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In this paper we investigate quantum confinement and electron-electron correlation in silicon deformed
guantum wires. Starting from the single-particle picture, which shows the possibility of localizing one electron
inside the wire deformation, we build a variatiormlsatzfor the two-electron ground state. We compare the
localizing effect induced by the deformation with the Coulomb repulsion, pointing out the existence of a
two-electron confined ground state, depending on the wire geometry. On varying the geometrical parameters
characterizing the wire deformation, it is possible to switch from structures dominated by the localization to
structures in which the increase of the available volume makes the Coulomb contribution very relevant, as for
ordinary quantum dots. The effects induced by the dielectric mismatch between the wire and the surrounding
medium are included and discussed.
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[. INTRODUCTION like effects. We shall not discuss this aspect, because the
analysis presented here focuses on the electronic ground-
One of the most attractive aspects of quantum confinedtate configuration rather than on transport properties. Nev-
systems has been the possibility of obtaining light emissiorertheless, it is worth mentioning that the evidence for
from silicon. Significant advances made since the discoverfoulomb-blockade-related phenomena has been addressed
of porous silicon opened the way toward the use of this maby several authorésee, for example, Refs. 9 and)10
terial for optoelectronic deviceés All the calculations are done in the framework of the
Among the many, intriguing physical properties are thoseeffective-mass approximation, using a variational approach
related to charge transport and sensing properties of porouthat properly takes into account correlation effects. This is
silicon-based devices. For example, it has been demonstratstiown in Secs. Il and Ill, where the single- and two-particle
that a large enhancement of the conductivity can be reachesystems are considered, respectively.
via an acceptorlike doping obtained through the adsorption In Sec. IV a detailed discussion of all the electrostatic
of NO, molecules on the porous silicon surface. contributions to the two-electron Hamiltonian is given. We
In the past, many models have been proposed to explaiimclude the dielectric effects arising as a consequence of the
the strong visible luminescence at room temperaturet it ~ dielectric mismatch between the wire and the surrounding
is now widely accepted that it is related to quantum confinemedium. The nature of all these contributions is accounted
ment effects. A significant role in determining the features offor by a suitable choice of the trial wave function.
the electronic states can be played by the nanostructure Numerical results are shown in Sec. V. The physical as-
shape. It has been shofvfi that the presence of deforma- pects involved in the electron localization within the defor-
tions causes the appearance of discrete levels in the minibamgation are discussed. In particular we focus on the funda-
structure of a quantum wire. Both the photoluminescencenental difference between quantum confinement and
and the Stokes shift between the emission and absorptidacalization, typical of such wires, and discuss the implica-
spectra can be explained in terms of transitions between sudlons on the electron-electron correlation. The results ob-
states. Moreover, the presence of discrete, localized statégined by both neglecting and taking into account the dielec-
can account for porous silicon sensing properties as well. tric effects are giver(Secs. V A and V B, respectivelyto
The geometry-induced electron localization leads to thebetter bringing out the role played by the dielectric mis-
possibility that such confinement effect can interplay withmatch. A semiquantitative evaluation of its influence on the
electron-electron repulsion, giving rise to two-electron con-binding of the two-electron system and on the electronic cor-
fined states. The aim of this paper is the study of the groundelation is discussed. Finally, in Sec. VI we draw some con-
state of a two-electron system, in which quantum confine<lusions.
ment arises within a deformed quantum wire. We show, un-
der suitable conditions for t.he wire geometry, the eX|§tence Il SINGLE-PARTICLE STATES IN DEEORMED
of two-electron states localized in correspondence with the QUANTUM WIRES
deformations. The electron-electron correlation degree is
studied as a function of the deformation geometry, showing In this section we discuss electron localisation in de-
how it is possible to modify the two-electron ground state,formed quantum wires. We recall, for completeness, the main
from weakly confined(Coulomb-repulsion dominatedo  points concerning the single-particle ground state. An ex-
strongly localizedgeometry-induced localizatipnThis can  tended and detailed discussion can be found in Refs. 6—8.
give rise to different charging states for the deformation, Let us consider a bulged cylindrical quantum wire with its
leading to the possibility of observing Coulomb-blockade-axis along thez direction. Due to the symmetry of the prob-
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whereug=2m.4U./#2 andV is the region inside the wire. It

is straightforward to show that the condition that the first
functional variationdeg with respect toy is null is equiva-
lent to requiring ¢ satisfy both the single-particle Schro
dinger equation shown above and the hard-wall boundary
condition. Therefore, the problem is reduced to finding a

A suitable class of trial wave functions and minimizing the
Z functional(2) over the subspace generated by them. This will

lead to an upper bound to the “true” ground-state energy. We
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whereJ, is the zero-order Bessel functiog, , its first zero,
andF(z) an unknown function of. Such a choice is moti-
vated by the fact that as the wire profile reduces to the
straight wire[ R(z) —Rg], the corresponding exact ground-
state wave function has to be retrievgd this caseF(z)
=1] as well as that it is expected that the deformation will
modify the motion along the direction. By substituting the
wave function(3) into Eq. (2) it is easy to show that the
function F(z), which makes it stationary, satisfies a one-
dimensional Schidinger equation that contains the potential

FIG. 1. A bulged quantum wireR, andeR, are, respectively, ug (assumed to be dependent onlyzior simplicity) and an
the radius of the undeformed part of the cylinder and the bulgeeffective, single-particle potential giver(in units of
depth € positive, while Az represents the width of the bulge. ﬁz/zmeﬁ) by

R'*(2)|, 4

R(Z) = RO

lem, in the following we will consider a cylindrical coordi- 2
. i . 1 (1+x0,0)
nate systemd,z,¢) (p being the distance from the wire Vei(2)= 5 XS 1+ :
axis, z the position along the axis, and the azimuthal (2L~ 3
angle. The wire bulge can be modeled withzalependent ) o o )
radius, which can be choserfas which depends oR(z) and its first derivativR’ (z), that is,
on how the cylinder is deformed. The effect of such a poten-
2 tial on the single-particle motion has been discussed in Ref.
p( 2z ) 8. It acts as a quantum well in ttzdirection, which causes
l+eexp —— (1) X e U ' ,
AZ? electronic localization in the bulge volume. Each localized
state corresponds to a new energy level within the miniband
whereR, andeR, are, respectively, the radius of the unde-gap, thus modifying significantly the electronic spectrum.
formed part of the cylinder and the bulge depthpositive, The wave functior(3) has been shown to be quite a good
while Az represents the width of the bulge. A drawing of a approximation ife<<1 andR,/Az<1, which is always true
bulged wire is shown, together with its geometrical paramfor typical geometries involved in porous silicon
eters, in Fig. 1. structure$~8
The motion of an electron within such a structure subject Finally, it is worth mentioning that the effective one-
to the external potentidl, can be studied by solving the dimensional Schiinger equation can be numerically
single-particle  Schidinger equation —(%2%/2mg;)V2y  solved, giving the ground-state energy and wave function.
+Uq(r)¢(r)=Eg(r) assuming the hard-wall boundary Nevertheless, it is useful to find an analytical function that
condition[namely,(r) =0 on the wire boundafyHerem.;  Wwell fits to F(2). It has been shown that
is the particle effective mass. Due to the presence of the
deformation, an exact solution cannot be attempted. We fol- f(a,2)=(1+alz|)e” 7, (5
low a functional variational approach, with a suitable choice
of the trial wave function. Let us consider the single-particlewhere « is a positive parametefdepending on the geom-
energy functional etry), gives quite a good approximation Eqz).
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lll. THE TWO-ELECTRON GROUND STATE IN where it has been assumed that no external, single-particle
DEFORMED QUANTUM WIRES potential is presentU(r,,r,) is the interaction potential,
The effective-mass Schdinger equation for two interact- Wh_'l?: will be ?lscu_ssetld Iatt'ar.' | h depicted in th
ing electrons confined within a region of volures € same qnctlona variationa approac epicted in the
2 52 preceding section can be used for studying the ground state
_ V2W(ry,ry)—=—V2W(ry,ry) of such a system with hard-wall boundary condition
2Mey "1 2Mey "2 [W(r,,r,)=0if ry orr, are on the volume boundgryFirst,
+U(rq,r)W(ry,ry)=EW(rq,r,), (6)  we define the two-particle energy functional

[ are [ @ral1V eV ) P )l

e(V]=
J'VdrlJ'Vdr2|\I,(rllr2)|2

, )

where e=2mgE/%2, u(rq,rp)=(2mes/A2)U(r,,r,). The IV. THE INTERACTION POTENTIAL
requirement that the first functional variatioe with respect
to ¥ be zero leads to the condition that the wave function
satisfies the Schdinger equation(6) in the volumeV to-
gether with the hard-wall boundary conditichs.

The ground state of the noninteracting system, fulfilling
the boundary condition, is simply given by the product of U(ry,r)=Ucou(r1—r2)+U%ry,ry)
two single-particle ground-state wave functideee Eq(3)] —Uggy(T1—T2)+ Ugen(f1)+ U;‘e"(rz)

+UY(rq,ry), (10)

It is worth discussing the nature of the interaction poten-
tial, the choice of¥’ ., being strongly related to it. We can
write

1
Wo(ry,ra)= ﬁJO(XO,l%)f(aazl)
L L whereU ¢ is the Coulomb repulsion between the two elec-
P2 trons andJ® a dielectric contribution. This last term arises as
Xﬁ%()(o;ﬁ) f(@,z5), (8  aresult of the dielectric mismatch between the wire and the
2 2 surrounding medium.
It is known that an electron moving inside a quantum
where the analytical fit foF(z) has been used. wire, whose dielectric constaat is different from that of the
The wave functior{8) cannot actually describe the ground surrounding mediune,,, causes the appearance of a surface
state associated with E¢6), because the Hamiltonian con- polarization chargé'~**A proper description of the electron
tains the interaction potentidl(r,,r;). Since the “true”  motion must take into account the interaction between the
ground-state wave function describes a correlated system, wearticle and this surface charge. Making reference to porous
consider the product silicon nanostructures, all the dielectric interactions are re-
pulsive. In fact, porous silicon is usually surrounded by ox-
ide (SiG,), whose dielectric constant is smaller than that of
silicon (e,=12,¢e,=4). The dielectric interaction for the
two-electron system is composed of three ter(hswo self-
where¥ , is given in Eq.(8) and the correlated motion of the interaction term§UJ.in Eq. (10)] due to the interaction of
electrons is described B ;. each electron with the surface charge generated by itself and
The trial function(9) must reflect the ground-state prop- (i) the interaction between each electron and the surface
erties. Then it musti) depend only onp,— ¢, (that is, be  charge generated by the second ()l:kg_e in Eq. (10)].
invariant for rotations of both electrons of the same angle Let us focus first on the self-interaction contribution. An
around thez axis), (i) be invariant for reflections of both electron moving inside the wire generates a surface polariza-
electrongthat is, with respect to the transformation {r,) tion charge, as explained above, which is spread out on the
—(—rq1,—r5)], (ii) be symmetric with respect to the ex- whole surfaceSof the wire. Nevertheless, we expect that the
change of the two electron&orresponding to the singlet major part of it is localized in a limited region & near the
spin statg (iv) vanish if any of the two electrons is on the electron. The farther the electron from the surface, the
wire boundary, andv) be continuous together with its first smaller the self-interaction energy. Because of the particular
and second partial derivatives. The choice that will be progeometry of the wire we are consideritigee Fig. 1, the
vided fulfills all these conditions. interaction of each electron with its relative surface charge is

W(ry,rp)=Wo(ry,r)Weedri—ro), 9
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stronger if the electron is located in the straight part of thewhere the functionf(«,z) is defined in Eq.(5). The trial
wire (having a smaller radiys This means that the self- wave function(9) can be written as
interaction terms, which are repulsive, tend to push the elec-

trons toward the center of the bulge, favoring in this way a 1 1 P

reduction of the electron-electron correlation. On the other W(ry,rz)= @sz) O(Xovlm)

hand, the electron-electron interaction term via the surface

charge tends to correlate the electrons, each particle being P2

repelled by the polarization charge generated by the other XJo XOle(ZZ))g(Zl*ZZ)' (12)

onel?~14

Therefore, we can conclude that the full potential containgvhere
two repulsive termgCoulomb and interaction via the surface
chargé and a localizing potential that is a self-interaction  9(z1,25)=(1+ a|z;|)e” “#l(1+ a|z,|)e™ Il
contribution. The interplay between all such terms, together
with the localizing eﬁgctyinduced by the deformati@sge X[1-a(1+Blz1—2zo|)exp( - Blza—z5)) .
Sec. I, will determine the nature of the ground state. (13

A last point must be stressed here. Given the geometry of e
the confined system, we can take into account only thé @ a@ndp are three variational parameters, whose values
electron-electron correlation along theirection(this means &N be fixed by requiring the energy functional given in Eq.
that we consider the dependenceWf.,, on z, andz,, ne- (7) be minimum. Let us note thgt such a choice fI'FS require-
glecting all the other coordinatedn fact, it is expected that Ments depicted above well, being able to describe a two-
the minimum energy configuration is reached when the twdarticle system subject to both a repulsive potential and a
electrons are placed along theaxis so that the distance localizing one. In f_act(l) if a=0 or if the distance between
between each other and from the wire boundary is as large 48€ WO electrons is very large, the uncorrelated wave func-
possible, in order to minimize both the electrostatic repulsiorfion [given in Eq.(8)] is retrieved, andii) if a#0, it de-
and the kinetic contribution to the total energy. It has indeedC'ibes the correlated system for which the pro_bab|I|2ty of
been showt? that if we consider more and more elongatedfinding the two electrons at the same position is-(d)
quantum rods, for which one of the dimensions gets mucﬁ!mes smaller than that corresponding to uncorrejated par-
longer than the other two, the correlation endfgmainly t|c[es. Then we argue that represents the electrorjlc corre-
arises from the possibility that the two electrons keep faf@tion degree, so thatfa<1. 1lix and 1B are instead

from each other along the “long” direction. linked to the mean single-electron localization range and to
Keeping all this in mind, we can do a suitable choice forthe mean electron-electron distance respectifelso that
WV eorr, as follows: a,p=0. _ . .
Using the trial wave functiori12), the energy functional
Veolzi—2)=1—-af(B,2,—2,), (1)  (7) results to be dependent only on the functgpn

| an [ anllo,o@ 20,90 2 P Vi 206720

elgl= (14

f dzlf dz,9%(2y,2,)

The two electrons move as they were subject to the potentidulk dielectric constant is significant only when the average
size is reduced approximately down to 15 A, but becomes
V(2y,25) =Vei(21) + Ver(2o) + Veo(21,2,), (15  really important only when it approaches the lattice constant
(ag=5.43 A for silicon. Therefore, since we are going to
where V4 has been defined in Eq4) and represents the consider larger structures, no significant correction is ex-
effective, geometry-induced, localizing potentisf, is the  pected to come from a size-dependent dielectric constant.
potential arising from the electrostatic terfisge Eq(10)].

The results we are going to show have been obtained
assuming the dielectric constant of the bulk material (
=12) for the silicon nanostructures. Some wdfk§ have The aim of our calculation is the description of how the
demonstrated that on reducing the average size of the sampéectron-electron correlation depends on the geometrical de-
(here identifiel with the geometrical parametdrz) the di-  tails of the wire deformation as well as the investigation
electric constant decreases. Nevertheless, all these calculbout whether or not a two-electron confined state exists un-
tions show that the difference between the confined and theer suitable conditions on the wire deformation geometry.

V. RESULTS
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Before showing the results, some key points must béound to the ground-state energy. We first discuss the case in
stressed. It is well known that the three-dimensional confinewhich only the Coulomb repulsion is taken into account
ment within a zero-dimensional systequantum dot, or [U(rq,r;)=Uceu(r1—r2) in Eq. (10)]. The contribution of
QD) gives rise to the appearance of discrete levels, whiclielectric effects will be considered later.

makes these systems very peculiar because of their atomic- The Coulomb contribution can be evaluated through the
like features. If we look, instead, to quantum confinementexpansioh’
within a one-dimensional systefgquantum wire, or QW

the existence of a direction along which there is no confine- 1 - " im(e1—en)

ment is responsible of a miniband structure, that is, one- m:m;x Jo e Im(kp)
dimensional bands whose edges are related to quantum con-

finement along the other two directioff®r example, for a X Im(kpy)e Ma-zlgk, (16

cylindrical quantum wire they depend on the inverse squar

wire radiug. In both cases we deal with quantum confine-%ve obtain[see Eq/(15)]

ment, the difference being the system dlmen5|_onallty. N Vei(21,25) =Veoul 21, 22)
For a deformed quantum wire an intermediate condition
holds: discrete energy levels exist in the gap between the 2 2 2

one-dimensional bands, corresponding to localized states de- = > J e Ka-zl
pending on the bulge geometry. For such a system we must J1(xo0n) | JO
distinguish between thguantum confinementesponsible X JkR(z1) ][ kR(z,)]dk, (17)
for the position of the miniband edges and whose effect de-
pends on the wire radius, and thealizationin thez direc- ~ Whereag is the material Bohr radius, defined as
tion, due to the presence of the bulge and origin of the dis-
crete states within the gap. . h? Me

This “intermediate” statefmeaning that we find both de- ag =4meoe, M2 eIy a8, (18)

X . off eff

localized and localized statesnakes deformed quantum
wires very peculiar, giving rise to QD-like or QWr-like sys- and the functiorS(x) is defined through the integral
tems, depending on the deformation geometrical parameters. )
This can lead to interesting features for the two-electron sys- _ 2
tem, such as the possibility of observing Coulomb-blockade- S(x)= fo Ho(xo ) Jo(xv)dt (19
like effects, typical of QD’s. All the results presented in this
section will be described keeping in mind this peculiarity, ~The binding energy can be defined by considering that, in
and in particular the conceptual difference between quanturihe single-particle picture, the effective, geometrical poten-
confinement and localization, in the sense outlined above. tial (4) has the asymptotic valweg,lle, which corresponds

In the strong quantum confinement regime the energy of & the undeformed wire first miniband edge. This means that
two-electron system is nearly exclusively kinetic, and thesingle-particle delocalized states correspond to energies
electrostatic terms can be treated as a perturbative correctioabove this value, while localized states, if present, to energy
On reducing the quantum confinemétitat is, increasing the levels lying below it. For the two-electron system we can
available volumg the effect of electrostatic terms on the define as a reference state the one with two electroas-at
electron motion becomes more and more relevant, and the « andz= + o, respectively, leading to an energy given by
description within the strong confinement regiéhich as-  twice the miniband edge. This means that, for a fixed geom-
sumes an uncorrelated ground-state wave functi@eomes etry, if E, is the value of the energy functional at the mini-
incorrect. This is not always the case for a deformed quanmum point, the ground state is confinedei: ZXS,l/RS and
tum wire. In fact, as already pointed out, each electron igshe binding energy can be defined &= (%2%/2mgx)(e
subject to a geometrical effective potentigl [given in Eq. —2X(2) 1/R(2)) = (h212Me) €g , Wheree=2meE o 7i2.
(4)], which pushes the particle toward the center of the bulge, The features of the ground state of the system are pre-
at z=0 (localization. We are going to show that it is pos- sented in Figs. 2—6 as functions of the geometry of the de-
sible to change the geometry of the bulge in such a way thagbrmation. In the following we indicate witkk and C the
an increase of the available vplume corresponds to both ginetic and Coulomb contributions to the total enerdsof
decrease of the quantum confineméas for QD'9 and an  — K 4+ C). We show(i) the ratiosK/E ., and C/E,y (Fig. 2),
increase of localization, this last effect beln_g dommant._ The(ii) the binding energyEg (Fig. 3), (iii) the variational pa-
result is that the electron-electron correlation degree is r€rametera (Fig. 4) identified with the electron-electron corre-
duced, because of the action of théocalizing geometrical  |5tion degree(see discussion in Sec. M(iv) o~ (Fig. 5),
potentialVe. which measures the electron distance from the center of the
bulge, and(v) B8~ (Fig. 6), which measures the electron-
electron distanc& In each figure three curves are shown,
each corresponding to a fixed valueRy, as a function ot

We have minimized the energy functiond4) with re-  [which measures the deformation deg#ee Fig. 1]. Az
spect to the three variational parametars, andg, obtain-  (that is, the mean dimension of the sampkekept fixed at
ing, in accordance with the variational principle, an upper30 A.

ag

A. The effect of the Coulomb interaction

245318-5
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0.0 T T T T 1

FIG. 2. Ground-state kinetic and Coulomb to total energy ratio
as a function ot for three different values d®,. Az has been kept
fixed to 30 A.

The shape of the bulge can be substantially changed in
two different ways, and the effect of geometry on the
electron-electron correlation degree is different in the two
cases:

(1) With increasingR,, keepinge fixed (that is, moving
from the solid to the dashed to the dotted curve, in each
of Figs. 2—6, there is an increase of the volume of the
bulge, so that the kinetic to total energy ratio is reduced,
while the Coulomb to total energy ratio increaéess
can be observed in Fig. 2. The modification of the bulge

geometry is such to reduce the depth of the Iocalizing(2

effective potentialVy4 and then the absolute value of
binding energy, as Fig. 3 clearly shows. The localization

O_
AY
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-14 AN
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A
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5 N
g -3 \\
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N\ \\\
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o -4 AN
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FIG. 3. Binding energies of the two-electron localized ground
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0.2 0.4

FIG. 4. The variational parametarfor the two-electron ground

state and the bulge geometries discussed in Fig.r@presents the
electron-electron correlation degree.

decrease leads to a ground-state configuration in which
the effect of the Coulomb repulsion becomes more vis-
ible, with the two electrons that tend to keep far from
each other along the wire axis. This favors an increase of
the electron-electron correlation degree, as shown in Fig.
4. This picture is confirmed by Figs. 5 and 6, where it is
shown that with increasinB,, keepinge fixed, both the
mean localization range ! of the single-electron wave
function and the mean electron-electron distagcet
increase.

With increasinge, keepingR, fixed (that is, moving
along each curve from left to right, in each of Figs. 2~6
an increase of the volume of the bulge still causes a

24 - —R0=1.5nm

8 T T T T |
0.2 0.4

FIG. 5. The variational parameter ! for the two-electron

state, for the same geometries as in Fig. 2. Energy is measured ground state and the bulge geometries discussed in Fig. 2is

units of 1%/2megR3 (2mMeyR3Eg /%1°= €R5—2x3 ).

245318-6
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250+ : within a quantum dot? This happens only when the geo-
" metrical parametes is fixed andR, increases, leading to a
decrease of the binding energy. When it it assume larger
3 values,R, being fixed, a reduction of the quantum confine-
200+ ment is still observedin terms of available volume which
tends to correlate the electrons, but the bulge geometry is
such to induce an effective potentidls whose localizing
effects along the direction are stronger than the electrostatic
ones. The combined effect of the two opposite trends results
in a decrease of the electron-electron correlation degree. In
this sense, for a deformed quantum wire, we must distinguish
between quantum confinemefthat is, the bulge volume
and localizatior(that is, confinement in thedirection) in the
bulge, which instead are identified in the case of a true con-
finement in all three directions. A final check is given in Fig.
7, where the contour plots for the square modulus of the
0+— ' ' ' " two-electron ground-state wave functii®) are shown. The
’ ’ ’ ' average with respect to both radial and angular coordinates
has been taken. The white regions correspond to a maximum
FIG. 6. The variational parametg8* for the two-electron  of such function. The three plots are relative to a bulged
ground state and the bulge geometries discussed in Fig: 2is quantum wire with(a) Ry=15 A =01, (b) Ry=15 A e
related to the mean electron-electron distance. =0.4, (c) Ry=30 A, £=0.4. Az has been fixed to 30 A in
] o ] _all cases. Théb) plot can be taken as a reference. It clearly
reduction of the kinetic to total energy ratlp and an in- comes out that small values ef[plot (a)] or large values of
crease of the Coulomb to total energy ratio, as seen iR [plot (c)] mean strongly correlated, Coulomb dominated
Fig. 2. Nevertheless, in this case the binding energyystems, while the opposite limits push toward a localized,
modulus increases, as it is shown in Fig. 3. In fact, withpylge-dominated systefiplot (b)].

the increase of the deformation depth, the effective po-
tential becomes deeper, and the binding in the bulge  B. A semiquantitative evaluation of dielectric effects

stronger, leading to an increased Iocallzathn of both In the preceding section, the shape effects on the two-
electrons. Therefore, the electron-electron distance de-

L . .~ ““electron ground state have been described taking into ac-
creases, the contribution of the Coulomb interaction iN-.ount only the electron-electron Coulomb repulsitg.
creases, and the leading effect is the localization inside, 7)) pielectric effects, due to the dielectric mismatch be-
the deeper geometrical potential well. The minimum en-yeen the wire and the surrounding medium, have been ne-
ergy is reached with a lower electron-electron correlatior@ected. In this section we want account for such effects,
degreea, as shown in Fig. 4. The behavior of the spatial escribing how they can modify the results depicted in the
extension of the single-particle wave functien® (Fig. preceding section.
5) and of the mean electron-electron distae* (Fig. It is worth stressing that the trial wave function choice
6) confirms this picture. given in Eq.(12) fits the study of the two-electron system
We can conclude that in both cases the increase of theith the inclusion of dielectric effects as well. In fact, as
Coulomb to total energy ratio is observed, but it does noexplained in Sec. IV, two further contributions appétre
necessarily result in an increase of the electron-electron cotecalizing self-interaction term and the repulsive interaction
relation degree, as expected if the electrons were confineda the surface chargewhose interplay with the previously

150

B (A)

Zy Zy Z,
904

(@) (b) (c)

@ e . (LN,

-90 -45 43

S=
€
©

-45

FIG. 7. The contour plots for the square modulus of the two-electron ground-state wave fyh2jiorhe average with respect to both
radial and angular coordinates has been taken. The white regions correspond to a maximum of such function. The three plots are relative to
a bulged quantum wire witte) Ry,=15 A, £=0.1, (b) Ry;=15 A, £¢=0.4, (c) Ry,=30 A, £=0.4. Az has been fixed to 30 A in all cases.
Units for bothz; andz, axes are A.
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considered(kinetic and Coulomp terms will adjust the . Ro
variational parameters accordingly. The interesting point is€seil Ro) = J dp
the understanding of whether the overall effect is that of

2
JO dsouse.f(rw%(r)}p

increasing the correlation between the two electrons or that 4 s—1 < oo

of giving a more localized ground-state configuration. = > emJ' dkd,(KRy) pm(kRyg),
The calculation of the electrostatic potential associated ag mJI7(xo1) Mm=0 0

with the surface polarization charge can be exactly per- (23)

formed for some geometries, such as a cylindrical quantum
wire 1 a spherical quantum dét,or an ellipsoidal quantum Where ul{r)=(2Me/A2)USdr), do(r)=Jo(x010/Ro)/
dot'? for which a proper coordinate system exists. In theseJ7RyJ;(xo1) and the functionp,,(x) are defined through
special cases it is possible to find elementary solutions of thehe integral
Poisson equation compatible with the required boundary
conditions such that the exact solution can be expressed via a
series expansion.
The loss of translational symmetry along the wire axis
implies that for the deformed wire it is not possible to exhibit  For the deformed wire this gives the dielectric contribu-
an exact solution for the electrostatic potential generated bjion to the asymptotic statén which the two electrons are at
the surface charge. This means that only a qualitative oz= —< andz=+«, respectively, each one interacting only
semiquantitative evaluation of dielectric effects on thewith its own polarization charge, on the surface of the unde-
single- or two-electron ground state can be done. formed part of the cylinder
A good starting point can be the solution of the Poisson If we replaceR(z) with R, in Eg. (20) we obtain a sort of
equation for one electron inside a straight quantum wireadiabatic approximation of the self-interaction term in the
This will lead to an approximation, which will be worse the case of the deformed wire, because we are assuming that the
sharper the deformation. For the cylindrical quantum wire,only effect of the deformation is that the electron “sees” the
the dielectric terms in E¢(10) can be written as same potential as in the straight wire, but with the
z-dependent radiuR(z). Obviously, this procedure does not
exactly introduce the bulge shape. Rather, for each given
ud (== e (s—1)= posi'Fion Z o_f the elect_ron along theaxis, it is as it felt the
sel 2 4mege)] T self-interaction potential of an undeformed cylinder with a
oo N cons},:antfradiuﬁ(zo). ) "
* 2 Therefore, we assume that a reasonable approximation
><mZ:0 E"‘fo dkdn(kRo)l(kp),  (20) able to describe at least qualitatively the self-interaction due
to the polarization charge is given by tke€lependent poten-

1
Prm(X) = fo tI5(xo1t) 1 H(xt)dt. (24)

2

tial
e? =
ug_e(rl,rz):4m (s—1)= >, €ncosm(p1—¢2)] Viel 2) = ezl R(2)). (25)
0€| T m=0
As previously discussetsee Sec. 1V, it corresponds to a
% Mdk K(zo — z-dependent, well-shaped potential that favors the electron
0 cogk(z,~2,)] localization within the bulggjust like the geometrical effec-
tive potential(4)]. The effect of the self-interaction energy
X dn(KRo) I m(kp1) 1 m(kp2), (21)  can be evaluated by averaging.(z) on the trial wave
function (12). This leads to the self-interaction energy
with s=¢,/¢g, |, andK,, are the modified Bessel functions, o o
€0=— 1, €Ex=€3= """ :2, and J7 leJL deVge”(Zl)gz(Zl,Zz)
ed= — — . (26
2
4. (kRo) K m(kRo)K [ (KRy) LC dzlﬁw d2,0%(21,2,)
m = ’ '
Kmn(kRo)l m(kRo) = $11(kRo)Km(kRo) 22) The results of both the integrals do not change if we ex-

changez, andz,. Therefore, the total self-interaction contri-
bution to the two-electron ground state is given hsf 2.

The self-energy relative to the undeformed wire is indepen- The last term to be evaluated is the electron-electron in-
dent of bothz and ¢, preserving the rotational and transla- teraction via the surface charge. We cannot make the same
tional symmetry. By averaging this potential on the single-“adiabatic” approximation as for the self-interaction energy
electron ground state of the undeformed wire with respect tfthat is, to replac&’, with R(z) in Eq. (21)]. In fact, it can

p and ¢, we obtain the total self-interaction energy experi-be shown that the integral that appears within E2{) is
mented by one electron at moving within the undeformed well defined(that is, not divergentprovided thatkp,,kp,

wire. The resulfin units#2/2my) is the following®® <kR,. Let us assume that one electron izatind we want
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to find the electrostatic potential due to the surface charge TABLE I. A comparison of binding energies and electron-
“felt” by the second electron at,. If we make the replace- electron correlation degrees relative to the cases in which dielectric
mentR,— R(z,), itis still kp;=<kR(z;) but the second elec- effects are neglected or considered. Binding energies, measured in
tron |S free to assume any pos|t|0n because the Coord|ates unit of ﬁ2/2meﬁRS, are referred to typlcal porous silicon g.eometries
andz, can vary independently of each other. This means thatRo(A) =5.704+0.30z(A),  §=0.497-0.01Qz(A) with &
if |z,|<|zy|, we can havekp,>kR(z;), because the wire =s_R0/A_z (se_e Ref. §). Th_e superscript refers to the case in
radius is larger for small values ¢f|. This makes Eq(21)  Which dielectric effects are included.
useless if @-dependent radius is assumed. d q
. . Az (A) €g € a a
Because the main effect of the electron-electron interac- B

tion via the surface charge is due to the repulsive nature ofs —3.037 —2.882 0.194 0.265
the potential(21) rather than its dependence on the wire g —3.259 —3.111 0.237 0.440
shape(as we have seen this is not true, instead, for the selfsg —3.118 —2.960 0.309 0.616
interaction energy, which gives rise to an extra potential welkg —2702 —-2516 0.409 0.830
depending on the bulge deptlive can imagine to give a first 35 —2.038 —1.817 0.541 0.938
approximation as follows. We average the potentzd) on 44 ~1.139 ~1.033 0.713 0.979

the ground-state wave function for two noninteracting elec-
trons moving inside a straight wire, with respecitand ¢.

This gives an effective potential, depending Bp and z; e e d 5

—z,. We assume that this repulsive potential gives at least a _m dz _w d2Ve-e(21-22)9%(21,22)
qualitative approximation to the electron-electron interaction eg_ez . — . (29
via the surface charge even in the deformed cylinder. In this J leJ dz,0%(z,,2,)

way we cannot get any divergence. Moreover we can also
say that the error done by doing such an approximation is The dielectric contributions to the total energy given in

always negative, namely the contribution to total energy isE :
: ; gs.(26) and(29) must be added to the functiond4) to get
overestimated. In fact, sind&<R(2), the electrons, mostly the full energy functional[this corresponds to rewriting

inside the bulge, are considered closer to the surface char
g . (17 as Ve(21,22) = Veoul(21:22) + Vel 21) + Veel 2)
than they really are. RV B ing Eqs.(25) and (27)]. This last f
The electron-electron interaction potential built as de-, e-e(Z1~22), using £gs. an 1 IS 1ast func-
- tional has been minimized for wire geometries typical of
picted above leads to . e : .
porous silicon(see Ref. & Even if dielectric effects are in-
cluded, two-electron localized states are observed. The abso-
g Ro Ro 27 27 lute value of the binding energy of the ground state is smaller
Vefe(zl_ZZ)ZJ’O dleO dp; JO de; . deapips than that calculated neglecting dielectric effects, while the
corresponding electron-electron correlation degree is larger.

g ) ) This is shown in Table I, where a comparison of the binding
XUg_e(r1,r2) dp(r1) éo(ra) energies of the system when dielectric effects are neglected
or included, relative to several geometries, is presented. In
16 s—1 o the same table, an analogous comparison is shown for the
=— 4—J dk electron-electron correlation degrees. The dielectric contribu-
ag mJ1(xo1) 70 tion pushes toward a more correlated system, showing that

27) the effect of the electron-electron interaction via the surface
charge[Eq. (27)] is, for the considered geometries, always
dominant over the localizing potential associated with the

where ug,e(rl,rz)=(2meﬁ/h2)Ug,e(r1,r2) and the func- self-interaction term$Eq. (25)].

tion q(x) is defined through the integral The values so obtained are to be considered upper limits

to binding energies and electron-electron correlation degrees.
In fact, the discussed overestimation of electron-electron in-
q(x) = flth(Xo,lt)lo(Xt)dt- (29) teraction pqtentialug,e causes, in our numerical pak_:ulation,

0 a systematic decrease of the modulus of the binding energy
and an increase of the electron-electron correlation degree
with respect to the case in which the analytical formudf .
tential barrier centered d,—z,|=0 and gives a further Was exactly evaluated. Nevertheless, this overestimation en-

sures that the binding energy of the localized states is larger

contribution to the electron-electrainepulsive interaction. : .
Thus, the overall effect is that of increasing the correlation('n_ modulus than the calculated energy, and confirms the
istence of these states.

between the two electrons. This approximate approach give‘asX
porrect _qualltatlve |nformat!on on thel effects of the _dlel_ectnc VI. CONCLUSIONS

interaction on the electronic correlation. The contribution to

total energy due to this potential is obtained by averaging it We have pointed out the possibility of binding two elec-
on the trial function(12), as follows: trons within the deformation of a bulged silicon quantum

X cog k(z;—2,)]do(kRy)g?(kRy),

The function represented in ER7) has the shape of a po-
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wire. The interplay between the deformation localizing effectelectron correlation. The available volume increase can be
and the repulsive Coulomb potential has been studied anfllowed by an increase or a decrease of the correlation ac-
discussed. The result is that under suitable conditions on theéording to whether the localizing effect is decreasediXed,

wire geometry a two-electron, confined ground state iR, increasing or increased £ increasing,R, fixed). The
formed, localized within the deformation. This can have sigfeatures of the ground-state wave function will be deter-
nificant consequences on the properties of such systems, rgrined by the localization effedisee Fig. )] or by the
lying on the fact that the deformation charging with one, two,electron-electron correlatidsee Fig. )] accordingly.

or more electrons can give rise to Coulomb-blockade-like The contribution due to dielectric mismatch has been
effects. The charging energy should be dependent on the dgemiquantitatively discussed as well, showing how it favors
formation geometry and is expected to be larger, the morenhe correlated electron-electron system. Despite this, a two-
the Coulomb interaction is significant with respect to theelectron confined ground state is always formed for the con-
localization. This is what we find if we consider the differ- sidered geometries. An exact treatment of this contribution is
ence between the two- and single-particle ground-state enegxpected to confirm this result, because our evaluation of the
gies. However, a quantitative analysis of the charging effectgjelectric contribution to the total energy has been shown to
requires a more accurate evaluation of dielectric effectSpe an overestimation.

which are known to play a central roté?!

It has been stressed that the localizing effect has quantum-
dot-like features, because the increase of the available vol-
ume corresponds to an increase of the Coulomb to kinetic
energy ratio. Nevertheless, unlike quantum dots, two differ- We wish to thank Professor V. Savona for a critical read-
ent regimes can be distinguished concerning the electroring of the manuscript.

ACKNOWLEDGMENT

*Present address: EPFL-SB-ITP, PHB Ecublens, CH-1015 Lau®3L. Banyai, . Galbraith, C. Ell, and H. Haug, Phys. Rev.3B,

sanne, Switzerland. 6099(1,987).
IA.G. Cullis and L.T. Canham, Natufkondon 353 335(1991).  **D. Babic R. Tsu, and R.F. Greene, Phys. Rev.4B, 14150
2B. Hamilton, Semicond. Sci. Techndl0, 1187 (1995. (1992.

3L. Boarino, C. Baratto, F. Geobaldo, G. Amato, E. Comini, A.M. 15The correlation energy is here defined as the difference between
Rossi, G. Faglia, G. Lerondel, and G. Sberveglieri, Mater. Sci. the ground-state energy, as calculated minimizing the energy

Eng., B69, 210(2000. functional (7) using any interacting trial wave function, gnd the
4| Boarino, F. Geobaldo, S. Borini, A.M. Rossi, P. Rivolo, M. uncorrelated ground-stat.e energy, as calculated assuming uncor-
Rocchia, E. Garrone, and G. Amato, Phys. Re\64 205308 related electrongthus using the product of two single-particle

(2001. 6 guantum st_ates, as _shown in Eﬁz]. B
S\.Y. Timoshenko, T. Dittrich, V. Lysenko, M.G. Lisachenko, and In' the following we W'" refer to ~ and " as the wave func- .
F. Koch, Phys. Rev. B4, 085314(2001. tion mean Iocgllzatlon range and the mean electron-electron. dis-
6D. Ninno. G. ladonisi. and F. Buonocore. Solid State Commun tance rgspectlvely. Actually, these quantities would be obtained
) o ! ' ' " calculating the average @ (or z,) and|z;—z,| on the wave
7 112'_ 521(1999. . . function (12). The averages are expected to be proportional to
D. Ninno, G. ladonisi, F. Buonocore, G. Cantele, and G. Di Fran- -1 andg1.

. cia, Sens. Actuators B8, 17(2000. ~ M. Lannoo, C. Delerue, and G. Allan, Phys. Rev. L&d, 3415
F. Buonocore, D. Ninno, and G. ladonisi, Phys. Status Solidi B (1995.

. 225 343(200Y. 18R. Tsu, D. Babicand L. loriatti, J. Appl. Phys82, 1327(1997.
L. Zhuang, L. Guo, and S.Y. Chou, Appl. Phys. Lét2, 1205 193D, Jackson,Classical ElectrodynamicgWiley, New York,

(1998. 1962.

0B, Hamilton, J. Jacobs, D.A. Hill, R.F. Pettifer, D. Teehan, and?°| et uas note that on increasing,, as for quantum dots, both
L.T. Canham, NaturéLondon 393 443(1998. kinetic and Coulomb energies decrease. Nevertheless, the kinetic

1. Wendler and B. Hartwig, J. Phys.: Condens. Ma@gi9907 contribution decreases faster than the Coulomb energy, leading
(1991. to a larger Coulomb to total energy ratio.

12G. cantele, D. Ninno, and G. ladonisi, Phys. Rev6® 125325  2!A. Franceschetti, A. Williamsom, and A. Zunger, J. Phys. Chem.
(2002. B 104, 3398(2000.

245318-10



