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The dynamical properties of an extended Hubbard model, which is relevant to quarter-filled layered organic
molecular crystals, are analyzed. We have computed the dynamical charge correlation function, spectral den-
sity, and optical conductivity using Lanczos diagonalization and large-N techniques. As the ratio of the nearest-
neighbor Coulomb repulsion,V, to the hopping integral,t, increases there is a transition from a metallic phase
to a charge-ordered phase. Dynamical properties close to the ordering transition are found to differ from the
ones expected in a conventional metal. Large-N calculations display an enhancement of spectral weight at low
frequencies as the system is driven closer to the charge-ordering transition in agreement with Lanczos calcu-
lations. AsV is increased the charge correlation function displays a collective mode which, for wave vectors
close to (p,p), increases in amplitude and softens as the charge-ordering transition is approached. We propose
that inelastic x-ray scattering be used to detect this mode. Large-N calculations predict superconductivity with
dxy symmetry close to the ordering transition. We find that this is consistent with Lanczos diagonalization
calculations, on lattices of 20 sites, which find that the binding energy of two holes becomes negative close to
the charge-ordering transition.

DOI: 10.1103/PhysRevB.68.245121 PACS number~s!: 71.27.1a, 71.10.Fd, 74.70.Kn, 71.45.Lr
an

th
s
er
te

ue
-

tio
tin
lly

on

d
e-
-
ed
su
al
in

se to
n-

ent
ut

e
v-
ra-

g

ical
ring
om

x-
sion
tral
rge-
lso
by
We

the
n-

ase
I. INTRODUCTION

The competition between charge-ordered, metallic,
superconducting phases is relevant to a broad range
strongly correlated electron materials. For example, in
vanadium bronzeb-Na0.33V2O5, superconductivity appear
close to a charge-ordered phase under an applied ext
pressure.1 The appearance of a pseudogap in oxygena
samples of Nd1.85Ce0.15Cu41y has been suggested to be d
to charge ordering.2 Quarter-filled layered organic mate
rials such as the bis-ethylenedithio-tetrathiafulvalene~BEDT-
TTF! family of organic molecular crystals3 with theu andb9
molecular stacking patterns also display a subtle competi
of metallic, insulating, charge-ordered, and superconduc
phases.4 Supercon-ductivity in organic compounds is usua
found in close proximity to ordered insulating phases.3 For
example, k-(BEDT-TTF)2Cu@N(CN)2#Cl is an
antiferromag-netic Mott insulator which becomes superc
ducting under pressure.5 Superconductingu-(ET)2I3 and
b9-(BEDT-TTF)3Cl2(H2O)2 are close to charge-ordere
phases.6 Superconductivity occurs in the quasi-on
dimensional Bechgaard salts,~tetramethyl tetraselena ful
valene! TMTSF2X, when a spin-density wave is suppress
It is then important to understand the connection of the
perconducting state to the nearby ordered phases and an
the effect of the fluctuations associated with the order
transition on the normal metallic phase.
0163-1829/2003/68~24!/245121~15!/$20.00 68 2451
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Several anomalous properties have been observed clo
the charge-ordering transition in quarter-filled organic co
ductors.~i! Suppression of Drude weight and enhancem
of optical spectra at low frequencies at abo
500–1000 cm21 in metallic u ~Refs. 8,7! b9 ~Ref. 9! anda
salts10 at low temperatures.~ii ! The temperature dependenc
of the resistivity may be different from Fermi-liquid beha
ior, in particular, the resistivity can increase as the tempe
ture is decreased just before becoming superconducting~see
the Table in Ref. 6!. Previously we have explored, usin
slave bosons, the possibility of superconductivity6 and the
metal-insulator transition11 in the quarter-filled extended
Hubbard model. Here, we concentrate on the dynam
properties in the metallic phase close to the charge-orde
transition. We find that due to the scattering of electrons fr
charge fluctuations with (p,p) wave vector, dynamical and
transport properties display behavior different from that e
pected in a typical metal. For instance, a strong suppres
of quasiparticle weight as well as enhancement of spec
weight at low but finite frequencies takes place as the cha
ordering transition is approached from the metallic side. A
we examine the possibility of superconductivity mediated
short-range charge fluctuations close to the transition.
find that superconductivity withdxy symmetry is possible
close to the charge-ordering transition. We note that
present analysis is similar in spirit to those that aim to u
derstand the effect of spin fluctuations on the metallic ph
©2003 The American Physical Society21-1
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and the possibility of superconductivity mediated by them12

in high-Tc compounds,k-(BEDT-TTF)2X ~Ref. 13!, heavy
fermions,14 and ruthenates.15

In this paper we study the quarter-filled extended Hubb
model combining two techniques: large-N and Lanczos di-
agonalization on small clusters which complement e
other. The comparison of a semianalytical approach with
act results leads to a deeper understanding of the nume
findings. It also shows which results obtained within t
large-N approach are solid and which are weak. This pape
organized as follows. In Sec. II, we introduce an extend
Hubbard model to describe the electronic properties
quarter-filled layered molecular crystals. We also review
path-integral formalism written in terms of Hubbard ope
tors and the large-N expansion introduced to compute ele
tronic properties of the model. In Sec. III, we show resu
for the dynamical charge correlation function, spectral d
sity, and optical conductivity computed with Lanczos diag
nalization comparing them with large-N results. In Sec. IV
we discuss our results contrasting them with available
perimental data on the quarter-filled organics. Section V
devoted to the possibility of having superconductivity in t
model.

II. DYNAMICAL PROPERTIES IN THE U-INFINITE
LIMIT: LARGE- N APPROACH

We consider an extended Hubbard model at one-qua
filling on a square lattice. This has been argued to be
simplest model needed to understand the electronic pro
ties of the layered molecular crystals with theu andb9 mo-
lecular arrangements within each layer.4 The Hamiltonian is

H52t (
^ i j &,s

~cis
† cj s1cj s

† cis!1U(
i

ni↑ni↓

1V(̂
i j &

ninj2m(
is

nis , ~1!

where U and V are the on-site and the nearest-neighb
Coulomb repulsion, respectively, andcis

† creates an electron
of spin s at site i. In the limit U@V@t the ground state is
insulating with a checkerboard charge-ordered pattern.4 For
U→` andV50, the system is expected to be metallic as
is quarter filled. Evaluation of the Drude weight by Lancz
techniques suggests that a metal-insulator transition ta
place at a finite value ofVc'2.2t for a sufficiently large
value11 of U510t.

We now introduce the Hubbard operators

Xi
0s5~12ci s̄

†
ci s̄!cis , Xi

s05~Xi
0s!†, Xi

ss85cis
† cis8 .

~2!

The five HubbardX̂i operatorsXi
ss8 and Xi

00 are boson-

like and the four HubbardX̂ operatorsXi
s0 andXi

0s are fer-
mionlike. The names fermionlike and bosonlike come fro
the fact that Hubbard operators do not verify the usual
mionic and bosonic commutation relations.16
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In the U-infinite limit, the Hamiltonian ~1! (t2J2V
model withJ50) can be written in terms of Hubbard oper
tors as

H~X!5 (
^ i j &,s

t i j Xi
s0Xj

0s1 (
^ i j &,s

Vi j Xi
ssXj

s̄s̄2m(
i ,s

Xi
ss ,

~3!

wherem is the chemical potential. The Hubbard operators
this limit satisfy the completeness condition

Xi
001(

s
Xi

ss51, ~4!

which is equivalent to imposing that ‘‘double occupancy’’
each site is forbidden.

There are two main difficulties in the calculation of phys
cal quantities using Hamiltonian~1!: the complicated com-
mutation rules of the Hubbard operators16 and the fact that
there is no small parameter in the model. A popular meth
for handling the former difficulty is to use slave particle
For instance, within the slave boson method,17 the original
fermionicX0s operator is decoupled asX0s5b†f s , whereb
and f are usual boson and fermion operators, respectiv
The second difficulty can be dealt with by using a nonp
turbative technique~which we will use in the present pape!
based on a large-N expansion, whereN is the number of
electronic degrees of freedom per site and 1/N is assumed to
be a small parameter. At one-quarter filling~which is the
main interest in this paper!, we expect the large-N approach
to be a good approximation. This has been shown in
overdoped regime of high-Tc cuprates.18

Hamiltonian ~1! has been treated via largeN in a slave
boson representation in Ref. 17 forV50, and in the context
of quarter-filled layered organic superconductors (VÞ0) in
Ref. 4. Here, we concentrate on the dynamical propertie
Hamiltonian ~1!, using the recently developed large-N
expansion.19 This method is based on a path-integral rep
sentation of the HubbardX operators which is written in
terms of Grassmann and usual bosonic variables assoc
with fermilike and bosonlike operators, respectively. In d
ing this, additional constraints are needed to make these
variables behave as Hubbard operators~satisfying their asso-
ciated algebra!, as they should. Although this may seem
great complication in the theory, in fact it avoids introducin
any decoupling scheme of the original Hubbard operators
in slave boson representations. For completeness we
summarize the framework used in the diagrammatic exp
sion developed in Ref. 19.

Our starting point is the partition functionZ written in the
Euclidean form:

Z5E DXi
abdFXi

001(
s

Xi
ss21GdFXi

ss82
Xi

s0Xi
0s8

Xi
00 G

3~sdetMAB! i
1/2expS 2E dtLE~X,Ẋ! D . ~5!

The Euclidean LagrangianLE(X,Ẋ) in Eq. ~5! is
1-2
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LE~X,Ẋ!5
1

2 (
i ,s

~Ẋi
0sXi

s01Ẋi
s0Xi

0s!

Xi
00

1H~X!. ~6!

It is worth noting at this point that the path-integral re
resentation of the partition function~5! looks different to that
usually found in other solid-state problems. The measure
the integral contains additional constraints as well as a
perdeterminant (sdetMAB) i

1/2. Also the kinetic term of the
Lagrangian~6! is nonpolynomial. The determinant reads

~sdetMAB! i
1/251/

1

~2X00!2
, ~7!

and is formed by all the constraints of the theory. Note t
(sdetMAB) i

1/2 is not proportional to (2X00)2, because the
theory is constrained in a supersymmetric sense where b
and fermion determinants must be treated in different w
~see Ref. 19 for more details about the path-integral form
ism for Hubbard operators!. The constraints appearing in th
theory are necessary in order to recover the correct algeb
the original Hubbard operators. In Eq.~10! we show how to
treat this determinant through the use of a large-N expansion.

We now discuss the main steps needed to introduc
large-N expansion of the partition function~5!. First, we in-
tegrate over the boson variablesXss8 using the secondd
function in Eq.~5!. We extend the spin indexs56 to a new
indexp running from 1 toN. In order to get a finite theory in
the N→` limit, we rescale the hoppingt i j to t i j /N andVi j
to Vi j /N. In doing so, note thatt i j /N ~rather thant i j ) should
be fitted to band-structure calculations. The completen
l
v
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-
al
a-
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condition is enforced by exponentiating:Xi
001(pXi

pp

5N/2, theN-extended completeness condition, with the he
of Lagrangian multipliersl i . From this completeness cond
tion we can see that the charge operatorX00 is O~1! in the
1/N-expansion, while the operatorXpp is O(1/N). As a con-
sequence of this, the largeN approach presented here wea
ens the effective spin interaction compared to the one a
ciated with the charge degrees of freedom. For instan
through O(1/N) we find collective excitations in the charg
correlation function but not in the spin susceptibility.

We write the boson fields in terms of static mean-fie
values (r 0 ,l0) and dynamic fluctuations

Xi
005Nr0~11dRi !,

l i5l01dl i , ~8!

and, finally, we make the following change of variables:

f ip
15

1

ANro

Xi
p0 ,

f ip5
1

ANro

Xi
0p , ~9!

where f ip
1 and f ip are Grassmann variables.

Introducing the above change of variables@Eqs. ~8! and
~9!# into Eq. ~6!, and after expanding the denominator a
pearing in Eq.~6!, we arrive at the following effective La-
grangian:
Le f f52
1

2 (
i ,p

~ ḟ ip f ip
11 ḟ ip

1 f ip!~12dRi1dRi
2!1 (

i , j ,p
t i j r of ip

1 f jp1(
i , j

Vi j r o
2dRidRj2m (

i ,p
f ip

1 f ip~12dRi1dRi
2!

1Nr0 (
i

dl i dRi1(
i ,p

f ip
1 f ip~12dRi1dRi

2! dl i2(
ip

Zip
† ~12dRi1dRi

2!Zip , ~10!
yn-
-
ive

rry
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where l0 has been absorbed in the chemical potentiam
→m2l0 and all constant and linear terms in the fields ha
been dropped. The path-integral representation
(sdetMAB)1/2, written in terms of theN-component boson
ghost fields,20 Zp , leads to the last term of Lagrangian~10!.
Note that all the complications arising from the Hubba
algebra have been translated to an effective theory of fe
ons interacting with bosons. Indeed, the interaction te
appearing in the effective Lagrangian~10! are generated
solely by the Hubbard algebra~apart from the no double
occupancy constraint! and are not present in the origin
Hamiltonian ~3!, which is quadratic in the Hubbard oper
tors.

In the above expansion we have only retained the fi
nontrivial terms that couple the fermionic and boson
modes. In order to have a systematic scheme to classify
e
f

i-
s

t

nd

deal with these interaction terms we introduce a set of Fe
man rules in powers of 1/N.19 These will help us to deter
mine, for instance, that the terms retained in the effect
Lagrangian~10! correspond to expanding through O(1/N) in
the large-N expansion. The Feynman rules needed to ca
out this project can be summarized as follows.

~i! Propagators. We associate with the two compone
dXa5(dR,dl) boson field, the bare propagatorD0,

D (0)ab
21 ~q,nn!5NS 4Vr0

2@cos~qx!1cos~qy!# r 0

r 0 0
D ,

~11!

which is represented by a dashed line in Fig. 1 connec
two generic componentsa andb. q andnn are the momen-
tum and the Matsubara frequency of the boson fields, res
tively.
1-3
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The bare propagator of theN-component fermion fieldf p
reads

G(0)pp8~k,vn!52
dpp8

ivn2~«k2m!
, ~12!

which is represented by a solid line in Fig. 1 connecting t
generic componentsp and p8. The electron dispersion rela
tion appearing in Eq.~12! is the one associated with th
original fermions renormalized by the interaction«k5
22tr o@cos(kx)1cos(ky)#, with t the hopping between
nearest-neighbors sites on the square lattice. The quantitk
andvn are the momentum and the fermionic Matsubara f
quencies of the fermion field, respectively.

We associate with theN-component bare ghost fieldZp
the propagator

Dpp852dpp8 ~13!

which is represented by a dotted line in Fig. 1 connect
two generic componentsp andp8.

~ii ! Vertices. The expressions of the different three-leg a
four-leg vertices are

La
pp852S i

2
~v1v8!1m; 1D dpp8 ~14!

representing the interaction between two fermions and
boson@see Fig. 1~a!#;

Lab
pp852S 2

i

2
~v1v8!2m 2

1

2

2
1

2
0
D dpp8 ~15!

representing the interaction between two fermions and
bosons@see Fig. 1~b!#;

Gpp8
a

5~21!~dpp8 , 0! ~16!

FIG. 1. Feynman diagrams in the large-N expansion of the Hub-
bard operator theory. Solid lines represent fermions which are
lated to the electrons. Dashed lines represent bosons which ar
lated to charge fluctuations. Dotted lines represent ghosts which
not physical but related to the constraints appearing in the the
which enforce that fermions satisfy the Hubbard operator alge
~a!–~d! The types of vertex which occur up to order O(1/N). ~a!
The vertex between two fermions and one boson.~b! The vertex
between two fermions and two bosons.~c! The vertex between two
ghosts and one boson.~d! The vertex between two bosons and tw
ghosts.~e! The sum of all one-loop diagrams contributing to t
irreducible boson self-energy which is of the order of O(1/N).
24512
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representing the interaction between two ghosts and one
son @Fig. 1~c!#; and

Gpp8
ab

5~21!S 21 0

0 0D dpp8 ~17!

representing the interaction between two bosons and
ghosts @Fig. 1~d!#. Each vertex conserves momentum a
energy, as it should.

In the lowest order of the expansionN5`, we have the
original fermions renormalized by the interaction«k5
22tr o@cos(kx)1cos(ky)#. For a given value ofm, r 0 must be
determined self-consistently. For instance,r 0 is equal tod/2
~whered is the hole doping away from half filling! from Eq.
~8! and the completeness condition~4!.

The path integral~5! is written in terms of the originalX
operators without having to introduce slave particles. Eq
tion ~5! is analogous to the path integral used for the Heis
berg model where, using SU~2! coherent states, the measu
can be written21 in terms of the spinSW . There is, however, an
extra price we have to pay if we work with the origin
Hubbard operators. For instance, we need to introduce a
constraint@the secondd function in Eq.~5!# and the deter-
minant (sdetMAB) of the matrix formed by the constraint
appearing in the theory.19 In spite of these ‘‘apparent’’ com-
plications our formulation is very flexible in calculating th
physical quantities of interest, as it will be shown below.

In summary, we have developed a diagrammatic te
nique appropriate for a large-N expansion along the lines o
the large-N expansion developed in quantum field theo
Hence, from the order of the propagators and vertices,
can determine the order of the diagram contribution.

To conclude this section we make contact with clos
related approaches such as slave boson formulations. In
trast to slave boson theories,~a! Greens functions are calcu
lated in terms of the original Hubbard operators,~b! fermions
f ip appearing in the theory are proportional to the Fermi-l
X operatorXop @see Eq.~8!# to all orders in the 1/N expan-
sion, not only to leading order,22 ~c! as our path integral is
written in terms ofX operators we do not need to introducea
priori any decoupling scheme, and~d! r 0 is the mean value
of X00 which is a real field associated with the number
holes @see Eq.~8!# and not with the number of holons. A
leading order@N→` or O~1!# and V50, our formalism is
equivalent to slave boson approaches. However, at the
to leading order@O(1/N)# @which is necessary to calculat
one-electron properties such as the electron self-ene
S(k,v) and the electron spectral functionA(k,v)], the two
formulations do not coincide. The differences between
two formulations are not yet completely established. O
theory has thesignificant advantagethat it does not require
the introduction of gauge fields like in slave boson a
proaches. Hence, through order O(1/N) we do not need to
take care of gauge fluctuations or Bose condensation@note
that Eq.~8! does not mean Bose condensation#. This is im-
portant because for the doped Hubbard model the gauge
tuations are known to significantly change the physics23
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Careful numerical work will determine the improvements
the present approach with respect to slave boson form
tions.

III. DYNAMICAL PROPERTIES OF THE METALLIC
PHASE CLOSE TO THE CHARGE-ORDERING

TRANSITION

In this section, we analyze using large-N and Lanczos
techniques the influence of the charge-ordering transition
the dynamical properties of the normal metallic phase.

A. Charge response

The dynamical electronic density-density response fu
tion can be written in terms of Hubbard operators. We defi
the retarded density-density, Green’s function as

D̃ i j ~t!5
1

N (
pq

^TtXi
pp~t!Xj

qq~0!&. ~18!

From(qXi
qq5N/22Xi

00 and Eq.~8! we find, after Fourier
transforming,

D̃~q,nn!52NS d

2D 2

DRR~q,nn!. ~19!

Here DRR(q,nn) is the (R,R) component of the boson
propagator. This is the only physical component of the bo
propagator and encodes the charge fluctuations occurrin
the system. Other components of the boson propagator
as (l,R) or (l,l) contain the nonphysical fieldl which are
introduced to enforce the no double-occupancy constra
Unlike in slave boson theories, the (R,R) component used
here is associated directly with the charge and not wit
fictitious bosonic field~holon!.

Through O(1/N) the boson propagator consists of the ba
boson propagatorD (0) @which is of the order of O(1/N)]
renormalized by a random-phase-approximation~RPA!-type
series of electronic bubbles. The irreducible boson s
energy components,Pab , are obtained~through order 1/N)
from the summation of all the contributions corresponding
the one-loop diagrams shown in Fig. 1~e!.

The last two diagrams appearing in Fig. 1~e! involving
ghost fields are very important. It is possible to show t
these two diagrams exactly cancel the infinities, due to
frequency dependence of our vertices, of the two first d
grams appearing in Fig. 1~e!. Ghost fields interact only with
the boson fields as can be seen from Figs. 1~c! and 1~d!.
Summarizing, the only role of ghost fields, through ord
1/N, is to cancel infinities in the boson self-energyPab aris-
ing from the frequency dependence of our vertices~14! and
~15!.

Using our Feynman rules, we can now write out explici
each of the components of the boson self-energyPab ,
24512
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PRR~q,nn!52
N

Ns

1

4 (
k

F2 nF~«k2m!~«k1q2«k!

1~«k1q1«k!2
@nF~«k1q2m!2nF~«k2m!#

2 inn1«k1q2«k
G ,

~20!

PlR~q,nn!52
N

Ns

1

2 (
k

~«k1q1«k!

3
@nF~«k1q2m!2nF~«k2m!#

2 inn1«k1q2«k
, ~21!

and,

Pll~q,nn!52
N

Ns
(

k

@nF~«k1q2m!2nF~«k2m!#

2 inn1«k1q2«k
,

~22!

whereNs is the number of sites of the system.
From Dyson’s equation andPab the dressed componen

of the boson propagator,Dab , can be found:

~Dab!
215~D (0)ab!

212Pab . ~23!

Dab may contain collective excitations such as zero soun22

In order to look at charge-ordering instabilities induced
the intersite Coulomb interaction,V, we have calculated the
static charge susceptibilityD̃(q,nn50) for different q vec-
tors on the Brillouin zone~BZ!. At one-quarter filling (d
50.5) the corresponding chemical potential ism520.360t
in the limit N→`. We find that the static susceptibility di
verges at the wave vectorqc5(p,p) for V5Vc'0.65t sig-
naling the instability to a checkerboard charge-density wa
The value ofVc is slightly smaller than the one previous
found using slave bosons,4 Vc'0.69t. This is because of the
decoupling of the electron operators introduced within sla
bosons to treat the intersite interaction termVninj which is
not needed~due to the use of Hubbard operators! in the
present large-N approach. For comparison, recent exact
agonalization calculations11 give a critical value for the
metal-insulator transition driven byV at aboutVc'2t for
U520t. The large difference inVc between large-N and
Lanczos diagonalization calculations can be attributed to
strong renormalization of the bare band~given by r 05d/2)
which appears in large-N approaches at O~1!. Our compari-
son to Lanczos will show that in spite of the difference in t
absolute magnitude ofVc , dynamical properties compute
from the 1/N expansion are in rather good agreement asV
→Vc , making the 1/N approach reliable.

In Fig. 2 we show the evolution of2Im D̃(qc ,n) as the
system is driven close to the charge-ordering instability,V
,Vc , for the wave vector:qc5(p,p). The intersite Cou-
lomb repulsion softens the collective mode atqc which ap-
pears forU→` and V50 and, at the same time, increas
its weight. At wave vectors far fromqc the collective mode
shows up as a peak located at frequencies of aboutt which
carries small weight and is barely influenced byV. The mode
at (p,p) can be detected, in principle, with electron energ
1-5
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loss scattering ~EELS! ~Ref. 24! or inelastic x-ray
scattering.25 With EELS one is able to obtain information o
the electronic properties of the system at a given energy
wave vector, so that, for instance, the dispersion relation
the mode can be mapped out. A more appropriate way
detecting this mode is by using inelastic x-ray scatteri
which provides a direct probe of the dynamical charge c
relation function and has been successfully applied to o
and two-dimensional Mott-Hubbard systems.25

In order to compare with large-N we compute, with Lanc-
zos diagonalization, the spectral decomposition of the cha
correlation function,

C~q,n!5(
m

u^muNqu0&u2d@n2~Em2E0!#, ~24!

whereNq51/AL( ie
iqRi(ci

1ci2^ci
1ci&). Em and E0 denote

the excited- and ground-state energies of the system, res
tively. L is the number of sites in the cluster. Note th
C(q,n) can be compared to2Im D̃(qc ,n) as they have
equivalent definitions. Of course, attention must be paid
the fact that we are comparing calculations of the cha
susceptibility on an infinite system with calculations on
L516 cluster. Indeed, we find thatC(qc ,n) is in rather good
agreement with2Im D̃(qc ,n) ~see Fig. 2!, both displaying
similar softening and increase in amplitude of the collect
mode at (p,p) close to the charge-ordering transition.

FIG. 2. The softening of the collective mode at the wave vec
qc5(p,p) as the system is driven closer to the checkerbo
charge-ordering transition. The frequency dependence of the ch
correlation function is shown for several different values ofV/t.
The right and left panels show results obtained using Lanczos
agonalization onL516 site clusters (U520t) and large-N theory,
respectively. A Lorentzian broadening ofh50.1t is used in the
calculations. Only for wave vectors close to or at (p,p), the soft-
ening of the collective mode is observed as a consequence o
proximity of the system to a checkerboard charge-ordering tra
tion. Calculations of dynamical properties using large-N theory at
O(1/N), which couples the electrons to the short-range charge fl
tuations associated with this transition, and Lanczos diagona
tion, suggest that this collective mode is responsible for the ‘‘
conventional’’ behavior of dynamical properties. The ins
compares the position of the peak associated with the collec
mode at (p,p) computed from Lanczos and large-N approaches.
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The imaginary part of the charge correlation close to
charge-ordering wave vectorq→qc can be fitted to the fol-
lowing RPA form:26

2Im D̃~q,n!5A
n

n21vq
2

, ~25!

where vq5v01C(q2qc)
2, whereA and C are constants.

v0 gives the position of the peak appearing in the cha
correlation function at (p,p) for different V’s and goes to
zero asV→Vc , measuring the proximity of the system to th
charge-ordering transition~see inset of Fig. 2!. We note that
the overall behavior of the charge susceptibility is analog
to the one of the spin susceptibility in nearly antiferroma
netic metals.27,28

B. Spectral densities

The Green’s function Eq.~12! corresponds to the
N-infinite propagator which is just proportional to the Hu
bard operators,X0s @see Eq.~12!#. In spite of involving the
many-body Hubbard operators Eq.~12! looks similar to the
propagator for free electrons although its physical interpre
tion is very different. Equation~12! describes quasiparticle
with renormalized hoppingt(k)d/2. TheN5` propagator in
Eq. ~12! does not contain dynamical corrections; these
pear at higher orders in the 1/N expansion. In order to cal
culate spectral densities, we first calculate the self-ene
Using the Feynman rules, there are two diagrams, show
Fig. 3~a!, contributing to the self-energy through O(1/N).
The analytical expression for these two diagrams reads

Spp5 (
p8,p9,a,b

La
pp8DabGp8p9Lb

p9p1(
a,b

Lab
ppDab , ~26!

where integration over internal momenta and sum over M
subara frequencies is assumed. The renormalized bo
propagator in Eq.~23! plays a similar role as the phono
propagator when dealing with the electron-phonon inter
tion in simple metals. Therefore, in the calculation
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rge
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he
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e

FIG. 3. ~a! Contributions to the electron self-energy,S(k,v),
through O(1/N), in the Hubbard operator theory. The first diagra
contains two three-leg vertices as the ones shown in Fig. 1~a! and
the second one is formed with one four-leg vertex as shown in
1~b!. ~b! Contribution to the effective interaction between quasip
ticles,Ve f f , through O(1/N). This interaction is used in the prese
work to analyze superconducting instabilities of the Fermi liqu
induced by the charge fluctuations appearing close to a chec
board charge-ordering transition induced byV.
1-6
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DYNAMICAL PROPERTIES OF A STRONGLY . . . PHYSICAL REVIEW B68, 245121 ~2003!
S(k,v) through O(1/N) not only band-structure effects en
ter, but also collective effects associated with the charge
grees of freedom~this self-energy calculation is analogous
the large-N expansion within slave boson formulations22!.

Using the spectral representation for the boson fie
Dab , the imaginary part of the self-energy ImS can be ob-
tained,

Im S~k,v!52
1

Ns
(

q
H 1

4
Im @DRR~q,v2«k2q!#

3~«k2q12m1v!21Im @DRl~q,v2«k2q!#

3~«k2q12m1v!1Im @Dll~q,v2«k2q!#J
3~nB~v2«k2q!1nF@2«k2q!#. ~27!

Note that this self-energy is the one associated with
propagatorG(k,v) of the f operators.

Figure 4 shows the behavior of ImS(k,v) with increas-
ing V for a wave vector on the Fermi surface:k
5(1.204,1.204)~we have usedh50.1t in the analytical con-
tinuation!. As we approachV5Vc , both the imaginary and
real parts of the self-energy@which from Eq.~27! involves a
sum over the full BZ# are enhanced in the positive range
frequenciest –3t due to the scattering of the electrons off t
checkerboard charge fluctuations. Performing a Kram
Kronig transformation on ImS, we can obtain the real par

FIG. 4. Evolution of the real and imaginary parts of the se
energy of an electron at the Fermi surface as the system is dr
close to the checkerboard charge-ordering transition from largN
theory. The amplitude of the self-energy is enhanced at frequen
betweent and 3t due to the enhancement of fluctuations associa
with (p,p) short-range charge ordering. The behavior of the s
energy leads to an enhancement of spectral weight in the spe
density~see Fig. 5! and an incoherent band in the density of sta
~DOS! ~see Fig. 8! betweenv5t and 3t as we approach the charge
ordering transition. The intersection of the curve of ReS(v) vs v
with v1m2e(k) determines the quasiparticle peaks in the el
tronic spectral function.
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of the self-energy, ReS, which is also plotted in Fig. 4. It is
worth noting that forU5` andV50 the self-energy is al-
ready nonzero as a consequence of the interaction of fe
ons with the collective mode present in the charge corre
tion function.

From ImS(k,v) and ReS(k,v), we can compute the
spectral functionA(k,v)52(1/p)Im G(k,v) as

A~k,v!52
1

p

Im S~k,v!

~v1m2«k2ReS~k,v!!21Im S~k,v!2
.

~28!

The spectral densityA(k,v) calculated and plotted in Fig
5 is associated with thef operators. As these anticommut
A(k,v) integrates to 1. For the physical Hubbard operat
as defined from the change of variables expressed in Eq
the total spectral weight would sum toNd/2, which is the
correct sum rule in theN→` limit. Deviations appear asN
is made finite. For instance, forN52 the total spectral
weight of the Hubbard operators would gived instead of
(11d)/2, so that 66.66% of the full sum rule would be ca
tured at one-quarter filling. Similar deviations in the sum ru
are found in related slave boson approaches29 in the N→`
limit. In the present approach we have expanded the s
energy to O(1/N) and computed Green’s function of thef
operators. An alternative route would have been to exp
directly the propagators to O(1/N). In this way one could see
how the O(1/N) fluctuations restore part of the sum rule.

In Fig. 5 we show the spectral function obtained fro
large-N theory, for an electron atk5(0,0),(1.204,1.204),
(p,p) for different values ofV→Vc . The spectral density o
an electron at the Fermi surface displays a quasiparticle p
characteristic of a Fermi liquid atv5m. The rest of spectra
weight that is left is incoherent.

The quasiparticle weightZk evaluated at the Fermi sur
face is defined as

Zk5S 12
]ReS~k,v!

]v D 21U
v50

. ~29!

In the inset of Fig. 5 we observe how a gradual suppr
sion of Zk occurs as the charge-ordering transition is a
proached. This can be compared to the suppression of
Drude weight found in Lanczos calculations,11 which is also
evident in the spectral function plotted in Figs. 6 and
Spectral weight is transferred from the quasiparticle peak
the range of energies betweent and 3t, asV tends toVc due
to the scattering of the electrons off the charge fluctuati
associated with short-range checkerboard charge orde
The modes close to (p,p) give the strongest contribution t
the scattering. The apparent peak aroundv522t should not
be interpreted as a quasiparticle peak but as the lower H
bard band29 associated with the on-site Coulomb repulsi
U.

The behavior of the spectral density shown in Fig. 5 c
be now understood from the evolution of the real part of
self-energy shown in Fig. 4. The scattering of electrons fr
the strong charge fluctuations at (p,p) wave vectors in-
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MERINO, GRECO, MCKENZIE, AND CALANDRA PHYSICAL REVIEW B68, 245121 ~2003!
volves large frequencies. This leads to an enhancement o
real part of the self-energy at large frequencies which,
turn, produces an increase of spectral weight at large
intermediate energies. This behavior is analogous to the
found in metals in the presence of short-range s
fluctuations.30 Unlike in the case of nearly antiferromagnet
metals, no new poles induced by the interaction arise. Th
because at quarter filling no two points of the Fermi surfa
are connected by the scattering wave vectorqc5(p,p), and

FIG. 5. Evolution of quasiparticle spectral density of states
sociated with thef-operator propagator computed from large-N
theory at different wave vectorsk5~0,0!, (kF ,kF), and (p,p).
Close to the charge-ordering transition spectral weight is transfe
from the quasiparticle peak to low and intermediate frequenc
The quasiparticle weight at the Fermi energy,Zk , is rapidly sup-
pressed~see inset! as the charge-ordering transition is approach
V→Vc . The results presented here can be compared withA(k,v)
computed from Lanczos calculations shown in Figs. 6 and 7.
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therefore the effect of the fluctuations nearqc on the elec-
trons is weaker than spin fluctuations in systems close to
filling.

In order to test the validity of the large-N approach we
have also computed the spectral densities from Lanczos
agonalization of finite clusters,31

A(1)~k,v!5(
m

u^m,Ne11ucks
1 u0,Ne&u2

3d$v2@Em~Ne11!2E0~Ne!#% ~30!

for adding and electron to the system withNe electrons and

A(2)~k,v!5(
m

u^m,Ne21ucksu0,Ne&u2

3d$v1@Em~Ne21!2E0~Ne!#% ~31!

for removing an electron from theNe electron system.Em
andE0 denote the excited- and ground-state energies of
system andcks

† 51/AL( je
ikR jcj s

† .
In Figs. 6 and 7 we plot the evolution of the spectr

densities calculated with Lanczos techniques for wave v
tors atk5(0,0),(p/2,0),(p/2,p/2), and (p,p) for different
values ofV/t. At k5(0,0) two sharp peaks are clearly di
tinguished already forV50. One of them is the quasiparticl
peak and we associate the lower one with the lower Hubb
band due to the presence ofU. For the nearest wave vector
to the Fermi energy,k5(p/2,0) and (p/2,p/2), we find an

-

ed
s.

,

FIG. 6. Evolution of quasiparticle spectral density of stat
A(k,v), at k5(0,0) and (0,p/2), computed from Lanczos diago
nalization on anL516 cluster for an extended Hubbard model
quarter filling. The on-site Coulomb repulsion is taken to beU
520t and a broadening of thed peaks,h50.1t, is used. As the
system approaches the metal-insulator transition, an enhance
of spectral weight at finite frequencies and a suppression of
weight at the Fermi energy takes place. Atk5(0,0), the two sharp
peaks are associated with the lower Hubbard band and the q
particle peak. An overall qualitative agreement with the results fr
large-N theory is found~see Fig. 5!.
1-8
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DYNAMICAL PROPERTIES OF A STRONGLY . . . PHYSICAL REVIEW B68, 245121 ~2003!
enhancement of incoherent spectral weight at finite frequ
cies as the charge-ordering transition is approached.

Finally, the total density of states~DOS! can be computed
from

N~v!5
1

L (
k

@A(2)~k,v!1A(1)~k,v!#. ~32!

In Fig. 8 we compare the evolution of the DOS,N(v), for
increasingV/t, calculated with both Lanczos atU→` and
large-N calculations.

From Lanczos calculations we observe~left panel of Fig.
8! for V50 a band at about23t, a quasiparticle band situ
ated atv5m, and a band running fromt to 5t. As V/t is
increased the weight of the quasiparticle peak is reduced
weight between 2t and 5t is gradually enhanced. Also
suppression of spectral weight at low frequencies occurs
precusor effect before the charge-ordering transition ta
place. This general behavior is in qualitative agreement w
large-N calculations. Indeed, an incoherent band at nega
frequencies of about22t, associated with the lower Hub
bard band, a suppression of states close to the Fermi en
and an overall enhancement of spectra betweent and 3t oc-
curs ~see right panel of Fig. 8!. However, we note that the
pseudogap appearing within large-N is less pronounced tha
in Lanczos calculations. This can be attributed to finite-s
effects appearing in small cluster Lanczos calculations.

C. Optical conductivity

It is interesting to analyze the behavior of the optical co
ductivity as the system is driven through the charge-orde
transition. Using Lanczos diagonalization we have compu

FIG. 7. Evolution of quasiparticle spectral density of stat
A(k,v), at k5(p/2,p/2) and (p,p), computed from Lanczos di
agonalization on anL516 site cluster for an extended Hubba
model at quarter filling. The on-site Coulomb repulsion is taken
be U520t and a Lorentzian broadening of the delta peaks,h
50.1t, is used.
24512
n-

nd

a
s

h
e

gy,

e

-
g
d

s~v!5Dd~v!1
pe2

L (
nÞ0

u^nu j xu0&u2

En2E0
d~v2En1E0!,

~33!

wherej x is the current in thex direction,E0 the ground-state
energy andEn the excited-state energies of the system,e is
the electron charge, and the Drude weight is denoted byD.

The following sum rule32 is satisfied bys(v):

E
0

`

s~v!dv52
pe2

4L
^0uTu0&. ~34!

whereT is the kinetic-energy operator, which is the first ter
in the Hamiltonian~1!.

The optical conductivity is plotted in Fig. 9, for increasin
values of the ratioV/t and fixedU520t. At V50 we find a
Drude peak and a broad mid-infrared band centered at a
3t. As V/t is increased the mid-infrared band is enhanc
and a well-defined feature builds up at the lower edge of
mid-infrared band, at frequencies of about 2t. Also an inco-
herent band present at larger energies of the order ofU ~not
shown for clarity! is gradually suppressed and its associa
weight transferred to the mid-infrared band asV is increased.
From the behavior of spectral densities and DOS shown
Figs. 5–8, we attribute the enhancement of optical wei
observed in the mid-infrared range to an increase in the
coherent excitations carried by each quasiparticle as a re
of charge fluctuations associated with short-range chec
board charge ordering. From the behavior of the spec

,

o

FIG. 8. Evolution of the DOS as the charge-ordering transit
is approached from the metallic phase. The left and right pan
show results from exact diagonalization on a 16-site lattice w
U→` and large-N approaches, respectively.~The critical value of
V is Vc'2t and 0.65t, respectively.! A Lorentzian broadening of
h50.1t has been introduced in the exact diagonalization calcu
tions, to aid comparison with the large-N results. As the intersite
Coulomb repulsionV is increased, the density of states close to
Fermi energy is gradually suppressed indicating the proximity to
charge-ordering transition. At the same time spectral weight is
hanced for frequencies in the ranget –3t in the large-N calculations.
The peak at22t is an incoherent band associated with the low
Hubbard band. An overall qualitative agreement between Lanc
and large-N calculations is found.
1-9
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MERINO, GRECO, MCKENZIE, AND CALANDRA PHYSICAL REVIEW B68, 245121 ~2003!
densitiesA(k,v) shown in Figs. 6 and 7 and assuming tha
lowest-order diagram~neglecting vertex corrections! is
enough to compute the optical conductivity we would
tribute the low-energy feature to transitions between the
coherent band carried by each quasiparticle and the quas
ticle peak situated at the Fermi energy. This interpretatio
plausible if one notes that the low-energy feature observe
Fig. 9 moves together with the broadband asV/t is in-
creased. Similar results would be obtained from largeN
theory evaluating the bubble Feynman diagram for the o
cal conductivity, as the spectral densities obtained are sim
to the ones obtained from Lanczos diagonalization.

IV. CONNECTION TO EXPERIMENTAL RESULTS

Recent experiments with Raman scattering33 and optical
conductivity measurements34 on the insulating salt
u-(BDT-TTP)2Cu(NCS)2 find that the checkerboard charg
ordered state discussed in this paper is indeed the gro
state. This gives experimental support to the model discus
here. A discussion of other possible orderings within m
complicated models can be found in the work by Seo35 and
Clay, Mazumdar, and Campbell.36

We review now the experiments on resistivity measu
ments on several quarter-filled organics, and make con
with the predictions of the large-N approach presented.

From the imaginary part of the self-energy@Eq. ~27!# we
can obtain the behavior of the inverse of the lifetime of t
quasiparticles, 1/t(T)522Im S(kF,0) with temperature as
shown in Fig. 10. From this plot we obtain a temperatu
scale,T* '0.22t, at which 1/t(T) changes fromT2 to T

FIG. 9. Evolution of the optical conductivity computed fro
Lanczos diagonalization as the system is driven through the m
insulator transition. The calculation is performed on anL516 site
cluster,U520t, and differentV, with a Lorentzian broadening o
h50.4t. Enhancement of optical weight at low frequencies is fou
as V is increased. The broad band situated at about 3V ~for large
V/t) is due to incoherent transitions between different sites indu
by the intersite Coulomb repulsion. We interpret the low-ene
feature appearing at about 2t as a consequence of transitions b
tween the incoherent band and the quasiparticle peak found in
spectral densitiesA(k,v) for wave vectors on the Fermi surface.
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behavior. The temperature scale defined byT* decreases
only slightly as we approach the charge-ordering transit
remaining finite asV→Vc ~through O(1/N). This is in con-
trast to dynamical mean-field approaches where a sim
low-temperature scale is suppressed as the Mott-Hubb
metal insulator~driven byU instead ofV) is approached.37

Hence, Fermi-liquid behavior is found below this tempe
ture scale even close to the charge-ordering transition oc
ring at V'Vc . Presumably, higher-order corrections in t
1/N expansion may suppress the region where the sys
behaves as a Fermi liquid asV→Vc . Future work should
focus in understanding this issue better.

We have also computed the temperature dependenc
the effective mass defined asm* /m51/Zk(T), evaluated at
the Fermi surface, and is shown in Fig. 11. Large-N theory
predicts an increase ofm* /m as the temperature is raised fo
V→Vc . This means that the system becomes more inco
ent as the temperature is increased. Interestingly this be
ior is also found in the Hubbard model in the limit of infinit
dimensions close to the Mott metal-insulator transition38

However in that case the system is close to a metal-insul
transition which takes place between two nonordered pha
in contrast to the charge-ordering transition discussed h
At V50 the effective mass is temperature independen
one would expect from a weakly interacting system. At t
lowest temperatures we obtain enhanced effective mass
the range 1.3–2 forV/t varying from 0 to 0.63.

In Fig. 12 we show optical conductivity data o
u-(BEDT-TTF)2CsCo(SCN)4 along thea direction39 at T
515 K. This salt is metallic down to temperatures of abo
10 K. At this temperature a charge-ordering transition to
insulating phase takes place. The observed optical con
tivity displays a band situated at 1.2 eV, a mid-infrared ba
appearing at frequencies of about 0.25 eV, and a feature
pearing at low frequencies of about 0.13 eV. In the sa
figure we present a comparison of our exact diagonaliza

al-

d
y

he

FIG. 10. Temperature dependence of the scattering rate 1/t(T)
522Im S(kF,v50). This scattering, which is due to charge flu
tuations, increases as the charge-ordering transition is approa
As the temperature increases above aboutT* '0.22t, 1/t(T)
changes from aT2 dependence to a linear behavior inT. This tem-
perature scale depends only slightly onV, so that large-N theory
@through O(1/N)] predicts Fermi-liquid behavior close to th
charge-ordering transition at temperatures belowT* .
1-10
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DYNAMICAL PROPERTIES OF A STRONGLY . . . PHYSICAL REVIEW B68, 245121 ~2003!
calculations of the optical conductivity performed on a 1
site cluster,U/t520 andV/t51.2, where we have set th
hopping energy scale tot50.061 eV, so that we associa
the mid-infrared band observed experimentally with the o
from exact diagonalization calculations. In this way, we
cover the main features appearing in the experimental d
including the incoherent high-frequency feature and the f

FIG. 11. Temperature dependence of the effective mass o
electron on the Fermi surface,m* /m[1/Zk(T), as obtained from
large-N theory through O(1/N). As the system is driven closer t
the charge-ordering transition a stronger increase of the effec
mass withT is found.

FIG. 12. Comparison of the optical conductivity computed fro
Lanczos diagonalization onL516 site clusters with experimenta
results~Ref. 39! for the metallic saltu-(BEDT-TTF)2CsCo(SCN)4.
For the exact diagonalization results we have chosenU520t and
V51.2t. In order to fit the data we choset50.061 eV, which can
be compared to values from Hu¨ckel band-structure calculation
~Ref. 40!. The lattice parameters foru-(BEDT-TTF)2CsCo(SCN)4
are a59.804 Å, c54.873 Å, andVcell54Vmol52074 Å3, where
Vcell and Vmol are the volumes per unit cell and per molecu
respectively. The broadband at about 0.25 eV and the low-en
feature at 0.13 eV can be explained from short-range charge o
ing induced by the intersite Coulomb repulsionV. This behavior is
characteristic of several quarter-filled layered metallic salts wh
undergo a metal-insulator transition at sufficiently low tempe
tures.
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ture appearing at low frequencies. This behavior is co
monly observed in metallicu-salts close to the metal
insulator transition11 and from Fig. 12 we note that the low
energy feature can be misinterpreted as being part of
Drude peak. Caution is in order when comparing our res
with experimental data as shown in Fig. 12 because so
features such as the dip appearing at about 0.17 eV h
been interpreted inu-(ET)2RbZn(SCN)4 ~where a structural
transition takes place with lowering temperature! as being
caused by the coupling to vibronic modes of the E
molecules.39 More experimental and theoretical work
needed to understand this issue better.

V. SUPERCONDUCTIVITY

In the present section we discuss the possibility of hav
superconductivity close to the charge-ordering transition
duced by the short-range charge fluctuations which appea
the metallic phase. Here we extend the discussion prese
in Ref. 6 and provide full details of the calculations. We al
consider the binding energy of holes using a Lanczos ca
lation.

A. Large N: Pairing symmetry

Within the large-N approach, superconductivity is pos
sible at O(1/N). As we have already seen at O~1!, our ap-
proach describes quasiparticle excitations with renormali
masses. Interaction between these quasiparticles can ap
at the next-to-leading order of O(1/N). The effective inter-
action between electrons are those represented diagram
cally in Fig. 3~b!; only the three-leg vertex shown in Fig
1~a! contributes to the effective interaction through ord
O(1/N).

FIG. 13. Behavior of the effective potential between quasipa
cles, Ve f f(qx ,qy), as a function of momenta for increasingV/t
values along theqx5qy5q direction. AsV/t→(V/t)c , the effec-
tive potential becomes negative at the (p,p) points, becoming sin-
gular at the transition to the checkerboard charge-ordered insul
It is the momentum dependence of the potential shown here w
leads to thedxy symmetry of the Cooper pairs. This calculation w
done using the large-N approach through O(1/N).
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Using the Feynman rules introduced above@see Fig. 3~b!#,
the interaction between the quasiparticlesQ(k,k8) reads

Q~k2k8,vn2vn8!52@m2DRR~k2k8,vn2vn8!

12mDRl~k2k8,vn2vn8!

1Dll~k2k8,vn2vn8!#, ~35!

wherem is the chemical potential andDab are the compo-
nents of the boson propagator which are obtained from D
on’s equation~23!.

In Fig. 13 we plot the dependence ofVe f f(q5k2k8)
[Q(q,v→0)/(d/2), that is, the static limit of the effective
interaction mediating the possible pairing between the q
siparticles. This clearly shows the development of the sin
-
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n
of
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-
fo
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larity due to checkerboard charge ordering at the (p,p)
wave vectors. We note that the effective interactionQ ob-
tained from Eq.~35!, which is valid on the whole Brillouin
zone, coincides only with the one obtained using slave bo
approaches, when it is evaluated at the Fermi surface.17 This
is not true for wave vectors outside the Fermi surface.

In weak coupling, we use this effective potential to com
pute the effective couplings in the different pairing chann
or irreducible representations of the order parameter,i @ i
5(dx22y2,dxy ,s)#. In this way we project out the interactio
with a certain symmetry. The critical temperatureTc can then
be estimated fromTci51.13v0exp(21/ul i u), wherev0 is a
suitable cutoff frequency andl i are the effective couplings
with different symmetries. These are defined as:17,41
l i5
1

~2p!2

E ~dk/uvku!E ~dk8/uvk8u!gi~k8!Ve f f~k82k!gi~k!

E ~dk/uvku!gi~k!2

, ~36!
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is
where the functionsgi(k) encode the different pairing sym
metries, andvk are the quasiparticle velocities at the Fer
surface. The integrations are restricted to the Fermi surf
l i measures the strength of the interaction between elect
at the Fermi surface in a given symmetry channeli. If l i
.0, electrons are repelled. Hence, superconductivity is o
possible whenl i,0. In Fig. 14 we plot the dependence
the effective couplings in the possible symmetry chann
with V/t.

We observe that near the charge-ordering instability,
still in the metallic phaseV,Vc , the coupling in thedxy

FIG. 14. Dependence of the effective couplings withV/t as
defined in Eq.~36! in the different symmetry channels. Close to t
charge-ordering transition pairing in thedxy channel becomes fa
vorable while other possible pairing symmetries are repulsive
any V.
i
e.
ns

ly

ls

t

channel,ldxy
, becomes attractive whereas other couplin

become more repulsive. However, we note that the coupli
are rather small. This implies that critical temperatures
expected to be small. Similar conclusions have been reac
with large-N treatments of theU-infinite Hubbard model at
V50 close to half filling.42 Exact diagonalization results als

r

FIG. 15. Schematic plot showing the Fourier transform of t
effective potential,Ve f f(qx ,qy), for V/t'(V/t)c to real space.
Ve f f(x,y) is understood as follows. A quasiparticle is placed at
origin. For instance, if another quasiparticle is placed also at
origin there is a large repulsion between them due to the la
on-site Coulomb repulsion. This is shown by the large positive v
tical bar at the origin. At neighboring sites~along thex andy direc-
tions! the effective potential between quasiparticles is also posit
i.e., repulsive. However, at the next-nearest-neighbor sites~along
the diagonals of the lattice!, the potential becomes attractive. Th
leads todxy pairing of the quasiparticles.
1-12
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lead to similar conclusions.31 Although the eigenvalues ar
small, our results are nontrivial and show a tendency of
model to Cooper pairing in thedxy channel. Intuitively one
would think that superconductivity is less and less favora
when increasingV, due to the repulsion between electrons
neighboring sites. Contrary to this intuition we find th
short-range charge fluctuations can mediate pairing clos
Vc .

In Fig. 13 we observe that as we increaseV, the effective
interaction becomes more repulsive at small momen
transfer. On the other hand, they become more attractive
momenta transfer close to (p,p). That dxy symmetry is fa-
vored can be more clearly understood from Fig. 15 wh
shows a schematic plot of the Fourier transform ofVe f f(q)
~see Fig. 13!. One sees that the potential is negative for
electron placed at the nearest-neighbor diagonal sites o
lattice while it is positive along thex andy directions. This is
in contrast to the effective potential resulting from spin flu
tuations which show the opposite behavior. This can be
derstood from previous calculations on a three-dimensio
extended Hubbard model close to half filling within RP
performed by Scalapino, Loh, and Hirsch,41 which found that
the effective potential for charge fluctuations has anegative
divergence at (p,p) as the transition is approached where
for spin fluctuations it is positively diverging.41 Due to the
fact that the Fermi surface at one-quarter filling is small@no
two points in the Fermi surface are connected by the (p,p)
wave vector#, the interaction is less effective in inducin
pairing as compared to spin fluctuations in nearly antifer
magnetic metals close to half filling.

The Tc values shown in the phase diagram in Ref. 6
larger than the values that would be obtained forTcdxy

from

the BCS equation. In Ref. 6Tc ~for eachV) was taken to be
the temperature below which the couplingldxy

becomes
negative. Such a calculation is indicative of superconduc
ity. However, the appropriate way to obtainTc is by solving
the associated Eliashberg gap equation.

In conclusion, in the present study we find tendencies
superconductivity in thedxy channel mediated by short-rang
charge fluctuations which appear in the metallic phase c
to the charge-ordering instability.

B. Lanczos diagonalization: Binding energies

We have computed the binding energy of two holes
different values ofV/t andU520t on different clusters. The
binding energy of two holes forL516 is defined as43–45

EB~2 holes!5@E~6!2E~8!#22@E~7!2E~8!#, ~37!

whereE(Ne) is the energy of the system withNe electrons.
In Fig. 16 we plot the binding energy for different value

of V. Initially, as we increaseV, the binding energy become
more positive. This corresponds to the weak-coupling reg
where one naively expects thatV keeps the quasiparticle
farther apart. Further increasing ofV closer to the metal-
insulator transition but still in the metallic phase leads to
negative binding energy of two holes. From finite-size sc
ing of the binding energy of clusters up toL520 sites, we
24512
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find that this happens at aboutV'1.6t. This finite-size scal-
ing is shown in the inset of Fig. 16 for values ofV close to
the metal-insulator transition. Remarkably, the binding e
ergy of two holes changes only slightly in the range of valu
t,V,2t when going fromL516 toL520. However, in the
regionV.Vc52t, the results change significantly as we i
crease the size of the cluster fromL516 to 20, and the
binding energy would eventually extrapolate to a posit
value in the thermodynamic limit. It is interesting that th
region corresponds to the insulating phase found earli11

from Lanczos calculations of the Drude weight. An interpr
tation of our results can be made based on previ
works44,43 which studied the binding energy of an extend
Hubbard model of the high-Tc superconductors close to ha
filling as a function ofV. As V is increased charge fluctua
tions associated with checkerboard charge ordering incre
and the quasiparticles existing at smallV gradually dress up
with a cloud of checkerboard charge excitations. This lea
signatures in the one-electron dynamical properties as
plained in previous sections. Further increasing ofV leads to
pairing between the quasiparticles mediated by the str
charge fluctuations.44 IncreasingV even further drives the
system into the insulating phase.

Summarizing, a definitive conclusion about supercond
tivity cannot be made from our results. However, it is r
markable that both large-N and Lanczos diagonalization ca
culations show a similar tendency to pairing of quasipartic
in the metallic phase close to the charge-ordering transit
Large-N theory singles out thedxy symmetry as the preferre
pairing channel of the quasiparticles. This symmetry is c

FIG. 16. Binding energy of two holes for different values ofV
andU520t from exact diagonalisation calculations onL516 and
L520 clusters. Close to the charge-ordering transition, in the ran
V.1.6t, binding of two holes becomes favorable.Vc denotes the
value of V at which the metal-insulator transition is estimated
take place from Lanczos calculations of the Drude weight. Note
the value ofV at which EB ~2 holes! becomes negative is robus
against increasing the cluster size fromL516 to L520. These
results are consistent with large-N calculations supporting the pos
sibility of pair formation close to the charge-ordering transition.
1-13
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sistent with the checkerboard charge order present in the
gion where the Lanczos pairing energy becomes negativ

VI. CONCLUSIONS

In summary, using a combination of large-N and Lanczos
techniques we have explored the dynamical properties of
extended Hubbard model at quarter filling. This is motiva
by its relevance to a large class of superconducting laye
organic molecular crystals. The correlation functions co
puted from large-N theory and Lanczos techniques are fou
to be in good agreement. Indeed, close to the charge-orde
transition driven by the intersite Coulomb repulsion,V, sev-
eral features are found.

~i! The quasiparticle weightZk is rapidly suppressed nea
the charge-ordering transition.

~ii ! Spectral density is enhanced at frequencies rang
from t to 3t, which is also reflected in the optical conducti
ity.

~iii ! From the computation of the electron scattering r
we find Fermi-liquid behavior up toT'T* , whereT* does
not depend strongly onV. For T.T* the scattering rate be
haves linearly withT.

~iv! From large-N calculations we find that supercondu
tivity with dxy symmetry is favored close to the charg
ordering transition. Exact diagonalization calculations of
binding energy of two holes are consistent with this possi
ity.

Given our prediction of unconventional superconductiv
in the u and b9 molecular crystals it is desirable that mo
measurements be made to test for this. The only evidenc
far comes from a measurement of the temperature de
dence of the London penetration depth ofb9-
(BEDT-TTF)2SF5CH2CF2SO3. It was found to go likeT3 at
low temperatures.46 This is inconsistent with ans-wave state,
but also deviates significantly from the linear temperat
dependence expected for ad-wave state. On the other han
the temperature dependence of the heat capacity is cons
with s-wave pairing.47 Electronic Raman scattering could b
used to investigate the symmetry of the superconducting
der parameter. Fordxy symmetry, Raman scattering in th
superconducting state should show, at low frequencies, e
v, v3, or v behavior forB1g , B2g , and,A1g symmetries,
respectively.48
n

y
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An important issue to be resolved concerns the role
spin fluctuations in the quarter-filled materials. To first ord
in 1/N, the large-N approach used here does not take s
fluctuations into account.49 Measurements of the nuclea
magnetic-resonance relaxation rate and Knight shift sho
be done in the metallic phase for the relevant supercond
ors. If the spin fluctuations are not important there should
no enhancement of the Korringa ratio. This is in contrast
the large enhancements seen ink-(BEDT-TTF)2X supercon-
ductors which are close to an antiferromagnetic M
insulator.50

One way to theoretically investigate the role of the an
ferromagnetic spin fluctuations that may be present near
charge-ordering transition is as follows. Well into the ins
lating charge-ordered phase~i.e., for V@t) it is known that
there is an antiferromagnetic exchange interactionJ8
54t4/9V3 that acts along thediagonalsof the square lattice.4

Some remnant of this effect will still be present when there
short-range charge order. This could be modeled by con
ering a t2J82V model where theJ8 acts only along the
diagonals. This model could be studied by the same largN
method used previously to study a large family oft2J2V
models.51 There it was found that the superexchange, act
along the vertical and horizontal lattice directions, produc
dx22y2 superconductivity. Based on that work we anticipa
that the effect of the superexchange, which now acts in
rections rotated by 45°, will be to producedxy superconduc-
tivity. Hence, it is possible that charge and spin fluctuatio
work together cooperatively to producedxy pairing.
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