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Coherence and Coulomb blockade in single-electron devices:
A unified treatment of interaction effects
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We study the interplay between Coulomb blockade and the Kondo effect in quantum dots. We use a
self-consistent scheme which describes mesoscopic devices in terms of a collective phase(skavabletoy
and quasiparticle degrees of freedom. In the strong Coulomb blockade regime, we recover the description of
metallic islands in terms of a phase-only action. For a dot with well-separated levels, our method leads to the
Kondo effect. We identify the regime where a crossover between the Coulomb blockade regime at high
temperatures and the formation of a Kondo resonance at lower temperature takes place. In addition, we find
that for a dot with many overlapping resonances,irarerse crossovecan take place. A Kondo resonance
which involves many levels within the dot is first formed, and this coherent state is suppressed by correlation
effects at lower temperatures. A narrower Kondo resonance, due to a single level in the dot, can emerge at even
lower temperatures.
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[. INTRODUCTION scales of interest, the standard procedure is to truncate the
Hilbert space of the dot and keep only the interacting elec-
Electron-electron interactions play a crucial role in singletronic states closest to the Fermi level of the leads, so that the
electron devicegquantum dots, metallic islangssee, for  System is reduced to the Anderson motfél’ see Refs. 11,
instance, Refs. 1-4. The electrostatic repulsion betweeA8 and 29. The situation when many levels within a magnetic
electrons in the dot can be described by the energy requirdfpurity contribute to the Kondo effect was initially dis-
to change the charge in the dot by one uEit, At tempera- cussed in Ref. 30. The same_gﬁept in quantum dots was
tures or frequencies below this charging energy, but muCﬁmalyzed in Ref. 31. Other modifications of the Kondo effeqt
greater than the spacing between the electronic levels in tH8 & duantum dot due the presence of many levels are dis-
dot, 5E, Coulomb blockade effects domin&t@and the con-  CUSSed in Refs. 32-38. Recent experimérisggest that the

ductance through the dot is suppressed, except at degenera{g ime where level spacing, level broad(_anmg, and the charg-
) o o INg energy are comparable can be achieved by present day

points. At scales below the level splitting within the dot andiechniques

when the ground state of the dot is degenerate, electronic The aim of this paper is to analyze the different regimes

coh.erence can be restored by t_hl‘;‘;‘ Kondo eftétteading to of a quantum dot characterized by the charging en&gy
an increase in the conductanicel® hence, when.the qha}rg— level spacingsE, and coupling to the leads], wherel is
ing energy is much greater than the level spacing within thgne ynical width of each level. We introduce a new scheme
dot, E.> JE, and the number of electrons in the dot is odd,yhjch describes the charge excitations of the dot in terms of
one expects a crossover between a high-temperature regirgecollective phase, but also retains information about the
where Coulomb blockade effects dominate and a lowelectronic degrees of freedom on the dot. This approach al-
temperature one described by the Kondo efféct. lows us to recover the Kondo effect in the case of quantum
The theoretical analysis of these two regimes, Coulombimpurities with exactly degenerate levélsave rotor repre-
blockade and the Kondo effect, has been carried out usingentation introduced in Ref. 40 by two of)uJechnically,
rather different techniques. Coulomb blockade can be studiethe new scheme draws inspiration from self-consistent re-
when the coupling between the leads and the dot is weak byummations used for describing the Kondo effect in single-
describing electron transport in terms of sequential hoppingmpurity models  [the so-called noncrossing
processes—i.e., perturbatively in the tunneling matrix ele- approximatioi#> (NCA)] but adapted in an economical
ment. When the conductance is large, it is convenient tavay to the situation of mesoscopic structur@ehich can
describe the internal degrees of freedom of the dot in termsontain up to thousands of electrgns
of a collective variable, the phase conjugated to the total The outline of this paper is as follows. In Sec. Il we
charget’~*°Using this representation, the renormalization ofreview basic properties of the single-electron box and present
the effective charging energy by virtual fluctuations can bethe model that we will study throughout. The self-consistent
studied by a variety of methodS:?°This approach becomes approach used to analyze the model is presented in Sec. IlI
exact when the level spacing within the dot tends to zero andnd will be shown to describe the Coulomb blockade regime
the number of transmitting channels is large, which applie®f metallic grainsexactly (also for quantum dojswe will
in fact to the physical situation of metallic islands. In this furthermore show that it is a reasonable approximation for
limit the Kondo effect disappears. In the opposite limit, whendealing with the Kondo effedtin quantum dots In Sec. IV
the level spacing within the dot becomes comparable to othewe will investigate in more detail intermediate regimes of
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conduction that were not previously attainable or considered In order to fulfill the Pauli principle, one must, however,
in earlier works. In particular we will be interested in the keep fermionic degrees of freedom, so that the creation of a
different manner in which one goes from coherent, Kondo-{hysical electron on the dot is represented as

assisted transport to the Coulomb blockade regime. Exten-

sions of our approach to other systems such as quantum dot

arrays will be briefly outlined in the Conclusion.

Il. MODEL FOR SINGLE-ELECTRON DEVICES

A. Phase representation and electronic degrees of freedom

Let us first review the standard model for single-electron
devices. The basic ingredient that determines the behavior
guantum dots as well as metallic islands is the relatively

large Coulomb energ¥.=e?/(2C)~1 K associated with
small capacitances of the structu@~10 *°F. We will

take also into account the internal structure of the small

charge droplet, with energy levet, (which are shape and
disorder dependentand an indexo=1, ... A associated

with transmitting channels to the outside circuit. The elec-
trodes, to which the mesoscopic region is coupled, are de-

scribed as Fermi liquids with a spectrupassociated with a
finite density of state(0) at the Fermi level. Physical

guantities, such as the conducta@eare also determined as

a function of temperatur€ (we set3=1/T) and applied gate

(o)

()

using a channel- and momentum-carrying quasiparfiﬁ,_l,e

According to Eq.(2), a constrain.=3,,f! f,, must also
be implemented? introducing for this purpose a Lagrange
multiplier Sw. Integrating explicitly the electrode in E¢L),
one gets the following expression for the action of the origi-
nfal model in this new representation:

T _¢t L6
dpa—fp(,e

B
S= fo dT% f1,(0,+ €g— 1) f oo

9,0+i6m)?
+( M)

4E, +ingd, 0
B B 1 '
+f drf dr'— E APP (7—17")
0 o N7,

XA ()i (7)) A0,

4
In principle, u should be integrated oved,27/ 3] in order

voltageVy. Summarizing all these energy scales, we arriveto preserve the correct structure of the Hilbert space. One can

at the following Hamiltonian:

— T T
H= kz 8kak(ra'k(r+ pz Epdp(rdp(r
o o

2
T T
+ kz tIF()(ak(rdp(r+ dpu-a'ko') .
ap

@

We have introduced here the couplitffgoetween the mode
in the electrode and modein the electron box. The index
p=1,... N_ corresponds to thl, energy levels of the dot
(or metallic island, ando=1, . .. N is the conserved chan-
nel index (including spin. We defined alsay as a dimen-
sionless external gate voltage,=eV,/(2E.). Because of

+E¢| X df,dp,—ng

po

notice in this expression how the indices are positioned in
the last term § is conserved by the charge transfer proce-
dure, whereagp is nof). We also have defined the bath func-
tion

PP’

- N tPt N tP(e)tP (&)
App(m))EZk i;f:k=fdsD(s)—L i((j—s c ,

©)

introducing the lead density of staté&¥(e)=3,6(g—gy)
(we have extracted here a factorNl/ for future conve-
nience.

B. Metallic grains: Phase-only approach

In the case of small metallic islanf$,the number of

the large number of degrees of freedom involved with retransverse channeld/~10*~1(>1, is quite large, so that

spect to a single-impurity Anderson mod&,(or A can be
quite largg, this Hamiltonian is remarkably complicated.

the fermionic degrees of freedom can be integrated out ex-
plicitly from Eq. (4). Technically, this is done by expanding

One way to make progress i_s to single out the relevanthe initial action(4) in the coupling functiom\P?'(7), lead-
charge variable on the dot and pilot its dynamics by means dhg to an exact expression of the effective action:

a rotor degree of freedom:

pZ dl,dp,=L=—iala6. )

This mapping is motivated by the fact that the Hamiltonian
H rotor= ECI:2, with its quadratic spectrum, reproduces ex-

actly the charging energy term in Ed.). Alternatively, one

can argue, as in Refs. 17 and 18, that a metallic grain can be
studied with the same formalism used for a superconducting
grain, except that the gap vanishes. In this case, the phase is

o

Ngd,0—In >,

n=0

d-0+i6u)?
(9, ) N
4E,

fb’d fﬁd 1

X g fm) =1 6ry) § Emam( Tm) o o (7i) > :

0

(="
n!

g 6]= f:dr

!
APmPm( 7 — 7))

>

!
pmpm(rm

x<ﬁ

m=1

(6)

the collective variable conjugate to the number of particlesThe average over the fermionic variables - ), in the pre-

as implied by Eq(2).

ceding expression is taken with respect to the free fermionic
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action Sy=J£d73,,f! (9,+ ey~ ou)ty, and simplifies IIl. UNIFIED APPROAE()ZEHV'II'(?EEINGLE-ELECTRON
considerably in the largd# limit because Wick contractions
at leading order occur between pairs of fermions holding the A. Self-consistent scheme

samechannel indexr,,. We can then reexponentiate the last
term in Eq.(6), and if one notes that the multipliéj can be
treated in the grand canonical ensemble—i.e., reabsorbed
ng (due to small charge fluctuations over many accessibl
state$—one gets the effective phase-only action

Our purpose here is to develop a simple approximation
scheme[avoiding direct numerical solution of modél)]
{fat could encompass the main interaction effects in single-
Blectron devices: the Coulomb blockade and Kondo effects.
One can note that one is usually forced to employ different
5 techniques to handle the Coulomb interaction, depending on
S 0]= JBdT(ﬁﬂ) tin.o.6 the regime one is interested in. Since the details of the dy-
0 4E, 9uT namics of the electrons are not usually involved in the Cou-
; ; lomb blockade phenomenon, introducing the total charge as
, o) —io(s the physically relevant variable and using the phase-only ac-
B JO deo dr’ag(7— 7)€l "7, @ tion (7) seems mandatory to deal with this regime. On the
other hand, dealing with the Kondo effect requires a rather
The kernelag(7) in the last equation is given by the expres- SOphisticated treatment of the correlation effects among elec-
sion trons, and a simplification of the initial modgl) is unavoid-
able. We will see in this paper that one can reconcile these
two paradigms if one treats on an equal footing fermionic

ao(7T)=— Ni 2 APP’(T)<f;U( 7)fp0(0))o, (8) degrees of freedom and the phase variable conjugated to the
L pp'o total charge.
Drawing inspiration from strong coupling approaches for
which can be evaluated: single-impurity model§NCA (Ref. 4)) and its generaliza-
tion to the phase representati®) as introduced by two of
(7l ) us“o],_ we will perform a self-consistent decoupling of the
ag(1) =0, ——m, 9 fermion-rotor coupling in Eq(4):
[sin(7 7/ B)]?
B
with S~ f A7 f1,(d.+ €= o) f oy
0 po
a;=NN,t?D(0)po(0). (10) B (B 1 ,
‘ - 0 +f dr dT’N— E APP (7—17")
0

0 ’
Here po(e)==,8(e—¢,) is the grain density of states, Lpp'e

which is supposed to be continuous for metallic islands, and X (e 9(7')—i0(7’)>f2;0( o) (11)
we have taken the large bandwidth limit to obtain E9).
We have also assumed for simplicity that the coupling to the 5 (504152
lead is a constant=t (point contact and that it is suffi- +J' dr( 0110u) +in-g.-6
ciently small so thaty, is at most of order 1 when boti, 0 4E. o
and \V are large. The parametey; is interpreted as thédi- 5 5 1
men_S|onIesﬁmgh-temperatu_re conducta_mce between the dot +f dr | dr'— 2 APP' (7—1")
and island, to lowest order in the hoppindy 1822 0

Physically, the use of the phase-only acffois vindicated B
by the fact that the charge fluctuations are suppressed by the X(FL (1) f (7))l A =10, (12
Coulomb blockade phenomenon, allowing one to forget
about the fermionic statistics of the charge carrigmsoher-  This approximation goes far beyond the lowest-order pertur-
ent transport through the island bative result that led to the phase-only acti@ and is the

This phase-only actiofi7) can be handled using a variety central starting point of the present work. Its distinctive fea-
of technique<®~26An important question, which is very rel- ture is the decoupling of fermionic and phase degrees of
evant for experiments on small metallic grains stronglyfreedom, whose joint dynamics is nevertheless determined
coupled to the environmeft?is the destruction of Coulomb = self-consistentlyindeed, the fermionic self-energy obviously
blockade in the strong-tunneling regineg=0.1. This im- depends on the phase-phase correlator and reciprocally.
plies a generic renormalization of the Coulomb enefgy ~Moreover, the bosonic part of the effective actiGt?) is
towards smaller values, denoted hereBy.?*?%In the fol- ~ Similar in structure to the phase-only approa) allowing
lowing, we will be more interested in this question in the t0 use the large body of work on this particular model.
context of quantum dots, for which the mod@) is inad- _ In _ort_jer to detail the method qf sol_ut|on, we start here by
equate. However, the phase-only approach will be considerediMPlifying the kernels appearing in the previous self-
as an important benchmark for any approach that intends tgonsistent action. The bosom’c kernel can be expressed in
describe the Coulomb blockade regime. terms of the full propagatd&f® of thefg(, fermions:

0 L pp/o'
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B. Metallic islands: Coulomb blockade

=_ pp’ , , o .
(=" R] png APP (7T () Tpro(0)) We consider here the case of a metallic island for which
the energy spectrum is taken as a continuous density of states
_ pp’ op' po(€). Due to the smallness of the Fermi wavelength with
N N, % AP(NGE (= 7), 13 respect to the typical transverse size of the island, the num-

ber of transmitting channels is usually quite larg&>1, as
where the Green's functioB; has been introduced in a ma- discussed before in Sec. Il B.

trix notation, One interesting remark is that our self-consistent phase
model (11) and (12) exactlyreproduces the phase-only ap-
proach(7) in this case. Indeed, we note that the fermionic
self-energy(16) is suppressed with respect to the kerfis)

by a relative factor of order A. The self-consistency be-
tween fermions and the phase variable can therefore be ig-
nored at\V>1 (one has to scalex1/\N), leading to a free
fermionic propagator

éf:

Ay 1 . }l R 1~ - j|l
Gy ' ——> =Gyl 1— —2:G , 14
0 NL f 0 NL 20 ( )

with the free propagator in the electron box:

13

PP (i) = —PP"
GiP (iw) o et o’ (15
GRY’ £ (0)f o o(7))o. 21
We also have introduced the self-energy of the quasiparti- 0" (N =T (0o @)
cles: s
, S GE (jw)= —22—. (22)
3PP (1) =APP (r)(e! " 190), (16) o™ €

The “self istent oh tion” that ds t | Putting this expression back into E(.3), one recovers in-
finall e sed -consistent phase action” that one needs 10 SOV§yaeaq the phase-only actigi) and(8). This test case implies
inally reads that our self-consistent scheme allows us to deal correctly
. 2 with the Coulomb blockade phenomenon in metallic grains.
B (d.0+i6u)" .
S=J’ dr———=——+inyd.0

4E,

C. Quantum dots: Interaction effects

In quantum dots, the discreteness of the energy spectrum
€, and the fact that\' is generally of order Lunless the
point contacts are quite opemvalidate the phase-only ap-
with a(7) given previously. The set of equatiofs3)—(17) proach(7). This is clear from the fact that coherent transport
is the main technical result of this paper. In practice, this ighrough the dot can be restored due to the Kondo effect at
solved by an iterative procedure which starts with a giverlow temperature. We now sketch how the self-consistent ac-
kernel a(7) as input to the actiorfl7), from which a new tion (17) is able to describe this phenomenon.

correlator(e'" =197} is computed. It is then fed back to
the self-energy16), allowing us to compute the quasiparticle

B B . o
—f drf dr’a(7—7")e 010 (17
o Jo

1. Coulomb blockade regime in quantum dots

propagator(14), and then a new kernel(7) from Eq. (13).
This full cycle is repeated until convergence is reached.

We consider first temperatures smaller than the charging
energyE., but still greater than the interlevel spacidgg.

In all further calculations, we will assume a point contact\ye can therefore take a continuous limit for the @dte to

between lead and boxf=t, so thatAPP'(r)=A(r) and
2?‘)’(7):Ef(T):A(T)<ei0(7)_i0(7/)>, which allows us to

simplify expression$13) and(14) into

a(7)=—NA(D)GP(— 1), (18
GP(iw) =1 2 GPP(iw), (19)
Ny pp’
loc,: -1_ 1 _ .
[Gf (iw)] 1 1 Si(iw). (20
— >
N F io—ept io—e,+op

thermal smearing of the energy levelahich leads crudely
to the simplification

1 1

N2 m:—iﬂ'po(O). (23

From Eq.(20), this gives thef
dot:

,T)(, fermion propagator in the

-1

GP%iw)= Si(iw) (24)

|
7po(0)

The constant imaginary part in the last expression dominates
the long-time behavior of the Green’s functi®|°°(7), so

In the following two paragraphs, we will sketch how this that the kernel18) decays as ¥#, similarly to the case of
novel scheme allows us to capture both Coulomb blockadéhe metallic island, Eq(9). There is therefore Coulomb

and Kondo effects in single-electron devices.

blockade in this regime, as expected.
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2. Kondo effect in quantum dots: First discussion 1 -1
. L Gl w,) = —Siw,)

At temperatures below the interlevel spacifg in the f n 1 ) R %n ’
dot, the discreteness of the spectrum becomes sizable. Let us N_L % Ui wn—e€p)
assume here that a single level sits close to the Fermi energy, 27)
so that we can forget all other levels. In this case, we can
argue here that the factorizatiohl) and(12) reproduces the a(7) =/\/A(T)G'f°c(r), (28)
Kondo physics correctly. This property is well known if, in-
stead of the phase variable one uses a slave-boson repre- S (1) =A(7)Gx(7), (29)

sentation of the interactiofin the case of th& = limit).**

This method has been extended recently by two of us to th#ith the notation

case of finite E., using the phase representatiaﬂio

=f1,e",% and shown to lead to a good approximation Aliwg)=> - _

scheme for dealing with the Kondo effect. k lwn— &

e e o e have roted ore () a i bosoni it

that allows coherent transport of charge through the struc: ra frequency. In add]tlon (o the relatlvg S|mpI|C|_ty of this
X : . scheme, we note that it allows us to obtain a solution for real

ture. The existence of the Friedel sum r(ie be discussed

frequency quantitie&oing the analytic continuation of these
later on guarantees that the conductance through the dot ¢ ; . ;
N aé'quatlon as required for computing spectral and transport
recover the unitarity limiti.e., G=2e?/h) at low tempera- 5 q puting sp P

: properties of quantum dots.
ure. . A few technical remarksThe system of equation®5)—
In conclusion, we can therefore expect that our self-

. i 30) was derived previously for the single-level Anderson
consistent approach interpolates between the coherent Kon odef© using a slightly different routénamely, a largeM
rgglme(assoqlated with a large and increasing COmjlmtanc‘renultichannel point of view more suitable to understand some
with decreasing temperatyrend the Coulomb blockade
(which leads to a suppression of the charge fluctuations o
the dot and a decreasing conductande practice, we still
need to solve the self-consistent phase probléd) and
(12). This will be done in the next section.

N t2

(30

non-Fermi-liquid aspects of the solutjoiVe feel that a two-
Qtep procedure that starts with Eq41) and (12) is more
appealing in the present context, as the self-consistent phase
action(12) can be tackled in principle with variety of meth-
ods. We have therefore taken the point of view of simplicity
in doing the spherical limit described in the previous para-
IV. INTERMEDIATE CONDUCTION REGIMES IN graph.
QUANTUM DOTS The numerical solution of the coupled integral equations

is straightforward using fast Fourier transfortmee will also
] o ) give analytical arguments later prin all calculations that

The simplest, yet nontrivial treatment of the bosonic ac+gjiow, we take NA=2 (single channel of conduction per
tion (17) is to take its spherical linflf44° (this is also  gpir. The Coulomb energy is chosen as the referefice,
equivalent to the large number of component limit for the  —1 and the bandwidth of the continuous density of states of
model in the field theory Iltergtu?é. We introduce for this e slectrodes is =50, which is the largest energy scale of
purpose the complex phase fiek{7)=e'"?, with its cor- e problem. The precise form of the spectrum in the elec-

relator Gy(7)=(X(7)X*(0)). This representation is per- todes playing little role in the low-energy limit, we have
fectly equivalent to the original problem if the hard con- chosen a semielliptic density of states:

straint|X(7)|?=1 is maintained exactly. The approximation

that we will make in order to solve tHself-consistentphase 8

action(17) is to impose this constraint on average only. For A(iw)=N[t|? = [io—isgiw) o+ (A/2)"]. (31)

this we introduce a Lagrange multiplier to enforce the A

equality Gy(=0)=(|X(7)|?)=1. The main drawbackon g single-levetwidth T'=|Im A(i0*)|/N, =4t%/ A [see Eq.

a qualit.ative level of this approximation is that, aIthough it (4)] characterizes the strength of the coupling of the elec-
works fine close to the center of the charge plateaus, it evenfgns in the dot to the reservoirs. Other important parameters,
tually breaks down at the degeneracy poftitsve will also \yhich we will also investigate, are the separation between
enforce the constrairt ,f],f,,=L on average. In the sym- the electronic levels of the doE, and the number of states
metric casei.e., at the center of a plateguhis simply im- in the dot,N, . We also define a typical “bandwidth” of the

A. Solution of the phase action in the spherical limit

plies thatéu=0. dot, W= SE(N_—1) (although the spectrum is made up of
The bosonic action is now purely quadratic, leading to thegiscrete statgs
set of self-consistent equaticis A technical aspect worth mentioning is the method of
2 4 compu;atri]ondof the T:onductfance ;cjhrough th)e d(()jti In)the same
. n : spirit of the decoupling performed in Eqd.1l) and(12), we
Gx(ivn)= 2_EC FA=aliva)| (25 wFi)II compute the G?ee?]’g function of t}‘[gysicalelectron as
GYY(7)=GP(7)Gx(7). An analytical continuation(per-
Gy(7=0)=1, (26) formed numerically allows us then to get thénteracting
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density of states in the dotpy(w)=—(1/m)Im G'd°°(w Kondo temperatur@ , and restoration of the unitarity limit
+i0™). We will also use the interacting Landauer formula (@t T<T), as discussed in Sec. 1l C 2.

for the conductanc& To prove the first point from our integral equatiof25)—
(30), we examine qualitatively the solution of the self-
Ne? Ne(w) consistent equations at temperatures smaller than the inter-
G= TNLFJ dw( R )Tfpd(w), (32 level spacingSE. There, the fermionic Green’s functi¢@?)
is dominated by thee,=0 pole, so that G{°°(7)
where ng(w)=1/(e#?+1) is the Fermi function. This ex- ~—1/(2N)sgn(r), at long times. From Eq28), this pro-
pression involves the “local” density of statéise., summed duces in turn a rotor  self-energy a(iv)
over allp=1, ... N,) because of the form of the local cou- ~— (2/NT'/a)In|v/Ty| at low frequencyhereT, is an unde-
pling to the reservoir, see E{L). termined cutoff, in practice of ordefE.I'). Upon lowering

In the following, we explore situations that are intermedi-the temperature, this self-energy can reach the charging en-
ate to the single-level Kondo effect and the Coulomb block-ergy E. (assumed to be only weakly renormalizeithdicat-
ade regime, depending on the internal structure of the quarng the suppression of Coulomb blockade and the beginning
tum dot. We insist on the fact that the results that we willof the Kondo regime. This happersery roughly for
obtain are not easily accessible to usual approaches of the (2A\T'/#)log(Tk /Ty)~Ec, giving the estimate
Hamiltonian(1), unless only a few levels in the dot are con-
sidered(for which case the numerical renormalization group

. . 2 7E, U
is quite successfti*9). Ti(NL)=Toexp — 577+ =Toexp| — 5 |- (35)

B. Results for finite interlevel spacing: Kondo effect and

This is the well-known value ofl¢ in the local moment
Coulomb blockade

regime (at half-filling), if one uses the standard notatigp

We now analyze the case of a few, well separated energs U/2 with N=2 (single channgl It clearly explains that
levels in the dot. We start by discussing the Coulomb block-one key step to the experimental observation of the Kondo
ade using the spherical limifor temperature larger than the effect in quantum dot$ lies in the realization of strongly
interlevel spacing then we give analytical arguments in fa- coupled structures, haviilg comparable td. in magnitude,
vor of the existence of a Kondo resonance at lower temperasuch that the Kondo temperature remains accessible.
ture, and finally we show the full numerical solution of the  We finish by explaining precisely the restoration of full
self-consistent equations corresponding to the usual situatiotbherence below the Kondo temperature. In order to do this,

found in experiments. we set the temperature to zero and perform an exact low-
energy solution of the system of equatiof®5)—(30) (this
1. Renormalized Coulomb energy was done in Appendix Ref. C of 40This analysis, valid

while SE#0 for an arbitrary number of levels, leads to the

As discussed in Sec. Ill C 1, for> SE the quantum dot followi | fth ; t f d
is in the Coulomb blockade regime, and the bosonic kernef®!'OWINg vaiue ot the zero-temperature, zero-irequency den-

(28) behaves at long times ag 7) ~ a,/ 72; see Eq(9). Here ity of states in our approximation:
a; is a measure of the dimensionless high-temperature con-
ductance. One can now focus on E26), which we write(at

low temperaturgas

pa(@=T=0)= . (36

1 /2 tarl A /2
AN N1 2NN
dv 1 B The interpretation of this relation is that, whenever the tem-
2 V2(2E,) + may| v| + N — a(i0) =1 (33 perature is lower thaily, the density of states is pinned at

¢ ! its noninteracting value, no matter how large the Coulomb
The renormalized Coulomb enerds} is obtained as the energyE. is. This reflects the presence of the Kondo reso-

mass term in the phase propagai$), which decays expo- Dangfaft low energy. ThexactFriedel's sum rule, however,
nentially over time scales of ord&fE* . Solving the previ- S pg - {w=T=0)=1/(=NT), independently of\. The

ous equation, one gets difference between Eq36) and this exact result is a conse-
quence of the decoupling approximation made above and is
N—a(i0) ) related to the non-Fermi-liquid features described in Ref. 40.
¢ :w—m =2maEce ", (34 This artifact is nevertheless quite small in practice, since Eq.

(36) goes to the exact value fdv' large and is only 10% off

which is exponentially small in the bare conductange  for N=2. Friedel's sum rule provides also a simple expla-

This quick calculation allows us to understand the origin ofnation for the restoration of the unitary_ limit in the conduc-
the Coulomb blockade for quantum dots in our formalism. tance below the Kondo temperature, since the Landauer for-

mula (32) at zero temperature leads to
2. Single-level Kondo effect: Analytical proof

In quantum dots, the basic manifestations of the Kondo G(T=0)= AE[WNLde(O)] 37)
h .

effect are twofold: the existence of a small energy scale, the
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0.4

0.5

04 02 0 02 04

2 -1 0 1 2
w w
FIG. 1. Local density of statesy(w) at E;=1, 8=800, and FIG. 2. Temperature dependence @f(w) for the caseN_

fixed W=(N_—1)6E=1 andI"™"=N,I'=0.5. The four curves =3, temperatures correspond B=800 (sharp central peak
correspond to different values of the number of levels in the dot:=25 (broad peak B=10 (deep minima and g=2 (shallow
N, =1,3,5% (from top to bottom, following the evolution of the Minima filled by thermal excitations
central peak
with a continuum of states in the dot, this behavior persists
3. Kondo effect: Numerical solution and crossover to the up to zero temperature_ The inset in |Og scale on the same
Coulomb blockade regime plot allows to grasp more clearly the saturation of conduc-

The numerical solution of the set of self-consistent equatance below the Kondo temperature.
tions (25—(30) allows us in principle to investigate all re-
gimes of parameters. We will first concentrate on the gradual C. Effects due to overlapping resonances in multilevel dots

suppression of the Kondo effect with decreasing values of The analysis in the previous section describes the usual

the single-level coupling'. In order to maintain the Cou- situation where a crossover from the Coulomb blockade re-
lomb blockade effect, we will keep in this section the total .

(multilevel) coupling fixed T™=N, T=0.5, and vary the gime to the Kondo effect takes place as the temperature is
number of levelsN, |, to aII,ow changLes irF.zi’m”'“/NL. We lowered below the interlevel spacing in the dot. A different

. ! . - behavior can be expected when there is a set of overlapping
will also fix the total bandwidth of the dow=1, so that the o105 e at jow energies within the dot—i.e., an ensemble
level spacing(assumed to be uniformis also decreasing,

SE—WI(N,~1). This way of proceeding allows us to inter- of levels of individual width greater than their separation,

olate from the few, well-separated levels, the situation reI-F > oE—which act together as a single effective level with
P ' par: ' : enhanced coupling to the leake typical bandwidth of this
evant for small quantum dots in the Kondo regime, to the

) . set of level should also be smaller than the charging energy
case of larger dots with small level spacing and many Ievelsrhe presence of broad resonances near the Fermi level can

Ne, .Wh'Ch shows only Cou!omb blockade. be relevant to some experimental situatioh® Note that the
Figure 1 demonstrates indeed how the low-temperature

local density of states evolves frold, =1 (single level:
regular Kondo effegtto N = (continuum of levels: Cou-
lomb blockade only In particular the rapid suppression of
the Kondo peak for diminishing values Bfat increasindN,
is in accordance with our previous discussion of the Kondo L5
temperature, Eq.35). e
The temperature dependence of the electronic spectrum i<,
presented for the three-level cabg=3 in Fig. 2. When K~ 1
temperature is lowered, the zero-frequency density of state:fg/
starts diminishingby Coulomb blockade of states with dif-
ferent charge One then reaches a minimum, befgrg0) 0.5
begins shooting up, towards the unitarity lirffiriedel’s sum
rule) at zero temperature.
It is useful to compare this evolution of the density of

2 T T T T T T

0:0001 0.001 0,01

states to the variations of the conductar@®€T,N,) with 0 0.1 0.2 T 0.3 0.4 0.5
temperatures, Fig. 3. This figure illustrates the reduction of
the Kondo temperature with by the downward shifting of FIG. 3. Conductancé&(T,N,) in units of e?/h for the same

the minimum of conductance. The Coulomb blockade isparameters as in Fig. 1 as a function of temperature; curves with
present at higher temperature, as shown by the decrease 0f=1,3,5¢ follow from top to bottom in the extreme left of the
G(T) for T(<T<E} upon IoweringT.16 For the last curve plot. Inset:G(T,N_=1) in temperature-logarithmic scale.
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conductance distributions for open ballistic quantum dotscl . Actually, a capacitive coupling persists between this
estimated from random matrix theory, are quite br&®.  fermion and all the other ones, but this influence gets frozen
We give first some qualitative arguments in order to describet low temperature. As the conductance through the dot is
the new effects expected in this regime and then presemsbtained from the Green’s function

explicit calculations using the integral equations.

1
I _ t _ /At
1. Inverse crossover from the Kondo effect to Coulomb blockade GdOC(T)= N, 2 <dpa(0)dp’o( T)>—<C10(0)Clo( 7')>'
pp

In practical situations encountered in quantum dots, the (40)
single-level Kondo temperaturB, is usually much smaller
than the level spacingE (which is typically comparable to
E.). Therefore Coulomb blockade occuitit does) inevi-
tably before the Kondo effect sets in, as was shown at lengt
in the previous section. There is, however, a simple mechak
nism that allows us to obtain Kondo temperatuggeater
than both level spacing and renormalized Coulomb energy —E
EZ . The idea is that when the individual level widthex- Toe0= Toexr< - 2/\/NCF)’
ceeds the interlevel spacirtE, many levels are involved in L
the formation of the Kondo resonance. This leads to a “mul-as discussed in the introductory part of this sectioecause

one gets a full Kondo effect and a complete restoration of
unitary conductance at low temperature. Furthermore, the
idth of this effective level is simpl\N, I", as one checks by
serting CIU in Eq. (4). This leads then to an enhanced
ondo temperature

(41

tilevel Kondo temperature?>* SE=0 in this limiting case, one hasqs;=N,).
We can easily check that our self-consistent scheme pre-
Tmulti__ exp< _ mE. ) (39) serves this interesting property of the model. Indeed, when
K 0 2MNgi ) all levels €, are exactly degenerat&=0), one gets from

Eqg. (27) the f-electron Green's functionG¢(iw)=[iw
=3(iw)] L. We obtain therefore the Kondo effect of a
single effective levef’

The following section will allow us to make this discus-

which can be greatly enhanced with respect to the single
level estimate, Eq(35), by the presence of many levels
Nefi=>1 acting togethefincreasing the number of channels

A might also contributes to this effecThis way of enhanc- sion more meaningful by studying the more realistic case of

ing the Kondo temperature allows us to obtain a new regim% : - :
- uantum dot in the regimeé= SE, corresponding to nearl
whereTU>>E* | 6E, so that the Kondo effect can now oc- de(Jgenerate levels. g P g y

cur beforethe Coulomb blockadéwhen lowering the tem-
peraturg, in aninversemanner as observed traditionally in 3. Inverse crossover: Illustration
guantum dots. The fact that the Coulomb energy can be ] ) ) )
strongly renormalized to smaller values adds credibility to We now illustrate the inverse crossover discussed qualita-
this idea. One further notes that, at even lower temperaturelVely in Sec. IV C 1 by solving our integral equations in the
a Kondo peak associated with the formation of a resonanceedimel'=JE, where multilevel effects play an important
which involves only one electronic state in the dot will ulti- role. We will assume here th&t<E. so that one can neglect
mately emerge. One therefore has a “two-stage Kondo efthe single-level Kondo effect at low temperatusee, how-
fect” (if the single-level Kondo temperature is not vanish- 8ver, the next sectionFor this computation, we have fixed
ingly smal). I'=0.04 and takerN, =9 states in the dot, varying the in-
In order to be more precise, we will first give a concreteterlevel spacing fromSE=0 (exactly degenerate level case
example with a limiting case that one can understand indeconsidered in the previous paragraph 6E=0.01<I" (pos-
pendently of any approximation scheme. Then, we will illus-Sibility of multilevel effec) to SE=0.08>I" (absence of

trate in detail this “inverse crossover” using our integral Multilevel effecl. . . .
equations. The low-temperature local density of states displayed in

Fig. 4 shows the expected multilevel enhanced Kondo peak
2. Limit of exactly degenerate levels at SE=0 corresponding to formul&1). Upon increasing
the level spacing téE=0.01, Coulomb blockade sets in at a
scaleEX <Ti''"": however, coherence effects remain around
TRU! (since we are in a regime withE<T"). This results in
a surprising splitting of the Kondo resonance at low energy.
The last curve is taken withE=0.08>T", so that no multi-
level Kondo effect is possible, and only Coulomb blockade is

We consider here the extreme limit in whibh levels in
the dot are simultaneously put to zewgy=0 for all p (the
total bandwidthW is therefore also zejoWe can formulate
the model after a redefinition of the fermionic operat@nsi-
tary transformation{d, }—{cl,}, such that

1 M observed. Another interesting consequence of this phenom-
I — 2 df enon is that the temperature dependence of the conductance
Cly po - 39 ¢ _ -
VN p=1 is reversedwith respect to the usual signature of the Kondo

effect in quantum dots—i.e., to Fig. 3. Indeed, upon lowering
In this case, the remaining fermionic degrees of freedomthe temperature, one notices an initial increase of the con-
C,Tw for p>1, simply decouple from the problem, leaving an ductance(due to the multilevel Kondo effegtthena sharp
effective single-leve\nderson model describing the fermion decrease of the conductance because of the Coulomb block-
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0.8 T T T T T 2 T T

0.6 =

G(T)

0.2

w 0 ' 0.1 ' 0.2 ' 0.3

FIG. 4. Density of statepy(w) on the dot forE.,=1, I'
=0.04, inverse temperatur@=400, N, =9 states, and different FIG. 6. Conductanc&s(T) in the caseN_ =5, I'=0.1, and
values of the interlevel spacingE=0,0.01,0.08. various level spacingsfE=0,0.025,0.05,0.1,0.25.

ade. This is illustrated by the middle curve in Fig. 5. group argumgrﬁ? The Iimiting- cases stu_diedunki)efore are ob-
One can also perform a general evaluation of the multiously contained in the previous equatioF"™" reduces to
level Kondo temperature, starting from the leading behavior! « for widely separated level5E large and in the opposite
of the f Green’s function at high temperature: limit of exactly degenerate levelr if W<T""), TR""
=To(Tk/To)™, consistently with Eq.(41). In general,
TR is enhanced with respect to the single-level Kondo
temperaturelc . As an example, formuléd4) shows that in
_ the regime SE<TRPU"<W<E_, one obtains thenTj""
Equation(28) then leads t&f ~Toexf — mE.E/(2NT TR ], so that the number of effec-
AT ) ) tive levels taking part to the multilevel Kondo resonance is
aiv)=—"— In vl _ (43) Nets=TU/ SE, as discussed qualitatively in E(BS).
T 5 ,,2+(|Ep|+'|'0)2 We conclude this paragraph by summing up the physical
) ) ) picture that leads to the observed nonmonotonous conduc-
The Kondo temperature is reached _When th|s_kernel_|s of th&ynce. In the case of many overlapping resonances, a quan-
order of £, so that one finds the final equation which de-m dot can be described as a small metallic grain dominated
terminesT"": by Coulomb blockade at low temperature, which implies a
vanishing zero-frequency density of states. Upon raising the
temperature, many different charge states become available
by the thermal smearing of the Coulomb blockade, and the
conductance is rapidly increasing on a scale of the order of
whereTy is the single-level Kondo temperatui&s). A simi- EZ (which is also the typical size of the dip observed in the
lar result was obtained previously by a renormalizationsplit Kondo peak Due to the large single-level width con-
sidered in this regime, all these energy levels can then act
2 - . . - - coherently as a localized spin degree of freedom that under-
goes the Kondo effect. This explains the upturn of the con-
ductance when temperature reaches the Kondo effétdy.

1
loc,; — E:
Gy (Iw)_NL pio—e,

(42

2
; (44)

H (TE‘Ulti)2+|Ep|2 B k
To

b (TPUH24 (|ey+To)?2

1.5 —
4. Two-stage Kondo effect

Finally we consider again a multilevel cag&<I", but

E.‘ - i now withI'<E_, so that the single-level Kondo resonance is
E‘b’ accessible to the low-temperature regime. Therefore, one
witnesses a further increase of the conductance at low tem-

05k 1 perature, taking place after the inverse Kondo-to-Coulomb

crossover that we discussed previously. The occurrence of
such a “two-stage Kondo effect” is depicted for the conduc-
. | . | . | . tances shown in Fig. 6. For this calculation, we have taken
0 0.05 0.1 0.15 0.2 N_=5 levels,I'=0.1, and various level spacings between
T zero and 2.b.
The two curves with &2SE<I" show indeed this two-
FIG. 5. Conductanc&(T) for the same parameters as in Fig. 4. stage Kondo effect: a first rise of the conductance at high
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2 - - - the charging energy; therefore, the zone boundaries that lo-
cate the different regimes will not be determined here. How-
ever, this can be done in practice by solving the integral
1.5b - equations, as discussed in the main body of the paper. Also it
would be interesting to perform a full renormalization group
analysis of the renormalization of boftx andE} along the

1 _ lines of Refs. 31 and 51.

The occurrence of Kondo effect is signaled by a nonmo-
notonous temperature dependence of the conductance and is
observable atl’<dSE for temperatures smaller than the
single-level Kondo temperaturg given by Eq.(35). De-
pending on the relative values of level spaciftg and Cou-

0 , ! , ! , lomb energyE., Coulomb blockade might also be present
0 0.05 0.1 0.15 above the Kondo temperature, which is the usual experimen-
T tal situation encountered in quantum dots. We emphasize that
if T" is much smaller tharE., the Kondo temperature is
=0.1, andSE=0.015. Upper curve: similar model, but ten addi- e_xtrem_ely small and the Kondo effect inobservable in_ prac-
tional levels (with larger spacingsE’=0.2) have been superim- t|ge; this corresponds to weakly coupled dots, and this situ-
posed to the previous ones. ation shows only Coulomb blockade. In the cae<I" we
have defined a region “multilevel” which corresponds actu-
ally to various regimes discussed previously. This describes
the inverse crossovékKondo to Coulomb blockadeas well
as the two-stage Kondo effect shown in Sec. IV C 4. This
region can also imply that the Kondo effect is observed in
: o . the usual manner, but with a Kondo temperature greater than
that was |Ilus_trated in Fig. 3 in Sec. _IV B3. the single-level estimate. Note that the Igondo effgect involv-

A last po_|r_1t that was chgcked is that our resu_lts ar‘%ng many levels can also occur in dots with an even number
weakly sensitive to the addition of more levels outside theOf electrons, in a similar manner to the Kondo resonance
energy window of widtH™. This calculation is shown in Fig. which arises at a singlet-triplet crossing in an applied mag-
7 netic field>? Finally, the regionI'>E, of the diagram(de-
noted “Coherent) is associated with large conductances that
are weakly modulated with temperature or applied gate volt-

A sketch of the different regimes analyzed in this paper isage.
given in Fig. 8, as a function of the level spaciri, and
single-level width,['. We assume that the number of elec- V. CONCLUSIONS

trons in the dot is odd, so that the ground state, in the ab- |, this paper we have presented a method of calculation
sence of coupling to the leads, is degenerate. The ransition syrongly correlated mesoscopic systems in terms of a col-
between different regimes is a smooth crossover. We will N0fgctive phase variable and the quasiparticle degrees of free-
discuss in the following the effect of the renormalization of yo1, The scheme is valid both for the study of the Coulomb
blockade regime and of the Kondo effect.
IVE. We have shown examples of the crossover between a
— Coulomb blockade regime at temperatures below the charg-
14 ing energy, and the formation of a Kondo resonance at tem-
peratures lower than the separation between levels within the

FIG. 7. Lower curve: conductand®(T) in the caseN, =5, I’

temperature due to the multilevel resonanceTatTiu'"
then the Coulomb blockade a@t~E}, and then a further
increase aflf ~ Ty (smallest scale of the problgniThe last
two curves, withdE=0.1,0.25, show the usual crossover

5. Summary of the different regimes of transport

Kondo dot. In addition, we have described an inverse regime, where
gl a Kondo-like resonance is split at low energies by Coulomb
gfgcll‘(’;‘lg blockade effects. This regime is associated with the existence

of many conduction channels or overlapping resonances
within the dot, which contribute collectively to the Kondo
effect. The coherence of this state is destroyed at low ener-

FIG. 8. Sketch of the different regimes discussed in the paper, ad'es by Coulomb ef,reCtS' A_t even. lower energ'_es_' a narrow
function of the charging energc, level spacing within the dot, Kondo peak, associated with a single level within the dot,

SE, and level widthsT", with a constant number of levels. The Will emerge. _

notation “Kondo” corresponds to a single-level Kondo effect. The ~ Because the self-consistent approach used here was suc-
region “Kondo+ Coulomb-Blockade” is the usual situation in C€ssfully applied to a model of strongly correlated electrons
quantum dots. The “Multilevel” region is also associated to the (Hubbard modelin a previous work? we can also envision
Kondo effect, but with important renormalization of the Kondo possible applications of this work to the physics of granular
temperature, as discussed in the text. The “Coherent” regime stand®aterials or quantum dot arrays in the vicinity of the metal-
for a temperature independent conductance. insulator transition>°® Disorder effects, which were ne-

1 SEIE,
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