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Geminate pair recombination in molecular systems with correlated disorder
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Influence of the correlation of the disorder on the geminate charge pair recombination is theoretically
analyzed. Charge dynamics is considered in one- and three-dimensional systems by means of Monte Carlo
simulations. It is demonstrated that the correlation radius of the disorder is the limiting distance factor by
discriminating the effect of the disorder in the mobile charge movement. Because of that the concept of the
local disorder, which expresses itself in the geminate recombination kinetics, is introduced. The correlation
effects express themselves in the intermediate times and are lost in the large-scale movement of the charges. It
is demonstrated that the discrepancies between disorder values obtained by the geminate pair recombination
kinetics and those from the charge drift studies can be attributed to the correlative effects of the disorder. The
radius of the correlation is estimated to reach 17 to 28 lattice constants for the organic semiconductors.
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I. INTRODUCTION

Recent achievement in the development and contro
highly sensitive organic materials with well-defined pho
conducting properties opened the way of their possible
plications in optoelectronics by designing light-emittin
diodes,1,2 transistors,3,4 photocells,5 etc. The photorefractive
effect, discovered in organic systems6 and mostly studied in
poly~N-vinylcarbazole!,7–9 has numerous potentially interes
ing applications in the real-time holography. The princip
properties of molecular systems are very sensitive to the
croscopic constraint because of the asymmetry, ordering,
alignment of the molecules in their arrangement. For
stance, the conductivity of highly oriented fibrillar poly
acetylenes can be comparable to that of copper~up to
105 S/cm) and the light emission of such aligned molecu
systems is highly polarized.10

Dynamics of charge carriers in molecular systems of c
rent technological interests demonstrates complex beha
in various time domains, from femtoseconds to micros
onds and even to milliseconds. Charge generation is the
initial event in the sequence of primary processes after
light absorption, taking place in the femtosecond-nanosec
time domain. According to present observations of
charge photogeneration in organic sensitiz
photoconductors11,12 or conjugated polymers13,14 at least two
steps are well distinguished. The electron-hole pair of a p
ticular characteristic distance appears on the subpicose
time scale after absorption of the light quantum,15 while the
subsequent charge separation and/or the geminate reco
nation of separated charges are much slower, resultin
nanosecond and even longer characteristic times.16,17 Be-
cause of that the very initial stages of the charge separa
are related to the unrelaxed charge movement prior to
polaronic state formation18 while the slower ones are attrib
uted to the polaron type movement—the hopping of
charges.12

Various kinds of lattices~for instance, cubic or square! are
the basic frameworks used for studies of various aspect
the charge movement in real systems. The energy diso
0163-1829/2003/68~24!/245203~7!/$20.00 68 2452
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plays the major role in determining the dynamics of charg
while the off-diagonal disorder shows only a minor effect
the initial part of recombination dynamics.19 In addition,
from the analysis of the total geminate pair recombinat
~GPR! kinetics the initial charge separation distance can
deduced.19 By analyzing the relaxed charge movement on
long time scale, the mobility of charges can be determin
The experimental data of the charge mobility in molecu
polymers are in agreement with the model calculations
assuming the characteristic dispersion to be of the orde
0.1 eV in terms of the model, based on the cubic lattice w
Gaussian diagonal~energy! disorder.20 By considering the
GPR kinetics within the same model approach, the conc
sion of a somewhat smaller amount of the dispersion va
of the disorder is obtained.19,21 This variation of the amoun
of the disorder depending on the processes under cons
ation has to be affected by the size of the system, whic
involved in the diffusive behavior of the mobile charge. I
deed, the recombination process takes place in the vicinit
the parent chromophore, and the recombination time is c
parable to the time required for the charge relaxation in
disordered lattice.

The difference of the disorder value depending on
spatial scale of the processes under consideration can be
derstood in terms of the correlation size of the disord
which displays itself in the percolative behavior of th
charge dynamics22,23or in the kinetic networks for the stron
disorder case.24 The percolation effect in disordered cluste
is strongly dependent on the dimensionality of the system25

Indeed, the conjugated polymers are often ascribed to o
dimensional systems, while nonconjugated polymers may
treated as systems of higher dimensionality.26 The correlation
effect on the field dependence of the mobility of the cha
carrier in molecular-doped polymers~MDP! was demon-
strated numerically27,28 and analytically for a one-
dimensional continuum model29 ~see also Ref. 26 for re
view!. Namely, the positive spatial correlation was originat
to permanent dipole moments present in the polyme
system,27,28 while resulting in the Gaussian site energy d
tribution for the diagonal correlation component.30 Recently
©2003 The American Physical Society03-1
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it was demonstrated that the correlated disorder explains
observed temperature and field dependences of the ch
mobility in MDP.31 The effect of correlations is weaker o
even lost on the large scale of movement~larger than typical
correlation distances!, while it can be appreciable on a sma
scale of motion. GPR is a typical process caused predo
nately by the small scale of the charge movement, espec
the initial stage of the recombination kinetics. Therefore,
correlation effect on a short scale of the charge movem
with respect to the GPR kinetics will be the main issue un
consideration.

II. MODELING OF CORRELATIONS

Effects of the disorder on the dynamics of the mob
charges can be well demonstrated by Monte Carlo sim
tions ~see, for instance, Refs. 24, 27, 28!. The square lattice
framework characterized by particular site energies for
mobile particle will be used as the basic structural arran
ment to start the simulation procedure. The local inhomo
neity is taken into account as the diagonal disorder~the dis-
order of the site energies! while the global disorder cause
by various tensions in the system results in the correla
effects of the disorder.

A. One-dimensional lattice model

Let us first consider a one-dimensional lattice compo
of N sites with the site energies«x specific to any site, where
x enumerates the sites:x51,2,...,N. The uncorrelated disor
der can be simply introduced by taking the site energies«x
randomly distributed according to the Gaussian distribut
characterized by the mean value, which will be set to 0
convenience, and by dispersions2. However, to employ cor-
relations, this model fails because this type of descript
does not contain any information about the corresponde
between energies of the different sites. The Fourier anal
is a convenient tool for the correlation effects to be tak
into account.

In general, large (N@1) systems may be characterized
means of the pair correlation function, which in its turn
defined by the correlation radius, thus giving

^«x«x8&5s2 expS 2
ux2x8u

Rc
D , ~1!

where^¯& denotes the statistical average,ux2x8u is the dis-
tance between sitesx and x8, while Rc is the correlation
radius of the disorder. Here and in the following all distan
units are expressed in terms of the lattice constant. The F
rier transformation of the site energies results in mapping
the real space into a corresponding Fourier representa
Thus, the site energies can be related to their inverse tr
form values:

«x5s (
k52~N21!

N21

ak exp~ iDkx!, ~2!

whereD52p/N andk determines the numbering of the Fo
rier component~or a coordinate in thek space!. The ampli-
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tudeak is a complex number and must obey the relations
ak5a2k* in order for the energy values to be real. Due to t
well-known Wiener-Khintchin fundamental theorem,32 the
correlation function is determined as an inverse transform
tion of a power spectrum of the site energies:

^«0«x&5s2(
k

I k exp~ iDkx!, ~3!

where I k is the amplitude of a power spectrum. Since t
correlation function is an exponentially decaying functi
@see Eq.~1!#, the power spectrum, which in its turn is th
Fourier transform of the correlation function, is determin
by the Lorentzian function, giving accordingly

I k5
D

p

1/Rc

~Dk!21~1/Rc!
2 . ~4!

In terms of the Fourier coefficients the power spectrum
related to amplitudesak as

I k5uaku2. ~5!

Thus, by defining the amplitudes of the Fourier series fr
Eqs.~4! and ~5! as

uaku5AI k, ~6!

the correlated site energies can be determined from Eq.~2!.
In order to get the disordered picture for the energy distri
tion, the phases of the coefficientsak must be random. Thus
assuming

ak5uakuexp~ iwk!, ~7!

where wk is a linearly distributed random number draw
from the interval@0,2p!, the correlated disorder is well de
fined. It is worthwhile to mention that the relationwk5
2w2k for the random phase coefficients must be fulfilled

B. The correlated energy profile for higher-dimensional
lattices

A similar procedure may be applied to the square tw
dimensional lattice~and for lattices of higher dimensionalit
as well! with the correlated disorder. By using the same Fo
rier transformation procedure as given in Eq.~2!, the corre-
lation function for sites ~x, y! and (x8,y8) of two-
dimensional lattice can be defined as follows:

^«x,y«x8,y8&5s2 expS 2
ux2x8u

Rc
DexpS 2

uy2y8u
Rc

D , ~8!

with the power spectrum given by

I k,l5I kI l , ~9!

whereI k andI l are the power spectra of the one-dimensio
behavior alongx andy axes, as determined in Eq.~4!. It is
noteworthy that the correlation function for the two
dimensional system can be also defined in a somewhat
ferent way by means of the following definition of the co
relation function@compare Eq.~13!#:
3-2
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GEMINATE PAIR RECOMBINATION IN MOLECULAR . . . PHYSICAL REVIEW B 68, 245203 ~2003!
^«x,y«x8,y8&5s2 expS 2
ur 2r 8u

Rc
D , ~10!

wherer 5Ax21y2. In this case the power spectrum is give
by

I k,l5D2
1

ukup2

1/Rc

uku21~1/Rc!
2 , ~11!

where uku5DAk21 l 2. The correlated energy profile in thi
case is the same as for the one-dimensional system.
definitions provide similar results. Further extension of t
presented approach in determining the correlated disorde
higher-dimensional systems is straightforward. Since
D-dimensional Fourier transformation of the energy sp
trum can be determined as follows:

« r5s (
k1,k2,...,kD52~N21!

N21

ak exp@ iD~k•r !#, ~12!

wherer is aD-dimensional radius vector of the position of
particular lattice node,k5(k1 ,k2 ,...,kD) is the correspond-
ing vector determining theD-dimensional Fourier transfor
mation, thus, similarly the correlation function is determin
as

^« r« r8&5s2)
i 51

D

expS 2
uxi2xl8u

Rc
D . ~13!

Therefore, the corresponding power spectrum is given b

I k5)
i 51

D

I ki , ~14!

where I ki represents the power spectra of the on
dimensional system as defined in Eq.~4!. Accordingly, the
Fourier coefficients are also related to the one-dimensio
coefficients:

uaku5)
i 51

D

uakiu, ~15!

and, therefore, this procedure may be used for the sq
lattice of any dimensionality.

III. GEMINATE PAIR RECOMBINATION

The hopping rate of the mobile charge fromi th molecule
to the j th one in the molecular framework,n i j , is determined
by the distance-dependent exponential factor as a resu
the overlap of the corresponding electronic wave funct
and by the energy-dependent factor caused by the elec
interaction with the molecular environment~electron solva-
tion! and intermolecular and intramolecular vibrations19

Thus,

n i j 5n0 exp~22gur i2r j u!Bi j ~DE!, ~16!

wheren0 is a frequency prefactor,g is a wave function over-
lap factor of particular molecules, and the Boltzmann pr
actor is selected to be of the Miller-Abrahams type,33
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Bi j ~DE!5H exp@2~DE!/~kBT!# if DE,0

1 if DE.0,
~17!

where DE5Ei2Ej[«x,y2«x8,y8 and kB is the Boltzmann
constant.

Such a hopping rate is widely used to simulate the dif
sion of the mobile charges as well as their mobility in t
presence of the external electric field~see Ref. 26 for re-
view!. It is worthwhile to mention that the validity of the
Miller-Abrahams expression for the hopping rate has be
seriously challenged,34,35 especially for extraction of the pa
rameters from experimental data. However, since this
proach is based on the detailed balance, qualitative dem
stration of the effect under consideration will b
distinguished. By introducing the additional Coulomb fie
from the parent lattice site, where the countercharge rem
set, the process of geminate recombination can be simul
as well. The details of the model simulations have been
cently described.19 To rule out the jump frequency, which
determines the time scale of the process under considera
the dimensionless time will be used, what corresponds to
time unity as

@n0 exp~22ga!#21, ~18!

where a is the lattice constant. Typically 2ga can be as-
sumed to be of the order of 10.19 In this case the hopping
between the nearest neighbors is predominant~the corre-
sponding mean-jump-time equals 1!, while for the diagonal
jumps on the square lattice the jump rate is smaller b
factor of 60.

The typical value of the dispersion of the disorder satisfi
the following: s.kBT even at room temperature.19–21 Basi-
cally the case ofs/kBT52 corresponds to the global diago
nal disorder of 0.05 eV, while the values/kBT54 relates to
a value of 0.1 eV. The Coulomb energy for the charges
tween nearest neighbors in the lattice is determined by
lattice constant and by the dielectric constant of the med
typically giving the following value for the ratio:

EC /~kBT!5
e

4p««0akBT
525– 30,

see Refs. 19 and 21.

IV. RESULTS

A. Correlated energy landscape of the lattice

Qualitatively, the correlated disorder provides the non
cal perturbation of the energy landscape of the regular latt
The corresponding distribution of the energy for the mob
charge obtained by the Fourier-transformation approach
scribed above for the evaluation of the correlated disorde
shown in Fig. 1 for the disordered one-dimensional lattice
1000 sites with different radii of the correlation. The corr
lated distribution of the energy landscape depending on
correlation size is evidently distinguished. Statistically, the
differences are well determined by the correlation functio
which is exponentially dependent on the interpigment d
tance as shown in Fig. 2. The calculated correlation funct
3-3
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decays slightly faster than the single-exponential decay fu
tion ~see the case ofRc51 in Fig. 2! because of the finite
size of the lattice under consideration. Indeed, this devia
disappears for larger lattices containing 10 000 sites~not
shown!. However, the distribution of the site energies in bo
cases of the lattices is Gaussian with the dispersion appr
mately equal to 1.

B. Diffusion of the mobile charges

The long-distance movement of the mobile particle un
zero external field conditions can be well characterized
the time dependence of the mean value of the square
placement of the particle, i.e., by the^R2& dependence ont,
where ^¯& means the statistical averaging.24 The results of
calculations for the one-dimensional lattices of various v
ues of the correlation radii are presented in Fig. 3. It is e
dent that the regular lattice corresponds to the well-kno
diffusion-type relationship

^R2&}t, ~19!

FIG. 1. One-dimensional landscapes of the noncorrelated~a!
and correlated~b! disordered lattices.

FIG. 2. Correlation functions of the lattices shown in Fig.
Dotted lines correspond to the exponential decay.
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where the factor of the proportionality is the diffusion coe
ficient. The process providing this kind of corresponden
can be related to the normal diffusion. In the case of
uncorrelated disorder, the long-time behavior of^R2& is lin-
early dependent on time, while the diffusion process is som
what slower compared to the regular lattice~the correspond-
ing diffusion constant is smaller!. This change of the
diffusion constant is caused by the different conditions of
movement since in the case of the disordered lattice the
bile particle has to overcome the large potential barriers
tween the lattice sites. The linear time dependence is reac
asymptotically when the particle distribution on the ener
scale approaches the thermal equilibrium distribution. Si
the mean energy for the particle in the disordered latt
corresponds to the valueEmean5s2/kBT, thus, indeed it
takes some time to reach this value for the initially genera
particle in the system with the uncorrelated disorder~see Fig.
3!.36 This thermal equilibration time increases with the i
crease of the disorder, and the intermediate regime of
dispersive hopping becomes more pronounced.24 The corre-
lation of the disorder expresses itself on the same time s
as the intermediate regime of the dispersive hopping.
shorter times the particle behavior is closer to the case of
regular lattice while for the larger time scale and at larg
distances it approaches the case of the diffusion behavio
the lattice with the uncorrelated disorder.

The diffusion in the system of higher dimensions with t
correlated disorder is qualitatively similar to that observed
one-dimensional systems~see Fig. 4!. At the short times it
demonstrates the diffusion type behavior corresponding
the regular lattice, while at longer times it switches into t
diffusion of the particle in the lattice with the uncorrelate
disorder. Depending on the correlation size, this switch
period changes: the larger the radius, the longer the swi
ing period. At short times the particle feels the local disord
which can be weaker than the global one. Therefore,
diffusion rate of the particle changes in the course of tim
being faster at short times and slowing down with time. T
characteristic time determining this transition from the sho
time to the long-time behavior resembles the correlation

FIG. 3. Time dependence of the calculated mean values of
square displacement for the one-dimensional system with var
correlation radii of the disorder. Corresponding values ofRc are
pointed out. Results for the regular lattice and for the lattice
noncorrelated disorder are shown by bold lines. The diagonal
order value is taken to bes52kBT in calculations.
3-4



e
w
c
io
em
th
s

ng
rr
ue
er
di
m
er

ic
th

it
t

.
di
cs

the
in

de-
s
v-

ela-
the
lar
re-
dis-
s of

di-
ing
is-

s is

dis-

red
fu-
ter-
es,

of
ela-
ile
The
fer-
ath

, the
om
les
. 3
ap-
he

er

lace,

th
io

o
di

na

r
i
lue

nal

s

n to
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dius of the disorder. The case is different in the on
dimensional systems, where the particle faces the sites
increasing disorder values as it moves to the larger distan
Since the particle has no other way to move, the diffus
process turns out to be similar to the diffusion in the syst
with the uncorrelated disorder. For the higher dimensions
particle has the possibility of avoiding the ‘‘high cost’’ path
and, therefore, the diffusion is slightly faster at the lo
times in the correlated lattice as compared to the unco
lated case. This conclusion is validated for the small val
of the disorder, which are typical of the disordered polym
as used for calculations. However, in the case of strong
order the kinetics of the charged particle becomes predo
nantly one dimensional in the networks of high
dimensions.24

C. Geminate pair recombination

The effect of the correlative disorder on the GPR kinet
is analyzed by assuming that the recombination rate of
charges in the charge transfer state is infinitely fast, i.e.,
assumed that they recombine immediately as soon as
mobile charge reaches its countercharge.

The recombination kinetics as shown in Fig. 5 and Fig
is very sensitive to the changes of the correlation ra
Larger correlations speed up the initial part of the kineti

FIG. 4. Time dependence of the calculated mean values of
square displacement for the three-dimensional system with var
correlation radii of the disorder. Corresponding values ofRc are
pointed out. Results for the regular lattice and for the lattice
noncorrelated disorder are shown by bold lines. The diagonal
order value is taken to bes54kBT in calculations.

FIG. 5. The GPR kinetics calculated for the one-dimensio
lattice with different correlation radii of the disorder~corresponding
values are pointed out!, while the GPR kinetics for the regula
lattice is presented in bold. The initial charge separation radir 0

53a ~a! and r 055a ~b! are assumed. The diagonal disorder va
is taken to bes52kBT in calculations.
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while the rate at later times of the kinetics approaches
case of the lattice with the uncorrelated disorder. This is
accord with the concept of the local energy disorder
scribed in the Introduction. The initial kinetics originate
from the charge pair, which recombines in a few jumps co
ering the initial charge separation distance. For the corr
tion radius larger than this initial separation distance,
main part of the GPR kinetics is close to that of the regu
lattice. The long-time kinetics being determined by the
combination of the pairs of charges separated at larger
tances than the correlation radius resembles the kinetic
the GPR in the lattice with the uncorrelated disorder.

Qualitatively these conclusions are independent of the
mensionality of the system. However, the effect result
from the interplay between the correlation radius of the d
order and the initial separation distance of the charge
more expressed in three-dimensional systems~Fig. 6! than in
the one-dimensional case~Fig. 5!.

V. DISCUSSION

Calculations of time dependence of the mean-squared
placement~see Figs. 3 and 4! qualitatively demonstrate the
behavior similar to that obtained in noncorrelated disorde
systems.24 Three regimes corresponding to the regular dif
sion at short times, the dispersive hopping regime at in
mediate times, and finally the regular diffusion at long tim
generally can be distinguished in disordered systems.37 The
correlation of the disorder mainly influences the time scale
the transition between these regimes. The larger the corr
tion radius, the later transition times are expected, wh
these times are shorter for larger system dimensions.
effect of the dimension of the system is caused by the dif
ence in the possible diffusion pathways. Indeed, the one-p
particle movement in one-dimensional systems and, thus
absence of other possibilities for the particle to escape fr
its local position result in larger-cost movements of partic
in this case. Therefore, the diffusion characteristic in Fig
has no sharp switching region, and the diffusion manner
proaches asymptotically the diffusion in the lattice with t
uncorrelated disorder.

Bearing this in mind, the concept of the local disord
dependence of the extension~defined by radiusRp) of the
region, where the process under consideration takes p

e
us

f
s-

l

FIG. 6. The GPR kinetics calculated for the three-dimensio
lattice with different correlation radii of the disorder~corresponding
values are pointed out!, the bold curve indicates the GPR kinetic
for the regular lattice. The initial charge separation radiir 053a ~a!
andr 055a ~b! are assumed. The diagonal disorder value is take
be s54kBT in calculations.
3-5
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can be determined by the following equation:

j~Rp!5 1
2 A^@«~0!2«~Rp!#2&5sA12exp~2Rp /Rc!.

~20!

Thus, for the distances much shorter than the correlation
dius, i.e., forRp!Rc , the effective width of the energy dis
order is j(r )!s, while for longer distances, whenRp
@Rc , the disorder approaches the bulk valuej(r )→s.

The GPR process evidently resembles the short-time
havior of the charge movement since it is driven by the C
lomb potential of its counterion. Thus, the GPR kinetics
caused by the competition between the initial charge sep
tion distance and the radius of the correlation. Qualitative
this competition effect is well distinguished by compari
the kinetics for different correlation radii and with the sam
radius of the initial charge separation as shown in Fig. 5
Fig. 6.

The GPR kinetics performed recently claimed the value
the diagonal disorder in the films of poly-N-
epoxypropylcarbazole to be equal to 0.04 eV.21 This estima-
tion is lower than 0.1 eV obtained for the similar syste
from the charge drift studies.36 This difference can be attrib
uted to the correlation effects of the diagonal disorder
scribed above. Indeed, assuming that the GPR approxima
takes place in a regionRp53 to 5 of the lattice units, the
correlation radiusRc has to be of the order of 17 to 28 lattic
constants according to Eq.~21!.

Another parameter determining the GPR kinetics is
initial distance of the charge separation. Evidently the ove
GPR kinetics dramatically slows down by increasing the d
tance of the initial charge separation,r 0 , turning out to be
very similar to that for the regular lattice as soon asRc
>r 0 , while the change in the correlation radius in the opp
site region, whenRc,r 0 , has the largest effect on the kine
ics. Comparative studies of the kinetics with the fixed cor
lation radius and by changing the initial charge separa
distance demonstrate the sensitivity of the very initial par
the kinetics. Thus, it becomes evident that both values,
correlation radius and the initial charge separation distan
cannot be determined from fitting the only experimen
GPR kinetics, and the analysis of the additional data
needed. It can be obtained, for instance, from estimation
the quantum yield of the total charge separation in the p
ence of the external electric field. That value is mostly s
sitive to r 0 , the parameter of the initial charge separatio
while the correlation of the disorder has a minor effect a
follows from the diffusive behavior of the particle. The e
perimental possibilities of determining the initial char
y
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separation by means of studies of the transient spectra in
presence of the external electric field were recen
demonstrated.14 This could be another option in determinin
that value.

The given analysis is qualitative since the time scale u
for calculations was renormalized to the charge hopping r
However, we have to admit that by determining the dime
sional scale of time some uncertainties are still remain
since the scaling of the regular lattice is not independen
the time scaling used above. Indeed, by determining the
of the excitation jump in the regular lattice~the time scaling
rate! as

kreg5n0 exp~22ga!, ~21!

this value is also related to the dimensional scale of the
tice. Thus, by renormalizing the frequency scalen0 , the
same value of the charge jump time can be obtained w
rescaling the lattice size. However, the initial charge sepa
tion distance and the correlation radius of the disorder
not related to that scaling relationship, therefore, giving
independent effect on the GPR kinetics.

The other type of the electron transfer rate based on
Marcus theory of electron transfer can be used instead of
Miller-Abrahams expresion. The concept of reorganizat
energy reduces the sharp exponential dependence on
electron transfer barrier. However, conclusions obtained
our consideration of the influence of the correlative disor
on the GPR qualitatively will remain.

VI. CONCLUDING REMARKS

Here we introduce the concept of the local energy dis
der, which is usually lower than the energy disorder in t
bulk. The geminate pair recombination is predominan
caused by the local energy disorder, therefore, it car
much information about its correlation size. The gemin
pair recombination analysis indicates that the disorder va
are lower than those obtained from the mobility measu
ments. This feature of the local disorder is directly related
the correlations of the energy disorder. According to estim
tions, the correlation effect of the disorder extends ove
size comparable to the extension of the motion of the char
in the recombination process in molecular photoconduc
covering tens of angstroms.
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