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Definition and measurement of the local density of electromagnetic states close to an interface
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We propose in this article an unambiguous definition of the local density of electromagnetic states~LDOS!
in a vacuum near an interface in equilibrium at temperatureT. We show that the LDOS depends only on the
electric-field Green function of the system but does not reduce in general to the trace of its imaginary part, as
often is used in the literature. We illustrate this result by a study of the LDOS variations with the distance to
an interface and point out deviations from the standard definition. We show nevertheless that this definition
remains correct at frequencies close to the material resonances such as surface polaritons. We also study the
feasibility of detecting such a LDOS with apertureless scanning near-field optical microscope~SNOM! tech-
niques. We first show that a thermal near-field emission spectrum above a sample should be detectable and that
this measurement could give access to the electromagnetic LDOS. It is further shown that the apertureless
SNOM is the optical analog of the scanning tunneling microscope, which is known to detect the electronic
LDOS. We also discuss some recent SNOM experiments aimed at detecting the electromagnetic LDOS.

DOI: 10.1103/PhysRevB.68.245405 PACS number~s!: 73.20.Mf, 03.50.De, 07.79.Fc, 44.40.1a
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I. INTRODUCTION

The density of states~DOS! is a fundamental quantity
from which many macroscopic quantities can be deriv
Indeed, once the DOS is known, the partition function can
computed yielding the free energy of the system. It follo
that the heat capacity, forces, etc., can be derived. A w
known example of a macroscopic quantity that follows i
mediately from the knowledge of the electromagnetic D
is the Casimir force.1,2 Other examples are shear forces3 and
heat transfer4 between two semi-infinite dielectrics. Recent
it has been shown that unexpected coherence propertie
thermal emission at short distances from an interface s
rating vacuum from a polar material are due to the contri
tion to the density of states of resonant surface waves.5 It has
also been shown that the Casimir force can be interprete
essentially due to the surface wave contribution to
DOS.1,2

Calculating and measuring the local density of sta
~LDOS! in the vicinity of an interface separating a real m
terial from a vacuum is therefore necessary to underst
many problems currently studied. The density of states
usually derived from the Green function of the system
taking the imaginary part of the Green function.6,7 In solid-
state physics, the electronic local density of states at
Fermi energy at the surface of a metal can be measured
a scanning tunneling microscope~STM!.8 This has been
proved by several experiments, in particular the so-ca
quantum corral experiments.9 Although one can formally
generalize the definition of the electromagnetic LDOS
using the trace of the imaginary part of the Green tensor,10 it
turns out that this definition does not yield the correct eq
librium electromagnetic energy density.

Recently, it has been shown theoretically that the ST
and the scanning near-field optical microscope~SNOM! have
strong analogies.11 More precisely, in the weak tip-sampl
coupling limit, it was demonstrated that a unified formalis
can be used to relate the STM signal to the electronic LD
0163-1829/2003/68~24!/245405~10!/$20.00 68 2454
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and the SNOM signal to electromagnetic LDOS. SNO
instruments12 have been used to perform different kinds
emission spectroscopy, such as luminescence,13 Raman
spectroscopy,14 or two-photon fluorescence.15 For detection
of infrared light, apertureless techniques16 have shown their
reliability for imaging17 as well as for vibrational spectros
copy on molecules.18 Moreover, recent calculations and e
periments have shown that an optical analog of the quan
corral could be designed, and that the measured SNOM
ages on such a structure present strong similarities with
calculated electromagnetic LDOS.19,20 These results sugges
that the electromagnetic LDOS could be directly measu
with a SNOM.

The purpose of this article is to show how the electrom
netic LDOS can be related to the electric Green function, a
to discuss possible measurements of the LDOS in SNO
We first introduce a general definition of the electromagne
LDOS in a vacuum in the presence of materials, possi
lossy objects. Then, we show that under some well-defi
circumstances, the LDOS is proportional to the imagina
part of the trace of the electrical Green function. The resu
are illustrated by calculating the LDOS above a metal s
face. We show next that the signal detected with a SNO
measuring the thermally emitted field near a heated bod
closely related to the LDOS and conclude that the natu
experiment to detect the LDOS is to perform a near-fi
thermal emission spectrum. We discuss the influence of
tip shape. We also discuss whether standard SNOM meas
ments using an external illumination can detect the elec
magnetic LDOS.19,20

II. LOCAL DENSITY OF ELECTROMAGNETIC STATES
IN A VACUUM

As pointed out in the Introduction, the LDOS is ofte
defined as being the imaginary part of the trace of
electric-field Green dyadic. This approach seems to giv
correct description in some cases,19,20 but to our knowledge
©2003 The American Physical Society05-1
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JOULAIN, CARMINATI, MULET, AND GREFFET PHYSICAL REVIEW B68, 245405 ~2003!
this definition has never been derived properly for elect
magnetic fields in a general system that includes an arbit
distribution of matter with possible losses. The aim of th
section is to propose an unambiguous definition of
LDOS.

Let us consider a system at equilibrium temperatureT.
Using statistical physics, we write the electromagnetic
ergyU(v) at a givenpositivefrequencyv, as the product of
the DOS by the mean energy of a state at temperatureT, so
that

U~v!5r~v!
\v

exp~\v/kBT!21
, ~1!

where 2p\ is Planck’s constant andkB is Boltzmann’s con-
stant. We can now introduce21 a local density of states by
starting with the local density of electromagnetic ener
U(r ,v) at a given pointr in space and at a given frequenc
v. This can be written by definition of the LDOSr(r ,v) as

U~r ,v!5r~r ,v!
\v

exp~\v/kBT!21
. ~2!

The density of electromagnetic energy is the sum of
electric energy and of the magnetic energy. At equilibrium
can be calculated using the system Green function and
fluctuation-dissipation theorem. Let us introduce the elect
and magnetic-field correlation functions for a stationary s
tem:

Ei j ~r ,r 8,t2t8!5
1

2pE dv Ei j ~r ,r 8,v!e2 iv(t2t8)

5^Ei~r ,t !Ej* ~r 8,t8!&, ~3!

Hi j ~r ,r 8,t2t8!5
1

2pE dv Hi j ~r ,r 8,v!e2 iv(t2t8)

5^Hi~r ,t !H j* ~r 8,t8!&. ~4!

Note that here the integration overv goes from2` to `.
If j (r ) is the electric current density in the system, t

electric field readsE(r ,v)5 im0v*GIE(r ,r 8,v)• j (r 8)d3r 8.
In the same way, the magnetic field is related to
density of magnetic currents m(r ) by H(r ,v)

5*GIH(r ,r 8,v)m(r 8)d3r 8. In these two expressions,GIE and

GIH are the dyadic Green functions of the electric and m
netic field, respectively. The fluctuation-dissipation theor
yields22,23

Ei j ~r ,r 8,v!5
\v

@exp~\v/kBT!21#

m0v

2p
Im Gi j

E~r ,r 8,v!,

~5!

Hi j ~r ,r 8,v!5
\v

@exp~\v/kBT!21#

e0v

2p
Im Gi j

H~r ,r 8,v!.

~6!

If one considers only the positive frequencies,
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U~r ,v!54S ~e0/2! (
i 51,3

Ei i ~r ,r ,v!

1~m0/2! (
i 51,3

Hi i ~r ,r ,v! D
so that

U~r ,v!5
\v

@exp~\v/kBT!21#

v

pc2
Im Tr@GIE~r ,r ,v!

1GIH~r ,r ,v!#. ~7!

It is important to note that the magnetic-field Green functi
and the electric-field Green function are not independent
fact, one has

v2

c2
GIH~r ,r 8,v!5@“ r3#•GIE~r ,r 8,v!•@“ r83#. ~8!

A comparison of Eqs.~2! and~7! shows that the LDOS of the
electromagnetic field reads

r~r ,v!5
v

pc2
Im Tr@GIE~r ,r ,v!1GIH~r ,r ,v!#5 f ~GIE!

~9!

in which f (GIE) is an operator that will be discussed mo
precisely in the next section.

III. DISCUSSION

The goal of this section is to study the LDOS behavior
some well-characterized physical situations, based on the
sult in Eq.~9!.

A. Vacuum

In a vacuum, the imaginary part of the trace of t
electric- and magnetic-field Green functions are equal.
deed, the electric- and magnetic-field Green functions o
the same equations and have the same boundary condi
in this case~radiation condition at infinity!. In a vacuum, the
LDOS is thus obtained by considering the electric-field co
tribution only, and multiplying the result by a factor of 2
One recovers the familiar result

rv~r ,v!5rv~v!5
v2

p2c3
, ~10!

which shows in particular that the LDOS is homogeneo
and isotropic.

B. Plane interface

Let us consider a plane interface separating a vacu
~medium 1, corresponding to the upper half-space! from a
semi-infinite material~medium 2, corresponding to the lowe
half-space! characterized by its complex dielectric consta
e2(v) ~the material is assumed to be linear, isotropic, a
5-2
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DEFINITION AND MEASUREMENT OF THE LOCAL . . . PHYSICAL REVIEW B 68, 245405 ~2003!
nonmagnetic!. Inserting the expressions of the electric a
magnetic-field Green functions for this geometry24 into Eq.
~9!, one finds the expression of the LDOS at a given f
quency and at a given heightz above the interface in
vacuum. In this situation, the magnetic- and electric-fi
Green functions are not the same. This is due to the boun
conditions at the interface which are different for the elec
and magnetic fields. In order to discuss the origin of
different contributions to the LDOS, we define and calcul
an electric LDOS@rE(z,v)# due to the electric-field Gree
function only, and a magnetic LDOS@rH(z,v)# due to the
magnetic-field Green function only. The total LDO
rE(z,v)5rE(z,v)1rH(z,v) has a clear physical meanin
unlike rE(z,v) andrH(z,v). Note thatrE(z,v) is the quan-
tity that is usually calculated and considered to be the t
LDOS. In the geometry considered here, the expression
the electric LDOS is25

rE~z,v!5
rv~v!

4 H E
0

1k dk

p
@21Re~r 12

s e2ipvz/c!

1Re~r 12
p e2ipvz/c!~2k221!#1E

1

`k dk

upu @ Im~r 12
s !

1~2k221!Im~r 12
p !#e22upuvz/cJ . ~11!

This expression is actually a summation over all poss
plane waves with wave numberk5v/c(k,p), where p
5A12k2 if k<1 andp5 iAk221 if k.1. r 12

s andr 12
p are

the Fresnel reflection factors between media 1 and 2 ins and
p polarizations, respectively, for a parallel wave vec
vk/c.26 0<k<1 corresponds to propagating wave
whereask.1 corresponds to evanescent waves. A sim
expression for the magnetic LDOS can be obtained:

rH~z,v!5
rv~v!

4 H E
0

1k dk

p
@21Re~r 12

p e2ipvz/c!

1Re~r 12
s e2ipvz/c!~2k221!#1E

1

`k dk

upu @ Im~r 12
p !

1~2k221!Im~r 12
s !#e22upuvz/cJ . ~12!
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Adding the electric and magnetic contributions yields t
total LDOS:

r~z,v!5
rv~v!

2 H E
0

1k dk

p
$21k2@Re~r 12

s e2ipvz/c!

1Re~r 12
p e2ipvz/c!#%1E

1

`k3dk

upu @ Im~r 12
s !

1Im~r 12
p !#e22upuvz/cJ . ~13!

It is important to note that the electric and magnetic LDO
have similar expressions, but are in general not equal.
expression ofrH(r ) is obtained by exchanging thes and p
polarizations in the expression ofrE(r ). As a result, the two
polarizations have a symmetric role in the expression of
total LDOSr(r ).

The vacuum situation can be recovered from the previ
expression by setting the values of the Fresnel reflection
tors to zero. The same result is also obtained by taking
LDOS at large distance from the interface, i.e., forz@l
wherel52pc/v is the wavelength. This means that at lar
distances, the interface does not perturb the density of e
tromagnetic states. In fact,e22upuvz/c becomes negligible for
the evanescent waves ande2ipvz/c is a rapidly oscillating
function for the propagating waves when integrating overk.
The result is that all the terms containing exponential do
contribute to the integral giving the LDOS in the vacuum

Conversely, at short distance from the interface,r(r ,v) is
drastically modified compared to its free-space value. Eq
tions ~11!–~13! show that the Fresnel coefficients and the
fore the nature of the material play a crucial role in th
modification. For example, as pointed out by Agarwal,23 in
the case of a perfectly conducting surface, the contribution
the electric and magnetic LDOS vanish, except for their fr
space contribution. In this particular case, one also retrie
the vacuum result.

We now focus our attention on real materials such as m
als and dielectrics. We first calculater(v) for aluminum at
different heights. Aluminum is a metal whose dielectric co
stant is well described by a Drude model for near-uv, visib
and near-ir frequencies:27
t
i-
FIG. 1. LDOS versus frequency at differen
heights above a semi-infinite sample of alum
num.
5-3
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FIG. 2. Density of states contributions due
the propagating and evanescent waves compa
to the total density of states and the vacuum de
sity of states. These quantities are calculat
above an aluminum sample at a distance of
nm.
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e~v!512
vp

2

v~v1 ig!
~14!

with vp51.74731016 rad s21 andg57.59631013 rad s21.
We plotted in Fig. 1 the LDOSr(r ,v) in the near-uv–

near-ir frequency domain at four different heights. We fi
note that the LDOS increases drastically when the distanc
the material is reduced. As discussed in the previous p
graph, at a large distance from the material, one retrieves
vacuum density of states. Note that at a given distance,
always possible to find a sufficiently high frequency f
which the corresponding wavelength is small compared
the distance so that a far-field situation is retrieved. When
distance to the material is reduced, additional modes
present: these are the evanescent modes that are con
close to the interface and that cannot be seen in the far fi
Moreover, aluminum exhibits a resonance aroundv
5vp /A2. Below this frequency, the material supports re
nant surface waves~surface-plasmon polaritons!. Additional
modes are therefore seen in the near field. This produce
increase of the LDOS close to the interface. The enhan
ment is particularly important at the resonant frequency t
corresponds to Re@e(v)#521. This behavior is analogou
to that previously described in Ref. 21 for a SiC surfa
supporting surface-phonon polaritons. Also note that in
low frequency regime, the LDOS increases. Finally, Fig
shows that it is possible to have a LDOS smaller than tha
vacuum at some particular distances and frequencies. Fi
2 shows the contributions of propagating and evanes
waves to the LDOS above an aluminum sample at a dista
of 10 nm. The propagating contribution is very similar to th
of the vacuum LDOS. As expected, the evanescent contr
tion dominates at low frequency and around the surfa
plasmon polariton resonance, where pure near-field contr
tions dominates.

We now turn to the comparison ofr(z,v) with the usual
definition often encountered in the literature, which cor
sponds torE(z,v). In Fig. 3 we plotr, rE, andrH above an
aluminum surface at the distancez510 nm. In this figure, it
is possible to identify three different domains for the LDO
behavior. We note again that in the far-field situation~corre-
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sponding here to high frequencies, i.e.,l/2p!z), the LDOS
reduces to the vacuum situation. In this caser(z,v)
52rE(z,v)52rH(z,v). Around the resonance, the LDO
is dominated by the electric-field Green contribution. Co
versely, at low frequencies,rH(z,v) dominates. Thus, Fig. 3
shows that we have to be very careful when using the
pressionr(z)5rE(z,v). Above aluminum and at a distanc
z510 nm, this approximation is only valid in a small rang
betweenv51016 rad s21 andv51.531016 rad s21.

C. Asymptotic form of the LDOS in the near field

In order to get more physical insight, we have calcula
the asymptotic LDOS behavior in the three regimes m
tioned above. As we have already seen, the far-field reg
(l/2p!d) corresponds to the vacuum case. To study
near-field situation, we focus on the evanescent contribut
as suggested by the results in Fig. 2. Whenl52pc/v@z,
the exponential term exp(2upuvz/c) is small only for k
@l/(4pz)@1. In this ~quasistatic! limit, the Fresnel reflec-
tion factors reduce to

lim
k→`

r 12
s 5

e21

4k2
, ~15!

lim
k→`

r 12
p 5

e21

e11
. ~16!

Asymptotically, the expressions ofrE(z,v) andrH(z,v) are

rE~z,v!5
rv

ue11u2

e9

4k0
3z3

, ~17!

rH~z,v!5rvF e9

16k0z
1

e9

4ue11u2k0z
G . ~18!

At a distancez510 nm above an aluminum surface, the
asymptotic expressions matches almost perfectly with
full evanescent contributions (k.1) of rE and rH. These
expressions also show that for a given frequency, one
always find a distance to the interfacez below which the
5-4
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FIG. 3. LDOS at a distancez510 nm above a
semi-infinite aluminum sample. Comparison wi
rE(v) andrH(v).
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dominant contribution to the LDOS will be the one due
the imaginary part of the electric-field Green function th
varies like (k0z)23. But for aluminum at a distancez
510 nm, this is not the case for all frequencies. As we m
tioned before, this is only true around the resonance.
example, for low frequencies, and forz510 nm, the LDOS
is actually dominated byrve9/(16k0z).

D. Spatial oscillations of the LDOS

Let us now focus on the LDOS variations at a given f
quency versus the distancez to the interface. There are es
sentially three regimes. First, as discussed previously, at
tances much larger than the wavelength the LDOS is gi
by the vacuum expressionrv . The second regime is ob
served close to the interface where oscillations are obser
Indeed, at a given frequency, each incident plane wave on
interface can interfere with its reflected counterpart. T
generates an interference pattern with a fringe spacing
depends on the angle and the frequency. Upon adding
contributions of all the plane waves over angles, the oscil
ing structure disappears except close to the interface.
leads to oscillations around distances on the order of
wavelength. This phenomenon is the electromagnetic an
of Friedel oscillations that can be observed in the electro
24540
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density of states near the interfaces.7,28 As soon as the dis-
tance becomes small compared to the wavelength, the p
factors exp(2ipvz/c) in Eq. ~13! are equal to unity. For a
highly reflecting material, the real part of the reflecting c
efficients are negative so that the LDOS decreases while
proaching the surface. These two regimes are clearly
served for aluminum in Fig. 4. The third regime is observ
at small distances as seen in Fig. 4. The evanescent co
bution dominates and ultimately the LDOS always increa
as 1/z3, following the behavior found in Eq.~17!. This is the
usual quasistatic contribution that is always found at sh
distances.26 At a frequency slightly smaller than the resona
frequency, surface waves are excited on the surface. T
additional modes increase the LDOS according to an ex
nential law as seen in Fig. 5, a behavior which was alre
found for thermally emitted fields.5,26 At low frequency, the
LDOS dependance is given by Eq.~18!. The 1/z magnetic
term dominates because the 1/ue11u2 takes large values. The
1/z3 contribution equals the 1/z contribution for distances
much smaller than the nanometer scale, a distance for w
the model is no longer valid.

The main results of this section can be summarized
follows. The LDOS of the electromagnetic field can be u
ambiguously and properly defined from the local density
m

FIG. 4. LDOS versus the distancez from an

aluminum-vacuum interface at the aluminu
resonant frequency.
5-5
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FIG. 5. LDOS versus the distancez from an
aluminum-vacuum interface at frequencyv58
31015 rad s21.
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electromagnetic energy in a vacuum above a sample at
peratureT in equilibrium. The LDOS can always be writte
as a function of the electric-field Green function only, but
in general not proportional to the trace of its imaginary pa
An additional term proportional to the trace of the imagina
part of the magnetic-field Green function is present in
far-field and at low frequencies. At short distances from
surface of a material supporting surface modes~plasmon or
phonon-polaritons!, the LDOS presents a resonance at f
quencies such that Re@e(v)#521. Close to this resonance
the approximationr(z,v)5rE(z,v) holds. In the next sec
tion, we discuss how the LDOS can be measured.

IV. MEASUREMENT OF THE LDOS

A. Near-field thermal emission spectroscopy with an
apertureless SNOM

In this section we shall consider how the LDOS can
measured using a SNOM. We consider a frequency ra
where r is dominated by the electric contributionrE. We
note that for an isotropic dipole, a lifetime measurem
yields the LDOS, as discussed by Wijnandset al.10 However,
if the dipole has a fixed orientationx, the lifetime is propor-

tional toGxx and not to the trace ofGI . In order to achieve a
direct SNOM measurement of the LDOS, we have to ful
two requirements. First, all the modes must be excited.
simplest way to achieve this is to use the thermally emit
radiation by a body at equilibrium. The second requirem
is to have a detector with a flat response to all modes.
analyze this problem we use a formalism recently int
duced.

We consider a SNOM working in the detection mode, a
detecting the electromagnetic field thermally emitted by
sample held at a temperatureT. The system is depicted in
Fig. 6. The microscope tip is scanned at close proximity
the interface separating the solid body from a vacuum. T
signal is measured in the far field, by a point detector se
tive to the energy flux carried by the electromagnetic fie
24540
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We assume that an analyzer is placed in front of the dete
~polarized detection!. The direction of polarization of the
analyzer is along the direction of the vectorj rec . If the solid
angledV under which the detector is seen from the tip
small ~a condition we assume for simplicity!, the signal
^S(v)& at the detector, at a given frequencyv, reads

^S~v!&5
e0c

2
uEd~v!u2r 2dV, ~19!

wheree0 is the permittivity of vacuum,c is the speed of light
in vacuum,r is the distance between the tip and the detec
andEd is the electric field at the position of the detector. L
us denote byEexpt ~experimental field! the thermal field,
emitted by the sample, in the gap region between the tip
the sample. This field can be, in principle, calculated follo
ing the approach recently used in Refs. 5 and 21. For s
plicity, we shall neglect the thermal emission from the
itself ~which is assumed to be cold! compared to that of the
heated sample. But we do not need, at this stage, to assu
weak coupling between the tip and the sample. In particu
in the expressions derived in this section, the experime
field Eexpt is the field emitted by the sample alone, in th
presence of the detecting tip. Following the approach of R
29 based on the reciprocity theorem of electromagnetism30

an exact relationship between the signal^S(v)& and the ex-

FIG. 6. Scheme of a scanning near-field optical microsco
measuring a thermally emitted field.~a! Experimental situation.~b!
Reciprocal~fictitious! situation.
5-6
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DEFINITION AND MEASUREMENT OF THE LOCAL . . . PHYSICAL REVIEW B 68, 245405 ~2003!
perimental fieldEexpt can be established. It can be show
that the signal is given by an overlapping integral.

To proceed, one considers a fictitious situation in wh
the sample is removed, and a point source, represented
monochromatic currentj rec oscillating at frequencyv, is
placed at the position of the detector@see Fig. 6~b!#. The
orientation of this reciprocal source is chosen along the
rection of polarization of the analyzer used in the experim
tal situation. The field created around the tip in this recip
cal situation is denoted byErec . Using the reciprocity
theorem, the field at the detector can be written29

Ed~v!• j rec5
22i

m0vES

]Erec~R,z,v!

]z
•Eexpt~R,z,v!dR,

~20!

where the integration is performed in a planez5z0 between
the tip and the sample andR5(x,y) are the coordinates
along this plane. Equation~20! connects the field above th
surfaceEexpt to the field in the detectorEd along the direc-
tion of the analyzer. Note that the reciprocal fieldErec en-
codes all the information about the detection system~tip and
collection optics!. Reporting the expression of the field at th
detector~20! in Eq. ~19!, one finds the expression for th
measured signal:

^S~v!&5
e0c

8p2ES
E

S
Hi j ~R,R8,z,v!Wi j ~R,R8,z,v!dR dR8.

~21!

Equation~21! establishes a linear relationship between
signal and the cross-spectral density tensorWi j of the electric
field defined by

^Eexpt,i~R,z,v!Eexpt, j* ~R8,z,v8!&

5Wi j ~R,R8,z,v!d~v2v8!. ~22!

The response functionHi j only depends on the detectio
system~in particular the tip geometry and composition!, and
is given by

Hi j ~R,R8,v!5
]Erec,i~R,z,v!

]z

]Erec, j~R8,z,v!

]z
. ~23!

The cross-spectral density tensorWi j describes the
electric-field spatial correlation at a given frequencyv. For
the thermal emission situation considered here, it depe
only on the dielectric constant, on the geometry, and on
temperature of the sample.

Equation~21! is a general relationship between the sign
and the cross-spectral density tensor. It is nonlocal
strongly polarization dependent. This shows that one d
not measure in general a quantity that is proportional
Wkk(r ,r ,v), and thus torE(r ,v). Nevertheless Eq.~21!
suggested thatrE(r ,v) can be recovered if the respon
function Hi j is localized. Indeed, in that case the signal
proportional toWi j (R,R,z,v), thus torE(r ,v). As shown
in the next section, a dipole tip~small sphere! would exhibit
such a response function.
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B. Detection of the LDOS by an ideal point-dipole probe

Let us see what would be measured by an ideal pr
consisting of a single electric dipole described by a pola
ability a(v). Note that such a probe was proposed as
model for the uncoated dielectric probe sometimes use
photon scanning tunneling microscopy~PSTM!, and gives
good qualitative prediction.31 We assume that the thermall
emitting medium occupies the half-spacez,0, and that the
probe is placed at a pointr t . As in the preceding section, th
detector placed in the far field measures the field intensit
a given pointrd , through an analyzer whose polarizatio
direction is along the vectorj rec . In this case, Eq.~20! sim-
plifies to read

j rec•Ed

5a~v!
v2

4pc2

exp~ ikurd2r tu!
urd2r tu

j rec•hI~ud!•Eexpt~r t ,v!,

~24!

wherek5v/c, ud5(rd2r t)/urd2r tu is the unit vector point-

ing from the probe towards the detector andhI(ud)5 II

2udud is the dyadic operator that projects a vector on

direction transverse toud , II being the unit dyadic operator

The dyadichI(ud) being symmetric, the scalar product in th
right-hand side in Eq.~24! can be transformed using th

equality j rec•hI(ud)•Eexpt(r t ,v)5Eexpt(r t ,v)•hI(ud)• j rec .
Finally, the signal at the detector writes

^S&5ua~v!u2
v4

4pc4
dV(

i , j
AiAj* Wi j ~r t ,r t ,v!, ~25!

whereA5hI(ud)• j rec is a vector depending only on the de
tection conditions~direction and polarization!. Note that if
j rec is transverse with respect to the directionud , which is
approximately the case in many experimental setups, t
one simply hasA5 j rec .

Equation~25! shows that with an ideal probe consisting
a signal dipole with an isotropic polarizabilitya(v), one
locally measures the cross-spectral density tensor at the
sition r t of the tip. Nevertheless, polarization properties
the detection still exist so that the trace ofWi j , and therefore
rE(r ,v), is not directly measured. A possibility of measurin
the trace would be to measure a signal^S1& in the direction
normal to the surface with an unpolarized detection, an
signal ^S2& in the direction parallel to the surface, with a
analyzer in the vertical direction.^S1& would be a sum of the
two signals obtained withj rec along thex direction and along
the y direction. ^S2& would correspond to the signal mea
sured withj rec along thez direction. Using Eq.~25!, we see
that the signal̂ S&5^S1&1^S2& is proportional to the trace
Wkk(r t ,r t ,v), and thus torE(r ,v). Measuring the therma
spectrum of emission with an apertureless SNOM wh
probe is dipolar is thus a natural way to achieve the meas
ment of rE(r ,v). Close to the material resonances, i.e.,
5-7
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the frequency domain whererE(r ,v) matchesr(r ,v), such
a near-field thermal emission spectrum gives the electrom
netic LDOS.

C. Analogy with scanning „electron… tunneling microscopy

The result in this section shows that a SNOM measur
the thermally emitted field with a dipole probe~for example,
a sphere much smaller than the existing wavelengths! mea-
sures the electromagnetic LDOS of the sample in the
quency range situated around the resonant pulsation. As
cussed above, the measured LDOS is that of the modes
can be excited in the thermal emission process in a c
vacuum. This result was obtained from Eq.~20! assuming a
weak tip-sample coupling, i.e., the experimental field is
sumed to be the same with or without the tip.

The same result could be obtained starting from the g
eralized Bardeen formula derived in Ref. 11. Using this f
malism for a dipole probe, one also ends up with Eq.~25!,
which explicitly shows the linear relationship between t
signal andrE(r ,v). This derivation is exactly the same a
that used in the Tersoff-Hamann theory of the STM.8 This
theory showed, in the weak tip-sample coupling limit, th
the electron-tunneling current measured in STM was prop
tional to the electronic LDOS of the sample, at the tip po
tion, and at the Fermi energy. This result, although obtai
under some approximations, was a breakthrough in un
standing the STM signal. In the case of near-field optics,
present discussion, together with the use of the general
Bardeen formula,11 shows that under similar approximation
a SNOM using an ideal dipole probe and measuring the fi
thermally emitted by the sample is the real optical analog
the electron STM. We believe that this situation provides
SNOM a great potential for local solid-surface spectrosco
along the directions opened by STM.

D. Could the LDOS be detected by standard SNOM
techniques?

Before concluding, we will discuss the ability of standa
SNOM techniques~by ‘‘standard’’ we mean techniques usin
laser-light illumination! to image the electromagnetic LDO
close to a sample. Recent experiments32 have shown that an
illumination-modeSNOM using metal-coated tips and wor
ing in transmission produce images that reproduce calcul
maps of rE(r ,v) ~which is the adopted definition of th
LDOS in this experimental work; see also Ref. 19!. We shall
now show that this operating mode bears strong similari
to that corresponding to a SNOM working incollection
mode, and measuring thermally emitted fields. This will e
plain why the images reproduce~at least qualitatively! the
electric LDOSrE(r ,v).

Let us first consider a collection-mode technique,
which the sample~assumed to be transparent! is illuminated
in transmission by a monochromatic laser with frequencyv,
and the near-field light is collected by a local probe. If w
assume the illuminating light to be spatially incoherent a
isotropic in the lower half-space~with all incident directions
included!, then this illumination is similar to that produce
by thermal fluctuations~except that only the modes corre
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sponding to the frequencyv are actually excited!. Note that
this mode of illumination corresponds to that proposed
Ref. 33. This similarity, together with the discussion in t
preceding paragraph, allows us to conclude that under th
operating conditions, a collection-mode SNOM would pr
duce images that closely resemble the electric LD
rE(r ,v).

We now turn to the discussion of images produced us
an illumination-mode SNOM as used in Ref. 20. The use
the reciprocity theorem allows us to derive an equivalen
between illumination and collection-mode configurations,
shown in Ref. 34. Starting from the collection-mode instr
ment described above, the reciprocal illumination-mode c
figuration corresponds to a SNOM working in transmissio
the light being collected by an integrating sphere over
possible transmission directions~including those below and
above the critical angle!. Under such conditions, the
illumination-mode SNOM produces exactly the same ima
as the collection-mode SNOM using isotropic, spatially
coherent, and monochromatic illumination. This expla
why this instrument is able to produce images that clos
follow the electric LDOSrE(r ,v). Finally, note that in Ref.
20, the transmitted light is collected above the critical an
only, which in principle should be a drawback regarding t
LDOS imaging. In these experiments, it seems that the in
pretation of the images as maps of the electric LDOS
mains nevertheless qualitatively correct, which shows tha
this case, the main contribution to the LDOS comes fro
modes with wave vector corresponding to propagation dir
tions above the critical angle.

V. CONCLUSION

In this paper, we have introduced a definition of the ele
tromagnetic LDOSr(r ,v). We have shown that it is fully
determined by the electric-field Green function, but that
general it does not reduce to the trace of its imaginary p
rE(r ,v). We have studied the LDOS variations versus t
distance to a material surface and have explicitly shown
amples in which the LDOS deviates fromrE(r ,v). Never-
theless, we have shown that around the material resona
~surface polaritons!, the near-field LDOS reduces t
rE(r ,v). Measuring the LDOS with an apertureless SNO
using a point-dipole tip should be feasible. The principle
the measurement is to record a near-field thermal emis
spectrum. Under such conditions, the instrument behave
an optical analog of the STM, in the weak-coupling regim
which is known to measure the electronic LDOS on a me
surface. Finally, we have discussed recent standard SN
experiments in which the LDOS seems to be qualitativ
measured. Using general arguments, we have discusse
relevance of such measurements and compared them to
surements based on thermal-emission spectroscopy.
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APPENDIX: CALCULATION OF THE FIELD AT THE
DETECTOR FOR AN IDEAL POINT-DIPOLE PROBE

Let erec(K ) andeexpt(K ) be the two-dimensional Fourie
component ofErec(r ) andEexpt(r ). In the configuration cho-
sen in our problem the reciprocal field propagates to
negativez whereas the experimental fields propagates to
positivez. Thus

Erec~r !5E erec~K !exp$ i @K•R2g~K !z#%dK , ~A1!

Eexpt~r !5E eexpt~K !exp$ i @K•R1g~K !z#%dK , ~A2!

whereg(K )5Av2/c22K2. Putting Eqs.~A1! and~A2! into
Eq. ~20! gives

Ed~v!• j rec52
8p2

vm0
E g~K !erec~2K !•eexpt~K !dK .

~A3!

eexpt(K) can be evaluated by calculating the fieldEexpt(r ).
This last field is the field radiated by the reciprocal curre
j rec and diffused by the ideal probe. It can also be seen as
field radiated by the dipole induced at the positionr t
5(Rt ,zt) of the probe. Ifp is the dipole induced at the
position of the ideal probe, the reciprocal field at a posit
situated below the probe is written

Erec~r !5m0v2GI~r ,r t!•p

5
im0v2

8p2 E d2Kei [K•(R2Rt)1g(zt2z)]

g F II2
kk

k0
2 G•p,

~A4!
. A

al

s

d

24540
e
e

t
he

n

wherek0
25v2/c2. Comparing this expression and Eq.~A1!,

then

erec~K !5
im0v2

8p2g~K !
ei [ 2K•Rt1g(K )zt]hI~k2!•p, ~A5!

wherek25(K ,2g). Furthermore, using the fact thathI(k)

5hI(2k) and definingk15(K ,g),

erec~2K !5
im0v2

8p2g
ei (K•Rt1gzt)hI~k1!•p. ~A6!

Let us denoteE( j rec→r t) the field radiated by the reciproca
current in r t . The dipole induced is then writtenp
5a(v)e0E( j rec→r t) and

E~ j rec→r t!5
ivm0

4p

ei urd2r tu

urd2r tu
hI~ud!• j rec . ~A7!

Using the fact that for all dyadicAI and for all vectorsa and
b,

@AI•a#•b5a•@AIT
•b# ~A8!

thathI is a symmetric dyadic (hI5hIT), thateexpt(K ) is trans-
verse to the directionk1 and the definition ofEexpt(r ),

j rec•Ed

5a~v!
v2

4pc2

exp~ ikurd2r tu!
urd2r tu

j rec•hI~ud!•Eexpt~r t ,v!.

~A9!
.J.
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