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Ballistic electron motion in a random magnetic field
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Using a scheme of the derivation of the nonlinears model we consider the electron motion in a random
magnetic field in two dimensions. The derivation is based on writing quasiclassical equations and representing
their solutions in terms of a functional integral over supermatricesQ with the constraintQ251. Contrary to the
standard scheme, neither singling out slow modes nor saddle-point approximations are used. Thes model
obtained is applicable at the length scale down to the electron wavelength. We show that this model differs
from the model with a random potential. However, after averaging over fluctuations in the Lyapunov region the
standards model is obtained leading to the conventional localization behavior.
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I. INTRODUCTION

Description of the two-dimensional~2D! electron motion
in a random magnetic field~RMF! is of a considerable inter
est for both experimentalists and theoreticians. Tw
dimensional electron systems in a random magnetic fi
were realized in a number of recent experiments whe
high-mobility heterostructure was located under an overla
with randomly pinned flux vortices in a type-II superco
ducting gate1 or type-I superconducting grains2 or a demag-
netized ferromagnet.3 From the theoretical point of view th
RMF model is an example of a system with the interact
which is realized through an effective gauge field. In partic
lar, this model arises in the theory of quantum Hall effe
with a half-filled Landau level.4 Another application of this
model is a gauge-field description of the doped M
insulators.5

One of the most important problems in the RMF mod
is the question about localization of electron states. T
question has been studied in many numerical works and
different conclusions were drawn, from~a! all the states are
localized, Refs. 6–8, to~b! there may be a band of deloca
ized states Refs. 9–14 and~c! all the states are localize
except those with the precisely zero energy, Refs. 15,16.
problem of comparison of the results obtained in differe
numerical calculations is a quite complicated task partly
cause extended states and the states with very large loca
tion length can very often be hardly distinguished from ea
other.

From the point of view of the generally accepted scal
theory of localization17 the RMF model should not be differ
ent from the model describing the electron motion in a r
dom potential in a homogeneous magnetic field. In both
cases all electron states are expected to be localized in
dimensions in an arbitrarily weak random potential. Usi
the supersymmetry technique18 this prediction was checke
in several works by deriving a propers model. The authors
of Ref. 19 used the standard scheme of the derivation find
first the saddle point in the integral over supermatricesQ and
expanding then in slow modes near this saddle point. A
result, they obtained a standard diffusive unitarys model
similar to what one has for the model with a random pot
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tial ~RP! and the broken time-reversal symmetry. The lon
range character of correlations of the random vector po
tial, which is possible even if the correlations of the magne
field are short ranged, did not play any role.

A possibility of a new term in thes model due to specia
character of the correlations of the vector potential was d
cussed later in Refs. 20–22. This was done by conside
more carefully short distances. A ballistics model similar to
that of Ref. 23 was derived in Refs. 20,22 and the calcu
tions were checked by direct diagrammatic and pa
integrals methods.21 The final conclusion of these works wa
that thes model maintained the standard form19 correspond-
ing to the unitary ensemble unless the correlations of
magnetic field were long ranged. This was considered,
usual, as the proof of the localization. An additional term
the s model was still possible if the correlation of the ma
netic field was proportional toq22, Ref. 22, whereq is the
momentum, and this could lead to antilocalization~see also
Ref. 24!. However, no possibility to obtain anything but th
standard unitarys model and, hence, the localization for an
finite range correlations of the magnetic field, was seen
nally from these works and no difference between the R
model and the RP model with a magnetic field was fou
even in the ballistic case.

Nevertheless, the question about the localization in
RMF model in two-dimensional was raised again in a rec
numerical work.25 On the basis of the numerical study th
author of Ref. 25 suggested quite a different scenario of
electron motion in the RMF model, arguing that there cou
be some ‘‘hidden degrees of freedom’’ that lead to essen
deviations from the standard scaling description of dis
dered systems.

This result challenges the analytical results obtained
the basis of thes-model description but it is fair to say tha
the previous analytical study was not complete. All calcu
tions were carried out using the traditional form of the b
listic s model,22,23,26 with a conventional collision term
However, this form may be used for a long-range disorde
sufficiently long distances only. The derivation of such as
model is based on finding a saddle point in the integral o
the supermatricesQ and expanding in slow modes. This pro
cedure fails at short~but still much exceeding the wav
©2003 The American Physical Society13-1
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length lF) distances. As a result, the form of ballistics
model is not applicable at the lengths smaller than a cha
teristic lengthl L@lF and this puts doubts on some concl
sions drawn previously.

The saddle-point approximation is equivalent to the s
consistent Born approximation~SCBA! and cannot be good
for a long-range disorder. At the same time, even short-ra
correlations of the magnetic field correspond to long-ran
correlations of the vector potential and this problem is ine
tably encountered in the RMF model. The diagrammatic
pansion of Ref. 21 also starts with the SCBA for one-parti
Green functions and one encounters the same problem.

In order to circumvent the problem related to the use
the saddle-point approximation and the expansion in
slow modes we suggested recently another scheme.27 This
method is based on equations for quasiclassical Green f
tions and resembles the phenomenological approach of
23. However, in contrast to the latter, we do not average o
disorder in the beginning of the calculations and do not
couple an effective interaction by integration over an au
iary field. Our approach is exact in the quasiclassical lim
and a resulting ballisticsmodel is applicable at all distance
exceeding the wave lengthlF . It can be reduced to the con
ventional ballistics model after a coarse-graining procedu
and the latter is applicable at distances exceeding
Lyapunov length l L introduced in Ref. 28. At distance
smaller thanl L the form of the term due to disorder is di
ferent from the standard collision term.

In Ref. 27 we derived the ballistics model for the RP
models and now we present an analogous derivation for
RMF models. It turns out that the terms in the ballistics
models describing the disorder in the RP and RMF mod
differ from each other. They can become similar only af
carrying out the coarse-graining procedure. We show
this procedure can be performed in the same way as for
RP problem, which leads to a similar reduceds model.

The paper is organized as follows: In Sec. II we introdu
a partition function generating correlation functions of inte
est in terms of a functional integral over supervectorsc. We
derive equations for Green function and simplify them us
a quasiclassical approximation. Introducing quasiclass
Green functions we rewrite the equations in a gauge inv
ant form. The solution of the equations is found in terms
an integral over supermatricesQ with the constraintQ2

51, which allows us to average over the RMF.
In Sec. III we integrate over fluctuations in the Lyapun

region and come to a reduceds model with a collision term.
In the Appendix we consider the problem of the corre

tion of two particles moving in a RMF and find the chara
teristic time of this correlation.

II. FORMULATION OF THE PROBLEM.
QUASICLASSICAL APPROXIMATION AND DERIVATION

OF THE s MODEL

In the present work we follow the method of derivation
the s model suggested in our previous work.27 In order to
make the presentation self-contained we repeat the m
steps of the derivation.
24531
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We start our consideration with the introduction of th
partition functionZ@ â#,

Z@ â#5E exp~2La@c#!Dc, ~2.1!

La@c#52 i E c̄~r !S Ĥ~r !2«1
v

2
1

v1 id

2
L Dc~r !dr

1 i E c̄~r !â~r !c~r !dr ,

wherec are eight-component supervectors18 and the Hamil-
tonianĤ(r ) in Eq. ~2.1! is taken in the form

Ĥ~r !5S 2 i“ r2
e

c
t̂3A~r ! D 2

/2m2«F1u~r !. ~2.2!

The last term in Eq.~2.1! contains a source functionâ(r ).
Choosing this function in a proper form and taking deriv
tives in its elements one can obtain correlation functions.
example, the level-level correlation functionR(v) can be
written as

R~v!5
1

2
2

1

2~pnV!2
lim

a15a250
Re

]2

]a1]a2
Z@ â#, ~2.3!

where the sourceâ(r ) is the following matrix:

â~r !5S â1 0

0 2â2
D , â1,25

a1,2

2
~12k!. ~2.4!

Herek is the diagonal matrix with elements61 in fermionic
and bosonic blocks, respectively.18

The HamiltonianH(r ), Eq.~2.2!, contains both scalar an
vector potentialsu(r ), A(r ) that are assumed to be rando
functions of the space coordinates distributed according
the Gauss law,t̂3 is the third Pauli matrix in the particle-hol
space. Below we consider a general case when the sc
potentialu(r ) contains both the short-rangeus(r ) and long
rangeul(r ) parts with the characteristic correlation lengt
of the order and larger than the Fermi wavelengthlF
5(2ppF)21, respectively. Their statistics are determined
the pair-correlation functions

^us~r !us~r 8!&5
1

2pnts
d~r2r 8!, ~2.5!

^ul~r !ul~r 8!&5W~r2r 8!, ~2.6!

where the functionW(r2r 8) is assumed to fall off over a
lengthd@lF . Statistics of the magnetic field will be intro
duced later. Although the main goal of this paper is to stu
the RMF model, we add the scalar potential into the Ham
tonian for a more explicit comparison between the RMF a
RP models.

Following the standard approach of Ref. 18 one wou
average the partition functionZ@ â#, Eq. ~2.1!, over the ran-
dom external fields and then, singling out fluctuations slow
varying in space and integrating over an auxiliary smo
3-2
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matrix field Q, decouple the interaction term (cc̄)2 that ap-
pears after the averaging. This method was recently u
e.g., in Ref. 29 in a derivation of the ballistics model for
quantum billiards and in Refs. 20, 22, where the tw
dimensional electron gas was considered in a random m
netic field. As it has been mentioned in Sec. I the latter pr
lem is rather specific because the vector potentialA(r ) can
have long-range correlations even if correlations of the m
netic field are short ranged.

The singling out of slow modes with the subsequent
coupling of the interaction by integrating over an auxilia
smooth matrixQ is not a rigorous procedure because so
part of the interaction is assumed to be irrelevant and
neglected. Although this assumption works well for sho
range impurities, it is not justified for long-range correl
tions. Below we use another method based on the Gr
function and quasiclassical approximation of Ref. 27. T
method allows one to derive as model applicable down to
the length scale of the order of the wavelengthlF .

Following Ref. 27 we average over the short-range pot
tial us(r ), decouple the interaction term appearing after t
averaging using the standard integration over an auxil
smooth matrix fieldM (r ), and finally rewrite the partition
function as follows:

Z@ â#5E Z1@J#expS 2
pn

8ts
E StrM2~r !dr DDM , ~2.7!

where

Z1@J#5E exp~2LJ@c#!Dc. ~2.8!

The LagrangianLJ@c# coincides withLa@c#, Eq. ~2.1!, pro-
vided the substitutionsus(r )50 and i â(r )→J(r )5 i â(r )
1M (r )/2ts are made in the LagrangianLa@c#, Eq. ~2.1!.
The structure of the matrixM (r ) can be found in, Ref. 18. I
is important thatM (r ) is self-conjugate:M̄ (r )5M (r ) where
the bar means the ‘‘charge conjugation’’

M̄ ~r !5CMT~r !CT

C5L ^ S c1 0

0 c2
D , c15S 0 21

1 0 D , c25S 0 1

1 0D
~see also Ref. 18!.

Following Refs. 23, 27 we introduce the Green functi
G(r ,r 8),

Gab~r ,r 8!5Z1
21@J#E ca~r !c̄b~r 8!e2LJ[c]Dc. ~2.9!

For the most correlation functions of interest the source fu
tion â(r ) can be chosen to be self-conjugate. If this is t
case the Green function satisfies the equation

F Ĥ~r !2«1
v

2
1

v1 id

2
L1 iJ~r !GG~r ,r 8!5 id~r2r 8!.

~2.10!
24531
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Equation~2.10! was previously studied in the absence of t
magnetic field in the quasiclassical approximation using
method of a quasiclassical Green function, Refs. 23, 27. T
method is based on the assumption that the external fi
and sources are smooth functions~i.e., slowly changing over
the wavelengthlF). Within this method the Green functio
G(p,R) can be rewritten using the Wigner transformation

G~r ,r 8!5E dp

~2p!2
eip(r2r8…G~p,R!, R5~r1r 8!/2.

The functionG(p,R) has a sharp peak at the Fermi surfa
p5pFn. This property is due to the fact that the long-ran
fields and sources weakly disturb the shape of the Fe
surface. Integrating the Green functionG(p,R) over the ab-
solute value of the momentump results in a new function
gn(r ) that depends on the center-of-mass coordinateR and
the unit vectorn5p/p determining the direction at the Ferm
surface. The coordinate dependence of this function turns
to be smooth and thereforegn(r ) may be considered as th
quasiclassical approximation of the exact Green funct
G(r ,r 8). On the other hand, the partition functionZ1@J#, Eq.
~2.8!, can be expressed throughgn(r ).

Before we start the calculation following this procedu
let us make some remarks about differences between the
and RMF models. First, the presence of the magnetic fi
breaks the time-reversal symmetry and, hence, excitat
sensitive to the time reversal are suppressed. Therefore
consider only such correlation functions that can be obtai
from the sourcesâ(r ) commuting witht3. The part of the
Green function anticommuting witht3 is negligible and may
be omitted from the further consideration.

The second remark is related to the physical aspects o
quasiclassical approximation in the presence of a magn
field. It is known that systems placed in a magnetic field
invariant with respect to the magnetic translationsT̂a

5exp@(“r2i(e/c)t̂3A)a# instead of the ordinary ones.31 The
difference between these translations is relevant for an
nite system even if the magnetic field is weak. This mea
that electron states are to be characterized not by the ordi
momentumpkin determining the kinetic energy but rather b
the generalized momentump5pkin1(e/c) t̂3A(r ). The gen-
eralized momentump is a well-defined quantum number
the magnetic field is weak:

r H@lF , r H5
vF

vH
, ~2.11!

wherevH5eH/mc is the Larmor frequency andvF Fermi
velocity. Inequality~2.11! coincides with the condition of the
applicability of the quasiclassical approximation. The Fer
surface is defined in the space of the generalized momen
p and, contrary to the case of zero magnetic field, ha
rather complicated form. The value of the momentump at
the Fermi surface strongly depends on the directionn
5p/p. Therefore we change the definition of the quasicl
sical Green function by replacing the integration over t
3-3
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K. B. EFETOV AND V. R. KOGAN PHYSICAL REVIEW B68, 245313 ~2003!
absolute value of the generalized momentump by that of the
kinetic one,pkin ~see, e.g., Ref. 30!:

gn~r !5
1

pE djGS p1
e

c
t̂3A~r !,r D , ~2.12!

where the functionG(p,r ) is the Green function taken in th
Wigner representation andj5p2/(2m)2«F , n5p/p. The
quasiclassical Green functiongn(r ) defined by Eq.~2.12! is
gauge invariant. The logarithmic derivative of the partiti
function Z1@J#, Eq. ~2.8!, can be estimated as follows:

d ln Z1@J#

dJ~r !
5

1

2
G~r ,r !'

pn

2 E gn~r !dn, ~2.13!

where n is the density of states at the Fermi surface. P
forming the Wigner transformation we subtract Eq.~2.10!
from the conjugated one, then integrate the result overj as in
Eq. ~2.12! and obtain the following in the quasiclassical a
proximation:

S vFn“ r1
e

mc
t̂3B~r !]w2pF

21
“ ru~r !]nDgn~r !

1
i ~v1 id!

2
@L,gn#2@J~r !,gn#50. ~2.14!

In Eq. ~2.14!, B(r )5]xAy2]yAx is the magnetic field,]n
5“n2n, “n5ew]w, n5(cosw,sinw), ew5(2sinw,cosw).
In this approximation the solution of the Eq.~2.14! is to be
sought with the usual constraint27

gn
2~r !51 ~2.15!

and the boundary condition

gn'
~r !5g2n'

~r !urPS , ~2.16!

where rPS stands for points on the surface of the sam
andn' means the component of the vectorn perpendicular
to the surface. Following Ref. 27 we write the solution of E
~2.14! in terms of a functional integral over supermatric
Qn(r ):

gn~r !5Z2
21@J#E

Qn
2
51

Qn~r !expS 2
pn

2
FJ@Qn# DDQn ,

Z2@J#5E
Qn

2
51

expS 2
pn

2
FJ@Qn# DDQn , ~2.17!

FJ@Qn#5StrE drdnFLT̄n~r !S vFn“ r1
eB~r !

mc
t̂3]w

2pF
21

“ ru~r !“nDTn~r !

1S i ~v1 id!

2
L2J~r ! DQn~r !G , ~2.18!

Qn~r !5Tn~r !LT̄n~r !, T̄n~r !Tn~r !51,
24531
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e
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where]w stands for the derivative in the angle. The integ
tion in Eq.~2.18! is performed over the self-conjugate supe
matrices

Q̄n~r !5Qn~r !, Q̄n~r !5CQ2n
T ~r !CT

with the constraintQn
2(r )51 and

Qn'
~r !uS5Q2n'

~r !uS ~2.19!

at the surfaceSof the sample. The structure of the superm
trix Qn coincides with the structure of the supermatrixM (r ).
We do not demonstrate here the equivalence of the matr
gn(r ), Eqs.~2.12! and~2.18!, and refer to the proof given in
Ref. 27. We mention here only that both the matrices are
logarithmic derivatives in the matrixJ(r ) of the partition
functionsZ1@J#, Z2@J#, respectively. Hence, these function
are equal to each other up to some factor that is indepen
of J(r ). Due to the supersymmetryZ1@J#5Z2@J#51 for
J(r )50, which means that the factor is unity and the pa
tion functions are equal to each other,

Z1@J#5Z2@J#. ~2.20!

Below the magnetic fieldB(r ) is considered as a random
function with a Gaussian distribution and the pair-correlat
function of the form

^B~r !B~r 8!&52S mc

e D 2

vc
2WB~r2r 8!, ~2.21!

wherevc is a coefficient that is the characteristic frequen
of the cyclotron motion and the functionWB(r2r 8) is as-
sumed to fall off at distancesur2r 8u.b and to be normal-
ized asWB(r50)51. The lengthb characterizes the deca
of the correlations of the RMFB(r ). Substituting Eq.~2.20!
into Eq. ~2.7! and averaging the result over the magne
field and long-ranged potentialul(r ) we find for the partition
function Z@ â#, Eq. ~2.7!,

Z@ â#5E exp~2F@Qn# !DQn , ~2.22!

where the free-energy functionalF@Qn# has the form

F@Qn#5Fkin@Qn#1Fimp@Qn#1Fimp
(s) @Qn#1Fm@Qn#,

where

Fkin@Qn#5
pn

2
StrE drdnFLT̄n~r !vFn“ rTn~r !

1 i S v1 id

2
L2âDQn~r !G ,

Fimp@Qn#52
1

8 S pn

pF
D 2E drdndr 8dn8“ r

i
“ r8

j W~r2r 8!

3Str@LT̄n~r !“n
i Tn~r !#

3Str@LT̄n8~r 8!“n8
j Tn8~r 8!#, ~2.23!
3-4
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Fimp
(s) @Qn#52

pn

8ts
E StrS E Qn~r !dnD 2

dr ,

Fm@Qn#5S pn

2
vcD 2E drdndr 8dn8WB~r2r 8!

3Str@Lt̂3T̄n~r !i ]wTn~r !#

3Str@Lt̂3T̄n8~r 8!i ]w8Tn8~r 8!#.

The first termFkin@Qn# describes the free motion and
what remains when external fields and impurities are abs
The second and the third termsFimp@Qn#, Fimp

(s) @Qn# are re-
sponsible for the scattering on the long- and short-ran
potentials, respectively. The last termFm@Qn# is due to the
presence of the random magnetic field. Correlation functi
of interest can be obtained by calculating derivatives in
sourceâ(r ) of the partition functionZ@ â#, Eq. ~2.22!.

It is important to emphasize that the structure of the ter
Fimp@Qn# andFm@Qn# describing the electron scattering o
the random potential and on the random magnetic field,
spectively, is clearly different. The termFimp@Qn# contains
the components of the gradients parallel to the pla
whereas the termFm@Qn# contains the perpendicular one.

Nevertheless, at longer distances the RP and RMF mo
are very similar and we show this in the following sectio
carrying out a coarse-graining procedure suggested in
27. The latter means integrating out degrees of freedom
distances inside the Lyapunov region.

For simplicity of the presentation we will consider in th
following sections only effects related to the random ma
netic field and disregard the scattering on the random po
tials, omitting Fimp@Qn#, Fimp

(s) @Qn# in the free energy, Eq
~2.23!. Accordingly, we will consider the symmetry of th
supermatricesQ corresponding to the unitary ensemble. W
will study the behavior of thes model, Eq.~2.23!, on dif-
ferent length scales and discuss the connection of this m
with the models previously obtained in Refs. 19–22.

III. REDUCED s MODEL

Thes model obtained in Eq.~2.23! is valid for the length
scales down to the wavelengthlF and has the form which
differs from thes model found in Refs. 20, 22. The latte
model has been derived for the spatially uncorrelated m
netic field and is applicable at the length scale restricted fr
below by the single-particle relaxation lengthl but not by the
wavelengthlF . The lengthl could not be consistently est
mated within the consideration of Refs. 20, 22 and remai
without a clear physical interpretation. At the same time,
analysis of Refs. 27, 28, 32, leads to the conclusion that
role of this length is played by the Lyapunov lengthl L
5vFtL . Here tL is the inverse Lyapunov exponent and
the time during which two close trajectories increase the
tance between them by a factor of the order of unity. On
other hand, according to Ref. 28,tL is the time which is
required for two scattered particles to diverge over the d
tance of the order of the range of the potential~or the corre-
lation length!. In the Appendix we discuss the problem of th
24531
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particle motion in a RMF and estimate the Lyapunov leng
l L for weak fields as

l L; l tr S b

l tr
D 2/3

. ~3.1!

This result shows that the Lyapunov lengthl L is between the
correlationb and transportl tr lengths:b! l L! l tr .

The Lyapunov lengthl L divides the length scales into tw
regions. At small distances, two particles propagate in
same magnetic field and correlations between them are
evant. Following the terminology of Ref. 28 we call the
distances the Lyapunov region. In the second region, w
the scales of interest are larger than the Lyapunov length,
motion of the particles is not correlated and they are sc
tered by the RMF independently. This can be called the c
lision region because the corresponding classical motio
such distances is described by the conventional Boltzm
equation with a collision term corresponding to the scatter
on the RMF. The electron motion at these long distan
should be described by a reduceds model and one can ex
pect that this reduceds-model is just thes model of Refs.
20, 22. In order to obtain the reduceds model one should
integrate out in Eqs.~2.22! and~2.23! the degrees of freedom
related to the Lyapunov region. This coarse-graining pro
dure has been worked out in Ref. 27 for the RP model a
we will repeat it now for the RMF model.

First, one should explicitly decouple the original mod
Tn(r ) into the ‘‘slow’’ and ‘‘fast’’ parts. We make this sepa
ration in the way preserving the rotational invariance of t
initial model Eq.~2.23!:

Tn~r !5T̃n~r !Vn~r !. ~3.2!

Here T̃n(r ), Vn(r ) are slow and fast modes describing t
fluctuations in the collision and Lyapunov regions, resp
tively. As soon as the mode separation is made one sh
substitute Eq.~3.2! into the free energyF@Qn#, Eq. ~2.23!,
and then average it over the fast fluctuationsVn(r ):

Z@ â#5E
Q̃n

2
51

e2Fe f f[ Q̃n]DQ̃n , ~3.3!

where

e2Fe f f[ Q̃n]5E exp~2F@Qn
(0)#2Fint@Qn

(0) ,Q̃n# !DVn ,

~3.4!

Qn
(0)~r !5Vn~r !LV̄n~r !, Q̃n~r !5T̃n~r !L T̄̃n~r !.

The functionalF@Qn
(0)# in Eq. ~3.4! coincides with the free

energy, Eq.~2.23!, provided the source is omitted in the latt
3-5
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expression. The functionalFint@Qn
(0) ,Q̃n# determines the in-

teraction between the fast and slow modesQn
(0) , Q̃n and has

the form

Fint@Qn
(0) ,Q̃n#5Fkin8 @Qn

(0) ,Q̃n#1Fm8 @Qn
(0) ,Q̃n#,

where

Fkin8 @Qn
(0) ,Q̃n#5

pn

2
StrE drdnQn

(0)~r !F T̄̃n~r !vFn“ rT̃n~r !

1 i
v1 id

2
~ T̄̃n~r !LT̃

n

~r !2L

2 i T̃̄n~r !â~r !T̃n~r !,

Fm8 @Qn
(0) ,Q̃n#5S pn

2
vcD 2E drdndr 8dn8WB~r2r 8!

3Str@ t̂3Qn
(0)~r !Fn~r !#

3Str@ t̂3Qn8
(0)

~r 8!Fn8~r 8!#

12S pn

2
vcD 2E drdndr 8dn8WB~r2r 8!

3Str@ t̂3Qn
(0)~r !Fn~r !#

3Str@Lt̂3V̄n8~r 8!i ]w8Vn8~r 8!#, ~3.5!

Fn~r !5 T̄̃n~r !i ]wT̃n~r !.

Before the averaging over the fast fluctuationsQn
(0) we make

the following essential remark.
The separation into the fast and slow modes, Eq.~3.2!,

requires a more accurate definition. The point is that
excitations in the model, Eq.~2.23!, reveal a strong anisot
ropy in the phase space (r ,n) due to the specific form of the
free-energy functional, Eq.~2.23!. Since only the first-order
derivatives inr and n enter the free energy, Eq.~2.23!, the
dependence of the excitations on the coordinates (r ,n) will
resemble a propagation along a classical trajectory. Suc
anisotropy demands a care and should be performed in
invariant way. As in Ref. 27, the scale separation can
performed introducing an additional term into the function
F@Qn

(0)#, Eq. ~3.4!,

FL@Qn
(0)#52

pn

4
lLStrE drdnLQn

(0)~r !. ~3.6!

Then, we extend the region of the integration overQn
(0)(r ) to

all possible matrices with the constraints Eq.~2.19!. The pa-
rameterlL is just the Lyapunov exponenttL

21 and the term
FL@Qn

(0)#, Eq. ~3.6!, serves to suppress fluctuations of t
matricesQn

(0) outside the Lyapunov region.
As soon as the mode separation is properly defined

can carry out the integration in Eq.~3.4! and evaluate the
effective energyFe f f@Q̃n#. We perform this computation us
24531
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ing the cumulant expansion inFint , Eq. ~3.4!, and approxi-
mation of the weak magnetic field. In the same way as it w
done in Ref. 27 for the model of the long-ranged disord
one can show that this is an expansion in powers of
operatorl L“ r which is small outside the Lyapunov region
Considering only the first order we find

Fe f f@Q̃n#5^Fint@Qn
(0) ,Q̃n#&0 , ~3.7!

where the bracketŝ•••&0 stand for integration overQn
(0) .

Due to the supersymmetrŷQn
(0)(r )&05L, which gives

^Fkin8 @Qn
(0) ,Q̃n#&05Fkin@Q̃n# ~3.8!

with the same functionalFkin@Q̃n# as in Eq.~2.23!. The sec-
ond term in the functionalFm8 @Qn

(0) ,Q̃n#, Eq. ~3.5!, vanishes
after the averaging due to the symmetry as well. The con
bution coming from the first term can be divided in
two parts: the first one comes from the reducible aver
and coincides with the magnetic energyFm@Q̃n# of the
initial functional, Eq. ~2.23!, whereas the other is give
by the irreducible averagê ^Qn

(0)Qn8
(0)&&05^Qn

(0)Qn8
(0)&0

2^Qn
(0)&0^Qn8

(0)&0 of the supermatricesQn
(0) .

In order to find the contribution coming from the irredu
ible average we consider the matrix

g̃n1
~r1 ;a!5

K Qn1

(0)~r1!expFpn

2
StrE drdnân~r !Qn

(0)~r !G L
0

K expFpn

2
StrE drdnân~r !Qn

(0)~r !G L
0

,

~3.9!

where the new sourceân(r ) is

ân~r !5a~r !t̂3Fn~r !,

a(r ) is some function. Due to the supersymmetryg̃n(r ;a
50)5L. The first derivative in the functiona(r ) gives

dg̃n1
~r1 ;a!

da~r 2!
U

a(r )50

5
pn

2 K K Qn1

(0)~r1!StrE dn8Qn8
(0)

~r2!t̂3Fn8~r2!L L
0

.

~3.10!

On the other hand, the matrixg̃n(r ;a) satisfies the equation

vFn“ r g̃n~r ;a!1 i
v1 ilL

2
@L,g̃n~r ;a!#

5a~r !@ t̂3Fn~r !,g̃n~r ;a!# ~3.11!

and conditiong̃n
2(r ;a)51. Differentiating ina(r ) both sides

of this condition and then puttinga(r )50 we find that the
matrix dg̃n(r ;a)/da(r 8)ua50 in Eq. ~3.10! is off diagonal.
Equation~3.11! can be considered for the off-diagonal pa
of the matrixg̃n(r ;a) and rewritten in the integral form
3-6
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g̃n
'~r ;a!5E dr 8Gn~r2r 8!a~r 8!@ t̂3Fn~r !,g̃n~r ;a!#',

~3.12!

where the superscript' stands for the part of the superm
trices anticommuting withL. The kernelGn(r2r 8) is the
solution of the equation

@vFn“ r1 i ~v1 ilL!L#Gn~r2r 8!5d~r2r 8!. ~3.13!

Differentiating ina(r ) both sides of Eq.~3.12! and putting
a(r )50 we obtain

pn

2 K K Qn1

(0)~r1!StrE dn8Qn8
(0)

~r2!t̂3Fn8~r2!L L
0

5Gn1
~r12r2!@ t̂3Fn1

~r2!,L#. ~3.14!

Substitution of Eq.~3.14! into Eq. ~3.5! gives

^Fm8 @Q̃n ,Qn
(0)#&05Fm@Q̃n#2pnvc

2E drdr 8dnWB~r2r 8!

3Str@Fn
'~r !Gn~r2r 8!LFn

'~r 8!#.

~3.15!

Characteristic values of the differencer2r 8 in Gn(r2r 8) are
in the Lyapunov region, whereasFn(r ) is a smooth function.
This allows us to make the replacementr 8→r in one of the
Fn in Eq. ~3.15!. The integral over the differencer5r2r 8 is
calculated as follows. First, we rewrite this integral usi
integration in the momentum space instead of the coordin
one,

E Gn~r!WB~r!dr5E dq

~2p!2
WB~q!

i

vFnq2~v1 ilL!L
.

~3.16!

The momentumq may be considered as the transfer mom
tum q5p82p, wherep85pFn8, p5pFn are momenta of a
particle after and before the scattering. Since for a w
scattering the characteristic lengthb of the distribution
WB(r2r 8) is much smaller than the Lyapunov length,b
! l L , Eq. ~3.1!, the fraction in Eq.~3.16! can be replaced by
the d function:

E dq

~2p!2
WB~q!

i

vFnq2~v1 ilL!L

'2pLE dq

~2p!2
WB~q!d~vFnq!. ~3.17!

The d function fixes the value of the final momentump8 on
the Fermi surface:d(vFnq)5d@vFn(p82p)#5d@(]«/]p)
3(p82p)#5d@«(p8)2«(p)#. Integrating over the energy
«8[«(p8) we find for the integral, Eq.~3.16!, the following
expression:

2pnLE dn8WB@pF~n2n8!#. ~3.18!
24531
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Taking together Eqs.~3.15!, ~3.16!, and~3.18! we obtain the
free energyFe f f@Qn# of the reduceds model:

Fe f f@Qn#5F@Qn#1F8@Qn#, ~3.19!

where

F@Qn#5
pn

2 E drdnStrF T̄n~r !vFn“ rTn~r !

1 i S v1 id

2
L2â~r ! DQn~r !1

1

4t tr
~]wQn!2G

~3.20!

F8@Qn#52S pn

2
vcD 2E drdndr 8dn8WB~r2r 8!

3Str@Lt̂3T̄n~r !]wTn~r !#

3Str@Lt̂3T̄n8~r 8!]w8Tn8~r 8!#. ~3.21!

The collision term in the free-energy functional is express
through the transport timet tr ,

~2pnt tr !
215E dn8vc

2WB@pF~n82n!#, ~3.22!

and agrees with the results of Refs. 20, 22, 27, where
RMF and long-range disorder models, respectively, w
considered in the limit of small scattering angles. The sec
term F8@Qn# in Eq. ~3.19! is small and can be neglected
This can be easily understood using the fact that the Fou
transform of the functionWB in Eq. ~3.22! contains momenta
of the order ofpF , which corresponds to short distances
the order oflF . In contrast, the main contribution to th
integral over the coordinates in Eq.~3.21! comes at weak
RMF from larger distances of orderl L where the function
WB is small. Therefore, everywhere below we will imply th
the reduced ballistics model is described by the free-energ
functionalF@Qn# from Eq. ~3.20!.

Thus, we have demonstrated that, although the ballistis
model for the RMF is different from the one for the RP„the
termsFimp@Qn# andFm@Qn# in Eq. ~2.23! are different…, the
reduceds models describing the electron motion exceed
the Lyapunov lengthl L have the same form as Eq.~3.20!.
The similarity of the RMF and RP models has been emp
sized in Ref. 21 and the final conclusion of Ref. 22 was
same. However, the methods used in these works were b
on writing first the self-consistent Born approximation f
one-particle Green functions~saddle-point equation in thes
model formulation! and on a subsequent expansion in slo
modes, which could not be justified at short distances. N
we see that the equivalence of the RMF and RP models
hold at distances exceeding the Lyapunov length. This n
rally leads to the equivalence of the diffusives models that
can be written in the standard form

F@Q#5
pn

8
StrE @D~“Q!212i ~v1 id!LQ#dr ,

~3.23!
3-7
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whereD5vF
2t tr /2. For the RMF problem the transport tim

t tr is given by Eq.~3.22!.
Equation ~3.23! is valid unless the correlations of th

magnetic field are very long ranged. Only if

^BqB2q&;q22, ~3.24!

an additional term can appear.22 The symmetry of the diffu-
sive s model, Eq. ~3.23!, corresponds to the unitary en
semble and one comes to the standard conclusion abou
localization.

Of course, the coarse-graining procedure leading to
ballistic s model, Eq.~3.20!, is possible only if the ground
state of the initials model, Eq.~2.23!, is achieved atQ
5L. One can imagine such functionsWB(rÀr 8) that this
ground state is no longer stable. However, this could be p
sible only if the Fourier transformWB(q) was negative for
certain q, which is excluded in the case of real magne
fields. Therefore, beyond the Lyapunov region, the ballis
s model, Eq.~3.20!, and, correspondingly, the diffusives
model, Eq.~3.23!, seem to be unavoidable.

IV. DISCUSSION

In the present paper we considered the problem of
two-dimensional electron gas in a random magnetic fi
~RMF! using the nonlinear supermatrixs model approach.
We derived a ballistics model avoiding the standard schem
based on finding a saddle point in the integral over superv
tors and expanding in slow modes near this point. Suc
scheme explicitly relies on the assumption of a sufficien
short correlation length of a random potential~see, e.g., in
Ref. 18! and its validity for a long-range disorder is not clea
As the vector potential entering the RMF model has a la
correlation length even when the magnetic field isd corre-
lated in space, the procedure of singling out slow modes u
in the standard derivation is not well justified at least at
very large distances. Besides, the saddle-point approxima
is hardly allowed in this case as well.

Instead of following the standard scheme we used
method based on writing quasiclassical equations for Gr
functions and the exact representation of their solutions
terms of integrals over supermatricesQn with the constraint
Qn

251. This method needs neither singling out the fast a
slow parts from the interaction nor the saddle-point appro
mation. Conditions of the applicability of the method coi
cide with those of the quasiclassical approximation. The
fore, the s model obtained should be applicable over t
distances down to the Fermi wavelength, which make
more general in comparison with thesmodels derived earlie
on the basis of the standard scheme, Refs. 19,20,22,26.
latter models are justified at distances exceeding the sin
particle mean free pathl as in the Refs. 20,22 or the transpo
length l tr as in Ref. 19.

We have demonstrated that similar to the problem of lo
range random potential, there is a characteristic or Lyapu
length l L dividing the length scale into the Lyapunov an
collision regions. The first region corresponds to the sm
distances over which the particle motion is strongly cor
24531
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lated. Correlations disappear over the larger lengths wh
the particle interaction can be considered in terms of co
sions. In the Appendix we estimate the Lyapunov length
RMF problem, restricting our consideration by the limit of
weak field. The estimated length is expressed through
transport lengthl tr and the correlation lengthb of the RMF
by a formula similar to the one obtained previously in R
28 in the model of a long-ranged potential.

The reduceds model obtained after integrating over th
fluctuations in the Lyapunov region coincides with the mod
of Ref. 22 provided the latter is considered in the limit of
small-angle weak scattering. The reduceds model obtained
in this way is equivalent to the model found in the proble
of a long-range potential disorder, Ref. 27. At the same tim
it is relevant to emphasize that at short distances inside
Lyapunov region the RMF and RP models correspond
different s models.

At distances exceeding the transport lengthl tr5vFt tr one
comes to the standard diffusions model, Eq.~3.23!, unless
the correlation of the magnetic fields obeys Eq.~3.24!. Cal-
culations for the s model, Eq. ~3.23!, within the
renormalization-group scheme leads to the standard con
sion about the localization. This conclusion is in contrad
tion with the numerical results of Ref. 25 where the existen
of hidden degrees of freedom was proposed, which co
lead to the existence of extended states. We did not find
indication for such degrees of freedom. Of course, our c
sideration was performed in the quasiclassical limit, su
that we did not take into account a possibility of a quantiz
tion of the energy levels. However, it is not easy to und
stand how taking into account distances shorter than
wavelengthlF could lead to a destruction of the localizatio

APPENDIX: LYAPUNOV EXPONENT IN RMF PROBLEM

Here we study the classical scattering of two particles i
random magnetic field~RMF!. The presence of the RMF
leads to an effective interaction between the particles. T
radius of this interaction is equal to the correlation length
the field. The scattering process lasts a finite time after wh
the particles diverge over the distance exceeding the corr
tion length and begin to move without any interaction. T
aim of the calculation presented below is to estimate t
time. It is clear that for larger times the particle scatteri
may be considered in terms of collisions. We restrict o
calculation by the case of a weak magnetic field.

Let us consider two particles on a plane with the coor
natesr1 , r2 and momentap1 , p2 moving in a perpendicular
magnetic field. The equations of the motion for each parti
are

r i̇5
pi

m
, pi̇5

eB~r i !

mc
@pi3êz#, ~A1!

whereêz is the unit vector perpendicular to the plane of t
motion. Letr5r12r2 andp5p12p2 be coordinate and mo
mentum of the relative motion. We assume that the partic
start their motion close to each other and have parallel m
mentap15p2 so thatp50 andr5r0 in the beginning;r0 is
3-8
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assumed to be perpendicular to the directionn of the motion
of the center of mass. Since the energy does not chang
the magnetic field, the absolute value of the momentap1 ,p2
will remain constant and equal to each other,up1u5up2u.
Therefore, the direction of the relative motion will always
perpendicular to the direction of the motion of the mass c
ter n: (pn)50. This allows us to writer5r@n3êz#. Using
Eq. ~A1! we find

ṙ5
p

m
, ṗ5e

vF

c
~B12B2!, ~A2!

where Bi[B(r i), and p5upu is the absolute value of th
momentum of the relative motion. At the beginning of t
motion r is rather small and the differenceB12B2 can be
approximately written asB12B2'(]B/]R')r, whereR' is
the coordinate of the mass center in the direction perpend
lar to n. Equation~A2! considered in this approximation re
duces to a linear system of first-order differential equatio
Hence, the distancer will grow exponentially as a function
of time. The mean rate of the divergency or the Lyapun
exponent determines the scattering time involved.

To study statistics of the relative motion we introduce
distribution functionW(t,r,p). By definition, it is the prob-
ability for the relative distance and momentum to ber andp
at the timet, respectively, provided they have been initia
r0 , p50. Let W(t0 ,r,p) be the distribution at the timet0.
Then, it can be written at the timet01Dt as

W~ t01Dt,r,p!

5E P~ t01Dt,r,p;t0 ,r8,p8!W~ t0 ,r8,p8!dr8dp8,

~A3!

where P(t,r,p;t8,r8,p8) is the transition probability. This
probability is determined by the equation of motion, E
~A2!, and is introduced as

P~ t,r,p;t8,r8,p8!5dS r2r82E
t8

t p~t!

m
dt D dS p2p8

2e
vF

c E
t8

t

@B1~t!2B2~t!#dt D ,

~A4!

where Bi(t)5B@r i(t)#, r i(t)5R(t)6r(t)/2 and r(t),
p(t) are the solution of the classical motion equation~A2!.
Substitution of Eq.~A4! into Eq. ~A3! gives a relation be-
tween the distributionsW at timest0 and t01Dt. Assuming
that Dt is smaller than the inverse Lyapunov exponent
expand this relation inDt and then average over the ma
netic field B(r ). Since the magnetic field is assumed to
weak, we neglect the influence of the field on the traject
of the mass center and obtain

]W

]t
1

p

m

]W

]r
2

2

t tr
«~r!pF

2 ]2W

]p2
50, ~A5!
24531
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wheret tr is the transport time, Eq.~3.22!, that can also be
written as

1

t tr
5vc

2E
2`

1`

WB~vFnt!dt. ~A6!

The function«(r) is, by definition,

«~r!512

E
2`

1`

WB~vFnt1r@n3êz# !dt

E
2`

1`

WB~vFnt!dt

. ~A7!

The distance between the particles in the Lyapunov regio
smaller than the correlation length of the magnetic fieldb.
Hence, one may expand the function«(r) in r, which gives
«(r)'r2/2b2. This relation is to be considered as a defin
tion of the lengthb. Substituting this expansion into Eq.~A5!
we come to the same equation as the one derived in Re
where electron scattering in a long-ranged potential disor
was considered,

F ]

]t
2vFf

]

]r
2

r2

t trb
2

]2

]f2GW50. ~A8!

Using the result of that paper we find that the functi
W(t,r) determining the distribution of the distancer ~the
momentum of the relative motion,p, is implied to be aver-
aged in this function! satisfies the equation

FtL

]

]t
2b

]

]zGW50, ~A9!

whereb is a numerical coefficient equal tob'0.365 andz
5 ln(b/r). It follows from Eq. ~A9! that the coefficienttL is
in fact a characteristic time of the divergency of the traje
tories of the particles calculated from the classical mot
equation~A2!. According to Ref. 28 this time is equal to

tL5t tr S b

l tr
D 2/3

~A10!

and this is at the same time the inverse Lyapunov expon
As mentioned above, the quantitytL has the meaning of a
characteristic time that two scattered particles spend mov
together until the distance between them starts exceeding
correlation lengthb.
3-9
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