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Geminate pair recombination in molecular systems with correlated disorder
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Influence of the correlation of the disorder on the geminate charge pair recombination is theoretically
analyzed. Charge dynamics is considered in one- and three-dimensional systems by means of Monte Carlo
simulations. It is demonstrated that the correlation radius of the disorder is the limiting distance factor by
discriminating the effect of the disorder in the mobile charge movement. Because of that the concept of the
local disorder, which expresses itself in the geminate recombination kinetics, is introduced. The correlation
effects express themselves in the intermediate times and are lost in the large-scale movement of the charges. It
is demonstrated that the discrepancies between disorder values obtained by the geminate pair recombination
kinetics and those from the charge drift studies can be attributed to the correlative effects of the disorder. The
radius of the correlation is estimated to reach 17 to 28 lattice constants for the organic semiconductors.
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[. INTRODUCTION plays the major role in determining the dynamics of charges,
while the off-diagonal disorder shows only a minor effect on
Recent achievement in the development and control ofhe initial part of recombination dynamié®.In addition,
highly sensitive organic materials with well-defined photo-from the analysis of the total geminate pair recombination
conducting properties opened the way of their possible aptGPR kinetics the initial charge separation distance can be
plications in optoelectronics by designing light-emitting deduced?® By analyzing the relaxed charge movement on a
diodes! transistors;* photocells, etc. The photorefractive long time scale, the mobility of charges can be determined.
effect, discovered in organic systehand mostly studied in  The experimental data of the charge mobility in molecular
poly(N-vinylcarbazolg,"~* has numerous potentially interest- polymers are in agreement with the model calculations by
ing applications in the real-time holography. The principalassuming the characteristic dispersion to be of the order of
properties of molecular systems are very sensitive to the mia.1 eV in terms of the model, based on the cubic lattice with
croscopic constraint because of the asymmetry, ordering, ar@aussian diagonalenergy disorder’® By considering the
alignment of the molecules in their arrangement. For in-GPR kinetics within the same model approach, the conclu-
stance, the conductivity of highly oriented fibrillar poly- sion of a somewhat smaller amount of the dispersion value
acetylenes can be comparable to that of copfigy to  of the disorder is obtainelf:?! This variation of the amount
10° S/cm) and the light emission of such aligned molecularof the disorder depending on the processes under consider-
systems is highly polarizel§. ation has to be affected by the size of the system, which is
Dynamics of charge carriers in molecular systems of curinvolved in the diffusive behavior of the mobile charge. In-
rent technological interests demonstrates complex behaviateed, the recombination process takes place in the vicinity of
in various time domains, from femtoseconds to microsecthe parent chromophore, and the recombination time is com-
onds and even to milliseconds. Charge generation is the veryarable to the time required for the charge relaxation in the
initial event in the sequence of primary processes after theisordered lattice.
light absorption, taking place in the femtosecond-nanosecond The difference of the disorder value depending on the
time domain. According to present observations of thespatial scale of the processes under consideration can be un-
charge photogeneration in organic sensitizedderstood in terms of the correlation size of the disorder,
photoconductor$*?or conjugated polymetd**at least two ~ which displays itself in the percolative behavior of the
steps are well distinguished. The electron-hole pair of a pareharge dynamiéé?3or in the kinetic networks for the strong
ticular characteristic distance appears on the subpicoseconfisorder casé? The percolation effect in disordered clusters
time scale after absorption of the light quanttiwhile the is strongly dependent on the dimensionality of the system.
subsequent charge separation and/or the geminate recomhideed, the conjugated polymers are often ascribed to one-
nation of separated charges are much slower, resulting idimensional systems, while nonconjugated polymers may be
nanosecond and even longer characteristic tithésBe-  treated as systems of higher dimension&fitfhe correlation
cause of that the very initial stages of the charge separatiogffect on the field dependence of the mobility of the charge
are related to the unrelaxed charge movement prior to thearrier in molecular-doped polymer@®DP) was demon-
polaronic state formatidfi while the slower ones are attrib- strated numericalff?® and analytically for a one-
uted to the polaron type movement—the hopping of thedimensional continuum modél (see also Ref. 26 for re-
charges? view). Namely, the positive spatial correlation was originated
Various kinds of lattice¢for instance, cubic or squarare  to permanent dipole moments present in the polymeric
the basic frameworks used for studies of various aspects afysten?’?® while resulting in the Gaussian site energy dis-
the charge movement in real systems. The energy disordéribution for the diagonal correlation componéhRecently

0163-1829/2003/684)/2452037)/$20.00 68 245203-1 ©2003 The American Physical Society



DARIUS ABRAMAVICIUS AND LEONAS VALKUNAS PHYSICAL REVIEW B 68, 245203 (2003

it was demonstrated that the correlated disorder explains theide a, is a complex nhumber and must obey the relationship
observed temperature and field dependences of the chargg=a*, in order for the energy values to be real. Due to the
mobility in MDP3! The effect of correlations is weaker or well-known Wiener-Khintchin fundamental theoréfthe
even lost on the large scale of movemédatger than typical correlation function is determined as an inverse transforma-
correlation distanceswhile it can be appreciable on a small tion of a power spectrum of the site energies:

scale of motion. GPR is a typical process caused predomi-
nately by the small scale of the charge movement, especially
the initial stage of the recombination kinetics. Therefore, the
correlation effect on a short scale of the charge movement

with respect to the GPR kinetics will be the main issue undetvhere Iy is the amplitude of a power spectrum. Since the
consideration. correlation function is an exponentially decaying function

[see Eq.(1)], the power spectrum, which in its turn is the
Fourier transform of the correlation function, is determined
by the Lorentzian function, giving accordingly

Effects of the disorder on the dynamics of the mobile

<808X>=0'22k  expliAkx), 3

IIl. MODELING OF CORRELATIONS

charges can be well demonstrated by Monte Carlo simula- | :A 1R. (4)
tions (see, for instance, Refs. 24, 27,)28he square lattice KT (A (1R,)

framework characterized by particular site energies for the ) . )
mobile particle will be used as the basic structural arrange- " térms of the Fourier coefficients the power spectrum is
ment to start the simulation procedure. The local inhomoget€lated to amplitudes, as

neity is taken into account as the diagonal disoidee dis- l=|a |2 )
order of the site energigsvhile the global disorder caused k= 1% -
by various tensions in the system results in the correlatioThus, by defining the amplitudes of the Fourier series from
effects of the disorder. Egs.(4) and(5) as

A. One-dimensional lattice model |ak| = \/I_ka (6)

Let us first consider a one-dimensional lattice composedhe correlated site energies can be determined from(Eq.
of N sites with the site energies, specific to any site, where In order to get the disordered picture for the energy distribu-
x enumerates the sites=1,2,...N. The uncorrelated disor- tion, the phases of the coefficiersg must be random. Thus,
der can be simply introduced by taking the site energies assuming
randomly distributed according to the Gaussian distribution i
characterized by the mean value, which will be set to 0 for ay=|aylexpliey), @

convenience, and by dispersiof. However, to employ cor-  where ¢, is a linearly distributed random number drawn
relations, this model fails because this type of descriptiofrom the interval[0,2m), the correlated disorder is well de-

does not contain any information about the correspondencgned. It is worthwhile to mention that the relatiop,=
between energies of the different sites. The Fourier analysis , , for the random phase coefficients must be fulfilled.

is a convenient tool for the correlation effects to be taken
into account.

. B. The correlated energy profile for higher-dimensional
In general, largeN>1) systems may be characterized by

means of the pair correlation function, which in its turn is o lattices .
defined by the correlation radius, thus giving A similar procedure may be applied to the square two-
dimensional latticdand for lattices of higher dimensionality
) |Xx—x"] as wel) with the correlated disorder. By using the same Fou-
(exex)=0 exp( - R ) (1) rier transformation procedure as given in E8), the corre-

lation function for sites(x, y) and ',y’) of two-
where(: - -y denotes the statistical average;-x’| is the dis- dimensional lattice can be defined as follows:
tance between sites and x’, while R. is the correlation
radius of the disorder. Here and in the following all distance o Ix—x'| ly—y'l
units are expressed in terms of the lattice constant. The Fou- {exyexry) =0 exp = R. R
rier transformation of the site energies results in mapping of
the real space into a corresponding Fourier representatiot
Thus, the site energies can be related to their inverse trans-
form values:

), ()
ith the power spectrum given by

hei=hys 9

wherel, andl, are the power spectra of the one-dimensional
) behavior alongk andy axes, as determined in E@). It is
ex=0 > acexpiAkx), (2 noteworthy that the correlation function for the two-
k=—(N—-1) . . . . .
dimensional system can be also defined in a somewhat dif-
whereA =27/N andk determines the numbering of the Fou- ferent way by means of the following definition of the cor-
rier componen{or a coordinate in th& space. The ampli-  relation function[compare Eq(13)]:

N—-1
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|r—r’|) exd — (AE)/(kgT)] if AE<O

<8X'ysx/,yr>=0'2€X[<— R, (10 Bij(AE): 1 if AE>0, (17

wherer = \X?+y?. In this case the power spectrum is given where AE = Ei—Ej=eyxy—é&x  andkg is the Boltzmann

by constant.
Such a hopping rate is widely used to simulate the diffu-
[, =A2 1 1R (11) sion of the mobile charges as well as their mobility in the
! k|7 [K[*+ (1/R:)?” presence of the external electric fielsee Ref. 26 for re-

where|k|=A\/E2+_I2. The correlated energy profile in this vigw). It is worthwhile to.mention that thg validity of the
case is the same as for the one-dimensional system. BOMlII.er—Abrahams exé?‘rgss'on f_or the hopplng rate has been
definitions provide similar results. Further extension of theferrr:céltjjg (f:rhoarlr:eggee,rimziﬁ)aelcﬂtyafogg\)/(\g?/gtrlogir?(f:éhtehg a:a )
presented approach in determining the correlated disorder fof . P : : o P
roach is based on the detailed balance, qualitative demon-

higher-dimensional systems is straightforward. Since théoa . . .
D-dmensional Fourer vansforaton of the eneray specsi Tl 1%, 1S SICEL e Sonsesien lbe
trum can be determined as follows: g - oY g

from the parent lattice site, where the countercharge remains

N-1 set, the process of geminate recombination can be simulated
g =0 > agexdia(k-r)], (120  as well. The details of the model simulations have been re-
k1k2,..kp=—(N-1) cently described® To rule out the jump frequency, which

wherer is aD-dimensional radius vector of the position of a determines the time scale of the process under consideration,
particular lattice nodek= (k;,k»,... kp) is the correspond- the dimensionless time will be used, what corresponds to the

ing vector determining th®-dimensional Fourier transfor- tMe unity as
mation, thus, similarly the correlation function is determined

as [voexp(—2ya)] ?, (18)
5 , where a is the lattice constant. Typicallyya can be as-
—o?[] X=X/ sumed to be of the order of #8.In this case the hopping

(erer)=o wep =R (13 petween the nearest neighbors is predomiriémé corre-

sponding mean-jump-time equal¥, While for the diagonal
Therefore, the corresponding power spectrum is given by jumps on the square lattice the jump rate is smaller by a
b factor of 60.
| = H I (14) The typical value of the dispersion of the disorder satisfies
k= LL Tkiv the following: o>kgT even at room temperatut&.?! Basi-
cally the case ofr/kgT=2 corresponds to the global diago-
where |,; represents the power spectra of the oneyg)gisorder of 0.05 eV, while the valugksT=4 relates to
dimensional system as defined in He). Accordingly, the 4 yajue of 0.1 eV. The Coulomb energy for the charges be-
Fourller coefficients are also related to the one-dimensiong{yeen nearest neighbors in the lattice is determined by the
coefficients: lattice constant and by the dielectric constant of the medium
typically giving the following value for the ratio:

D
|ak|:iH1 |auil (15)
- Ec/(kgT)= ———==25-30,
and, therefore, this procedure may be used for the square ameeoaksT
lattice of any dimensionality. see Refs. 19 and 21.
Ill. GEMINATE PAIR RECOMBINATION IV. RESULTS
The hopping rate of the mobile charge froth molecule A. Correlated energy landscape of the lattice

to thejth one in the molecular frameworlk;; , is determined
by the distance-dependent exponential factor as a result %fa
the overlap of the corresponding electronic wave functio h
and by the energy-dependent factor caused by the electr
interaction with the molecular environmefglectron solva-
tion) and intermolecular and intramolecular vibratidfs.
Thus,

Qualitatively, the correlated disorder provides the nonlo-
| perturbation of the energy landscape of the regular lattice.
e corresponding distribution of the energy for the mobile
%arge obtained by the Fourier-transformation approach de-
scribed above for the evaluation of the correlated disorder is
shown in Fig. 1 for the disordered one-dimensional lattice of

1000 sites with different radii of the correlation. The corre-
_ lated distribution of the energy landscape depending on the

v = o XH( =21~ i) B; (AB) (16 correlation size is evidently d?gtinguisheg. Staﬁsticallg, these

wherew is a frequency prefactos; is a wave function over- differences are well determined by the correlation function,
lap factor of particular molecules, and the Boltzmann pref-which is exponentially dependent on the interpigment dis-
actor is selected to be of the Miller-Abrahams type, tance as shown in Fig. 2. The calculated correlation function
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< 2r FIG. 3. Time dependence of the calculated mean values of the
< 1t square displacement for the one-dimensional system with various
5 0 correlation radii of the disorder. Corresponding valuesRgfare
% pointed out. Results for the regular lattice and for the lattice of
2 -1 noncorrelated disorder are shown by bold lines. The diagonal dis-
90 5l order value is taken to be=2kgT in calculations.

0 200 400 600 800 1000 where the factor of the proportionality is the diffusion coef-

Coordinate / a ficient. The process providing this kind of correspondence
FIG. 1. One-dimensional landscapes of the noncorreléged a0 be related to the normal diffusion. In the case of the
and correlatedb) disordered lattices. uncorrelated disorder, the long-time behavior BF) is lin-

early dependent on time, while the diffusion process is some-

decays slightly faster than the single-exponential decay fundvhat slower compared to the regular lattitee correspond-
tion (see the case d®.=1 in Fig. 2 because of the finite NG diffusion constant is smaller This change of the
size of the lattice under consideration. Indeed, this deviatiogliffusion constant is caused by the different conditions of the
disappears for larger lattices containing 10000 sitest movement since in the case of the disordered lattice the mo-
shown. However, the distribution of the site energies in bothbile particle has to overcome the large potential barriers be-

cases of the lattices is Gaussian with the dispersion approxfeen the lattice sites. The linear time dependence is reached
mately equal to 1. asymptotically when the particle distribution on the energy
scale approaches the thermal equilibrium distribution. Since
the mean energy for the particle in the disordered lattice
corresponds to the valug,.,~=o0?/kgT, thus, indeed it

The long-distance movement of the mobile particle undetakes some time to reach this value for the initially generated
zero external field conditions can be well characterized byparticle in the system with the uncorrelated disor@ee Fig.
the time dependence of the mean value of the square dig).®® This thermal equilibration time increases with the in-
placement of the particle, i.e., by t&%) dependence oy  crease of the disorder, and the intermediate regime of the
where(---) means the statistical averagifftThe results of dispersive hopping becomes more pronourféethe corre-
calculations for the one-dimensional lattices of various valdation of the disorder expresses itself on the same time scale
ues of the correlation radii are presented in Fig. 3. It is evi-as the intermediate regime of the dispersive hopping. At
dent that the regular lattice corresponds to the well-knowrshorter times the particle behavior is closer to the case of the
diffusion-type relationship regular lattice while for the larger time scale and at larger

distances it approaches the case of the diffusion behavior in
(R?)et, (190 the lattice with the uncorrelated disorder.

The diffusion in the system of higher dimensions with the
correlated disorder is qualitatively similar to that observed in
“*++++ one-dimensional systemsee Fig. 4. At the short times it
o +++++++ demonstrates the diffusion type behavior corresponding to

e, Re=10 the regular lattice, while at longer times it switches into the
01tk iy, diffusion of the particle in the lattice with the uncorrelated
disorder. Depending on the correlation size, this switching
period changes: the larger the radius, the longer the switch-
o ing period. At short times the particle feels the local disorder,
0.01 —/ 10 Py which can be weaker than the global one. Therefore, the
diffusion rate of the particle changes in the course of time,
being faster at short times and slowing down with time. The

FIG. 2. Correlation functions of the lattices shown in Fig. 1. characteristic time determining this transition from the short-
Dotted lines correspond to the exponential decay. time to the long-time behavior resembles the correlation ra-

B. Diffusion of the mobile charges

2

<gg> /o
B
+

Coordinate / a
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. . . . . . FIG. 6. The GPR kinetics calculated for the three-dimensional
0 4 0 1 2 3 4 5 6 lattice with different correlation radii of the disord@orresponding
log(time) / kt values are pointed oytthe bold curve indicates the GPR kinetics

for the regular lattice. The initial charge separation ragh 3a (a)

FIG. 4. Time dependence of the calculated mean values of thandr,=5a (b) are assumed. The diagonal disorder value is taken to
square displacement for the three-dimensional system with variouge o=4KgT in calculations.
correlation radii of the disorder. Corresponding valuesRpfare
pointed out. Results for the regular lattice and for the lattice ofwhile the rate at later times of the kinetics approaches the
noncorrelated disorder are shown by bold lines. The diagonal discase of the lattice with the uncorrelated disorder. This is in
order value is taken to be=4kgT in calculations. accord with the concept of the local energy disorder de-

scribed in the Introduction. The initial kinetics originates

dius of the disorder. The case is different in the one-from the charge pair, which recombines in a few jumps cov-
dimensional systems, where the particle faces the sites wittring the initial charge separation distance. For the correla-
increasing disorder values as it moves to the larger distanceton radius larger than this initial separation distance, the
Since the particle has no other way to move, the diffusionmain part of the GPR kinetics is close to that of the regular
process turns out to be similar to the diffusion in the systenlattice. The long-time kinetics being determined by the re-
with the uncorrelated disorder. For the higher dimensions theombination of the pairs of charges separated at larger dis-
particle has the possibility of avoiding the “high cost” paths tances than the correlation radius resembles the kinetics of
and, therefore, the diffusion is slightly faster at the longthe GPR in the lattice with the uncorrelated disorder.
times in the correlated lattice as compared to the uncorre- Qualitatively these conclusions are independent of the di-
lated case. This conclusion is validated for the small valuegnensionality of the system. However, the effect resulting
of the disorder, which are typical of the disordered polymerdgrom the interplay between the correlation radius of the dis-
as used for calculations. However, in the case of strong dissrder and the initial separation distance of the charges is
order the kinetics of the charged particle becomes predominore expressed in three-dimensional systéfng. 6) than in
nantly one dimensional in the networks of higherthe one-dimensional cagEig. 5.
dimensiong?

C. Geminate pair recombination V. DISCUSSION

The effect of the correlative disorder on the GPR kinetics  ~|culations of time dependence of the mean-squared dis-
is analyzed by assuming that the recombination rate of thg|acementsee Figs. 3 and)4qualitatively demonstrate the
charges in the charge transfer state is infinitely fast, i.e., it iehavior similar to that obtained in noncorrelated disordered
assqmed that they recpmblne immediately as soon as tfg»?/stemsz.“ Three regimes corresponding to the regular diffu-
mobile charge reaches its countercharge. . _sion at short times, the dispersive hopping regime at inter-
_ The recombination kinetics as shown in Fig. 5 and Fig. 6yggiate times, and finally the regular diffusion at long times,
is very sensitive to the changes of the correlation radiigenerally can be distinguished in disordered syst&rhe
Larger correlations speed up the initial part of the kineticScqrelation of the disorder mainly influences the time scale of

the transition between these regimes. The larger the correla-

1 1 tion radius, the later transition times are expected, while
R=0,1,3,5, 10 . . .

08 08 these times are shorter for larger system dimensions. The
o 08 R=0,1,3 06 effect of the dimension of the system is caused by the differ-
& o4 ¥ os ence in the possible diffusion pathways. Indeed, the one-path

' ’ particle movement in one-dimensional systems and, thus, the

2 ) 02 oy absence of other possibilities for the particle to escape from

04 : e ———— 0§ 3 a0 its local position result in larger-cost movements of particles

t t in this case. Therefore, the diffusion characteristic in Fig. 3

FIG. 5. The GPR kinetics calculated for the one-dimensional’@s N0 sharp switching region, and the diffusion manner ap-
lattice with different correlation radii of the disord@orresponding ~Proaches asymptotically the diffusion in the lattice with the
values are pointed oytwhile the GPR kinetics for the regular uncorrelated disorder.

lattice is presented in bold. The initial charge separation nagii Bearing this in mind, the concept of the local disorder
=3a (a) andry=>5a (b) are assumed. The diagonal disorder valuedependence of the extensiodefined by radiuR;) of the
is taken to ber=2kgT in calculations. region, where the process under consideration takes place,
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can be determined by the following equation: separation by means of studies of the transient spectra in the

presence of the external electric field were recently
£Ry)=3([£(0)—&(Ry 1) =0cV1—exp —R,/R,). demonstrated? This could be another option in determining

(200 that value.

Thus, for the distances much shorter than the correlation ra- The given analysis is qualitative since the time scale used

dius, i.e., forR,<R¢, the effective width of the energy dis- for calculations was renormalized to the charge hopping rate.

order is ¢&(r)<o, while for longer distances, wheR, However, we have to admit that by determining the dimen-

>R., the disorder approaches the bulk vali(e)— o sional scale of time some uncertainties are still remaining
The GPR process evidently resembles the short-time beédince the scaling of the regular lattice is not independent of

havior of the charge movement since it is driven by the Couthe time scaling used above. Indeed, by determining the rate

lomb potential of its counterion. Thus, the GPR kinetics isOf the excitation jump in the regular latticthe time scaling

caused by the competition between the initial charge separ&at® as

tion distance and the radius of the correlation. Qualitatively, _ _

this competition effect is well distinguished by comparing Kreg= o ©XP(—273), @Y

the kinetics for different correlation radii and with the samethis value is also related to the dimensional scale of the lat-

radius of the initial charge separation as shown in Fig. 5 andice. Thus, by renormalizing the frequency scalg, the

Fig. 6. same value of the charge jump time can be obtained while
The GPR kinetics performed recently claimed the value ofescaling the lattice size. However, the initial charge separa-

the diagonal disorder in the films of poly- tion distance and the correlation radius of the disorder are

epoxypropylcarbazole to be equal to 0.04%Whis estima-  not related to that scaling relationship, therefore, giving an

tion is lower than 0.1 eV obtained for the similar systemindependent effect on the GPR kinetics.

from the charge drift studie. This difference can be attrib- The other type of the electron transfer rate based on the

uted to the correlation effects of the diagonal disorder deMarcus theory of electron transfer can be used instead of the

scribed above. Indeed, assuming that the GPR approximateMiller-Abrahams expresion. The concept of reorganization

takes place in a regioR,=3 to 5 of the lattice units, the energy reduces the sharp exponential dependence on the

correlation radiuR, has to be of the order of 17 to 28 lattice electron transfer barrier. However, conclusions obtained in

constants according to E21). our consideration of the influence of the correlative disorder
Another parameter determining the GPR kinetics is theon the GPR qualitatively will remain.

initial distance of the charge separation. Evidently the overall

GPR kinetics dramatically slows down by increasing the dis- VI. CONCLUDING REMARKS

tance pf .the initial charge separatian, tprning out to be Here we introduce the concept of the local energy disor-
very similar to that for the regular lattice as soon Rs der, which is usually lower than the energy disorder in the

=r,, while the change in the correlation radius in the OPPOp k. The geminate pair recombination is predominantly
site region, wherR.<r, has the largest effect on the kinet- i ; . '

. . . o , ) caused by the local energy disorder, therefore, it carries
ics. Comparative studies of the kinetics with the fixed corre- y 9y ! '

. . , A .~ much information about its correlation size. The geminate
lation radius and by changing the initial charge separatio g

distance demonstrate the sensitivit of the very initial part O;L‘)air recombination analysis indicates that the disorder values
L ) v y P are lower than those obtained from the mobility measure-
the kinetics. Thus, it becomes evident that both values, th

. . S . . ents. This feature of the local disorder is directly related to
correlation radius e}nd the mmgl _charge separation c_ilstancqhe correlations of the energy disorder. According to estima-
cannot be determined from fitting the only experimental

GPR kineti nd the analvsis of the additional dat itions, the correlation effect of the disorder extends over a
needed ﬁ ccasﬁ k?e obta?n: d af())/rs i?]s(t)ancee f?om eostiarln atia(l)r?s ize comparable to the extension of the motion of the charges
: . ’ ’ A 9h the recombination process in molecular photoconductors
the quantum yield of the total charge separation in the pres- :
o ) covering tens of angstroms.
ence of the external electric field. That value is mostly sen-
sitive tory, the parameter of the initial charge separation, ACKNOWLEDGMENT
while the correlation of the disorder has a minor effect as it
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