitatively correct, which shows that in
standing the STM signal. In the case of near-field optics, they;g case, the main contribution to the LDOS comes from

present discussi?n, together with the use of the generalized,qes with wave vector corresponding to propagation direc-
Bardeen formuld! shows that under similar approximations, tions above the critical angle.

a SNOM using an ideal dipole probe and measuring the field
thermally emitted by the sample is the real optical analog to
the electron STM. We believe that this situation provides for V. CONCLUSION
SNOM a great potential for local solid-surface spectroscopy,
along the directions opened by STM. In this paper, we have introduced a definition of the elec-
tromagnetic LDOSp(r,w). We have shown that it is fully
D. Could the LDOS be detected by standard SNOM determined by the electric-field Green function, but that in
techniques? general it does not reduce to the trace of its imaginary part
. I . pE(r,w). We have studied the LDOS variations versus the
Before cor]cludmg, we will discuss the ab|I|ty. of stand_ard distance to a material surface and have explicitly shown ex-
SNOM technlqgeépy “stapdard" We mean technlqu.es using amples in which the LDOS deviates frop¥(r,w). Never-
laser-light illumination to image the electromagnetic LDOS theless, we have shown that around the material resonances
close to a sample. Recent experlmé%lttave shown that an (surface polaritonls the near-field LDOS reduces to
illumination-modeSNOM using metal-coated tips and work- E(r,w). Measuring the LDOS with an apertureless SNOM
ing in transmission produce images that reproduce calculat iné a point-dipole tip should be feasible. The principle of

maps prE.(r'“’) (V.Vh'Ch IS the.adopted definition of the e meagurement is to record a near-field thermal emission
LDOS in this experimental work; see also Ref.).l\‘A/e_shaII_ ._spectrum. Under such conditions, the instrument behaves as
An optical analog of the STM, in the weak-coupling regime,
which is known to measure the electronic LDOS on a metal
surface. Finally, we have discussed recent standard SNOM
experiments in which the LDOS seems to be qualitatively
measured. Using general arguments, we have discussed the
relevance of such measurements and compared them to mea-
surements based on thermal-emission spectroscopy.

to that corresponding to a SNOM working icollection
mode and measuring thermally emitted fields. This will ex-
plain why the images reprodudat least qualitatively the
electric LDOSpE(r, w).

Let us first consider a collection-mode technique, in
which the sampléassumed to be transpargit illuminated
in transmission by a monochromatic laser with frequeacy
and the near-field light is collected by a local probe. If we
assume the illuminating light to be spatially incoherent and
isotropic in the lower half-spadgvith all incident directions
included, then this illumination is similar to that produced  We thank Y. De Wilde, F. Formanek, and A.C. Boccara for
by thermal fluctuationgexcept that only the modes corre- helpful discussions.
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APPENDIX: CALCULATION OF THE FIELD AT THE Whereké: w?/c2. Comparing this expression and Eé1),
DETECTOR FOR AN IDEAL POINT-DIPOLE PROBE then
Let .(K) ande,,,(K) be the two-dimensional Fourier ) )
component oE,(r) andE,,(r). In the configuration cho- e o(K)= I tow ell—K R+ A K)ZI () . D, (A5)
sen in our problem the reciprocal field propagates to the ec 8m2y(K) '
negativez whereas the experimental fields propagates to the
positivez. Thus wherek™ =(K,—v). Furthermore, using the fact thb(k)

=h(—k) and definingk” = (K, ),
Erec(r):f eedK)expli[K-R—y(K)z]}dK, (Al) ) 5
i . -

o —K)= @SR p. (AB)
Eoupl1)= | rp(KIOXIITK- R+ H(K)Z]} 0K, (A2) Y

Let us denotée(j,..— ;) the field radiated by the reciprocal
wherey(K) = Jw?/c?—KZ2. Putting Eqs(Al) and(A2) into  current in r,. The dipole induced is then writterp
Eq. (20) gives = a(w)€E(jrec—T1) and

/.L e'lrd rt‘

] 82
Ed(w)'lrec:_w_luof V(K)erec(_K)'eexpt(K)dK- E(jrec—r1)= |I’ _r|

(A3)

exp{K) can be evaluated by calculating the fidlg,,(r). Using the fact that for all dyadié and for all vectorsaa and
This last field is the field radiated by the reciprocal currentb,

jrec @nd diffused by the ideal probe. It can also be seen as the

field radiated by the dipole induced at the position [A-a]-b=a-[AT-b] (A8)
=(R;,z) of the probe. Ifp is the dipole induced at the

position of the ideal probe, the reciprocal field at a posmonthath is a symmetric dyadlck( hT) thate,p{K) is trans-

———(Ug) rec- (A7)

situated below the probe is written verse to the directioh ™ and the definition oEeyy(r),
Erec(r):Msza(rvrt)'p Jrec' Ed
iMszf d?KellK-R-R)+¥(z=21| | Kk w? explik|rg—rd) . -
= | ——-p, =a(w -h(uy)-E re,w).
877'2 y k% p ( )47702 |rd_rt| Jrec ( d) expt( t )
(A4) (A9)
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