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The line shape of resonances in the overlapping regime is studied by using the eigenvalues and eigenfunc-
tions of the effective Hamiltonian of an open quantum system. A generalized expregéi)nfor the Fano
parameter of the resonance sthtie derived that contains the interaction of the stateith neighbored states
| #k via the continuum. It is energy dependent since the coupling coefficients between thk atatehe
continuum show a resonancelike behavior at the energies of the neighbored statddnder certain condi-
tions, the energy dependemt(E) are equivalent to the generalized complex energy independent Fano param-
eters that are introduced by Kobayashial. in analyzing experimental data. Long-lived states appear mostly
isolated from one another in the cross section, also when they are overlapped by short-lived resonance states.
The qy(E) of narrow resonances allow therefore to study the complicated interplay between different time
scales in the regime of overlapping resonance states by controlling them as a function of an external parameter.
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The line shape of resonances is studied in many differentross section and, nevertheless, overlapped by one or more
physical systems. A resonance has a symmetrical Breitbroad ones and, furthermore, the cross section contains a
Wigner line shape when it is far in energy from other reso-smooth(energy independenpart. The line shape of these
nances and from particle decay thresholds, and when there issonances is studied in detail experimentally and theoreti-
no interference with any smooth background. Such a situaeally in atoms with Rydberg series overlapped by an intruder,
tion is seldom met in realistic systems. The interference wittfor examplé and the textbook.
an energy independent background is taken into account in Another example are the neutron resonances in heavy nu-
the approach suggested by Fhrior the description of au- clei, the line shape of which is not studied up to now. They
toionizing atomic states. The parametrization of the crossepresent a realistic example of a Gaussian orthogonal en-
section can explain the asymmetry of the line shape of isosemble. These resonances do not decay according to an ex-
lated resonances. This method was extended later to thonential law as shown theoreticdfly as well as
many-channel problem and to the overlapping between broaexperimentally! Thus, their line shape cannot be of Breit-
and narrow resonances, see Refs. 2, 3 and the recent fapeiigner or Fano type with energy-independent coupling co-

Deviations from the Breit-Wigner resonance form appearefficients between resonance states and continuum although
also when the width of the resonance state itself is energthe resonances are well separated in energy from one an-
dependent. This happens, above all, in the neighborhood aither.
particle decay thresholds. Under certain conditions, the Recently, the line shape of resonances has been discussed
Breit-Wigner resonance shape turns over even into a tuspin experiments on electron transport through mesoscopic
Furthermore, the tail of bound stat@sith position below the  systems>~°The advantage of these experiments consists in
first decay thresholdcan be seen in the cross section atthe fact that the key parameters are tuned, and the interfer-
positive energy and may even interfere with resonance statesce leading to Fano resonances is studied in greater detail.
lying at these positive energiés. In Ref. 15, the conductance through a quantum dot in an

Energy dependent effects may appear, however, also faharonov-Bohm interferometer is controlled by varying the
from thresholds when the individual resonance states start tsirength of the magnetic field. The authors claim that the
overlap® Here, interferences between the different resonanc€ano parameteq has to be extended to a complex number.
states having different lifetimes, as well as with a smoothThe physical meaning of this result remains an open prob-
background may cause altogether a complicated behavior &m. In other papers, the effects of the signs of the dot-lead
the cross section in the neighborhood of the narrow resomatrix elements onto the appearance of transmission zeros
nance states. Experimental studies are performed on micrand the phases of the transmission amplitudes have been
wave cavities as a function of the degree of opening of thestudied theoretically, e.g., Refs. 16—18. These studies do not
cavity.” In atoms, laser-induced structures are studied theodse the eigenfunctions of the Hamiltonian of the system in
retically in the non-Hermitian Hamiltonian approathn calculating the coupling matrix elements. Such a study is
these cases, the line shape can be controlled by means of timeleed justified by the fact that the profile of the Fano reso-
parameters of the laser field. A systematic experimental studgances is independent of the special properties of the
is not performed, up to now. systemt However, the simple relation between the standard

The situation is especially complicated when the narrowFano parameters and the coupling coefficients between sys-
resonance states are well separated from one another in them and environment holds only in the regime of nonover-
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lapping resonances. In the overlapping regime, the coupling W

coefficients are energy dependért. S(E)=1—i—=-. 1)
The line shape of resonances in the overlapping regime is 1

studied in Ref. 8 for laser-induced structures in atoms. Th?—lere,zlzﬁl— (i/2)f1 is the complex energy of the reso-

formalism used is the effective Hamiltonian describing open

guantum systems. It can be applied to the study of the reson—anEe statéeigenvalue of the effective Hamiltoniaand&,

nance phenomena in the non-overlapping regime as well {j‘%ndf‘l are its position in energy and width, respectively. The
in the overlapping regimé& The formalism of the effective W, are related to the coupling matrix elements between the

Hamiltonian can be used also for the description of quantunieSenance state and the continuum that are calculated by

dots. It gives reliable results not only when the dot-lead ma/m€ans of the eigenfunctions of the effective Hamiltonian.

trix elements are small but also when they are 1&G&An  From the unitarity of theS matrix follows W, =1I"; for an
interesting feature, proven experimentdllig that narrow isolated resonance state, since Ef) can, in the one-
resonances appear for both small and large dot-lead resonance-one-channel case, then be written as
cavity-lead coupling coefficients. In the last case, they co- ~

exist with broad resonances and appear mostly as dips in the S(E)= E_fﬁ
transmissiorf>2 E-&

It is the aim of the present paper to study the line shape of _ ) ) )
resonances in the overlapping regime on the basis of thgh(_eSmatnx @) is unlt_ary. In the following, we as;ume that
formalism of the effective Hamiltonia#(. This Hamiltonian €1 1S nearly constant inside the energy range of interest.
appears in the subspace of discrete states after embedding EThe unitary representation of th matrix in the one-
into the continuun{subspace of scattering statds contains channel case with two resonance statks=1,2) and a
the Hamiltonian of the corresponding closed system as WeﬁmOOth reaction part can be written as

th ling matrix element tween tem and envi- ~ ~
as the coupling matrix elements between system and e E-& E-%

@)

ronment. It is non-Hermitian and its eigenvalués and S(E)=exp(2i 6)- 1. _ (3)

eigenfunctionsd, are complex and energy dependent. The E-& E-&

eigenvalues provide the poles of tBenatrix and the eigen- — expl2i[ 6+ 8,(E) + 5,(E)]} @
= 1 2 .

functions are used for the calculation of the coupling matrix

elements between system and environment, i.e., for the niHere, § is the phase shift related to the smooth part and

merators of theS matrix in pole representation. The formal-

ism is described in detail in the recent revigw. ok(E)= —arccoty 5)
In the overlapping regime, different time scales exist si—With

multaneously due to the different crossings of the resonance

states in the complex plane that are avoided as a°riike 2(E—T£k)

avoided crossings can be traced, as a function of a certain g=——=—".

parameter, in the trajectories of the eigenvalugs Ey Ty

—(i/2)I" of the non-Hermitian effective Hamiltoniafi. Using these expressions, the cross section reads

Characteristic of the motion of the poles of tBenatrix are

(6)

the following generic results obtained for very different sys- o(E)=2[1-ReS(E)]

tgms in the ov'erlappin.g regi.me: the trajectorie; of $hea- =2[1— 0825+ 28,(E)+268,(E))]

trix poles avoid crossing with the only exception of exact

crossing when th& matrix has a doubl¢or multiple) pole. =4 sirt(6+ 8,(E) + 8,(E)). (7

At the avoided crossing, either level repulsion or level attrac- o ~
tion occurs. The first case is caused by a predominantly red? the vicinity of the energyE, of the resonance state 1 one
interaction between the crossing states and is accompanié§ts from Eq(7)

by the tendency to form a uniform time scale of the system. o . 2
Level attraction occurs, however, when the interaction is o(E)=4[sinzn(E)cosdi(E)+sindy(E)cosy(E)]

dominated by its imaginary part arising from the coupling [cotp(E)+cotd,(E)]?

via the continuum. It is accompanied by the formation of =4 sirf5(E)

different time scales in the system: while some of the states se¢d(E)

decouplepartly) from the continuum and become long lived (Ga(E)+81)?

(trapped, a few of the states become short lived and wrap =4 siry(E) 92 £1 ' (8)
the long-lived ones in the cross section. The dynamics of a§+1

guantum systems at high level density is determined by the
interplay of these two opposite tendendiéihe Fano param- Wheren(E)= &+ &,(E) and
eters reflect this interplay as will be shown in the following.

Let us recall theS matrix for an isolated resonance state Qu(E)=—coty(E)= _
k=1 in the one-channel case, coté—ey

g,Cc0to+1

C)
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Equation(8) is the Fano representation of the cross secthat are all energy independent. The parametric expression

tion in the neighborhood of the ener@y of the resonance (12) for the cross section is similar to that given in Ref. 22
state 1 with interference contributions from the resonancéor the case of one resonance state coupled to several decay-

state 2 and the smooth reaction part. The Fano parameter

is an energy dependent function. It Gg(E)=¢, when §

—0, and the energy dependence plays a role only for ove
lapping resonance states. For nonoverlapping resonan
states 1 and #d.e.,e,— * 0 at the energ¥ of the resonance

state ] follows g, = — cots independently of in agreement

f

ing channels. The parametgrcan be considered as Fano
parameter. In our case of one resonance state coupled to
another one, the contributions to each resonance state in Eq.
12) are modified by the additional terd, . According to

9. (14), it is o1+ 0+ 0,=0, and at least one of the
parametersr,, is negative. This parameter has no physical
meaning at all. The two parameteyandA, are not defined

with Ref. 1. In the other extreme case of a very broad resog; 5 double pole of th& matrix since they are singular when

nance state 2¢(,—0) g, =tand is also independent @& but
differs from the foregoing case by the additional pha¢2.

It is easy to generalize E@8) to include the contributions

from additional resonance states(E) =6+ =y~ 16(E)].

the double pole is approached along the real energy axis.
That means also thé&/, have, in this case, no physical mean-
ing. The singularities in Eqg13) and (14) appearing in ap-
proaching a double pole of tHematrix cancel each other in

In the standard theory, the Fano parameter is an energyhe expression for the cross section.
independent parameter. It is necessary therefore to consider gqr overlapping resonance states Wﬁ|3>1~“1 and |E1

the origin of the energy dependence of E9).in detail and,

furthermore, to find the relation between the energy+ve and

—E2|<f2/2, it holds(efz<1. In this case, thé\, are posi-
it is possible to introduce complex energy-

independent parametrization and the energy dependent On%dependent Fano parameters

First we will show that the energy dependence ofdfis

caused by the energy dependence of the coupling coefficients

between system and continuum. Assumiig 0, two reso-

nance states and one common channel, the pole represeniia-£q. (12) for the cross section,

tion

of the Smatrix can be derived from E@) in different ways.
(i) U=W, are energy independent,

~ r
W, =T 1—i~Lk~). (11)
Errk— &k
In deriving Eq.(11) from Eq.(3), the standard representation
of the term
T, T, T,

(E-Z)(E-&) (E-&)(&—81) (E—&p)(E—21)

is used. The cross section reads

(q+ey)?+A;
8%4—1

(q+ey)?+A;
si-l—l

o(E)=0a Oa2 Op
(12)

with the parameters

Z(El_EZ) 1-‘k 2 2
=EpTm—=——=——, A==——(e7,+1)+2(1—¢
q=e1 T, K Flsﬁk( 2T 1)+2( 12

(13
and
4T 4
Oak= = = v Op= (14)
TT-T(e%+ 1) eft1

Q=q+iAL? (15)
|ak+el?
E)= — 4+ 0. 16
10 o(E) k;yzaak ey T (16)

This is in analogy to the result obtained in Ref. 15 from the
analysis of experimental data. It is also similar to an expres-
sion for the cross section obtained in a completely different
approactt?

(i) U,=W, are energy dependent,

17

Wk:’f‘k(l_i—~l#k~ )
2E— &~ &2k

In deriving Eg.(17), the nonstandard representation of the
term

(E-E)(E-&) (E-EDRE-&-&)

TR
(E-&)(2E-&—&)

is used. TheW, have a physical meaning also in the over-
lapping regime. They are the coupling coefficients between
the states of the system and the continuum that are calculated
for realistic systems in the framework of a unified descrip-
tion of structure and reaction aspetise., by means of the
eigenfunctions of the effective Hamiltonian. As can be seen

from Eq. (17), the energy dependence \6f, appears due to
its resonance behavior at the energy of another resonance
statel # k. This is in complete agreement with E§) for the

energy dependent Fano paraméig(rE): close to the energy
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tion between the energy dependent Fano parantg(ét),

Eq. (9), and the energy-independent one, Ef5). The
energy-independent coupling coefficiefftg, Eq. (11), lose
their physical meaning in the overlapping regime, since here
the energy dependence of the coupling coefficients of the
resonance states to the continuum cannot be negléseed
Refs. 19 and 6 for numerical examplett is different from
that of thel', even in the one-channel case due to the bior-
thogonality of the wave functions of the resonance states.
Nevertheless, the two representations of $eatrix (10)

with energy independent/, and energy dependeht, are
equivalent in almost all cases. At the double pole of e

matrix, however, thelV, have a singularity while theWk
behave smoothly. Sincer(E)=|1—S(E)|?, the energy-
independent Fano parameters can be expressed,bsand

the energy dependent ones Eyk. That means, also the
energy-independent Fano parameters lose their physical
meaning in the overlapping regime.

As can be seen from Eq9), the energy dependent Fano

parameten(E) contains the influence from other resonance
states and the background without any contribution from its

own I',. Also E, is not directly involved in the expression

for the q(E). Theqy(E) allows therefore to analyze, in a
very transparent manner, the mutual influence of resonance
states in the overlapping region in the neighborhood of the
resonance statie This is in contrast to the energy indepen-
dent Fano parameteig that are more complicated for an
€4 interpretation of the data. According to Eq43) and (15),
they contain the contributions from neighboring resonance
FIG. 1. The cross section in the neighborhood of a double poletateg together with their own parameters.
of the Smatrix (E;=E, andI';=TI",). The direct scattering phage In the multichannel case, the matrix elemeSts are of

is: (&) 6=0, (b) 6=(1/4)m, (c) 6=(1/2)m, (d) 6=(3/4)m. The  the same structure as those given in EX) for the one-
dashed curves correspond to the case of the two resonance stalg$innel case. The coupling coefficients

without any interaction between them.

PO =2 N W PO = N W b

O = N W O = N W

cc’ _\psec’ — \xe\ 12 a2
of the resonance state 1, the cross section is given by8Eq. Ui =Wi® =(Wio " (W) (19)
with the Fano parameté®). Furthermore, th& matrix goes

over smoothly in in S, are, generally, complex and energy dependéntthe

two-resonance case, tlsematrix elementgwith §=0) are

r r? 1 !
S=1-2] ¢ ¢ 19 B . (WoYawH)vs -
= I~ ~ I~ S E — = —iXp3 . (20)
E_Ed+ Erd E_Ed+ Erd k=12 E_Ek

Here, the ‘jg/ocll[(E—El)(E—Sz)] can be parametrized by

means of energy dependent as well as by energy-independent
parameters in the same manner as in the one-channel case.
The energy-independent parameters have, however, no

whenE;—E,=E4 andI';—1",=I"y4 (double pole of theS
matrix, see Ref. 24 The second term corresponds to the
usual linear term while the third term is quadratic. The inter-
ference between these two parts is illustrated in Fig. 1 wher . . . : .

the cross section is shownpfor the case of two ?esonancsehysmal_ meaning at all in the' overIaNppmg'reglme. )
states with equal positior‘:‘sd and widthsfd, coupled to one we dlsc_uss nqw the behavior of th@(E) in more detail.
channel, for differens. The asymmetry of the line shape of It follows immediately from Eq.(9) that q,(E)=0 at the
both peaks is, in the cas®=0 [Fig. 1(a)], caused solely by €nergy

the overlapping of the two resonance states. For comparison,

the cross section with the two resonance states without any E=E,— 3T tans. (21)
coupling between them is also shown in Fig.(dashed ~
curves. When this condition is fulfilled in the neighborhood Bf

The discussion of the two equivalent representatiohs and f1<F2, then the narrow resonance state appears as a
and (ii) of the S matrix (10) allows to discuss also the rela- window-type resonancedip) in the cross section ¢
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the energy of the narrow resonance, but not @24), due to
the interference with the smooth part.

The contour plot of the cross sectidiig. 2 bottom
shows that its resonance structure varies periodically with
the phase’ of the background for fixed energi&s Accord-

ingly, the asymmetry of the line shape varies betwegn
— — andq,— + periodically[as can be seen also di-

rectly from the analytical expressid8) for g,]. Such a be-
havior is observed experimentally in the conductance peaks
through a quantum dot as a function of the strength of the
magnetic field® (that has obviously a small influence on the
position and width of the narrow resonanceBhe complex

Fano parameters introduced in Ref. 15 from a fit of the data,
simulate the overlapping of the studied narrow resonance
state by a broad resonance state and the phase dependence of

a(E) in the overlapping regime. This conclusion follows
€4 from the numerical study shown in Fig. 2 as well as from the
analytical study resulting in Eq$15) and(16) for this case.

In comparing our theoretical results with experimental
ones, we should point to the fact that the theoretical studies
given above are based on the one-chasahtrix while the
transmission process needs at least two openings of the cav-
ity. We underline however first that we did not try to com-
pare theoretical and experimental results quantitatively. The
aim was to find a general justification for introducing a com-
plex Fano parametdas it is done in the analysis of experi-
mental dat&) and to understand the physical origin of its
imaginary part. Second, th& matrix for transmission
through quantum billiards is derived in the tight-binding ap-
proach in Ref. 20. It is shown that the resonant peaks of the
conductance are related to the poles of 8matrix that are
the eigenvalues of an effective non-Hermitian Hamilton op-
; erator. The line shape of transmission peaks can be studied

94 _2 0 2 4 therefore by using thé& matrix formalism. When there is

£, only one wave in each incoming and outgoing channel and
the difference between them is only the flux direction, then a
_ FIG. 2. The cross section in the vicinity of the resonance 1 forone-channel representation of tBematrix for the transmis-
r,=0.1,,E,—E;=0.5I',. Top: (@) 6= 8,=—arctans,(E=E,) sion is justified.

O = NN W s O = N W

(full curve), 6= 5,— 0.5 (dashed curve 6= &,+ 0.5 (dotted curve In both representations, Eq&®) and (15), the Fano pa-
(b) The same as irfa), but dp=arccote,(E=E;). Bottom: The rameter is generalized when applied to resonances in the
contour plot of the cross section. overlapping regime. Both representations are equivalent in

most cases. The difference between both generalizations can
reversal®), see Fig. 2a), full curve. It occurs, however, as a be seen best when applied to an analysis of the data in the
Breit-Wigner-type resonance when vicinity of the energy of one of the resonance states. The
energy-independent complex paramétes) contains the en-
~ ~ ergies and widths of both resonance states, so that it is diffi-
E=E,+3I,cots (220 cult to receive spectroscopic information. The energy depen-
dent value(9), however, contains the influence of only the
is fulfilled nearE,, see Fig. ), full curve. In Fig. 2, the other resonance state allowing an analysis in a very transpar-
narrow resonance 1 is overlapped by the broad resonance€t manner. This property qualifies the energy dependent
(1:120-ﬁ‘2,Ez—E1=0-51:z,1:1+1:z=111:2) and interferes Fano paramete(9) for the description of resonances in the
with the smooth reaction part. Fig. 2 remains almost un-overlapping regime. We underline, however, that ¢eg)
changed by varyin&z andl:z and correspondingly,, as &€ not suitable for the parametrlgatlon of the cross septlon
long asl~“2>f1. We underline that the narrow resonance 1around a do_uble_ pole of thé matrix due to the _quadrat|c
appears in the cross section as an isolated peak in spite of th™m appgarlng in EqL18). Here, tbe cross schgn can be
overlapping of the resonance state 1 with the broad resgiarametrized aso(E)=16 coS8[(qu(E) + £¢)*/(£5+1)]
nance state 2. The reason is that E29) is fulfilled close to  with qd(E)=(1/2)(1—s§)tan5 ande;—e,=gy.
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It would be interesting to look for the broad resonanceThat means, the differences between the widths of the two

statés) and to StUdy its(their) influence on other narrow considered resonance states become Smi]@.r?fz_ Ac-
resonances in detail. According to our study, the broad resq:ording to Eqs(13) and(15), this meandq,|— in agree-
nance may exist in the arm or it may coexist with the narrowmnent with the experimental observatibhFor a direct com-
resonances in the quantum dot itself. The last possibility Calarison of theoretical and experimental results, it is

not be excluded theoretically. Quite on the contrary, it COITe,acegsary to perform calculations for the special interferom-
sponds to the results obtalned. for other small quantum SySsier sed in Ref. 15. Such a calculation goes beyond the
tems where resonance stat@sgenstates of the effective scope of the present study.

Hamiltonian of very different lifetimes are known to Summarizing, we conclude that the line shape of narrow
coexist® An experimental study of this question would allow ng. . : 'ape )
[esonances in the overlapping regime contains information

to see generic features of open quantum systems also . " f A ‘ 0 fh
guantum dots. Furthermore, results from the interference pe2N gENerc properties of open quantum systems. LUne or these

tween two resonance states in the very neighborhood of aroperties is the existence of different time scales that are
double pole of theS matrix (that can be studied in a sym- involved in the eigenvalues and eigenfunctions of the effec-

metrical device with two quantum dotwill prove the reso-  tive Hamiltonian of the system. A _control by e>_<terna| param-
nance scenario described by an effective Hamiltonian as digters allows to trace their formation by opening the system
cussed in the present paper. and to study their interesting interplay. A direct experimental
Finally, we add a few remarks on the line shape of resostudy of the generic resonance features in, e.g., atomic nuclei
nances in mesoscopic systems. First, there is an influence i difficult due to the strong residual interaction between the
the temperature as discussed also in Ref. 15 and, second, tparticipating particles in nuclei. Quantum dots are much
interaction between the electrons and the importance of theore suitable for such a study due to the flexibility in con-
electron spin are not discussed in the present paper. As to thmlling the system by means of different external param-
second point, we do not discuss the origin of the resonancesters. Further experimental as well as theoretical studies are
in a special system. We rather consider generic features apighly desirable for both a better understanding of generic
pearing in the regime of overlapping resonances. These fegroperties of open quantum systems and the construction of
tures are independent of any interaction between the coryuantum dots with special properties.
stituents of the system which is understood to be taken into
account by the diagonalization of the effective Hamiltonian. We are indebted to J.M. Rost for valuable discussions.
For details see Ref. 6. As to the temperature dependence,Atl.M. gratefully acknowledges the hospitality of the Max-
leads in any case to a smearing of the individual resonanceBlanck-Institut fu Physik komplexer Systeme.
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