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Coherence and Coulomb blockade in single-electron devices:
A unified treatment of interaction effects

S. Florens,1 P. San Jose´,2 F. Guinea,2 and A. Georges1
1Laboratoire de Physique The´orique, Ecole Normale Supe´rieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France

2Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
~Received 14 July 2003; published 15 December 2003!

We study the interplay between Coulomb blockade and the Kondo effect in quantum dots. We use a
self-consistent scheme which describes mesoscopic devices in terms of a collective phase variable~slave rotor!
and quasiparticle degrees of freedom. In the strong Coulomb blockade regime, we recover the description of
metallic islands in terms of a phase-only action. For a dot with well-separated levels, our method leads to the
Kondo effect. We identify the regime where a crossover between the Coulomb blockade regime at high
temperatures and the formation of a Kondo resonance at lower temperature takes place. In addition, we find
that for a dot with many overlapping resonances, aninverse crossovercan take place. A Kondo resonance
which involves many levels within the dot is first formed, and this coherent state is suppressed by correlation
effects at lower temperatures. A narrower Kondo resonance, due to a single level in the dot, can emerge at even
lower temperatures.

DOI: 10.1103/PhysRevB.68.245311 PACS number~s!: 73.23.Hk, 73.63.Kv, 71.10.2w
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I. INTRODUCTION

Electron-electron interactions play a crucial role in sing
electron devices~quantum dots, metallic islands!; see, for
instance, Refs. 1–4. The electrostatic repulsion betw
electrons in the dot can be described by the energy requ
to change the charge in the dot by one unit,Ec . At tempera-
tures or frequencies below this charging energy, but m
greater than the spacing between the electronic levels in
dot,dE, Coulomb blockade effects dominate5–8 and the con-
ductance through the dot is suppressed, except at degen
points. At scales below the level splitting within the dot a
when the ground state of the dot is degenerate, electr
coherence can be restored by the Kondo effect,9,10 leading to
an increase in the conductance.11–15 hence, when the charg
ing energy is much greater than the level spacing within
dot, Ec@dE, and the number of electrons in the dot is od
one expects a crossover between a high-temperature re
where Coulomb blockade effects dominate and a lo
temperature one described by the Kondo effect.16

The theoretical analysis of these two regimes, Coulo
blockade and the Kondo effect, has been carried out u
rather different techniques. Coulomb blockade can be stu
when the coupling between the leads and the dot is wea
describing electron transport in terms of sequential hopp
processes2—i.e., perturbatively in the tunneling matrix ele
ment. When the conductance is large, it is convenien
describe the internal degrees of freedom of the dot in te
of a collective variable, the phase conjugated to the to
charge.17–19Using this representation, the renormalization
the effective charging energy by virtual fluctuations can
studied by a variety of methods.20–26This approach become
exact when the level spacing within the dot tends to zero
the number of transmitting channels is large, which app
in fact to the physical situation of metallic islands. In th
limit the Kondo effect disappears. In the opposite limit, wh
the level spacing within the dot becomes comparable to o
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scales of interest, the standard procedure is to truncate
Hilbert space of the dot and keep only the interacting el
tronic states closest to the Fermi level of the leads, so tha
system is reduced to the Anderson model;12,27 see Refs. 11,
28 and 29. The situation when many levels within a magne
impurity contribute to the Kondo effect was initially dis
cussed in Ref. 30. The same effect in quantum dots
analyzed in Ref. 31. Other modifications of the Kondo effe
in a quantum dot due the presence of many levels are
cussed in Refs. 32–38. Recent experiments39 suggest that the
regime where level spacing, level broadening, and the ch
ing energy are comparable can be achieved by present
techniques.

The aim of this paper is to analyze the different regim
of a quantum dot characterized by the charging energyEc ,
level spacingdE, and coupling to the leads,G, whereG is
the typical width of each level. We introduce a new sche
which describes the charge excitations of the dot in terms
a collective phase, but also retains information about
electronic degrees of freedom on the dot. This approach
lows us to recover the Kondo effect in the case of quant
impurities with exactly degenerate levels~slave rotor repre-
sentation introduced in Ref. 40 by two of us!. Technically,
the new scheme draws inspiration from self-consistent
summations used for describing the Kondo effect in sing
impurity models @the so-called noncrossin
approximation41,42 ~NCA!# but adapted in an economica
way to the situation of mesoscopic structures~which can
contain up to thousands of electrons!.

The outline of this paper is as follows. In Sec. II w
review basic properties of the single-electron box and pres
the model that we will study throughout. The self-consiste
approach used to analyze the model is presented in Sec
and will be shown to describe the Coulomb blockade regi
of metallic grainsexactly ~also for quantum dots!; we will
furthermore show that it is a reasonable approximation
dealing with the Kondo effect~in quantum dots!. In Sec. IV
we will investigate in more detail intermediate regimes
©2003 The American Physical Society11-1
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conduction that were not previously attainable or conside
in earlier works. In particular we will be interested in th
different manner in which one goes from coherent, Kond
assisted transport to the Coulomb blockade regime. Ex
sions of our approach to other systems such as quantum
arrays will be briefly outlined in the Conclusion.

II. MODEL FOR SINGLE-ELECTRON DEVICES

A. Phase representation and electronic degrees of freedom

Let us first review the standard model for single-electr
devices. The basic ingredient that determines the behavio
quantum dots as well as metallic islands is the relativ
large Coulomb energyEc5e2/(2C);1 K associated with
small capacitances of the structure,C;10215 F. We will
take also into account the internal structure of the sm
charge droplet, with energy levelsep ~which are shape and
disorder dependent! and an indexs51, . . . ,N associated
with transmitting channels to the outside circuit. The ele
trodes, to which the mesoscopic region is coupled, are
scribed as Fermi liquids with a spectrum«k associated with a
finite density of statesD(0) at the Fermi level. Physica
quantities, such as the conductanceG, are also determined a
a function of temperatureT ~we setb[1/T) and applied gate
voltageVg . Summarizing all these energy scales, we arr
at the following Hamiltonian:

H5(
ks

«kaks
† aks1(

ps
epdps

† dps

1EcS (
ps

dps
† dps2ngD 2

1(
ksp

tk
p~aks

† dps1dps
† aks!.

~1!

We have introduced here the couplingtk
p between the modep

in the electrode and modek in the electron box. The index
p51, . . . ,NL corresponds to theNL energy levels of the do
~or metallic island!, ands51, . . . ,N is the conserved chan
nel index ~including spin!. We defined alsong as a dimen-
sionless external gate voltage,ng[eVg /(2Ec). Because of
the large number of degrees of freedom involved with
spect to a single-impurity Anderson model (NL or N can be
quite large!, this Hamiltonian is remarkably complicated.

One way to make progress is to single out the relev
charge variable on the dot and pilot its dynamics by mean
a rotor degree of freedom:

(
ps

dps
† dps5L̂52 i ]/]u. ~2!

This mapping is motivated by the fact that the Hamiltoni
H rotor5EcL̂

2, with its quadratic spectrum, reproduces e
actly the charging energy term in Eq.~1!. Alternatively, one
can argue, as in Refs. 17 and 18, that a metallic grain ca
studied with the same formalism used for a superconduc
grain, except that the gap vanishes. In this case, the pha
the collective variable conjugate to the number of particl
as implied by Eq.~2!.
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In order to fulfill the Pauli principle, one must, howeve
keep fermionic degrees of freedom, so that the creation
physical electron on the dot is represented as

dps
† 5 f ps

† eiu ~3!

using a channel- and momentum-carrying quasiparticlef ps
† .

According to Eq.~2!, a constraintL̂5(ps f ps
† f ps must also

be implemented,40 introducing for this purpose a Lagrang
multiplier dm. Integrating explicitly the electrode in Eq.~1!,
one gets the following expression for the action of the ori
nal model in this new representation:

S5E
0

b

dt(
ps

f ps
† ~]t1ep2dm! f ps

1
~]tu1 idm!2

4Ec
1 ing]tu

1E
0

b

dtE
0

b

dt8
1

NL
(

pp8s

Dpp8~t2t8!

3 f ps
† ~t! f p8s~t8!eiu(t)2 iu(t8). ~4!

In principle,dm should be integrated over@0,2p/b# in order
to preserve the correct structure of the Hilbert space. One
notice in this expression how the indices are positioned
the last term (s is conserved by the charge transfer proc
dure, whereasp is not!. We also have defined the bath fun
tion

Dpp8~ iv![(
k

NLtk
ptk

p8

iv2«k
5E d«D~«!

NLtp~«!tp8~«!

iv2«
,

~5!

introducing the lead density of statesD(«)5(kd(«2«k)
~we have extracted here a factor 1/NL for future conve-
nience!.

B. Metallic grains: Phase-only approach

In the case of small metallic islands,6,7 the number of
transverse channels,N;104–106@1, is quite large, so tha
the fermionic degrees of freedom can be integrated out
plicitly from Eq. ~4!. Technically, this is done by expandin
the initial action~4! in the coupling functionDpp8(t), lead-
ing to an exact expression of the effective action:

S@u#5E
0

b

dt
~]tu1 idm!2

4Ec
1 ing]tu2 ln (

n50

`
~21!n

n!

3K )
m51

n E
0

b

dtmE
0

b

dtm8
1

NL
(

pmpm8 sm

Dpmpm8 ~tm2tm8 !

3eiu(tm)2 iu(tm8 ) f pmsm

† ~tm! f p
m8 sm

~tm8 !L
0

. ~6!

The average over the fermionic variables^•••&0 in the pre-
ceding expression is taken with respect to the free fermio
1-2
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COHERENCE AND COULOMB BLOCKADE IN SINGLE- PHYSICAL REVIEW B68, 245311 ~2003!
action S05*0
bdt(ps f ps

† (]t1ep2dm) f ps and simplifies
considerably in the large-N limit because Wick contraction
at leading order occur between pairs of fermions holding
samechannel indexsm . We can then reexponentiate the la
term in Eq.~6!, and if one notes that the multiplierdm can be
treated in the grand canonical ensemble—i.e., reabsorbe
ng ~due to small charge fluctuations over many access
states!—one gets the effective phase-only action

S@u#5E
0

b

dt
~]tu!2

4Ec
1 ing]tu

2E
0

b

dtE
0

b

dt8a0~t2t8!eiu(t)2 iu(t8). ~7!

The kernela0(t) in the last equation is given by the expre
sion

a0~t!52
1

NL
(

pp8s

Dpp8~t!^ f ps
† ~t! f p8s~0!&0 , ~8!

which can be evaluated:

a0~t!.a t

~p/b!2

@sin~pt/b!#2
, ~9!

with

a t5NNLt2D~0!r0~0!. ~10!

Here r0(e)5(pd(e2ep) is the grain density of states
which is supposed to be continuous for metallic islands,
we have taken the large bandwidth limit to obtain Eq.~9!.
We have also assumed for simplicity that the coupling to
lead is a constant,tk

p5t ~point contact! and that it is suffi-
ciently small so thata t is at most of order 1 when bothNL
andN are large. The parametera t is interpreted as the~di-
mensionless! high-temperature conductance between the
and island, to lowest order in the hoppingt.17,18,22

Physically, the use of the phase-only action22 is vindicated
by the fact that the charge fluctuations are suppressed by
Coulomb blockade phenomenon, allowing one to for
about the fermionic statistics of the charge carriers~incoher-
ent transport through the island!.

This phase-only action~7! can be handled using a varie
of techniques.20–26An important question, which is very rel
evant for experiments on small metallic grains stron
coupled to the environment,8,43 is the destruction of Coulomb
blockade in the strong-tunneling regimea t*0.1. This im-
plies a generic renormalization of the Coulomb energyEc

towards smaller values, denoted here byEc* .21,23 In the fol-
lowing, we will be more interested in this question in th
context of quantum dots, for which the model~7! is inad-
equate. However, the phase-only approach will be consid
as an important benchmark for any approach that intend
describe the Coulomb blockade regime.
24531
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III. UNIFIED APPROACH TO SINGLE-ELECTRON
DEVICES

A. Self-consistent scheme

Our purpose here is to develop a simple approximat
scheme@avoiding direct numerical solution of model~1!#
that could encompass the main interaction effects in sin
electron devices: the Coulomb blockade and Kondo effe
One can note that one is usually forced to employ differ
techniques to handle the Coulomb interaction, depending
the regime one is interested in. Since the details of the
namics of the electrons are not usually involved in the C
lomb blockade phenomenon, introducing the total charge
the physically relevant variable and using the phase-only
tion ~7! seems mandatory to deal with this regime. On t
other hand, dealing with the Kondo effect requires a rat
sophisticated treatment of the correlation effects among e
trons, and a simplification of the initial model~1! is unavoid-
able. We will see in this paper that one can reconcile th
two paradigms if one treats on an equal footing fermio
degrees of freedom and the phase variable conjugated to
total charge.

Drawing inspiration from strong coupling approaches
single-impurity models@NCA ~Ref. 41! and its generaliza-
tion to the phase representation~2! as introduced by two of
us40#, we will perform a self-consistent decoupling of th
fermion-rotor coupling in Eq.~4!:

S.E
0

b

dt(
ps

f ps
† ~]t1ep2dm! f ps

1E
0

b

dtE
0

b

dt8
1

NL
(

pp8s

Dpp8~t2t8!

3^eiu(t)2 iu(t8)& f ps
† ~t! f p8s~t8! ~11!

1E
0

b

dt
~]tu1 idm!2

4Ec
1 ing]tu

1E
0

b

dtE
0

b

dt8
1

NL
(

pp8s

Dpp8~t2t8!

3^ f ps
† ~t! f p8s~t8!&eiu(t)2 iu(t8). ~12!

This approximation goes far beyond the lowest-order per
bative result that led to the phase-only action~7! and is the
central starting point of the present work. Its distinctive fe
ture is the decoupling of fermionic and phase degrees
freedom, whose joint dynamics is nevertheless determi
self-consistently. Indeed, the fermionic self-energy obvious
depends on the phase-phase correlator and reciproc
Moreover, the bosonic part of the effective action~12! is
similar in structure to the phase-only approach~7!, allowing
to use the large body of work on this particular model.

In order to detail the method of solution, we start here
simplifying the kernels appearing in the previous se
consistent action. The bosonic kernel can be expresse

terms of the full propagatorGf
pp8 of the f ps

† fermions:
1-3
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a~t![2
1

NL
(

pp8s

Dpp8~t!^ f ps
† ~t! f p8s~0!&

52N 1

NL
(
pp8

Dpp8~t!Gf
pp8~2t!, ~13!

where the Green’s functionĜf has been introduced in a ma
trix notation,

Ĝf5F Ĝ0
212

1

NL
Ŝ f G21

5Ĝ0F12
1

NL
Ŝ f Ĝ0G21

, ~14!

with the free propagator in the electron box:

G0
pp8~ iv!5

dpp8
iv2ep1dm

. ~15!

We also have introduced the self-energy of the quasipa
cles:

S f
pp8~t!5Dpp8~t!^eiu(t)2 iu(0)&. ~16!

The ‘‘self-consistent phase action’’ that one needs to so
finally reads

S5E
0

b

dt
~]tu1 idm!2

4Ec
1 ing]tu

2E
0

b

dtE
0

b

dt8a~t2t8!eiu(t)2 iu(t8), ~17!

with a(t) given previously. The set of equations~13!–~17!
is the main technical result of this paper. In practice, this
solved by an iterative procedure which starts with a giv
kernel a(t) as input to the action~17!, from which a new
correlator^eiu(t)2 iu(t8)& is computed. It is then fed back t
the self-energy~16!, allowing us to compute the quasipartic
propagator~14!, and then a new kernela(t) from Eq. ~13!.
This full cycle is repeated until convergence is reached.

In all further calculations, we will assume a point conta
between lead and box,tk

p5t, so thatDpp8(t)5D(t) and

S f
pp8(t)5S f(t)5D(t)^eiu(t)2 iu(t8)&, which allows us to

simplify expressions~13! and ~14! into

a~t!52ND~t!Gf
loc~2t!, ~18!

Gf
loc~ iv![

1

NL
(
pp8

Gf
pp8~ iv!, ~19!

@Gf
loc~ iv!#215

1

1

NL
(

p

1

iv2ep1dm

2S f~ iv!. ~20!

In the following two paragraphs, we will sketch how th
novel scheme allows us to capture both Coulomb block
and Kondo effects in single-electron devices.
24531
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B. Metallic islands: Coulomb blockade

We consider here the case of a metallic island for wh
the energy spectrum is taken as a continuous density of s
r0(e). Due to the smallness of the Fermi wavelength w
respect to the typical transverse size of the island, the n
ber of transmitting channels is usually quite large,N@1, as
discussed before in Sec. II B.

One interesting remark is that our self-consistent ph
model ~11! and ~12! exactly reproduces the phase-only a
proach~7! in this case. Indeed, we note that the fermion
self-energy~16! is suppressed with respect to the kernel~18!
by a relative factor of order 1/N. The self-consistency be
tween fermions and the phase variable can therefore be
nored atN@1 ~one has to scalet}1/AN), leading to a free
fermionic propagator

G0
pp8~t![^ f ps

† ~0! f p8s~t!&0 , ~21!

G0
pp8~ iv!5

dpp8
iv2ep

. ~22!

Putting this expression back into Eq.~13!, one recovers in-
deed the phase-only action~7! and~8!. This test case implies
that our self-consistent scheme allows us to deal corre
with the Coulomb blockade phenomenon in metallic grai

C. Quantum dots: Interaction effects

In quantum dots, the discreteness of the energy spect
ep and the fact thatN is generally of order 1~unless the
point contacts are quite open! invalidate the phase-only ap
proach~7!. This is clear from the fact that coherent transp
through the dot can be restored due to the Kondo effec
low temperature. We now sketch how the self-consistent
tion ~17! is able to describe this phenomenon.

1. Coulomb blockade regime in quantum dots

We consider first temperatures smaller than the charg
energyEc , but still greater than the interlevel spacingdE.
We can therefore take a continuous limit for the dot~due to
thermal smearing of the energy levels!, which leads crudely
to the simplification

1

NL
(

p

1

~ iv2ep1dm!
.2 ipr0~0!. ~23!

From Eq.~20!, this gives thef ps
† fermion propagator in the

dot:

Gf
loc~ iv!.F i

pr0~0!
2S f~ iv!G21

. ~24!

The constant imaginary part in the last expression domin
the long-time behavior of the Green’s functionGf

loc(t), so
that the kernel~18! decays as 1/t2, similarly to the case of
the metallic island, Eq.~9!. There is therefore Coulomb
blockade in this regime, as expected.
1-4
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2. Kondo effect in quantum dots: First discussion

At temperatures below the interlevel spacingdE in the
dot, the discreteness of the spectrum becomes sizable. L
assume here that a single level sits close to the Fermi en
so that we can forget all other levels. In this case, we
argue here that the factorization~11! and~12! reproduces the
Kondo physics correctly. This property is well known if, in
stead of the phase variableu, one uses a slave-boson repr
sentation of the interaction~in the case of theEc5` limit !.44

This method has been extended recently by two of us to
case of finite Ec , using the phase representationdps

†

5 f ps
† eiu,40 and shown to lead to a good approximati

scheme for dealing with the Kondo effect.
In quantum dots, the Kondo effect manifests itself by t

buildup of a many-body resonance close to the Fermi le
that allows coherent transport of charge through the st
ture. The existence of the Friedel sum rule~to be discussed
later on! guarantees that the conductance through the dot
recover the unitarity limit~i.e., G52e2/h) at low tempera-
ture.

In conclusion, we can therefore expect that our se
consistent approach interpolates between the coherent K
regime~associated with a large and increasing conducta
with decreasing temperature! and the Coulomb blockad
~which leads to a suppression of the charge fluctuations
the dot and a decreasing conductance!. In practice, we still
need to solve the self-consistent phase problem~11! and
~12!. This will be done in the next section.

IV. INTERMEDIATE CONDUCTION REGIMES IN
QUANTUM DOTS

A. Solution of the phase action in the spherical limit

The simplest, yet nontrivial treatment of the bosonic a
tion ~17! is to take its spherical limit40,45,46 ~this is also
equivalent to the large number of component limit for thes
model in the field theory literature47!. We introduce for this
purpose the complex phase fieldX(t)[eiu(t), with its cor-
relator GX(t)[^X(t)X* (0)&. This representation is per
fectly equivalent to the original problem if the hard co
straint uX(t)u251 is maintained exactly. The approximatio
that we will make in order to solve the~self-consistent! phase
action ~17! is to impose this constraint on average only. F
this we introduce a Lagrange multiplierl to enforce the
equality GX(t50)5^uX(t)u2&51. The main drawback~on
a qualitative level! of this approximation is that, although
works fine close to the center of the charge plateaus, it ev
tually breaks down at the degeneracy points.40 We will also
enforce the constraint(ps f ps

† f ps5L̂ on average. In the sym
metric case~i.e., at the center of a plateau!, this simply im-
plies thatdm50.

The bosonic action is now purely quadratic, leading to
set of self-consistent equations57

GX~ inn!5F nn
2

2Ec
1l2a~ inn!G21

, ~25!

GX~t50!51, ~26!
24531
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Gf
loc~ ivn!5F 1

1

NL
(

p
1/~ ivn2ep!

2S f~ ivn!G21

,

~27!

a~t!5ND~t!Gf
loc~t!, ~28!

S f~t!5D~t!GX~t!, ~29!

with the notation

D~ ivn!5(
k

NLt2

ivn2«k
. ~30!

We have noted herevn (nn) a fermionic~bosonic! Matsub-
ara frequency. In addition to the relative simplicity of th
scheme, we note that it allows us to obtain a solution for r
frequency quantities~doing the analytic continuation of thes
equations!, as required for computing spectral and transp
properties of quantum dots.

A few technical remarks. The system of equations~25!–
~30! was derived previously for the single-level Anders
model40 using a slightly different route~namely, a large-M
multichannel point of view more suitable to understand so
non-Fermi-liquid aspects of the solution!. We feel that a two-
step procedure that starts with Eqs.~11! and ~12! is more
appealing in the present context, as the self-consistent p
action~12! can be tackled in principle with variety of meth
ods. We have therefore taken the point of view of simplic
in doing the spherical limit described in the previous pa
graph.

The numerical solution of the coupled integral equatio
is straightforward using fast Fourier transforms~we will also
give analytical arguments later on!. In all calculations that
follow, we take N52 ~single channel of conduction pe
spin!. The Coulomb energy is chosen as the reference,Ec
51, and the bandwidth of the continuous density of state
the electrodes isL550, which is the largest energy scale
the problem. The precise form of the spectrum in the el
trodes playing little role in the low-energy limit, we hav
chosen a semielliptic density of states:

D~ iv!5NLutu2
8

L2
@ iv2 isgn~v!Av21~L/2!2#. ~31!

The single-levelwidth G[uIm D( i01)u/NL54t2/L @see Eq.
~4!# characterizes the strength of the coupling of the el
trons in the dot to the reservoirs. Other important paramet
which we will also investigate, are the separation betwe
the electronic levels of the dot,dE, and the number of state
in the dot,NL . We also define a typical ‘‘bandwidth’’ of the
dot, W5dE(NL21) ~although the spectrum is made up
discrete states!.

A technical aspect worth mentioning is the method
computation of the conductance through the dot. In the sa
spirit of the decoupling performed in Eqs.~11! and~12!, we
will compute the Green’s function of thephysicalelectron as
Gd

loc(t)5Gf
loc(t)GX(t). An analytical continuation~per-

formed numerically! allows us then to get the~interacting!
1-5
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density of states in the dot,rd(v)52(1/p)Im Gd
loc(v

1 i01). We will also use the interacting Landauer formu
for the conductance28:

G5
Ne2

h
NLGE dvS 2

]nF~v!

]v Dprd~v!, ~32!

where nF(v)51/(ebv11) is the Fermi function. This ex
pression involves the ‘‘local’’ density of states~i.e., summed
over all p51, . . . ,NL) because of the form of the local cou
pling to the reservoir, see Eq.~1!.

In the following, we explore situations that are interme
ate to the single-level Kondo effect and the Coulomb blo
ade regime, depending on the internal structure of the qu
tum dot. We insist on the fact that the results that we w
obtain are not easily accessible to usual approaches o
Hamiltonian~1!, unless only a few levels in the dot are co
sidered~for which case the numerical renormalization gro
is quite successful37,48!.

B. Results for finite interlevel spacing: Kondo effect and
Coulomb blockade

We now analyze the case of a few, well separated ene
levels in the dot. We start by discussing the Coulomb blo
ade using the spherical limit~for temperature larger than th
interlevel spacing!; then we give analytical arguments in fa
vor of the existence of a Kondo resonance at lower temp
ture, and finally we show the full numerical solution of th
self-consistent equations corresponding to the usual situa
found in experiments.

1. Renormalized Coulomb energy

As discussed in Sec. III C 1, forT@dE the quantum dot
is in the Coulomb blockade regime, and the bosonic ker
~28! behaves at long times asa(t);a t /t2; see Eq.~9!. Here
a t is a measure of the dimensionless high-temperature
ductance. One can now focus on Eq.~26!, which we write~at
low temperature! as

E dn

2p

1

n2/~2Ec!1pa tunu1l2a~ i0!
51. ~33!

The renormalized Coulomb energyEc* is obtained as the
mass term in the phase propagator~25!, which decays expo-
nentially over time scales of order\/Ec* . Solving the previ-
ous equation, one gets

Ec* 5
l2a~ i0!

pa t
52pa tEce

2p2a t, ~34!

which is exponentially small in the bare conductancea t .
This quick calculation allows us to understand the origin
the Coulomb blockade for quantum dots in our formalism

2. Single-level Kondo effect: Analytical proof

In quantum dots, the basic manifestations of the Kon
effect are twofold: the existence of a small energy scale,
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Kondo temperatureTK , and restoration of the unitarity limi
~at T,TK), as discussed in Sec. III C 2.

To prove the first point from our integral equations~25!–
~30!, we examine qualitatively the solution of the se
consistent equations at temperatures smaller than the i
level spacingdE. There, the fermionic Green’s function~27!
is dominated by the ep50 pole, so that Gf

loc(t)
;21/(2NL)sgn(t), at long times. From Eq.~28!, this pro-
duces in turn a rotor self-energy a( in)
;2(2NG/p)lnun/T0u at low frequency~hereT0 is an unde-
termined cutoff, in practice of orderAEcG). Upon lowering
the temperature, this self-energy can reach the charging
ergy Ec ~assumed to be only weakly renormalized!, indicat-
ing the suppression of Coulomb blockade and the beginn
of the Kondo regime. This happens~very roughly! for
2(2NG/p)log(TK /T0);Ec , giving the estimate

TK~NL!5T0expS 2
pEc

2NG D5T0expS 2
pU

8G D . ~35!

This is the well-known value ofTK in the local moment
regime~at half-filling!, if one uses the standard notationEc
[U/2 with N52 ~single channel!. It clearly explains that
one key step to the experimental observation of the Kon
effect in quantum dots13 lies in the realization of strongly
coupled structures, havingG comparable toEc in magnitude,
such that the Kondo temperature remains accessible.

We finish by explaining precisely the restoration of fu
coherence below the Kondo temperature. In order to do t
we set the temperature to zero and perform an exact l
energy solution of the system of equations~25!–~30! ~this
was done in Appendix Ref. C of 40!. This analysis, valid
while dEÞ0 for an arbitrary number of levels, leads to th
following value of the zero-temperature, zero-frequency d
sity of states in our approximation:

rd~v5T50!5
1

pNLG

p/2

N11
tanS N p/2

N11D . ~36!

The interpretation of this relation is that, whenever the te
perature is lower thanTK , the density of states is pinned a
its noninteracting value, no matter how large the Coulo
energyEc is. This reflects the presence of the Kondo res
nance at low energy. TheexactFriedel’s sum rule, however
is rd

exact(v5T50)51/(pNLG), independently ofN. The
difference between Eq.~36! and this exact result is a conse
quence of the decoupling approximation made above an
related to the non-Fermi-liquid features described in Ref.
This artifact is nevertheless quite small in practice, since
~36! goes to the exact value forN large and is only 10% off
for N52. Friedel’s sum rule provides also a simple exp
nation for the restoration of the unitary limit in the condu
tance below the Kondo temperature, since the Landauer
mula ~32! at zero temperature leads to

G~T50!5
Ne2

h
@pNLGrd~0!#. ~37!
1-6
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3. Kondo effect: Numerical solution and crossover to the
Coulomb blockade regime

The numerical solution of the set of self-consistent eq
tions ~25!–~30! allows us in principle to investigate all re
gimes of parameters. We will first concentrate on the grad
suppression of the Kondo effect with decreasing values
the single-level couplingG. In order to maintain the Cou
lomb blockade effect, we will keep in this section the to
~multilevel! coupling fixed,Gmulti[NLG50.5, and vary the
number of levels,NL , to allow changes inG5Gmulti/NL . We
will also fix the total bandwidth of the dot,W51, so that the
level spacing~assumed to be uniform! is also decreasing
dE5W/(NL21). This way of proceeding allows us to inte
polate from the few, well-separated levels, the situation
evant for small quantum dots in the Kondo regime, to
case of larger dots with small level spacing and many lev
NL , which shows only Coulomb blockade.

Figure 1 demonstrates indeed how the low-tempera
local density of states evolves fromNL51 ~single level:
regular Kondo effect! to NL5` ~continuum of levels: Cou-
lomb blockade only!. In particular the rapid suppression o
the Kondo peak for diminishing values ofG at increasingNL
is in accordance with our previous discussion of the Kon
temperature, Eq.~35!.

The temperature dependence of the electronic spectru
presented for the three-level caseNL53 in Fig. 2. When
temperature is lowered, the zero-frequency density of st
starts diminishing~by Coulomb blockade of states with di
ferent charge!. One then reaches a minimum, beforerd(0)
begins shooting up, towards the unitarity limit~Friedel’s sum
rule! at zero temperature.

It is useful to compare this evolution of the density
states to the variations of the conductanceG(T,NL) with
temperatures, Fig. 3. This figure illustrates the reduction
the Kondo temperature withG by the downward shifting of
the minimum of conductance. The Coulomb blockade
present at higher temperature, as shown by the decrea
G(T) for TK,T,Ec* upon loweringT.16 For the last curve

FIG. 1. Local density of statesrd(v) at Ec51, b5800, and
fixed W5(NL21)dE51 and Gmulti5NLG50.5. The four curves
correspond to different values of the number of levels in the d
NL51,3,5,̀ ~from top to bottom, following the evolution of the
central peak!.
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with a continuum of states in the dot, this behavior pers
up to zero temperature. The inset in log scale on the sa
plot allows to grasp more clearly the saturation of cond
tance below the Kondo temperature.

C. Effects due to overlapping resonances in multilevel dots

The analysis in the previous section describes the u
situation where a crossover from the Coulomb blockade
gime to the Kondo effect takes place as the temperatur
lowered below the interlevel spacing in the dot. A differe
behavior can be expected when there is a set of overlap
resonances at low energies within the dot—i.e., an ensem
of levels of individual width greater than their separatio
G@dE—which act together as a single effective level wi
enhanced coupling to the leads~the typical bandwidth of this
set of level should also be smaller than the charging ener!.
The presence of broad resonances near the Fermi leve
be relevant to some experimental situations.35,36Note that the

t:

FIG. 2. Temperature dependence ofrd(v) for the caseNL

53; temperatures correspond tob5800 ~sharp central peak!, b
525 ~broad peak!, b510 ~deep minima!, and b52 ~shallow
minima filled by thermal excitations!.

FIG. 3. ConductanceG(T,NL) in units of e2/h for the same
parameters as in Fig. 1 as a function of temperature; curves
NL51,3,5,̀ follow from top to bottom in the extreme left of the
plot. Inset:G(T,NL51) in temperature-logarithmic scale.
1-7
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conductance distributions for open ballistic quantum do
estimated from random matrix theory, are quite broad.49,50

We give first some qualitative arguments in order to desc
the new effects expected in this regime and then pre
explicit calculations using the integral equations.

1. Inverse crossover from the Kondo effect to Coulomb blocka

In practical situations encountered in quantum dots,
single-level Kondo temperatureTK is usually much smaller
than the level spacingdE ~which is typically comparable to
Ec). Therefore Coulomb blockade occurs~if it does! inevi-
tably before the Kondo effect sets in, as was shown at len
in the previous section. There is, however, a simple mec
nism that allows us to obtain Kondo temperaturesgreater
than both level spacing and renormalized Coulomb ene
Ec* . The idea is that when the individual level widthG ex-
ceeds the interlevel spacingdE, many levels are involved in
the formation of the Kondo resonance. This leads to a ‘‘m
tilevel Kondo temperature’’30,31

TK
multi;T0expS 2

pEc

2NNe f fG
D , ~38!

which can be greatly enhanced with respect to the sin
level estimate, Eq.~35!, by the presence of many leve
Ne f f.1 acting together~increasing the number of channe
N might also contributes to this effect!. This way of enhanc-
ing the Kondo temperature allows us to obtain a new reg
whereTK

multi@Ec* ,dE, so that the Kondo effect can now oc
cur before the Coulomb blockade~when lowering the tem-
perature!, in an inversemanner as observed traditionally
quantum dots. The fact that the Coulomb energy can
strongly renormalized to smaller values adds credibility
this idea. One further notes that, at even lower temperatu
a Kondo peak associated with the formation of a resona
which involves only one electronic state in the dot will ul
mately emerge. One therefore has a ‘‘two-stage Kondo
fect’’ ~if the single-level Kondo temperature is not vanis
ingly small!.

In order to be more precise, we will first give a concre
example with a limiting case that one can understand in
pendently of any approximation scheme. Then, we will illu
trate in detail this ‘‘inverse crossover’’ using our integr
equations.

2. Limit of exactly degenerate levels

We consider here the extreme limit in whichNL levels in
the dot are simultaneously put to zero:ep50 for all p ~the
total bandwidthW is therefore also zero!. We can formulate
the model after a redefinition of the fermionic operators~uni-
tary transformation! $dps

† %→$cps
† %, such that

c1s
† 5

1

ANL
(
p51

NL

dps
† . ~39!

In this case, the remaining fermionic degrees of freedo
cps

† for p.1, simply decouple from the problem, leaving a
effective single-levelAnderson model describing the fermio
24531
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c1s
† . Actually, a capacitive coupling persists between t

fermion and all the other ones, but this influence gets fro
at low temperature. As the conductance through the do
obtained from the Green’s function

Gd
loc~t![

1

NL
(
pp8

^dps
† ~0!dp8s~t!&5^c1s

† ~0!c1s~t!&,

~40!

one gets a full Kondo effect and a complete restoration
unitary conductance at low temperature. Furthermore,
width of this effective level is simplyNLG, as one checks by
inserting c1s

† in Eq. ~4!. This leads then to an enhance
Kondo temperature

TK
deg.5T0expS 2

pEc

2NNLG D , ~41!

as discussed in the introductory part of this section~because
dE50 in this limiting case, one hasNe f f5NL).

We can easily check that our self-consistent scheme
serves this interesting property of the model. Indeed, w
all levels ep are exactly degenerate (W50), one gets from
Eq. ~27! the f-electron Green’s functionGf( iv)5@ iv
2S f( iv)#21. We obtain therefore the Kondo effect of
single effective level.40

The following section will allow us to make this discus
sion more meaningful by studying the more realistic case
a quantum dot in the regimeG*dE, corresponding to nearly
degenerate levels.

3. Inverse crossover: Illustration

We now illustrate the inverse crossover discussed qua
tively in Sec. IV C 1 by solving our integral equations in th
regimeG*dE, where multilevel effects play an importan
role. We will assume here thatG!Ec so that one can neglec
the single-level Kondo effect at low temperature~see, how-
ever, the next section!. For this computation, we have fixe
G50.04 and takenNL59 states in the dot, varying the in
terlevel spacing fromdE50 ~exactly degenerate level cas
considered in the previous paragraph! to dE50.01&G ~pos-
sibility of multilevel effect! to dE50.08.G ~absence of
multilevel effect!.

The low-temperature local density of states displayed
Fig. 4 shows the expected multilevel enhanced Kondo p
at dE50 corresponding to formula~41!. Upon increasing
the level spacing todE50.01, Coulomb blockade sets in at
scaleEc* ,TK

multi ; however, coherence effects remain arou
TK

multi ~since we are in a regime withdE,G). This results in
a surprising splitting of the Kondo resonance at low ener
The last curve is taken withdE50.08.G, so that no multi-
level Kondo effect is possible, and only Coulomb blockade
observed. Another interesting consequence of this phen
enon is that the temperature dependence of the conduct
is reversedwith respect to the usual signature of the Kon
effect in quantum dots—i.e., to Fig. 3. Indeed, upon lower
the temperature, one notices an initial increase of the c
ductance~due to the multilevel Kondo effect!, then a sharp
decrease of the conductance because of the Coulomb b
1-8
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ade. This is illustrated by the middle curve in Fig. 5.
One can also perform a general evaluation of the mu

level Kondo temperature, starting from the leading behav
of the f Green’s function at high temperature:

Gf
loc~ iv!.

1

NL
(

p

1

iv2ep
. ~42!

Equation~28! then leads to58

a~ in!52
NG

p (
p

ln
n21uepu2

n21~ uepu1T0!2
. ~43!

The Kondo temperature is reached when this kernel is of
order of Ec , so that one finds the final equation which d
terminesTK

multi :

)
p

~TK
multi!21uepu2

~TK
multi!21~ uepu1T0!2

5S TK

T0
D 2

, ~44!

whereTK is the single-level Kondo temperature~35!. A simi-
lar result was obtained previously by a renormalizat

FIG. 4. Density of statesrd(v) on the dot for Ec51, G
50.04, inverse temperatureb5400, NL59 states, and differen
values of the interlevel spacing:dE50,0.01,0.08.

FIG. 5. ConductanceG(T) for the same parameters as in Fig.
24531
i-
r

e
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group argument.30 The limiting cases studied before are o
viously contained in the previous equation:TK

multi reduces to
TK for widely separated levels (dE large! and in the opposite
limit of exactly degenerate levels~or if W!TK

multi), TK
multi

5T0(TK /T0)1/NL, consistently with Eq.~41!. In general,
TK

multi is enhanced with respect to the single-level Kon
temperatureTK . As an example, formula~44! shows that in
the regime dE!TK

multi!W!Ec , one obtains thenTK
multi

;T0exp@2pEcdE/(2NGTK
multi)#, so that the number of effec

tive levels taking part to the multilevel Kondo resonance
Ne f f5TK

multi/dE, as discussed qualitatively in Eq.~38!.
We conclude this paragraph by summing up the phys

picture that leads to the observed nonmonotonous con
tance. In the case of many overlapping resonances, a q
tum dot can be described as a small metallic grain domina
by Coulomb blockade at low temperature, which implies
vanishing zero-frequency density of states. Upon raising
temperature, many different charge states become avail
by the thermal smearing of the Coulomb blockade, and
conductance is rapidly increasing on a scale of the orde
Ec* ~which is also the typical size of the dip observed in t
split Kondo peak!. Due to the large single-level width con
sidered in this regime, all these energy levels can then
coherently as a localized spin degree of freedom that un
goes the Kondo effect. This explains the upturn of the c
ductance when temperature reaches the Kondo energyTK

multi .

4. Two-stage Kondo effect

Finally we consider again a multilevel casedE!G, but
now with G&Ec , so that the single-level Kondo resonance
accessible to the low-temperature regime. Therefore,
witnesses a further increase of the conductance at low t
perature, taking place after the inverse Kondo-to-Coulo
crossover that we discussed previously. The occurrenc
such a ‘‘two-stage Kondo effect’’ is depicted for the condu
tances shown in Fig. 6. For this calculation, we have tak
NL55 levels,G50.1, and various level spacings betwe
zero and 2.5G.

The two curves with 0,dE,G show indeed this two-
stage Kondo effect: a first rise of the conductance at h

FIG. 6. ConductanceG(T) in the caseNL55, G50.1, and
various level spacings:dE50,0.025,0.05,0.1,0.25.
1-9
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temperature due to the multilevel resonance atT;TK
multi ,

then the Coulomb blockade atT;Ec* , and then a further
increase atT;TK ~smallest scale of the problem!. The last
two curves, withdE50.1,0.25, show the usual crossov
that was illustrated in Fig. 3 in Sec. IV B 3.

A last point that was checked is that our results
weakly sensitive to the addition of more levels outside
energy window of widthG. This calculation is shown in Fig
7.

5. Summary of the different regimes of transport

A sketch of the different regimes analyzed in this pape
given in Fig. 8, as a function of the level spacing,dE, and
single-level width,G. We assume that the number of ele
trons in the dot is odd, so that the ground state, in the
sence of coupling to the leads, is degenerate. The trans
between different regimes is a smooth crossover. We will
discuss in the following the effect of the renormalization

FIG. 7. Lower curve: conductanceG(T) in the caseNL55, G
50.1, anddE50.015. Upper curve: similar model, but ten add
tional levels ~with larger spacingdE850.2) have been superim
posed to the previous ones.

FIG. 8. Sketch of the different regimes discussed in the pape
function of the charging energy,EC , level spacing within the dot
dE, and level widths,G, with a constant number of levels. Th
notation ‘‘Kondo’’ corresponds to a single-level Kondo effect. T
region ‘‘Kondo1Coulomb-Blockade’’ is the usual situation i
quantum dots. The ‘‘Multilevel’’ region is also associated to t
Kondo effect, but with important renormalization of the Kond
temperature, as discussed in the text. The ‘‘Coherent’’ regime sta
for a temperature independent conductance.
24531
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the charging energy; therefore, the zone boundaries tha
cate the different regimes will not be determined here. Ho
ever, this can be done in practice by solving the integ
equations, as discussed in the main body of the paper. Al
would be interesting to perform a full renormalization gro
analysis of the renormalization of bothTK andEc* along the
lines of Refs. 31 and 51.

The occurrence of Kondo effect is signaled by a nonm
notonous temperature dependence of the conductance a
observable atG!dE for temperatures smaller than th
single-level Kondo temperatureTK given by Eq.~35!. De-
pending on the relative values of level spacingdE and Cou-
lomb energyEc , Coulomb blockade might also be prese
above the Kondo temperature, which is the usual experim
tal situation encountered in quantum dots. We emphasize
if G is much smaller thanEc , the Kondo temperature is
extremely small and the Kondo effect inobservable in pr
tice; this corresponds to weakly coupled dots, and this s
ation shows only Coulomb blockade. In the casedE!G we
have defined a region ‘‘multilevel’’ which corresponds act
ally to various regimes discussed previously. This descri
the inverse crossover~Kondo to Coulomb blockade!, as well
as the two-stage Kondo effect shown in Sec. IV C 4. T
region can also imply that the Kondo effect is observed
the usual manner, but with a Kondo temperature greater t
the single-level estimate. Note that the Kondo effect invo
ing many levels can also occur in dots with an even num
of electrons, in a similar manner to the Kondo resonan
which arises at a singlet-triplet crossing in an applied m
netic field.52 Finally, the regionG@Ec of the diagram~de-
noted ‘‘Coherent’’! is associated with large conductances th
are weakly modulated with temperature or applied gate v
age.

V. CONCLUSIONS

In this paper we have presented a method of calcula
for strongly correlated mesoscopic systems in terms of a
lective phase variable and the quasiparticle degrees of f
dom. The scheme is valid both for the study of the Coulo
blockade regime and of the Kondo effect.

We have shown examples of the crossover betwee
Coulomb blockade regime at temperatures below the ch
ing energy, and the formation of a Kondo resonance at te
peratures lower than the separation between levels within
dot. In addition, we have described an inverse regime, wh
a Kondo-like resonance is split at low energies by Coulo
blockade effects. This regime is associated with the existe
of many conduction channels or overlapping resonan
within the dot, which contribute collectively to the Kond
effect. The coherence of this state is destroyed at low e
gies by Coulomb effects. At even lower energies, a narr
Kondo peak, associated with a single level within the d
will emerge.

Because the self-consistent approach used here was
cessfully applied to a model of strongly correlated electro
~Hubbard model! in a previous work,40 we can also envision
possible applications of this work to the physics of granu
materials or quantum dot arrays in the vicinity of the met
insulator transition.53–56 Disorder effects, which were ne

as
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glected here, should also be included in future work alo
these lines.

Other possible development is an exact~numerical! solu-
tion of the self-consistent action~11! and ~12! instead of
taking the spherical limit as was done in Sec. IV A, whi
brings some limitations~as the restriction to valleys of con
duction!. Also importantly, we believe that the present wor
both by the technical concepts and the physical ideas, c
nects in an original manner the fields of strongly correla
systems and mesoscopic physics.
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