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Fano resonances in the overlapping regime
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The line shape of resonances in the overlapping regime is studied by using the eigenvalues and eigenfunc-

tions of the effective Hamiltonian of an open quantum system. A generalized expressionq̃k(E) for the Fano
parameter of the resonance statek is derived that contains the interaction of the statek with neighbored states
lÞk via the continuum. It is energy dependent since the coupling coefficients between the statek and the
continuum show a resonancelike behavior at the energies of the neighbored stateslÞk. Under certain condi-

tions, the energy dependentq̃k(E) are equivalent to the generalized complex energy independent Fano param-
eters that are introduced by Kobayashiet al. in analyzing experimental data. Long-lived states appear mostly
isolated from one another in the cross section, also when they are overlapped by short-lived resonance states.

The q̃k(E) of narrow resonances allow therefore to study the complicated interplay between different time
scales in the regime of overlapping resonance states by controlling them as a function of an external parameter.

DOI: 10.1103/PhysRevB.68.245305 PACS number~s!: 73.21.La, 03.65.Nk, 32.80.Dz, 72.15.Qm
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The line shape of resonances is studied in many diffe
physical systems. A resonance has a symmetrical B
Wigner line shape when it is far in energy from other res
nances and from particle decay thresholds, and when the
no interference with any smooth background. Such a si
tion is seldom met in realistic systems. The interference w
an energy independent background is taken into accoun
the approach suggested by Fano1 for the description of au-
toionizing atomic states. The parametrization of the cr
section can explain the asymmetry of the line shape of
lated resonances. This method was extended later to
many-channel problem and to the overlapping between br
and narrow resonances, see Refs. 2, 3 and the recent pa4

Deviations from the Breit-Wigner resonance form app
also when the width of the resonance state itself is ene
dependent. This happens, above all, in the neighborhoo
particle decay thresholds. Under certain conditions,
Breit-Wigner resonance shape turns over even into a cu5

Furthermore, the tail of bound states~with position below the
first decay threshold! can be seen in the cross section
positive energy and may even interfere with resonance st
lying at these positive energies.6

Energy dependent effects may appear, however, also
from thresholds when the individual resonance states sta
overlap.6 Here, interferences between the different resona
states having different lifetimes, as well as with a smo
background may cause altogether a complicated behavio
the cross section in the neighborhood of the narrow re
nance states. Experimental studies are performed on m
wave cavities as a function of the degree of opening of
cavity.7 In atoms, laser-induced structures are studied th
retically in the non-Hermitian Hamiltonian approach.8 In
these cases, the line shape can be controlled by means o
parameters of the laser field. A systematic experimental st
is not performed, up to now.

The situation is especially complicated when the narr
resonance states are well separated from one another i
0163-1829/2003/68~24!/245305~6!/$20.00 68 2453
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cross section and, nevertheless, overlapped by one or m
broad ones and, furthermore, the cross section contain
smooth~energy independent! part. The line shape of thes
resonances is studied in detail experimentally and theo
cally in atoms with Rydberg series overlapped by an intrud
for example9 and the textbook.3

Another example are the neutron resonances in heavy
clei, the line shape of which is not studied up to now. Th
represent a realistic example of a Gaussian orthogonal
semble. These resonances do not decay according to a
ponential law as shown theoretically10 as well as
experimentally.11 Thus, their line shape cannot be of Bre
Wigner or Fano type with energy-independent coupling
efficients between resonance states and continuum altho
the resonances are well separated in energy from one
other.

Recently, the line shape of resonances has been discu
in experiments on electron transport through mesosco
systems.12–15The advantage of these experiments consist
the fact that the key parameters are tuned, and the inte
ence leading to Fano resonances is studied in greater d
In Ref. 15, the conductance through a quantum dot in
Aharonov-Bohm interferometer is controlled by varying t
strength of the magnetic field. The authors claim that
Fano parameterq has to be extended to a complex numb
The physical meaning of this result remains an open pr
lem. In other papers, the effects of the signs of the dot-l
matrix elements onto the appearance of transmission z
and the phases of the transmission amplitudes have b
studied theoretically, e.g., Refs. 16–18. These studies do
use the eigenfunctions of the Hamiltonian of the system
calculating the coupling matrix elements. Such a study
indeed justified by the fact that the profile of the Fano re
nances is independent of the special properties of
system.1 However, the simple relation between the stand
Fano parameters and the coupling coefficients between
tem and environment holds only in the regime of nonov
©2003 The American Physical Society05-1
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lapping resonances. In the overlapping regime, the coup
coefficients are energy dependent.6,19

The line shape of resonances in the overlapping regim
studied in Ref. 8 for laser-induced structures in atoms. T
formalism used is the effective Hamiltonian describing op
quantum systems. It can be applied to the study of the re
nance phenomena in the non-overlapping regime as we
in the overlapping regime.6 The formalism of the effective
Hamiltonian can be used also for the description of quan
dots. It gives reliable results not only when the dot-lead m
trix elements are small but also when they are large.6,7,20An
interesting feature, proven experimentally,7 is that narrow
resonances appear for both small and large dot-lead~or
cavity-lead! coupling coefficients. In the last case, they c
exist with broad resonances and appear mostly as dips in
transmission.20,21

It is the aim of the present paper to study the line shap
resonances in the overlapping regime on the basis of
formalism of the effective HamiltonianH. This Hamiltonian
appears in the subspace of discrete states after embedd
into the continuum~subspace of scattering states!. It contains
the Hamiltonian of the corresponding closed system as w
as the coupling matrix elements between system and e
ronment. It is non-Hermitian and its eigenvaluesẼk and

eigenfunctionsF̃k are complex and energy dependent. T
eigenvalues provide the poles of theS matrix and the eigen-
functions are used for the calculation of the coupling ma
elements between system and environment, i.e., for the
merators of theS matrix in pole representation. The forma
ism is described in detail in the recent review.6

In the overlapping regime, different time scales exist
multaneously due to the different crossings of the resona
states in the complex plane that are avoided as a rule.6 The
avoided crossings can be traced, as a function of a ce
parameter, in the trajectories of the eigenvaluesẼk5Ẽk

2( i /2)G̃k of the non-Hermitian effective HamiltonianH.
Characteristic of the motion of the poles of theS matrix are
the following generic results obtained for very different sy
tems in the overlapping regime: the trajectories of theS ma-
trix poles avoid crossing with the only exception of exa
crossing when theS matrix has a double~or multiple! pole.
At the avoided crossing, either level repulsion or level attr
tion occurs. The first case is caused by a predominantly
interaction between the crossing states and is accompa
by the tendency to form a uniform time scale of the syste
Level attraction occurs, however, when the interaction
dominated by its imaginary part arising from the coupli
via the continuum. It is accompanied by the formation
different time scales in the system: while some of the sta
decouple~partly! from the continuum and become long live
~trapped!, a few of the states become short lived and wr
the long-lived ones in the cross section. The dynamics
quantum systems at high level density is determined by
interplay of these two opposite tendencies.6 The Fano param-
eters reflect this interplay as will be shown in the followin

Let us recall theS matrix for an isolated resonance sta
k51 in the one-channel case,
24530
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S~E!512 i
W̃1

E2 Ẽ1

. ~1!

Here, Ẽ15Ẽ12 ( i /2)G̃1 is the complex energy of the reso
nance state~eigenvalue of the effective Hamiltonian! andẼ1

andG̃1 are its position in energy and width, respectively. T
W̃1 are related to the coupling matrix elements between
resonance state and the continuum that are calculated
means of the eigenfunctions of the effective Hamiltonia
From the unitarity of theS matrix follows W̃15G̃1 for an
isolated resonance state, since Eq.~1! can, in the one-
resonance-one-channel case, then be written as

S~E!5
E2 Ẽ1*

E2 Ẽ1

. ~2!

TheSmatrix ~2! is unitary. In the following, we assume tha
Ẽ1 is nearly constant inside the energy range of interest.

The unitary representation of theS matrix in the one-
channel case with two resonance states (k51,2) and a
smooth reaction part can be written as

S~E!5exp~2id!•
E2 Ẽ1*

E2 Ẽ1

•

E2 Ẽ2*

E2 Ẽ2

~3!

5exp$2i @d1d1~E!1d2~E!#%. ~4!

Here,d is the phase shift related to the smooth part and

dk~E!52arccot«k ~5!

with

«k5
2~E2Ẽk!

G̃k

. ~6!

Using these expressions, the cross section reads

s~E!52@12ReS~E!#

52@12cos„2d12d1~E!12d2~E!…#

54 sin2
„d1d1~E!1d2~E!…. ~7!

In the vicinity of the energyẼ1 of the resonance state 1 on
gets from Eq.~7!

s~E!54@sinh~E!cosd1~E!1sind1~E!cosh~E!#2

54 sin2h~E!
@coth~E!1cotd1~E!#2

sec2d1~E!

54 sin2h~E!
~ q̃1~E!1«1!2

«1
211

, ~8!

whereh(E)[d1d2(E) and

q̃1~E!52coth~E!5
«2cotd11

cotd2«2
. ~9!
5-2
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FANO RESONANCES IN THE OVERLAPPING REGIME PHYSICAL REVIEW B68, 245305 ~2003!
Equation~8! is the Fano representation of the cross s
tion in the neighborhood of the energyẼ1 of the resonance
state 1 with interference contributions from the resona
state 2 and the smooth reaction part. The Fano parameteq̃1

is an energy dependent function. It isq̃1(E)5«2 when d
→0, and the energy dependence plays a role only for o
lapping resonance states. For nonoverlapping reson
states 1 and 2~i.e.,«2→6` at the energyE of the resonance
state 1! follows q̃152cotd independently ofE in agreement
with Ref. 1. In the other extreme case of a very broad re
nance state 2 («2→0) q̃15tand is also independent ofE but
differs from the foregoing case by the additional phasep/2.
It is easy to generalize Eq.~8! to include the contributions
from additional resonance states@h(E)5d1(k.1dk(E)#.

In the standard theory, the Fano parameter is an ene
independent parameter. It is necessary therefore to con
the origin of the energy dependence of Eq.~9! in detail and,
furthermore, to find the relation between the energ
independent parametrization and the energy dependent

First we will show that the energy dependence of theq̃ is
caused by the energy dependence of the coupling coeffic
between system and continuum. Assumingd→0, two reso-
nance states and one common channel, the pole repres
tion

S~E!512 i (
k51,2

Uk

E2 Ẽk

~10!

of theSmatrix can be derived from Eq.~4! in different ways.
~i! Uk5Wk are energy independent,

Wk5G̃kS 12 i
G̃ lÞk

ẼlÞk2 Ẽk
D . ~11!

In deriving Eq.~11! from Eq.~3!, the standard representatio
of the term

G̃1G̃2

~E2 Ẽ1!~E2 Ẽ2!
5

G̃1G̃2

~E2 Ẽ1!~ Ẽ22 Ẽ1!
2

G̃1G̃2

~E2 Ẽ2!~ Ẽ22 Ẽ1!

is used. The cross section reads

s~E!5sa1

~q1«1!21A1

«1
211

1sa2

~q1«2!21A2

«2
211

1sb

~12!

with the parameters

q5«125
2~Ẽ12Ẽ2!

G̃12G̃2

, Ak5
G̃k

G̃ lÞk

~«12
2 11!12~12«12

2 !

~13!

and

sak5
4G̃ lÞk

~ G̃k2G̃ l !~«12
2 11!

, sb5
4

«12
2 11

~14!
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that are all energy independent. The parametric expres
~12! for the cross section is similar to that given in Ref. 2
for the case of one resonance state coupled to several de
ing channels. The parameterq can be considered as Fan
parameter. In our case of one resonance state couple
another one, the contributions to each resonance state in
~12! are modified by the additional termAk . According to
Eq. ~14!, it is sa11sa21sb50, and at least one of the
parameterssak is negative. This parameter has no physic
meaning at all. The two parametersq andAk are not defined
at a double pole of theSmatrix since they are singular whe
the double pole is approached along the real energy a
That means also theWk have, in this case, no physical mea
ing. The singularities in Eqs.~13! and ~14! appearing in ap-
proaching a double pole of theSmatrix cancel each other in
the expression for the cross section.

For overlapping resonance states withG̃2@G̃1 and uẼ1

2Ẽ2u,G̃2/2, it holds«12
2 ,1. In this case, theAk are posi-

tive and it is possible to introduce complex energ
independent Fano parameters

qk[q1 iAk
1/2 ~15!

in Eq. ~12! for the cross section,

s~E!5 (
k51,2

sak

uqk1«ku2

«k
211

1sb. ~16!

This is in analogy to the result obtained in Ref. 15 from t
analysis of experimental data. It is also similar to an expr
sion for the cross section obtained in a completely differ
approach.23

~ii ! Uk5W̃k are energy dependent,

W̃k5G̃kS 12 i
G̃ lÞk

2E2 Ẽk2 ẼlÞk
D . ~17!

In deriving Eq. ~17!, the nonstandard representation of t
term

G̃1G̃2

~E2 Ẽ1!~E2 Ẽ2!
5

G̃1G̃2

~E2 Ẽ1!~2E2 Ẽ12 Ẽ2!

1
G̃1G̃2

~E2 Ẽ2!~2E2 Ẽ12 Ẽ2!

is used. TheW̃k have a physical meaning also in the ove
lapping regime. They are the coupling coefficients betwe
the states of the system and the continuum that are calcu
for realistic systems in the framework of a unified descr
tion of structure and reaction aspects,6 i.e., by means of the
eigenfunctions of the effective Hamiltonian. As can be se
from Eq. ~17!, the energy dependence ofW̃k appears due to
its resonance behavior at the energy of another reson
statelÞk. This is in complete agreement with Eq.~9! for the
energy dependent Fano parameterq̃k(E): close to the energy
5-3



.

he
er
e
n

f

so
a

-

ere
the

or-
es.

ical

o
ce
its

n
a
nce
the
n-
n

ce

y
dent
case.

no

s a

o

st

A. I. MAGUNOV, I. ROTTER, AND S. I. STRAKHOVA PHYSICAL REVIEW B68, 245305 ~2003!
of the resonance state 1, the cross section is given by Eq~8!
with the Fano parameter~9!. Furthermore, theS matrix goes
over smoothly in

S5122i
G̃d

E2Ẽd1
i

2
G̃d

2
G̃d

2

S E2Ẽd1
i

2
G̃dD 2 ~18!

when Ẽ1→Ẽ2[Ẽd and G̃1→G̃2[G̃d ~double pole of theS
matrix, see Ref. 24!. The second term corresponds to t
usual linear term while the third term is quadratic. The int
ference between these two parts is illustrated in Fig. 1 wh
the cross section is shown for the case of two resona
states with equal positionsẼd and widthsG̃d , coupled to one
channel, for differentd. The asymmetry of the line shape o
both peaks is, in the cased50 @Fig. 1~a!#, caused solely by
the overlapping of the two resonance states. For compari
the cross section with the two resonance states without
coupling between them is also shown in Fig. 1~dashed
curves!.

The discussion of the two equivalent representations~i!
and ~ii ! of the S matrix ~10! allows to discuss also the rela

FIG. 1. The cross section in the neighborhood of a double p
of theSmatrix (Ẽ15Ẽ2 andG̃15G̃2). The direct scattering phased
is: ~a! d50, ~b! d5(1/4)p, ~c! d5(1/2)p, ~d! d5(3/4)p. The
dashed curves correspond to the case of the two resonance
without any interaction between them.
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tion between the energy dependent Fano parameterq̃k(E),
Eq. ~9!, and the energy-independent one, Eq.~15!. The
energy-independent coupling coefficientsWk , Eq. ~11!, lose
their physical meaning in the overlapping regime, since h
the energy dependence of the coupling coefficients of
resonance states to the continuum cannot be neglected~see
Refs. 19 and 6 for numerical examples!. It is different from
that of theG̃k even in the one-channel case due to the bi
thogonality of the wave functions of the resonance stat6

Nevertheless, the two representations of theS matrix ~10!

with energy independentWk and energy dependentW̃k are
equivalent in almost all cases. At the double pole of theS

matrix, however, theWk have a singularity while theW̃k
behave smoothly. Sinces(E)5u12S(E)u2, the energy-
independent Fano parameters can be expressed byWk and
the energy dependent ones byW̃k . That means, also the
energy-independent Fano parameters lose their phys
meaning in the overlapping regime.

As can be seen from Eq.~9!, the energy dependent Fan
parameterq̃k(E) contains the influence from other resonan
states and the background without any contribution from
own G̃k . Also Ẽk is not directly involved in the expressio
for the q̃k(E). The q̃k(E) allows therefore to analyze, in
very transparent manner, the mutual influence of resona
states in the overlapping region in the neighborhood of
resonance statek. This is in contrast to the energy indepe
dent Fano parametersq that are more complicated for a
interpretation of the data. According to Eqs.~13! and ~15!,
they contain the contributions from neighboring resonan
states together with their own parameters.

In the multichannel case, the matrix elementsScc8 are of
the same structure as those given in Eq.~10! for the one-
channel case. The coupling coefficients

Uk
cc85W̃k

cc8[~W̃k
c!1/2~W̃k

c8!1/2 ~19!

in Scc8 are, generally, complex and energy dependent.6 In the
two-resonance case, theS matrix elements~with d50) are

Scc85dcc82 i (
k51,2

~W̃k
c!1/2~W̃k

c8!1/2

E2 Ẽk

2 iX12
cc8 . ~20!

Here, theX12
cc8}1/@(E2 Ẽ1)(E2 Ẽ2)# can be parametrized b

means of energy dependent as well as by energy-indepen
parameters in the same manner as in the one-channel
The energy-independent parameters have, however,
physical meaning at all in the overlapping regime.

We discuss now the behavior of theq̃k(E) in more detail.
It follows immediately from Eq.~9! that q̃1(E)50 at the
energy

E5Ẽ22 1
2 G̃2tand. ~21!

When this condition is fulfilled in the neighborhood ofẼ1

and G̃1!G̃2, then the narrow resonance state appears a
window-type resonance~dip! in the cross section (q

le

ates
5-4
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FANO RESONANCES IN THE OVERLAPPING REGIME PHYSICAL REVIEW B68, 245305 ~2003!
reversal25!, see Fig. 2~a!, full curve. It occurs, however, as
Breit-Wigner-type resonance when

E5Ẽ21 1
2 G̃2cotd ~22!

is fulfilled near Ẽ1, see Fig. 2~b!, full curve. In Fig. 2, the
narrow resonance 1 is overlapped by the broad resonan
(G̃150.1G̃2 ,Ẽ22Ẽ150.5G̃2 ,G̃11G̃251.1G̃2) and interferes
with the smooth reaction part. Fig. 2 remains almost
changed by varyingẼ2 and G̃2 and correspondinglyd0, as
long asG̃2@G̃1. We underline that the narrow resonance
appears in the cross section as an isolated peak in spite o
overlapping of the resonance state 1 with the broad re
nance state 2. The reason is that Eq.~22! is fulfilled close to

FIG. 2. The cross section in the vicinity of the resonance 1
G̃150.1G̃2 ,Ẽ22Ẽ150.5G̃2. Top: ~a! d5d052arctan«2(E5Ẽ1)
~full curve!, d5d020.5 ~dashed curve!, d5d010.5 ~dotted curve!.
~b! The same as in~a!, but d05arccot«2(E5Ẽ1). Bottom: The
contour plot of the cross section.
24530
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the energy of the narrow resonance, but not Eq.~21!, due to
the interference with the smooth part.

The contour plot of the cross section~Fig. 2 bottom!
shows that its resonance structure varies periodically w
the phased of the background for fixed energiesE. Accord-

ingly, the asymmetry of the line shape varies betweenq̃1

→2` and q̃1→1` periodically @as can be seen also d

rectly from the analytical expression~9! for q̃1]. Such a be-
havior is observed experimentally in the conductance pe
through a quantum dot as a function of the strength of
magnetic field15 ~that has obviously a small influence on th
position and width of the narrow resonances!. The complex
Fano parameters introduced in Ref. 15 from a fit of the da
simulate the overlapping of the studied narrow resona
state by a broad resonance state and the phase depende

q̃k(E) in the overlapping regime. This conclusion follow
from the numerical study shown in Fig. 2 as well as from t
analytical study resulting in Eqs.~15! and~16! for this case.

In comparing our theoretical results with experimen
ones, we should point to the fact that the theoretical stud
given above are based on the one-channelSmatrix while the
transmission process needs at least two openings of the
ity. We underline however first that we did not try to com
pare theoretical and experimental results quantitatively. T
aim was to find a general justification for introducing a co
plex Fano parameter~as it is done in the analysis of exper
mental data15! and to understand the physical origin of i
imaginary part. Second, theS matrix for transmission
through quantum billiards is derived in the tight-binding a
proach in Ref. 20. It is shown that the resonant peaks of
conductance are related to the poles of theS matrix that are
the eigenvalues of an effective non-Hermitian Hamilton o
erator. The line shape of transmission peaks can be stu
therefore by using theS matrix formalism. When there is
only one wave in each incoming and outgoing channel a
the difference between them is only the flux direction, the
one-channel representation of theS matrix for the transmis-
sion is justified.

In both representations, Eqs.~9! and ~15!, the Fano pa-
rameter is generalized when applied to resonances in
overlapping regime. Both representations are equivalen
most cases. The difference between both generalizations
be seen best when applied to an analysis of the data in
vicinity of the energy of one of the resonance states. T
energy-independent complex parameter~15! contains the en-
ergies and widths of both resonance states, so that it is d
cult to receive spectroscopic information. The energy dep
dent value~9!, however, contains the influence of only th
other resonance state allowing an analysis in a very trans
ent manner. This property qualifies the energy depend
Fano parameter~9! for the description of resonances in th
overlapping regime. We underline, however, that theq̃k(E)
are not suitable for the parametrization of the cross sec
around a double pole of theS matrix due to the quadratic
term appearing in Eq.~18!. Here, the cross section can b
parametrized ass(E)516 cos2d@„q̃d(E)1«d…

2/(«d
211)2#

with q̃d(E)5(1/2)(12«d
2)tand and«1→«2[«d .

r

5-5
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A. I. MAGUNOV, I. ROTTER, AND S. I. STRAKHOVA PHYSICAL REVIEW B68, 245305 ~2003!
It would be interesting to look for the broad resonan
state~s! and to study its~their! influence on other narrow
resonances in detail. According to our study, the broad re
nance may exist in the arm or it may coexist with the narr
resonances in the quantum dot itself. The last possibility
not be excluded theoretically. Quite on the contrary, it cor
sponds to the results obtained for other small quantum
tems where resonance states~eigenstates of the effectiv
Hamiltonian! of very different lifetimes are known to
coexist.6 An experimental study of this question would allo
to see generic features of open quantum systems als
quantum dots. Furthermore, results from the interference
tween two resonance states in the very neighborhood
double pole of theS matrix ~that can be studied in a sym
metrical device with two quantum dots! will prove the reso-
nance scenario described by an effective Hamiltonian as
cussed in the present paper.

Finally, we add a few remarks on the line shape of re
nances in mesoscopic systems. First, there is an influenc
the temperature as discussed also in Ref. 15 and, second
interaction between the electrons and the importance of
electron spin are not discussed in the present paper. As to
second point, we do not discuss the origin of the resonan
in a special system. We rather consider generic features
pearing in the regime of overlapping resonances. These
tures are independent of any interaction between the c
stituents of the system which is understood to be taken
account by the diagonalization of the effective Hamiltonia
For details see Ref. 6. As to the temperature dependenc
leads in any case to a smearing of the individual resonan
.
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That means, the differences between the widths of the
considered resonance states become smaller,G̃1→G̃2. Ac-
cording to Eqs.~13! and ~15!, this meansuqku→` in agree-
ment with the experimental observation.15 For a direct com-
parison of theoretical and experimental results, it
necessary to perform calculations for the special interfero
eter used in Ref. 15. Such a calculation goes beyond
scope of the present study.

Summarizing, we conclude that the line shape of narr
resonances in the overlapping regime contains informa
on generic properties of open quantum systems. One of th
properties is the existence of different time scales that
involved in the eigenvalues and eigenfunctions of the eff
tive Hamiltonian of the system. A control by external para
eters allows to trace their formation by opening the syst
and to study their interesting interplay. A direct experimen
study of the generic resonance features in, e.g., atomic nu
is difficult due to the strong residual interaction between
participating particles in nuclei. Quantum dots are mu
more suitable for such a study due to the flexibility in co
trolling the system by means of different external para
eters. Further experimental as well as theoretical studies
highly desirable for both a better understanding of gene
properties of open quantum systems and the constructio
quantum dots with special properties.
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