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Interplay between quantum confinement and electron-electron interaction
in deformed silicon quantum wires

G. Parascandolo,* G. Cantele, D. Ninno, and G. Iadonisi
INFM and Universita` di Napoli ‘‘Federico II’’—Dipartimento di Scienze Fisiche, Complesso Universitario Monte S. Angelo,

Via Cintia, I-80126 Napoli, Italy
~Received 27 June 2003; published 24 December 2003!

In this paper we investigate quantum confinement and electron-electron correlation in silicon deformed
quantum wires. Starting from the single-particle picture, which shows the possibility of localizing one electron
inside the wire deformation, we build a variationalansatzfor the two-electron ground state. We compare the
localizing effect induced by the deformation with the Coulomb repulsion, pointing out the existence of a
two-electron confined ground state, depending on the wire geometry. On varying the geometrical parameters
characterizing the wire deformation, it is possible to switch from structures dominated by the localization to
structures in which the increase of the available volume makes the Coulomb contribution very relevant, as for
ordinary quantum dots. The effects induced by the dielectric mismatch between the wire and the surrounding
medium are included and discussed.
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I. INTRODUCTION

One of the most attractive aspects of quantum confi
systems has been the possibility of obtaining light emiss
from silicon. Significant advances made since the discov
of porous silicon opened the way toward the use of this m
terial for optoelectronic devices.1,2

Among the many, intriguing physical properties are tho
related to charge transport and sensing properties of por
silicon-based devices. For example, it has been demonst
that a large enhancement of the conductivity can be reac
via an acceptorlike doping obtained through the adsorp
of NO2 molecules on the porous silicon surface.3–5

In the past, many models have been proposed to exp
the strong visible luminescence at room temperature,1 but it
is now widely accepted that it is related to quantum confi
ment effects. A significant role in determining the features
the electronic states can be played by the nanostruc
shape. It has been shown6–8 that the presence of deforma
tions causes the appearance of discrete levels in the mini
structure of a quantum wire. Both the photoluminesce
and the Stokes shift between the emission and absorp
spectra can be explained in terms of transitions between
states. Moreover, the presence of discrete, localized s
can account for porous silicon sensing properties as wel7

The geometry-induced electron localization leads to
possibility that such confinement effect can interplay w
electron-electron repulsion, giving rise to two-electron co
fined states. The aim of this paper is the study of the gro
state of a two-electron system, in which quantum confi
ment arises within a deformed quantum wire. We show,
der suitable conditions for the wire geometry, the existe
of two-electron states localized in correspondence with
deformations. The electron-electron correlation degree
studied as a function of the deformation geometry, show
how it is possible to modify the two-electron ground sta
from weakly confined~Coulomb-repulsion dominated! to
strongly localized~geometry-induced localization!. This can
give rise to different charging states for the deformatio
leading to the possibility of observing Coulomb-blockad
0163-1829/2003/68~24!/245318~10!/$20.00 68 2453
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like effects. We shall not discuss this aspect, because
analysis presented here focuses on the electronic gro
state configuration rather than on transport properties. N
ertheless, it is worth mentioning that the evidence
Coulomb-blockade-related phenomena has been addre
by several authors~see, for example, Refs. 9 and 10!.

All the calculations are done in the framework of th
effective-mass approximation, using a variational appro
that properly takes into account correlation effects. This
shown in Secs. II and III, where the single- and two-parti
systems are considered, respectively.

In Sec. IV a detailed discussion of all the electrosta
contributions to the two-electron Hamiltonian is given. W
include the dielectric effects arising as a consequence of
dielectric mismatch between the wire and the surround
medium. The nature of all these contributions is accoun
for by a suitable choice of the trial wave function.

Numerical results are shown in Sec. V. The physical
pects involved in the electron localization within the defo
mation are discussed. In particular we focus on the fun
mental difference between quantum confinement a
localization, typical of such wires, and discuss the implic
tions on the electron-electron correlation. The results
tained by both neglecting and taking into account the diel
tric effects are given~Secs. V A and V B, respectively!, to
better bringing out the role played by the dielectric m
match. A semiquantitative evaluation of its influence on t
binding of the two-electron system and on the electronic c
relation is discussed. Finally, in Sec. VI we draw some co
clusions.

II. SINGLE-PARTICLE STATES IN DEFORMED
QUANTUM WIRES

In this section we discuss electron localisation in d
formed quantum wires. We recall, for completeness, the m
points concerning the single-particle ground state. An
tended and detailed discussion can be found in Refs. 6–

Let us consider a bulged cylindrical quantum wire with
axis along thez direction. Due to the symmetry of the prob
©2003 The American Physical Society18-1
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lem, in the following we will consider a cylindrical coordi
nate system (r,z,w) (r being the distance from the wir
axis, z the position along the axis, andw the azimuthal
angle!. The wire bulge can be modeled with az-dependent
radius, which can be chosen as8

R~z!5R0F11« expS 2
2z2

Dz2D G , ~1!

whereR0 and«R0 are, respectively, the radius of the und
formed part of the cylinder and the bulge depth (« positive!,
while Dz represents the width of the bulge. A drawing of
bulged wire is shown, together with its geometrical para
eters, in Fig. 1.

The motion of an electron within such a structure subj
to the external potentialUs can be studied by solving th
single-particle Schro¨dinger equation 2(\2/2meff)“

2c
1Us(r )c(r )5Esc(r ) assuming the hard-wall boundar
condition@namely,c(r )50 on the wire boundary#. Heremeff
is the particle effective mass. Due to the presence of
deformation, an exact solution cannot be attempted. We
low a functional variational approach, with a suitable cho
of the trial wave function. Let us consider the single-parti
energy functional

FIG. 1. A bulged quantum wire.R0 and «R0 are, respectively,
the radius of the undeformed part of the cylinder and the bu
depth (« positive!, while Dz represents the width of the bulge.
24531
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E
V
dr @ u“ rc~r !u21us~r !uc~r !u2#

E
V
dr uc~r !u2

, ~2!

whereus52meffUs /\2 andV is the region inside the wire. I
is straightforward to show that the condition that the fi
functional variationdes with respect toc is null is equiva-
lent to requiringc satisfy both the single-particle Schro¨-
dinger equation shown above and the hard-wall bound
condition. Therefore, the problem is reduced to finding
suitable class of trial wave functions and minimizing t
functional~2! over the subspace generated by them. This w
lead to an upper bound to the ‘‘true’’ ground-state energy.
choose

c~r !5
1

R~z!
J0S x0,1

r

R~z! DF~z!, ~3!

whereJ0 is the zero-order Bessel function,x0,1 its first zero,
andF(z) an unknown function ofz. Such a choice is moti-
vated by the fact that as the wire profile reduces to
straight wire@R(z)→R0#, the corresponding exact ground
state wave function has to be retrieved@in this caseF(z)
51] as well as that it is expected that the deformation w
modify the motion along thez direction. By substituting the
wave function~3! into Eq. ~2! it is easy to show that the
function F(z), which makes it stationary, satisfies a on
dimensional Schro¨dinger equation that contains the potent
us ~assumed to be dependent only onz for simplicity! and an
effective, single-particle potential given~in units of
\2/2meff) by

Veff~z!5
1

R2~z!
Fx0,1

2 1
~11x0,1

2 !

3
R82~z!G , ~4!

which depends onR(z) and its first derivativeR8(z), that is,
on how the cylinder is deformed. The effect of such a pot
tial on the single-particle motion has been discussed in R
8. It acts as a quantum well in thez direction, which causes
electronic localization in the bulge volume. Each localiz
state corresponds to a new energy level within the minib
gap, thus modifying significantly the electronic spectrum.

The wave function~3! has been shown to be quite a goo
approximation if«,1 andR0 /Dz,1, which is always true
for typical geometries involved in porous silico
structures.6–8

Finally, it is worth mentioning that the effective one
dimensional Schro¨dinger equation can be numerical
solved, giving the ground-state energy and wave functi
Nevertheless, it is useful to find an analytical function th
well fits to F(z). It has been shown that

f ~a,z!5~11auzu!e2auzu, ~5!

where a is a positive parameter~depending on the geom
etry!, gives quite a good approximation toF(z).

e

8-2
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III. THE TWO-ELECTRON GROUND STATE IN
DEFORMED QUANTUM WIRES

The effective-mass Schro¨dinger equation for two interact
ing electrons confined within a region of volumeV is

2
\2

2meff
“ r1

2 C~r1 ,r2!2
\2

2meff
“ r2

2 C~r1 ,r2!

1U~r1 ,r2!C~r1 ,r2!5EC~r1 ,r2!, ~6!
ng
o

d
-

,
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-
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24531
where it has been assumed that no external, single-par
potential is present.U(r1 ,r2) is the interaction potential
which will be discussed later.

The same functional variational approach depicted in
preceding section can be used for studying the ground s
of such a system with hard-wall boundary conditio
@C(r1 ,r2)50 if r1 or r2 are on the volume boundary#. First,
we define the two-particle energy functional
e@C#5

E
V
dr1E

V
dr2@ u“ r1

C~r1 ,r2!u21u“ r2
C~r1 ,r2!u21u~r1 ,r2!uC~r1 ,r2!u2#

E
V
dr1E

V
dr2uC~r1 ,r2!u2

, ~7!
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where e52meffE/\2, u(r1 ,r2)5(2meff /\
2)U(r1 ,r2). The

requirement that the first functional variationde with respect
to C be zero leads to the condition that the wave functionC
satisfies the Schro¨dinger equation~6! in the volumeV to-
gether with the hard-wall boundary conditions.8

The ground state of the noninteracting system, fulfilli
the boundary condition, is simply given by the product
two single-particle ground-state wave functions@see Eq.~3!#

C0~r1 ,r2!5
1

R~z1!
J0S x0,1

r1

R~z1! D f ~a,z1!

3
1

R~z2!
J0S x0,1

r2

R~z2! D f ~a,z2!, ~8!

where the analytical fit forF(z) has been used.
The wave function~8! cannot actually describe the groun

state associated with Eq.~6!, because the Hamiltonian con
tains the interaction potentialU(r1 ,r2). Since the ‘‘true’’
ground-state wave function describes a correlated system
consider the product

C~r1 ,r2!5C0~r1 ,r2!Ccorr~r12r2!, ~9!

whereC0 is given in Eq.~8! and the correlated motion of th
electrons is described byCcorr.

The trial function~9! must reflect the ground-state pro
erties. Then it must~i! depend only onw12w2 ~that is, be
invariant for rotations of both electrons of the same an
around thez axis!, ~ii ! be invariant for reflections of both
electrons@that is, with respect to the transformation (r1 ,r2)
→(2r1 ,2r2)], ~iii ! be symmetric with respect to the ex
change of the two electrons~corresponding to the single
spin state!, ~iv! vanish if any of the two electrons is on th
wire boundary, and~v! be continuous together with its firs
and second partial derivatives. The choice that will be p
vided fulfills all these conditions.
f

we

e

-

IV. THE INTERACTION POTENTIAL

It is worth discussing the nature of the interaction pote
tial, the choice ofCcorr being strongly related to it. We ca
write

U~r1 ,r2!5UCoul~r12r2!1Ud~r1 ,r2!

5UCoul~r12r2!1Uself
d ~r1!1Uself

d ~r2!

1Ue2e
d ~r1 ,r2!, ~10!

whereUCoul is the Coulomb repulsion between the two ele
trons andUd a dielectric contribution. This last term arises
a result of the dielectric mismatch between the wire and
surrounding medium.

It is known that an electron moving inside a quantu
wire, whose dielectric constant« I is different from that of the
surrounding medium« II , causes the appearance of a surfa
polarization charge.11–14A proper description of the electro
motion must take into account the interaction between
particle and this surface charge. Making reference to por
silicon nanostructures, all the dielectric interactions are
pulsive. In fact, porous silicon is usually surrounded by o
ide (SiO2), whose dielectric constant is smaller than that
silicon (« I512, « II54). The dielectric interaction for the
two-electron system is composed of three terms:~i! two self-
interaction terms@Uself

d in Eq. ~10!# due to the interaction of
each electron with the surface charge generated by itself
~ii ! the interaction between each electron and the surf
charge generated by the second one@Ue2e

d in Eq. ~10!#.
Let us focus first on the self-interaction contribution. A

electron moving inside the wire generates a surface polar
tion charge, as explained above, which is spread out on
whole surfaceSof the wire. Nevertheless, we expect that t
major part of it is localized in a limited region ofS, near the
electron. The farther the electron from the surface,
smaller the self-interaction energy. Because of the partic
geometry of the wire we are considering~see Fig. 1!, the
interaction of each electron with its relative surface charg
8-3
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stronger if the electron is located in the straight part of
wire ~having a smaller radius!. This means that the self
interaction terms, which are repulsive, tend to push the e
trons toward the center of the bulge, favoring in this way
reduction of the electron-electron correlation. On the ot
hand, the electron-electron interaction term via the surf
charge tends to correlate the electrons, each particle b
repelled by the polarization charge generated by the o
one.12–14

Therefore, we can conclude that the full potential conta
two repulsive terms~Coulomb and interaction via the surfac
charge! and a localizing potential that is a self-interactio
contribution. The interplay between all such terms, toget
with the localizing effect induced by the deformation~see
Sec. II!, will determine the nature of the ground state.

A last point must be stressed here. Given the geometr
the confined system, we can take into account only
electron-electron correlation along thez direction~this means
that we consider the dependence ofCcorr on z1 andz2, ne-
glecting all the other coordinates!. In fact, it is expected tha
the minimum energy configuration is reached when the
electrons are placed along thez axis so that the distanc
between each other and from the wire boundary is as larg
possible, in order to minimize both the electrostatic repuls
and the kinetic contribution to the total energy. It has inde
been shown12 that if we consider more and more elongat
quantum rods, for which one of the dimensions gets m
longer than the other two, the correlation energy15 mainly
arises from the possibility that the two electrons keep
from each other along the ‘‘long’’ direction.

Keeping all this in mind, we can do a suitable choice
Ccorr, as follows:

Ccorr~z12z2!512a f~b,z12z2!, ~11!
nt

e
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where the functionf (a,z) is defined in Eq.~5!. The trial
wave function~9! can be written as

C~r1 ,r2!5
1

R~z1!

1

R~z2!
J0S x0,1

r1

R~z1! D
3J0S x0,1

r2

R~z2! Dg~z1 ,z2!, ~12!

where

g~z1 ,z2!5~11auz1u!e2auz1u~11auz2u!e2auz2u

3@12a~11buz12z2u!exp~2buz12z2u!#.

~13!

a, a, andb are three variational parameters, whose valu
can be fixed by requiring the energy functional given in E
~7! be minimum. Let us note that such a choice fits requi
ments depicted above well, being able to describe a t
particle system subject to both a repulsive potential an
localizing one. In fact,~i! if a50 or if the distance between
the two electrons is very large, the uncorrelated wave fu
tion @given in Eq.~8!# is retrieved, and~ii ! if aÞ0, it de-
scribes the correlated system for which the probability
finding the two electrons at the same position is (12a)2

times smaller than that corresponding to uncorrelated p
ticles. Then we argue thata represents the electronic corre
lation degree, so that 0<a<1. 1/a and 1/b are instead
linked to the mean single-electron localization range and
the mean electron-electron distance respectively,16 so that
a,b>0.

Using the trial wave function~12!, the energy functional
~7! results to be dependent only on the functiong:
e@g#5

E
2`

`

dz1E
2`

`

dz2$@]z1
g~z1 ,z2!#21@]z2

g~z1 ,z2!#21V~z1 ,z2!g2~z1 ,z2!%

E
2`

`

dz1E
2`

`

dz2g2~z1 ,z2!

. ~14!
ge
es

ant
o
ex-
t.

e
de-

on
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try.
The two electrons move as they were subject to the pote

V~z1 ,z2!5Veff~z1!1Veff~z2!1Vel~z1 ,z2!, ~15!

where Veff has been defined in Eq.~4! and represents th
effective, geometry-induced, localizing potential.Vel is the
potential arising from the electrostatic terms@see Eq.~10!#.

The results we are going to show have been obtai
assuming the dielectric constant of the bulk material« I
512) for the silicon nanostructures. Some works17,18 have
demonstrated that on reducing the average size of the sa
~here identified6 with the geometrical parameterDz) the di-
electric constant decreases. Nevertheless, all these cal
tions show that the difference between the confined and
ial

d

ple

la-
e

bulk dielectric constant is significant only when the avera
size is reduced approximately down to 15 Å, but becom
really important only when it approaches the lattice const
(a055.43 Å for silicon!. Therefore, since we are going t
consider larger structures, no significant correction is
pected to come from a size-dependent dielectric constan

V. RESULTS

The aim of our calculation is the description of how th
electron-electron correlation depends on the geometrical
tails of the wire deformation as well as the investigati
about whether or not a two-electron confined state exists
der suitable conditions on the wire deformation geome
8-4
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Before showing the results, some key points must
stressed. It is well known that the three-dimensional confi
ment within a zero-dimensional system~quantum dot, or
QD! gives rise to the appearance of discrete levels, wh
makes these systems very peculiar because of their ato
like features. If we look, instead, to quantum confinem
within a one-dimensional system~quantum wire, or QWr!,
the existence of a direction along which there is no confi
ment is responsible of a miniband structure, that is, o
dimensional bands whose edges are related to quantum
finement along the other two directions~for example, for a
cylindrical quantum wire they depend on the inverse squ
wire radius!. In both cases we deal with quantum confin
ment, the difference being the system dimensionality.

For a deformed quantum wire an intermediate condit
holds: discrete energy levels exist in the gap between
one-dimensional bands, corresponding to localized states
pending on the bulge geometry. For such a system we m
distinguish between thequantum confinement, responsible
for the position of the miniband edges and whose effect
pends on the wire radius, and thelocalization in the z direc-
tion, due to the presence of the bulge and origin of the d
crete states within the gap.

This ‘‘intermediate’’ state~meaning that we find both de
localized and localized states! makes deformed quantum
wires very peculiar, giving rise to QD-like or QWr-like sys
tems, depending on the deformation geometrical parame
This can lead to interesting features for the two-electron s
tem, such as the possibility of observing Coulomb-blocka
like effects, typical of QD’s. All the results presented in th
section will be described keeping in mind this peculiari
and in particular the conceptual difference between quan
confinement and localization, in the sense outlined abov

In the strong quantum confinement regime the energy
two-electron system is nearly exclusively kinetic, and t
electrostatic terms can be treated as a perturbative correc
On reducing the quantum confinement~that is, increasing the
available volume!, the effect of electrostatic terms on th
electron motion becomes more and more relevant, and
description within the strong confinement regime~which as-
sumes an uncorrelated ground-state wave function! becomes
incorrect. This is not always the case for a deformed qu
tum wire. In fact, as already pointed out, each electron
subject to a geometrical effective potentialVeff @given in Eq.
~4!#, which pushes the particle toward the center of the bu
at z50 ~localization!. We are going to show that it is pos
sible to change the geometry of the bulge in such a way
an increase of the available volume corresponds to bo
decrease of the quantum confinement~as for QD’s! and an
increase of localization, this last effect being dominant. T
result is that the electron-electron correlation degree is
duced, because of the action of thez-localizing geometrical
potentialVeff .

A. The effect of the Coulomb interaction

We have minimized the energy functional~14! with re-
spect to the three variational parametersa, a, andb, obtain-
ing, in accordance with the variational principle, an upp
24531
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bound to the ground-state energy. We first discuss the cas
which only the Coulomb repulsion is taken into accou
@U(r1 ,r2)5UCoul(r12r2) in Eq. ~10!#. The contribution of
dielectric effects will be considered later.

The Coulomb contribution can be evaluated through
expansion19

1

ur12r2u
5 (

m52`

1` E
0

1`

eim(w12w2)Jm~kr1!

3Jm~kr2!e2kuz12z2udk. ~16!

We obtain@see Eq.~15!#

Vel~z1 ,z2!5VCoul~z1 ,z2!

5
2

aB*
F 2

J1
2~x0,1!

G 2E
0

`

e2kuz12z2u

3S@kR~z1!#S@kR~z2!#dk, ~17!

whereaB* is the material Bohr radius, defined as

aB* 54p«0« I

\2

meffe
2

5« I

me

meff
aB , ~18!

and the functionS(x) is defined through the integral

S~x!5E
0

1

tJ0
2~x0,1t !J0~xt!dt. ~19!

The binding energy can be defined by considering that
the single-particle picture, the effective, geometrical pot
tial ~4! has the asymptotic valuex0,1

2 /R0
2 , which corresponds

to the undeformed wire first miniband edge. This means t
single-particle delocalized states correspond to ener
above this value, while localized states, if present, to ene
levels lying below it. For the two-electron system we c
define as a reference state the one with two electrons atz5
2` andz51`, respectively, leading to an energy given b
twice the miniband edge. This means that, for a fixed geo
etry, if Etot is the value of the energy functional at the min
mum point, the ground state is confined ife,2x0,1

2 /R0
2 and

the binding energy can be defined asEB5(\2/2meff)(e
22x0,1

2 /R0
2)5(\2/2meff)eB , wheree52meffEtot/\

2 .
The features of the ground state of the system are

sented in Figs. 2–6 as functions of the geometry of the
formation. In the following we indicate withK and C the
kinetic and Coulomb contributions to the total energy (Etot
5K1C). We show~i! the ratiosK/Etot andC/Etot ~Fig. 2!,
~ii ! the binding energyEB ~Fig. 3!, ~iii ! the variational pa-
rametera ~Fig. 4! identified with the electron-electron corre
lation degree~see discussion in Sec. IV!, ~iv! a21 ~Fig. 5!,
which measures the electron distance from the center of
bulge, and~v! b21 ~Fig. 6!, which measures the electron
electron distance.16 In each figure three curves are show
each corresponding to a fixed value ofR0, as a function of«
@which measures the deformation depth~see Fig. 1!#. Dz
~that is, the mean dimension of the sample! is kept fixed at
30 Å.
8-5
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The shape of the bulge can be substantially change
two different ways, and the effect of geometry on t
electron-electron correlation degree is different in the t
cases:

~1! With increasingR0, keeping« fixed ~that is, moving
from the solid to the dashed to the dotted curve, in e
of Figs. 2–6!, there is an increase of the volume of th
bulge, so that the kinetic to total energy ratio is reduc
while the Coulomb to total energy ratio increases,20 as
can be observed in Fig. 2. The modification of the bu
geometry is such to reduce the depth of the localiz
effective potentialVeff and then the absolute value o
binding energy, as Fig. 3 clearly shows. The localizat

FIG. 2. Ground-state kinetic and Coulomb to total energy ra
as a function of« for three different values ofR0 . Dz has been kept
fixed to 30 Å.

FIG. 3. Binding energies of the two-electron localized grou
state, for the same geometries as in Fig. 2. Energy is measur
units of \2/2meffR0

2 (2meffR0
2EB /\25eR0

222x0,1
2 ).
24531
in

o

h

,

e
g

n

decrease leads to a ground-state configuration in wh
the effect of the Coulomb repulsion becomes more v
ible, with the two electrons that tend to keep far fro
each other along the wire axis. This favors an increas
the electron-electron correlation degree, as shown in
4. This picture is confirmed by Figs. 5 and 6, where it
shown that with increasingR0, keeping« fixed, both the
mean localization rangea21 of the single-electron wave
function and the mean electron-electron distanceb21

increase.
~2! With increasing«, keepingR0 fixed ~that is, moving

along each curve from left to right, in each of Figs. 2–6!,
an increase of the volume of the bulge still causes

o

in

FIG. 4. The variational parametera for the two-electron ground
state and the bulge geometries discussed in Fig. 2.a represents the
electron-electron correlation degree.

FIG. 5. The variational parametera21 for the two-electron
ground state and the bulge geometries discussed in Fig. 2.a21 is
related to the localization range of single-electron wave functio
8-6
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reduction of the kinetic to total energy ratio and an
crease of the Coulomb to total energy ratio, as seen
Fig. 2. Nevertheless, in this case the binding ene
modulus increases, as it is shown in Fig. 3. In fact, w
the increase of the deformation depth, the effective
tential becomes deeper, and the binding in the bu
stronger, leading to an increased localization of b
electrons. Therefore, the electron-electron distance
creases, the contribution of the Coulomb interaction
creases, and the leading effect is the localization ins
the deeper geometrical potential well. The minimum e
ergy is reached with a lower electron-electron correlat
degreea, as shown in Fig. 4. The behavior of the spat
extension of the single-particle wave functiona21 ~Fig.
5! and of the mean electron-electron distanceb21 ~Fig.
6! confirms this picture.

We can conclude that in both cases the increase of
Coulomb to total energy ratio is observed, but it does
necessarily result in an increase of the electron-electron
relation degree, as expected if the electrons were confi

FIG. 6. The variational parameterb21 for the two-electron
ground state and the bulge geometries discussed in Fig. 2.b21 is
related to the mean electron-electron distance.
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within a quantum dot.12 This happens only when the geo
metrical parameter« is fixed andR0 increases, leading to a
decrease of the binding energy. When it is« to assume larger
values,R0 being fixed, a reduction of the quantum confin
ment is still observed~in terms of available volume!, which
tends to correlate the electrons, but the bulge geometr
such to induce an effective potentialVeff whose localizing
effects along thez direction are stronger than the electrosta
ones. The combined effect of the two opposite trends res
in a decrease of the electron-electron correlation degree
this sense, for a deformed quantum wire, we must distingu
between quantum confinement~that is, the bulge volume!
and localization~that is, confinement in thez direction! in the
bulge, which instead are identified in the case of a true c
finement in all three directions. A final check is given in Fi
7, where the contour plots for the square modulus of
two-electron ground-state wave function~12! are shown. The
average with respect to both radial and angular coordin
has been taken. The white regions correspond to a maxim
of such function. The three plots are relative to a bulg
quantum wire with~a! R0515 Å, «50.1, ~b! R0515 Å, «
50.4, ~c! R0530 Å, «50.4. Dz has been fixed to 30 Å in
all cases. The~b! plot can be taken as a reference. It clea
comes out that small values of« @plot ~a!# or large values of
R0 @plot ~c!# mean strongly correlated, Coulomb dominat
systems, while the opposite limits push toward a localiz
bulge-dominated system@plot ~b!#.

B. A semiquantitative evaluation of dielectric effects

In the preceding section, the shape effects on the t
electron ground state have been described taking into
count only the electron-electron Coulomb repulsion@Eq.
~17!#. Dielectric effects, due to the dielectric mismatch b
tween the wire and the surrounding medium, have been
glected. In this section we want account for such effec
describing how they can modify the results depicted in
preceding section.

It is worth stressing that the trial wave function choi
given in Eq.~12! fits the study of the two-electron syste
with the inclusion of dielectric effects as well. In fact, a
explained in Sec. IV, two further contributions appear~the
localizing self-interaction term and the repulsive interacti
via the surface charge!, whose interplay with the previously
h
relative to
.

FIG. 7. The contour plots for the square modulus of the two-electron ground-state wave function~12!. The average with respect to bot
radial and angular coordinates has been taken. The white regions correspond to a maximum of such function. The three plots are
a bulged quantum wire with~a! R0515 Å, «50.1, ~b! R0515 Å, «50.4, ~c! R0530 Å, «50.4. Dz has been fixed to 30 Å in all cases
Units for bothz1 andz2 axes are Å.
8-7
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considered~kinetic and Coulomb! terms will adjust the
variational parameters accordingly. The interesting poin
the understanding of whether the overall effect is that
increasing the correlation between the two electrons or
of giving a more localized ground-state configuration.

The calculation of the electrostatic potential associa
with the surface polarization charge can be exactly p
formed for some geometries, such as a cylindrical quan
wire,13 a spherical quantum dot,14 or an ellipsoidal quantum
dot,12 for which a proper coordinate system exists. In the
special cases it is possible to find elementary solutions of
Poisson equation compatible with the required bound
conditions such that the exact solution can be expressed
series expansion.

The loss of translational symmetry along the wire a
implies that for the deformed wire it is not possible to exhi
an exact solution for the electrostatic potential generated
the surface charge. This means that only a qualitative
semiquantitative evaluation of dielectric effects on t
single- or two-electron ground state can be done.

A good starting point can be the solution of the Poiss
equation for one electron inside a straight quantum w
This will lead to an approximation, which will be worse th
sharper the deformation. For the cylindrical quantum w
the dielectric terms in Eq.~10! can be written as13

Uself
d ~r !5

1

2

e2

4p«0« I]
~s21!

2

p

3 (
m50

1`

emE
0

1`

dkdm~kR0!I m
2 ~kr!, ~20!

Ue2e
d ~r1 ,r2!5

e2

4p«0« I
~s21!

2

p (
m50

1`

emcos@m~w12w2!#

3E
0

1`

dk cos@k~z12z2!#

3dm~kR0!I m~kr1!I m~kr2!, ~21!

with s5« I /« II , I m andKm are the modified Bessel function
e051, e25e35•••52, and

dm~kR0!5
Km~kR0!Km8 ~kR0!

Km8 ~kR0!I m~kR0!2sIm8 ~kR0!Km~kR0!
.

~22!

The self-energy relative to the undeformed wire is indep
dent of bothz and w, preserving the rotational and transl
tional symmetry. By averaging this potential on the sing
electron ground state of the undeformed wire with respec
r and w, we obtain the total self-interaction energy expe
mented by one electron atz, moving within the undeformed
wire. The result~in units \2/2meff) is the following:13
24531
is
f
at

d
r-
m

e
e
y

a a

t
y

or

n
.

,

-

-
to
-

eself
` ~R0!5E

0

R0
drF E

0

2p

dwuself
d ~r !f0

2~r !Gr
5

4

aB*

s21

pJ1
2~x0,1!

(
m50

1`

emE
0

1`

dkdm~kR0!pm~kR0!,

~23!

where uself
d (r )5(2meff /\

2)Uself
d (r ), f0(r )5J0(x0,1r/R0)/

ApR0J1(x0,1) and the functionspm(x) are defined through
the integral

pm~x!5E
0

1

tJ0
2~x0,1t !I m

2 ~xt!dt. ~24!

For the deformed wire this gives the dielectric contrib
tion to the asymptotic state~in which the two electrons are a
z52` andz51`, respectively, each one interacting on
with its own polarization charge, on the surface of the un
formed part of the cylinder!.

If we replaceR(z) with R0 in Eq. ~20! we obtain a sort of
adiabatic approximation of the self-interaction term in t
case of the deformed wire, because we are assuming tha
only effect of the deformation is that the electron ‘‘sees’’ t
same potential as in the straight wire, but with t
z-dependent radiusR(z). Obviously, this procedure does no
exactly introduce the bulge shape. Rather, for each gi
positionz0 of the electron along thez axis, it is as it felt the
self-interaction potential of an undeformed cylinder with
constant radiusR(z0).

Therefore, we assume that a reasonable approxima
able to describe at least qualitatively the self-interaction d
to the polarization charge is given by thez-dependent poten
tial

Vself
d ~z!5eself

`
„R~z!…. ~25!

As previously discussed~see Sec. IV!, it corresponds to a
z-dependent, well-shaped potential that favors the elec
localization within the bulge@just like the geometrical effec
tive potential~4!#. The effect of the self-interaction energ
can be evaluated by averagingVself

d (z) on the trial wave
function ~12!. This leads to the self-interaction energy

eself
d 5

E
2`

1`

dz1E
2`

1`

dz2Vself
d ~z1!g2~z1 ,z2!

E
2`

1`

dz1E
2`

1`

dz2g2~z1 ,z2!

. ~26!

The results of both the integrals do not change if we
changez1 andz2. Therefore, the total self-interaction contr
bution to the two-electron ground state is given by 2eself

d .
The last term to be evaluated is the electron-electron

teraction via the surface charge. We cannot make the s
‘‘adiabatic’’ approximation as for the self-interaction energ
@that is, to replaceR0 with R(z) in Eq. ~21!#. In fact, it can
be shown that the integral that appears within Eq.~21! is
well defined~that is, not divergent! provided thatkr1 ,kr2
<kR0. Let us assume that one electron is atz1 and we want
8-8
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to find the electrostatic potential due to the surface cha
‘‘felt’’ by the second electron atz2. If we make the replace
mentR0→R(z1), it is still kr1<kR(z1) but the second elec
tron is free to assume any position because the coordinatz1
andz2 can vary independently of each other. This means
if uz2u,uz1u, we can havekr2.kR(z1), because the wire
radius is larger for small values ofuzu. This makes Eq.~21!
useless if az-dependent radius is assumed.

Because the main effect of the electron-electron inter
tion via the surface charge is due to the repulsive nature
the potential~21! rather than its dependence on the w
shape~as we have seen this is not true, instead, for the s
interaction energy, which gives rise to an extra potential w
depending on the bulge depth!, we can imagine to give a firs
approximation as follows. We average the potential~21! on
the ground-state wave function for two noninteracting el
trons moving inside a straight wire, with respect tor andw.
This gives an effective potential, depending onR0 and z1
2z2. We assume that this repulsive potential gives at lea
qualitative approximation to the electron-electron interact
via the surface charge even in the deformed cylinder. In
way we cannot get any divergence. Moreover we can a
say that the error done by doing such an approximation
always negative, namely the contribution to total energy
overestimated. In fact, sinceR0,R(z), the electrons, mostly
inside the bulge, are considered closer to the surface ch
than they really are.

The electron-electron interaction potential built as d
picted above leads to

Ve2e
d ~z12z2!5E

0

R0
dr1E

0

R0
dr2F E

0

2p

dw1E
0

2p

dw2r1r2

3ue2e
d ~r1 ,r2!f0

2~r1!f0
2~r2!G

5
16

aB*

s21

pJ1
4~x0,1!

E
0

1`

dk

3cos@k~z12z2!#d0~kR0!q2~kR0!, ~27!

where ue2e
d (r1 ,r2)5(2meff /\

2)Ue2e
d (r1 ,r2) and the func-

tion q(x) is defined through the integral

q~x!5E
0

1

tJ0
2~x0,1t !I 0~xt!dt. ~28!

The function represented in Eq.~27! has the shape of a po
tential barrier centered atuz12z2u50 and gives a further
contribution to the electron-electron~repulsive! interaction.
Thus, the overall effect is that of increasing the correlat
between the two electrons. This approximate approach g
correct qualitative information on the effects of the dielect
interaction on the electronic correlation. The contribution
total energy due to this potential is obtained by averagin
on the trial function~12!, as follows:
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ee2e
d 5

E
2`

1`

dz1E
2`

1`

dz2Ve2e
d ~z12z2!g2~z1 ,z2!

E
2`

1`

dz1E
2`

1`

dz2g2~z1 ,z2!

. ~29!

The dielectric contributions to the total energy given
Eqs.~26! and~29! must be added to the functional~14! to get
the full energy functional@this corresponds to rewriting
Eq. ~17! as Vel(z1 ,z2)5VCoul(z1 ,z2)1Vself

d (z1)1Vself
d (z2)

1Ve2e
d (z12z2), using Eqs.~25! and ~27!#. This last func-

tional has been minimized for wire geometries typical
porous silicon~see Ref. 6!. Even if dielectric effects are in-
cluded, two-electron localized states are observed. The a
lute value of the binding energy of the ground state is sma
than that calculated neglecting dielectric effects, while
corresponding electron-electron correlation degree is lar
This is shown in Table I, where a comparison of the bindi
energies of the system when dielectric effects are negle
or included, relative to several geometries, is presented
the same table, an analogous comparison is shown for
electron-electron correlation degrees. The dielectric contri
tion pushes toward a more correlated system, showing
the effect of the electron-electron interaction via the surfa
charge@Eq. ~27!# is, for the considered geometries, alwa
dominant over the localizing potential associated with
self-interaction terms@Eq. ~25!#.

The values so obtained are to be considered upper lim
to binding energies and electron-electron correlation degr
In fact, the discussed overestimation of electron-electron
teraction potentialUe2e

d causes, in our numerical calculatio
a systematic decrease of the modulus of the binding ene
and an increase of the electron-electron correlation deg
with respect to the case in which the analytical form ofUe2e

d

was exactly evaluated. Nevertheless, this overestimation
sures that the binding energy of the localized states is la
~in modulus! than the calculated energy, and confirms t
existence of these states.

VI. CONCLUSIONS

We have pointed out the possibility of binding two ele
trons within the deformation of a bulged silicon quantu

TABLE I. A comparison of binding energies and electro
electron correlation degrees relative to the cases in which diele
effects are neglected or considered. Binding energies, measur
unit of \2/2meffR0

2, are referred to typical porous silicon geometri
@R0(Å) 55.70410.307Dz(Å), d50.49720.010Dz(Å) with d
5«R0 /Dz ~see Ref. 6!#. The superscriptd refers to the case in
which dielectric effects are included.

Dz ~Å! eB eB
d a ad

15 23.037 22.882 0.194 0.265
20 23.259 23.111 0.237 0.440
25 23.118 22.960 0.309 0.616
30 22.702 22.516 0.409 0.830
35 22.038 21.817 0.541 0.938
40 21.139 21.033 0.713 0.979
8-9
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wire. The interplay between the deformation localizing effe
and the repulsive Coulomb potential has been studied
discussed. The result is that under suitable conditions on
wire geometry a two-electron, confined ground state
formed, localized within the deformation. This can have s
nificant consequences on the properties of such systems
lying on the fact that the deformation charging with one, tw
or more electrons can give rise to Coulomb-blockade-l
effects. The charging energy should be dependent on the
formation geometry and is expected to be larger, the m
the Coulomb interaction is significant with respect to t
localization. This is what we find if we consider the diffe
ence between the two- and single-particle ground-state e
gies. However, a quantitative analysis of the charging effe
requires a more accurate evaluation of dielectric effe
which are known to play a central role.12,21

It has been stressed that the localizing effect has quan
dot-like features, because the increase of the available
ume corresponds to an increase of the Coulomb to kin
energy ratio. Nevertheless, unlike quantum dots, two dif
ent regimes can be distinguished concerning the elect

*Present address: EPFL-SB-ITP, PHB Ecublens, CH-1015 L
sanne, Switzerland.
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electron correlation. The available volume increase can
followed by an increase or a decrease of the correlation
cording to whether the localizing effect is decreased (« fixed,
R0 increasing! or increased (« increasing,R0 fixed!. The
features of the ground-state wave function will be det
mined by the localization effect@see Fig. 7~b!# or by the
electron-electron correlation@see Fig. 7~c!# accordingly.

The contribution due to dielectric mismatch has be
semiquantitatively discussed as well, showing how it fav
the correlated electron-electron system. Despite this, a t
electron confined ground state is always formed for the c
sidered geometries. An exact treatment of this contributio
expected to confirm this result, because our evaluation of
dielectric contribution to the total energy has been shown
be an overestimation.
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