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Ballistic electron motion in a random magnetic field
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Using a scheme of the derivation of the nonlineamodel we consider the electron motion in a random
magnetic field in two dimensions. The derivation is based on writing quasiclassical equations and representing
their solutions in terms of a functional integral over supermati@esth the constrain@?=1. Contrary to the
standard scheme, neither singling out slow modes nor saddle-point approximations are usedmaddel
obtained is applicable at the length scale down to the electron wavelength. We show that this model differs
from the model with a random potential. However, after averaging over fluctuations in the Lyapunov region the
standardo model is obtained leading to the conventional localization behavior.
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[. INTRODUCTION tial (RP) and the broken time-reversal symmetry. The long-
range character of correlations of the random vector poten-
Description of the two-dimension&D) electron motion tial, which is possible even if the correlations of the magnetic
in a random magnetic fiel(RMF) is of a considerable inter- field are short ranged, did not play any role.
est for both experimentalists and theoreticians. Two- A possibility of a new term in ther model due to special
dimensional electron systems in a random magnetic fieléharacter of the correlations of the vector potential was dis-
were realized in a number of recent experiments when &ussed later in Refs. 20—-22. This was done by considering
high-mobility heterostructure was located under an overlayemore carefully short distances. A ballistcmodel similar to
with randomly pinned flux vortices in a type-l1l supercon- that of Ref. 23 was derived in Refs. 20,22 and the calcula-
ducting gaté or type-I superconducting gramer a demag- tions were checked by direct diagrammatic and path-
netized ferromagnétFrom the theoretical point of view the integrals method$ The final conclusion of these works was
RMF model is an example of a system with the interactionthat theo model maintained the standard fdfheorrespond-
which is realized through an effective gauge field. In particu-ing to the unitary ensemble unless the correlations of the
lar, this model arises in the theory of quantum Hall effectmagnetic field were long ranged. This was considered, as
with a half-filled Landau levet. Another application of this usual, as the proof of the localization. An additional term in
model is a gauge-field description of the doped Mottthe o model was still possible if the correlation of the mag-
insulators netic field was proportional tq~2, Ref. 22, where is the
One of the most important problems in the RMF modelsmomentum, and this could lead to antilocalizatisee also
is the question about localization of electron states. Thidef. 24. However, no possibility to obtain anything but the
guestion has been studied in many numerical works and verstandard unitary- model and, hence, the localization for any
different conclusions were drawn, froa) all the states are finite range correlations of the magnetic field, was seen fi-
localized, Refs. 6—8, t¢b) there may be a band of delocal- nally from these works and no difference between the RMF
ized states Refs. 9-14 ar(d) all the states are localized model and the RP model with a magnetic field was found
except those with the precisely zero energy, Refs. 15,16. Theven in the ballistic case.
problem of comparison of the results obtained in different Nevertheless, the question about the localization in the
numerical calculations is a quite complicated task partly beRMF model in two-dimensional was raised again in a recent
cause extended states and the states with very large localizaumerical worl® On the basis of the numerical study the
tion length can very often be hardly distinguished from eachauthor of Ref. 25 suggested quite a different scenario of the
other. electron motion in the RMF model, arguing that there could
From the point of view of the generally accepted scalingbe some “hidden degrees of freedom” that lead to essential
theory of localizatioh’ the RMF model should not be differ- deviations from the standard scaling description of disor-
ent from the model describing the electron motion in a ran-dered systems.
dom potential in a homogeneous magnetic field. In both the This result challenges the analytical results obtained on
cases all electron states are expected to be localized in twbe basis of ther-model description but it is fair to say that
dimensions in an arbitrarily weak random potential. Usingthe previous analytical study was not complete. All calcula-
the supersymmetry technigifehis prediction was checked tions were carried out using the traditional form of the bal-
in several works by deriving a proper model. The authors listic o model???32% with a conventional collision term.
of Ref. 19 used the standard scheme of the derivation findinglowever, this form may be used for a long-range disorder at
first the saddle point in the integral over supermatriQeend  sufficiently long distances only. The derivation of suclra
expanding then in slow modes near this saddle point. As anodel is based on finding a saddle point in the integral over
result, they obtained a standard diffusive unitarymodel the supermatrice® and expanding in slow modes. This pro-
similar to what one has for the model with a random poten-cedure fails at shortbut still much exceeding the wave
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length \¢) distances. As a result, the form of ballistic We start our consideration with the introduction of the
model is not applicable at the lengths smaller than a charagartition functionz[a],
teristic lengthl, >\ and this puts doubts on some conclu-
sions drawn previously. -
The saddle-point approximation is equivalent to the self- Z[a]:f exp(—La[¢])Dy, 2.1
consistent Born approximatiof8CBA) and cannot be good
for a long-range disorder. At the same time, even short-range (=
correlations of the magnetic field correspond to long-range Lal¢]= _'f (r)
correlations of the vector potential and this problem is inevi-
tably encountered in the RMF model. The diagrammatic ex- R
pansion of Ref. 21 also starts with the SCBA for one-particle + f y(r)a(r)y(rydr,
Green functions and one encounters the same problem. . i .
In order to circumvent the problem related to the use ofWh(.ere"/f are'elght-comp'onent supervec rand the Hamil-
the saddle-point approximation and the expansion in thdonianH(r) in Eq. (2.1) is taken in the form
slow modes we suggested recently another scifériais 2
method is based on equations for quasiclassical Green func- ﬂ(r):( —in—E}gA(r)> 2m—epe+u(r). (2.2
tions and resembles the phenomenological approach of Ref. ¢

23. However, in contrast to the latter, we do not average OVeL . |ast term in E (2.1) contains a source functio(r)
disorder in the beginning of the calculations and do not de- gl '

couple an effective interaction by integration over an auxil—g\?ezoﬁ:r;g g}gggﬂg'ggélgﬂ%ﬁg ?rr‘ fc%rrr:]eIzggnt?lljlnnc%ic?:snvliac_)r
iary field. Our approach is exact in the quasiclassical limit . . :

: - . . . example, the level-level correlation functid®(w) can be
and a resulting ballistiemodel is applicable at all distances

. o o+id )
H(r)—s+§+ 5 A [ g(r)dr

exceeding the wave lengi. It can be reduced to the con- written as

ventional ballistico model after a coarse-graining procedure 1 1 72

and the latter is applicable at distances exceeding a R(w)==— ———— lim Re—Z[é], (2.3
Lyapunov lengthl, introduced in Ref. 28. At distances 2 2(mV) e =ap=0 d@1az

smaller than | the form of the term due to disorder is dif-
ferent from the standard collision term.

In Ref. 27 we derived the ballistic model for the RP - 0
models and now we present an analogous derivation for the a(r)= ( @1 ) , - %‘2(1—k). (2.4)

where the sourca(r) is the following matrix:

RMF models. It turns out that the terms in the ballistic *12

models describing the disorder in the RP and RMF models i , o , .
differ from each other. They can become similar only after1€rekis the diagonal matrix with elements1 in fermionic
carrying out the coarse-graining procedure. We show tha®nd Posonic blocks, respectivefy. ,

this procedure can be performed in the same way as for the '€ Hamiltoniart(r), Eq.(2.2), contains both scalar and
RP problem, which leads to a similar reduaednodel. vector potentials(r), A(r) that are assumed to be random

The paper is organized as follows: In Sec. Il we introducgunctions of trA]e.space g:oorqutes d.'St.“bUted aqcordmg to
a partition function generating correlation functions of inter- the Gauss lawrs is the third Pauli matrix in the particle-hole
est in terms of a functional integral over superveciprave ~ SPace. Below we consider a general case when the scalar
derive equations for Green function and simplify them usingPCtentialu(r) contains both the short-rangg(r) and long
a quasiclassical approximation. Introducing quasiclassicdi@ngeui(r) parts with the characteristic correlation lengths
Green functions we rewrite the equations in a gauge invari®f the Orfjf’r and larger than the Fermi wavelength
ant form. The solution of the equations is found in terms of=(27Pg) ~~, respectively. Their statistics are determined by
an integral over supermatrice® with the constraintQ?  the pair-correlation functions
=1, which allows us to average over the RMF. 1

In Sec. lll we integrate over fluctuations in the Lyapunov (ug(rug(r’))= 2—6(r—r’), (2.5
region and come to a reducedmodel with a collision term. TVTs

In the Appendix we consider the problem of the correla- , ,
tion of twoppparticles moving in a RMFI): and find the charac- () (r))=w(r=r", (26
teristic time of this correlation. where the functionW(r—r’) is assumed to fall off over a
lengthd>\g . Statistics of the magnetic field will be intro-
duced later. Although the main goal of this paper is to study
the RMF model, we add the scalar potential into the Hamil-
tonian for a more explicit comparison between the RMF and
RP models.

In the present work we follow the method of derivation of ~ Following the standard approach of Ref. 18 one would
the o model suggested in our previous wérkin order to average the partition functiod[ a], Eq. (2.2), over the ran-
make the presentation self-contained we repeat the maidom external fields and then, singling out fluctuations slowly
steps of the derivation. varying in space and integrating over an auxiliary smooth

—ay

IIl. FORMULATION OF THE PROBLEM.
QUASICLASSICAL APPROXIMATION AND DERIVATION
OF THE o MODEL
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matrix field Q, decouple the interaction termy()? that ap-  Equation(2.10 was previously studied in the absence of the

pears after the averaging. This method was recently usefjagnetic field in the quasiclassical approximation using a
e.g., in Ref. 29 in a derivation of the ballistie model for ~method of a quasiclassical Green function, Refs. 23, 27. This

quantum billiards and in Refs. 20, 22, where the two-Method is based on the assumption that the external fields

dimensional electron gas was considered in a random ma@nd sources are smooth functidine., slowly changing over
netic field. As it has been mentioned in Sec. | the latter probthe wavelength\g). Within this method the Green function
lem is rather specific because the vector potemtial) can ~ G(P,R) can be rewritten using the Wigner transformation:
have long-range correlations even if correlations of the mag-
netic field are short ranged.

The singling out of slow modes with the subsequent de- G(r,r’)=f >
coupling of the interaction by integrating over an auxiliary (2)
smooth matrixQ is not a rigorous procedure because som

part of the interaction is assumed to be irrelevant and i%;rhe functionG(p,R) has a sharp peak at the Fermi surface

neglected. Although this assumption works well for short-][D_ZIéDFn' 'I(;his property isk(?uedfco ths fﬁCt ”;]at the :conhg-range_
range impurities, it is not justified for long-range correla- €lds and sources weakly disturb the shape of the Fermi

tions. Below we use another method based on the GreefHrface. Integrating the Green functi@{p,R) over the ab-

function and quasiclassical approximation of Ref. 27. ThisSolute value of the momentum results in a new function
method allows one to derive @ model applicable down to 9n(") that depends on the center-of-mass coordifa@nd

the length scale of the order of the wavelenith the unit vectom= p/p determining the direction at the Fermi
Following Ref. 27 we average over the short-range potensurface. The coordinate dependence of this function turns out

tial ug(r), decouple the interaction term appearing after thid® € smooth and therefog,(r) may be considered as the
averaging using the standard integration over an auxi"ar)guasmlassmal approximation of the exact Green function

smooth matrix fieldM (r), and finally rewrite the partition C('."’). Onthe other hand, the partition functidq[ J], Eq.
function as follows: (2.8), can be expressed through(r).
Before we start the calculation following this procedure

~ i let us make some remarks about differences between the RP
Z[a]=f Zl[J]eXF{ - gf StrMZ(r)dr)DM, (2.7 and RMF models. First, the presence of the magnetic field

S breaks the time-reversal symmetry and, hence, excitations

where sensitive to the time reversal are suppressed. Therefore we
consider only such correlation functions that can be obtained

from the source®(r) commuting withs. The part of the
Green function anticommuting with is negligible and may

. — . be omitted from the further consideration.

T_he Lagranglan__J[ljz_] coincides W'thl‘é_‘[f/l]’ Ea. (2'1)_’ pro- The second remark is related to the physical aspects of the
vided the substitutionsiy(r)=0 andia(r)—J(r)=ia(r)  quasiclassical approximation in the presence of a magnetic
+M(r)/27s are made in the Lagrangidn,[¢/], EQ. (2.1).  field. It is known that systems placed in a magnetic field are
The structure of the matriki(r) can be found in, Ref. 18. It invariant with respect to the magnetic translatiofﬁg

is important thaM(r) is self—conj_ugateﬁ(r)z M(r) where =exf(V,—i(elc)msA)a] instead of the ordinary onéS.The
the bar means the “charge conjugation difference between these translations is relevant for an infi-
nite system even if the magnetic field is weak. This means

ePr=G(p,R), R=(r+r")/2.

Zl[J]:J exp(—L[4])Dy. (2.8

N _ T T
M(r)=CM(r)C that electron states are to be characterized not by the ordinary
0 0 1 0 1 momentump,;, determining the kinetic energy but rather by
Ao Cq ) Cl:( ) sz( ) the generalized momentup= pkm+_(e/c) 73A(r). The gen-
0 ¢ 1 0 10 eralized momentunp is a well-defined quantum number if

(see also Ref. 18 the magnetic field is weak:

Following Refs. 23, 27 we introduce the Green function
2 v
Gr.r), ry>ANg, er—F, (2.1

G*(rr")=2, l[‘]]f pr)yP(rye Dy, (2.9 where o, =eH/mc is the Larmor frequency ande Fermi
) ) ] velocity. Inequality(2.11) coincides with the condition of the

For t[le most correlation functions of interest the source fU”CappIicabiIity of the quasiclassical approximation. The Fermi
tion a(r) can be chosen to be self-conjugate. If this is thesurface is defined in the space of the generalized momentum
case the Green function satisfies the equation p and, contrary to the case of zero magnetic field, has a
rather complicated form. The value of the momentprat
the Fermi surface strongly depends on the direction
=p/p. Therefore we change the definition of the quasiclas-
(2.10 sical Green function by replacing the integration over the

N 0w owtid ) .
H(r)—s+§+TA+|J(r)}G(r,r’)=|5(r—r’).
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absolute value of the generalized momentuiy that of the ~ whered,, stands for the derivative in the angle. The integra-
kinetic one,pyi, (see, e.g., Ref. 30 tion in Eq.(2.18 is performed over the self-conjugate super-
matrices

1 e.
gn(”:;f déG p*ETSA”“)' (2.12 Qu(N=Qu(r), Qu(N=CQ"(nCT

where the functiorG(p,r) is the Green function taken in the With the constrainQ(r)=1 and

Wigner representation ang=p?/(2m)—eg, n=p/p. The

quasiclassical Green functiag,(r) defined by Eq(2.12) is in(r)|S:Q—m(r)|S (2.19
gauge invariant. The logarithmic derivative of the partition

) ; at the surfaceés of the sample. The structure of the superma-
function Z,[J], Eq. (2.8), can be estimated as follows: b P

trix Q,, coincides with the structure of the supermatvixXr).
sinzy[J] 1 J— We do not demonstrate here the equivalence of the matrices
————==G(r,rn)~= —f gn(r)dn, (2.13 gn(r), Egs.(2.12 and(2.18, and refer to the proof given in
oJ(r) 2 2 Ref. 27. We mention here only that both the matrices are the
where v is the density of states at the Fermi surface. Perlogarithmic derivatives in the matrid(r) of the partition
forming the Wigner transformation we subtract Hg.10  functionsZ,[J], Z,[J], respectively. Hence, these functions
from the conjugated one, then integrate the result g\as in ~ are equal to each other up to some factor that is independent

Eq. (2.12 and obtain the following in the quasiclassical ap-0f J(r). Due to the supersymmetr#,[J]=2Z,[J]=1 for
proximation: J(r)=0, which means that the factor is unity and the parti-

tion functions are equal to each other,

e . _
anVr+m—CrsB(r)c9¢—pprrU(r)ﬂn gn(r) Z,[J]1=2Z,[J]. (2.20
i(w+id) Below the magnetic field8(r) is considered as a random
+T[A,gn]—[J(r),gn]=0. (2.19 function with a Gaussian distribution and the pair-correlation

function of the form
In Eq. (2.14), B(r)=d,A,—d, A is the magnetic fieldg, )
=V,—n, V,=e,d,, n=(cosesing), e,=(—sine,cose). I\ — (T) 2 o
In this approxim(pat(fon the solution of tﬁpe E®@.14 is to be (B(r)B(r")=2 e @cWe(r—r"), 2.23

ht with th | A : . : -
sought with the usual constraffi wherew, is a coefficient that is the characteristic frequency

gﬁ(r)zl (2.15 of the cyclotron motion and the functioWg(r—r') is as-
sumed to fall off at distancgs—r’'|>b and to be normal-
and the boundary condition ized asWg(r=0)=1. The lengthb characterizes the decay
of the correlations of the RMB(r). Substituting Eq(2.20
On, (N=0g-n (Nlres, (218 into Eq. (2.7 and averaging the result over the magnetic

wherer e S stands for points on the surface of the Sampleﬁeld and long-ranged potentia|(r) we find for the partition

andn, means the component of the vectoperpendicular TunctionZ[a], Eq.(2.7),

to the surface. Following Ref. 27 we write the solution of Eq.

(2.14 in terms of a functional integral over supermatrices z[é]:f exp(—F[Q,])DQ,, (2.22
Qn(r):

where the free-energy functiong[ Q,] has the form

FIQn]=Finl Qnl+ Fimdl Qul+F{ [ Qnl+ F [ Qnl,

where

-1 oy
0n(1=2; 3] JQlen<r>ex - 5-0,(Q,]|DQ,,

mV
2001= [ ,_ed| - S 00fpQ, @17 -
o AT(N)vEnV, Ty(r)

s
Fkin[Qn]: TStrf drdn

_ eB(r). .
<I>J[Qn]=Strf drdn| AT, (r)| venV, + e 3% L w+|5A—é o (r)}
2 ]
—p;lvru<r>vn)Tn<r> 1 w2 o
Fimp[Qn]=—§<—) fdrdndr’dn’V}VJ,,W(r—r’)
(i(w+i5)A ) } Pr
T AT, (219 X SUATH() VT (1]
Qu(N=TH(NATL(1), To(NTa(N=1, XSULATy (1) V] To(r)], 2.23
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© TV 2 particle motion in a RMF and estimate the Lyapunov length
FimplQnl=— gf Stf(j Qn(r)dn) dr, |, for weak fields as
S

FulQnl=

g 2 , , , b 2/3
7%) fdrdndr dn’Wg(r—r'") ILN'"(K) ) (3.
r
XS ATSTo(1)id,To(r)] _ _
This result shows that the Lyapunov lendthis between the
XSt AT (1) Ay Tri(r")]. correlationb and transport,, lengths:b<l <l .
The Lyapunov length, divides the length scales into two

The first termF;,[ Q] describes the free motion and is regions. At small distances, two particles propagate in the
what remains when external fields and impurities are absensame magnetic field and correlations between them are rel-
The second and the third terrfis, [ Q1. F{[Qn] are re-  evant. Following the terminology of Ref. 28 we call these
sponsible for the scattering on the long- and short-rangedistances the Lyapunov region. In the second region, when
potentials, respectively. The last tefffp[ Q,] is due to the the scales of interest are larger than the Lyapunov length, the
presence of the random magnetic field. Correlation functionsnotion of the particles is not correlated and they are scat-
of interest can be obtained by calculating derivatives in thdered by the RMF independently. This can be called the col-
sourcea(r) of the partition functiorz[a], Eq. (2.22. lision region because the corresponding classical motion at

It is important to emphasize that the structure of the termsuch distances is described by the conventional Boltzmann
Fimpl Qn] andF [ Q] describing the electron scattering on equation with a collision term corresponding to the scattering
the random potential and on the random magnetic field, reen the RMF. The electron motion at these long distances
spectively, is clearly different. The terff;, [ Q,] contains  should be described by a reducednodel and one can ex-
the components of the gradients parallel to the planepect that this reduced-model is just thes model of Refs.
whereas the terr [ Q,] contains the perpendicular one. 20, 22. In order to obtain the reducedmodel one should

Nevertheless, at longer distances the RP and RMF modelstegrate out in Eq92.22 and(2.23) the degrees of freedom
are very similar and we show this in the following section, related to the Lyapunov region. This coarse-graining proce-
carrying out a coarse-graining procedure suggested in Reflure has been worked out in Ref. 27 for the RP model and
27. The latter means integrating out degrees of freedom awve will repeat it now for the RMF model.
distances inside the Lyapunov region. First, one should explicitly decouple the original mode

For simplicity of the presentation we will consider in the T,(r) into the “slow” and “fast” parts. We make this sepa-
following sections only effects related to the random mag-ation in the way preserving the rotational invariance of the
netic field and disregard the scattering on the random poterinitial model Eq.(2.23:
tials, omitting Fimo[Qnl, F{s[Qnl in the free energy, Eq.
(2.23. Accordingly, we will consider the symmetry of the ~
supermatrice®) corresponding to the unitary ensemble. We Ta(r)=Tr(r)Va(r). 3.2
will study the behavior of ther model, Eq.(2.23, on dif-

ferent length scales and discuss the connection of this modelere T,(r), V,(r) are slow and fast modes describing the

with the models previously obtained in Refs. 19-22. fluctuations in the collision and Lyapunov regions, respec-
tively. As soon as the mode separation is made one should
Ill. REDUCED o MODEL substitute Eq(3.2) into the free energf¥[Q,], Eq. (2.23,

The o model obtained in Eq2.23 is valid for the length and then average it over the fast fluctuatiofgr):

scales down to the wavelengiy and has the form which

differs from theos model found in Refs. 20, 22. The latter - R (O]

model has been derived for the spatially uncorrelated mag- Z[a]= fézle efftn'DQp, (3.3
netic field and is applicable at the length scale restricted from "

below by the single-particle relaxation lendthut not by the

wavelength\ . The lengthl could not be consistently esti- Where

mated within the consideration of Refs. 20, 22 and remained

without a clear physical interpretation. At the same time, the _

analysis of Refs. 27, 28, 32, leads to the conclusion that the e*Feff[Qn]:J' exp(—F[Q]-Fi [Q© . Q,1)DV,,
role of this length is played by the Lyapunov length 3.4
=ve7_. Here 7 is the inverse Lyapunov exponent and is '
the time during which two close trajectories increase the dis-
tance between them by a factor of the order of unity. On the
other hand, according to Ref. 28, is the time which is
required for two scattered particles to diverge over the dis-
tance of the order of the range of the potent@l the corre- The functionalF[Qﬁo)] in Eq. (3.4) coincides with the free
lation length. In the Appendix we discuss the problem of the energy, Eq(2.23, provided the source is omitted in the latter

QO(N=Va(NAVL(r), On(N)=To(NAT(r).

245313-5



K. B. EFETOV AND V. R. KOGAN PHYSICAL REVIEW B68, 245313 (2003

ing the cumulant expansion iR, Eq. (3.4), and approxi-
mation of the weak magnetic field. In the same way as it was
done in Ref. 27 for the model of the long-ranged disorder

expression. The function&l;,[ Q*),Q,] determines the in-
teraction between the fast and slow mo@¥, @, and has

the form one can show that this is an expansion in powers of the
) ) 0) operatorl, V, which is small outside the Lyapunov region.
Find Q1. Qnl=Fiin[ QR . Qul + FAl QR . Qul, Considering only the first order we find
where

Feff[én]:“:int[QS]O)1én]>01 (3.7

where the brackets. - - ), stand for integration ove®(®.

(0) - (0)
Flanl Q0 Qnl = Strf drdnQy (r)[ To(Poen? Ty(r) Due to the supersymmetQ{°)(r))o=A, which gives

+id = o ) ~ -
+iw 5(Tn(r)AT (I‘)_A <Fkin[Q$10)-Qn]>0=Fkin[Qn] (3-8)
- " with the same functiond¥;,[ Q] as in Eq.(2.23. The sec-
—iT(Nar)T.(r), ond term in the functionaf /[ [Q{”,Q,], Eq.(3.5), vanishes
after the averaging due to the symmetry as well. The contri-
0 2 bution coming from the first term can be divided into
FrlQY.Qnl= wc) fdrdndr’dn’WB(r—r’) two parts: the first one comes from the reducible average
and coincides with the magnetic energy,[Q,] of the
X St 73Q0 (N d(r)] initial functional, Eq. (2.23, whereas the other is given
by the irreducible average((QVQM))y=(Q®Qy,
St 75Q (1)@ p(r')] Oy (0© S non
X 3 —(Qn")o(Q,")o of the supermatrice®y” .
In order to find the contribution coming from the irreduc-
+2 7%) J drdndr’dn’Wg(r—r") ible average we consider the matrix
>0 (0) m 3 (0
X St 73Qy, (1) P (r)] in(rl)ex TStr drdna,(r)Qp’(r)
_ ~ N 0
XSUATN o (1)idg Vo (r)], (35  In(ria)= py - !
exp{TStrJ drdnan(r)Qﬁo)(r)}
= L~ 0
q)n(r):Tn(r)laqun(r)- (3.9

Before the averaging over the fast fluctuati@$’ we make  where the new source,(r) is
the following essential remark. R R

The separation into the fast and slow modes, B(), an(r)=a(r)yrz®,(r),
requires a more accurate definition. The point is that the
excitations in the model, Eq2.23, reveal a strong anisot- “(r) is some function. Due to the supersymmegyy(r;«
ropy in the phase space, ) due to the specific form of the =0)=A. The first derivative in the function(r) gives
free-energy functional, Eq2.23. Since only the first-order
derivatives inr andn enter the free energy, EQ.23, the oGn,(r1; @)
dependence of the excitations on the coordinates) (will Sa(r,)
resemble a propagation along a classical trajectory. Such an
anisotropy demands a care and should be performed in an Y 0) -
invariant way. As in Ref. 27, the scale separation can be = |1 Qn/(ra) Strf dn'QE (1) 7s®i(ra) ) )
performed introducing an additional term into the functional 0
FIQV], Eq. (3.9, (3.10

On the other hand, the matrgy,(r;«) satisfies the equation

a(r)=0

FL[QgO)]=—¥>\LStrJ drdnAQ®(r). (3.6 N
“[A, ()]

~ o+
venV, gu(r; @) +i 5
Then, we extend the region of the integration o@¥(r) to
all possible matrices with the constraints E24 19. The pa- = a(N[73P,(r),00(r; )] (3.12)
rametern is just the Lyapunov exponen{ and the term
FLIQ©], Eq. (3.6), serves to suppress fluctuations of theand conditiorgi(r;«)=1. Differentiating ina(r) both sides
matncesQ(o) outside the Lyapunov reg|0n of this condition and then puttlng(r) 0 we find that the
As soon as the mode separation is properly defined onmatrix 89n(r; )l Sa(r’ ) =0 in Eq. (3.10 is off diagonal.
can carry out the integration in E¢3.4) and evaluate the Equation(3.11) can be considered for the off-diagonal part

effective energyF ¢ Q,]. We perform this computation us- of the matrixg,(r;«) and rewritten in the integral form

245313-6
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am;m:J dr' Go(r—r")a(r")[ma®n(r),gn(r; @)1,
(3.12

where the superscrigt stands for the part of the superma-

trices anticommuting wittA. The kernelG,(r—r') is the
solution of the equation

[VenV, Fi(w+iN)A]GH(r—=r")=8(r—r1"). (3.13
Differentiating in «(r) both sides of Eq(3.12 and putting
a(r)=0 we obtain

INZ ~

7< <Q‘n2’<rl>8trf dn’Q‘n‘?’<r2>73<I>nf<rz>>>

0

=Gn (1= 12)[ 3@y (12),A]. (3.14

Substitution of Eq(3.14) into Eq. (3.5 gives

(F 0, Qo= Fo B~ vt drranwi(r—r)

XSO (1) Gn(r—r")AD(r)].
(3.15

Characteristic values of the differencer’ in G,(r—r') are
in the Lyapunov region, whereds,(r) is a smooth function.
This allows us to make the replacemeht-r in one of the
®,,in Eq.(3.15. The integral over the differenge=r—r’ is

PHYSICAL REVIEW B 68, 245313 (2003

Taking together Eq93.15), (3.16), and(3.18 we obtain the
free energyF . Qn] of the reducedr model:

Ferd Qnl=F[Qnl+F'[Qnl, (3.19

where
v —
F[Q.]= TJ drdnStr[Tn(r)anVrTn(r)

[w+id -
+i TA—a(r)

1 2
Qn(r)+ 4_7_’“((94an)

(3.20
my 2
F'[Qnl=— (7%) f drdndr’dn’Wg(r—r’)
XSUAT5To(r)d,To(r)]
XS AT (F )y T (r')]. (3.21)

The collision term in the free-energy functional is expressed
through the transport time,, ,

(2mvry) = J dn’ w?Walpe(n’—n)], (3.2

and agrees with the results of Refs. 20, 22, 27, where the
RMF and long-range disorder models, respectively, were
considered in the limit of small scattering angles. The second

calculated as follows. First, we rewrite this integral usingterm F'[Q,] in Eq. (3.19 is small and can be neglected.
integration in the momentum space instead of the coordinatghis can be easily understood using the fact that the Fourier

one,

| Giorwaioran- | : dq

277)2WB(Q)

i
veng—(w+iN A’
(3.1

transform of the functioWVg in Eq. (3.22 contains momenta
of the order ofpg, which corresponds to short distances of
the order ofAr. In contrast, the main contribution to the
integral over the coordinates in E¢3.21) comes at weak
RMF from larger distances of ordér where the function
W5 is small. Therefore, everywhere below we will imply that

The momentuny may be considered as the transfer momenyne reduced ballistic model is described by the free-energy

tum g=p’'—p, wherep’=pgn’, p=pen are momenta of a

functional F[ Q] from Eq. (3.20.

particle after and before the scattering. Since for a weak Tp,s we have demonstrated that although the ballistic

scattering the characteristic length of the distribution
Wg(r—r’") is much smaller than the Lyapunov length,
<., Eq.(3.]), the fraction in Eq(3.16 can be replaced by
the § function:

q i
J (ZW)ZWB(q)anq—(wH)\L)A

dqg
%—WAJ (ZW)ZWB(q)b‘(anq). (3.17

The § function fixes the value of the final momentysh on
the Fermi surface:5(venq)= slven(p’ —p)]= o[ (de/p)
X(p'—p)]=de(p’)—e(p)]. Integrating over the energy

e'=¢g(p’) we find for the integral, Eq.3.16), the following
expression:

—m/Af dn’Wg[pe(n—n')]. (3.18

model for the RMF is different from the one for the RiRe
termsF; [ Q,] andF,[Q,] in Eq. (2.23 are differen}, the
reducedo models describing the electron motion exceeding
the Lyapunov length, have the same form as E(B.20.

The similarity of the RMF and RP models has been empha-
sized in Ref. 21 and the final conclusion of Ref. 22 was the
same. However, the methods used in these works were based
on writing first the self-consistent Born approximation for
one-particle Green functionsaddle-point equation in the
model formulation and on a subsequent expansion in slow
modes, which could not be justified at short distances. Now
we see that the equivalence of the RMF and RP models can
hold at distances exceeding the Lyapunov length. This natu-
rally leads to the equivalence of the diffusigemodels that

can be written in the standard form

v
F[Q]= ?Strf [D(VQ)?+2i(w+id)AQ]dr,
(3.23
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whereD=v27,/2. For the RMF problem the transport time lated. Correlations disappear over the larger lengths where

T, IS given by Eq.(3.22. the particle interaction can be considered in terms of colli-
Equation (3.23 is valid unless the correlations of the sions. In the Appendix we estimate the Lyapunov length for
magnetic field are very long ranged. Only if RMF problem, restricting our consideration by the limit of a
weak field. The estimated length is expressed through the
(BB_g)~q %, (3.24  transport length;, and the correlation length of the RMF

by a formula similar to the one obtained previously in Ref.

an additional term can appe€arThe symmetry of the diffu- 28 in the model of a long-ranged potential.
sive o model, Eq.(3.23, corresponds to the unitary en-  The reducedr model obtained after integrating over the
semble and one comes to the standard conclusion about tiflactuations in the Lyapunov region coincides with the model
localization. of Ref. 22 provided the latter is considered in the limit of a

Of course, the coarse-graining procedure leading to themall-angle weak scattering. The redueednodel obtained
ballistic o model, Eq.(3.20, is possible only if the ground in this way is equivalent to the model found in the problem
state of the initialo model, Eq.(2.23, is achieved aQ of a long-range potential disorder, Ref. 27. At the same time,
=A. One can imagine such functioMdg(r—r') that this it is relevant to emphasize that at short distances inside the
ground state is no longer stable. However, this could be pod-yapunov region the RMF and RP models correspond to
sible only if the Fourier transformiVg(q) was negative for different o models.
certain g, which is excluded in the case of real magnetic At distances exceeding the transport lengtk v 7, one
fields. Therefore, beyond the Lyapunov region, the ballisticcomes to the standard diffusian model, Eq.(3.23, unless
o model, Eq.(3.20, and, correspondingly, the diffusive  the correlation of the magnetic fields obeys E&24). Cal-

model, Eq.(3.23), seem to be unavoidable. culations for the ¢ model, Eq. (3.23, within the
renormalization-group scheme leads to the standard conclu-
IV. DISCUSSION sion about the localization. This conclusion is in contradic-

tion with the numerical results of Ref. 25 where the existence

In the present paper we considered the problem of thef hidden degrees of freedom was proposed, which could
two-dimensional electron gas in a random magnetic fieldead to the existence of extended states. We did not find any
(RMF) using the nonlinear supermatrix model approach. indication for such degrees of freedom. Of course, our con-
We derived a ballistier model avoiding the standard scheme sideration was performed in the quasiclassical limit, such
based on finding a saddle point in the integral over supervedhat we did not take into account a possibility of a quantiza-
tors and expanding in slow modes near this point. Such &on of the energy levels. However, it is not easy to under-
scheme explicitly relies on the assumption of a sufficientlystand how taking into account distances shorter than the
short correlation length of a random potentfake, e.g., in  wavelength\ could lead to a destruction of the localization.
Ref. 18 and its validity for a long-range disorder is not clear.

As the vector potential entering the RMF model has a Iargg\ppEme: LYAPUNOV EXPONENT IN RME PROBLEM
correlation length even when the magnetic fieldSisorre-

lated in space, the procedure of singling out slow modes used Here we study the classical scattering of two particles in a
in the standard derivation is not well justified at least at notandom magnetic fieldRMF). The presence of the RMF
very large distances. Besides, the saddle-point approximatidgads to an effective interaction between the particles. The
is hardly allowed in this case as well. radius of this interaction is equal to the correlation length of

Instead of following the standard scheme we used théhe field. The scattering process lasts a finite time after which
method based on writing quasiclassical equations for Greefie particles diverge over the distance exceeding the correla-
functions and the exact representation of their solutions iriion length and begin to move without any interaction. The
terms of integrals over supermatric®g with the constraint aim of the calculation presented below is to estimate this
Q2=1. This method needs neither singling out the fast andime. It is clear that for larger times the particle scattering
slow parts from the interaction nor the saddle-point approxinay be considered in terms of collisions. We restrict our
mation. Conditions of the applicability of the method coin- ca@lculation by the case of a weak magnetic field. .
cide with those of the quasiclassical approximation. There- Let us consider two particles on a plane with the coordi-
fore, the o model obtained should be applicable over thenatesry, r, and momenta,, p, moving in a perpendicular
distances down to the Fermi wavelength, which makes ifnagnetic field. The equations of the motion for each particle
more general in comparison with tieenodels derived earlier aré
on the basis of the standard scheme, Refs. 19,20,22,26. The
latter models are justified at distances exceeding the single- P P - eB(r;)
particle mean free pathas in the Refs. 20,22 or the transport T m’ Pi= mc
lengthl;, as in Ref. 19. .

We have demonstrated that similar to the problem of longwheree, is the unit vector perpendicular to the plane of the
range random potential, there is a characteristic or Lyapunomotion. Letp=r,—r, andp=p,—p, be coordinate and mo-
length || dividing the length scale into the Lyapunov and mentum of the relative motion. We assume that the particles
collision regions. The first region corresponds to the smalktart their motion close to each other and have parallel mo-
distances over which the particle motion is strongly corresmentap,=p, so thatp=0 andp= p, in the beginningp, is

[pixe,l, (A1)
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assumed to be perpendicular to the directioof the motion ~ where 7, is the transport time, Eq3.22, that can also be
of the center of mass. Since the energy does not change Wiritten as
the magnetic field, the absolute value of the momenta,

will remain constant and equal to each othgy;|=|p,|.

Therefore, the direction of the relative motion will always be
perpendicular to the direction of the motion of the mass cen-

tern: (pn)=0. This allows us to writg=p[nXxe,]. Using
Eqg. (A1) we find

1 +oo
T”:wgf—m Wg(venr)dr. (AB)

The functione(p) is, by definition,

=P p=e’F(B,-B A2
p=ry P=e (Bi~By), (A2)
+oo
where B,=B(r;), and p=|p| is the absolute value of the B Wa(vent+p[nxe,])dr
momentum of the relative motion. At the beginning of the e(p)=1- — ) (A7)
motion p is rather small and the differend®, —B, can be J' Wq(venr)dr
approximately written aB;—B,~(JB/JR,)p, whereR, is _. BOF
the coordinate of the mass center in the direction perpendicu-
lar to n. Equation(A2) considered in this approximation re-
duces to a linear system of first-order differential equationsThe distance between the particles in the Lyapunov region is
Hence, the distancﬁ will grow exponentia”y as a function smaller than the correlation Iength of the magnetic field
of time. The mean rate of the divergency or the Lyapunovience, one may expand the functiefp) in p, which gives
exponent determines the scattering time involved. &(p)~p®/2b*. This relation is to be considered as a defini-
To study statistics of the relative motion we introduce ation of the lengthb. Substituting this expansion into E@AS)

distribution functionW(t,p,p). By definition, it is the prob- We come to the same equation as the one derived in Ref. 28
ability for the relative distance and momentum togbandp ~ Where electron scattering in a long-ranged potential disorder
at the timet, respectively, provided they have been initially Was considered,
po, P=0. LetW(ty,p,p) be the distribution at the timg.
Then, it can be written at the tintg+ At as

d s g  p> & W
_—v —— — =
at F ap Ttrbz (9(1)2

W(to+At,p,p) 0. (A8)

=J P(to+At,p,psto,p’,p" )W(to,p’,p")dp'dp’,
Using the result of that paper we find that the function
(A3) W(t,p) determining the distribution of the distange(the
where P(t,p,p;t’,p’,p’) is the transition probability. This Momentum of the relative motiom, is implied to be aver-
probability is determined by the equation of motion, Eq.aged in this functionsatisfies the equation
(A2), and is introduced as

Y AN ’ tp(T) ' i— iW—O A9

P(t,p,p;t".p",p")=06|l p—p —ft' = dr|dé| p—p TL&t 'B&Z =0, (A9)
UVE t

_eFft,[Bl(T)_BZ(T)]dT ’ where g is a numerical coefficient equal #~0.365 andz

=In(b/p). It follows from Eq.(A9) that the coefficient is
(A4) in fact a characteristic time of the divergency of the trajec-
where B,(r)=B[r (7], r(7)=R(n)+p(r)/2 and p(7), tories of the particles calculated from the classical motion

p(7) are the solution of the classical motion equatiée). equation(A2). According to Ref. 28 this time is equal to

Substitution of Eq.(A4) into Eq. (A3) gives a relation be-

tween the distribution$V at timest, andty+ At. Assuming

that At is smaller than the inverse Lyapunov exponent we = Ttr(
expand this relation im\t and then average over the mag-

netic field B(r). Since the magnetic field is assumed to be

weak, we neglect the influence of the field on the trajectory d this is at th time the | L i
of the mass center and obtain and this is at the same time the inverse Lyapunov exponent.

As mentioned above, the quantity has the meaning of a
characteristic time that two scattered particles spend moving

b 2/3
) (A10)

i

2
W, PIW_ 2 p)pgﬂv =0, (A5)  together until the distance between them starts exceeding the

v &
gt mdp Ty ap? correlation lengttb.
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