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Application of structural symmetries in the plane-wave-based transfer-matrix method
for three-dimensional photonic crystal waveguides
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The plane-wave-based transfer-matrix method~TMM ! exhibits a peculiar advantage of being capable of
solving eigenmodes involved in an infinite photonic crystal and electromagnetic~EM! wave propagation in
finite photonic crystal slabs or even semi-infinite photonic crystal structures within the same theoretical frame-
work. In addition, this theoretical approach can achieve much improved numerical convergency in solution of
photonic band structures than the conventional plane-wave expansion method. In this paper we employ this
TMM in combination with a supercell technique to handle two important kinds of three-dimensional~3D!
photonic crystal waveguide structures. The first one is waveguides created in a 3D layer-by-layer photonic
crystal that possesses a complete band gap, the other more popular one is waveguides built in a two-
dimensional photonic crystal slab. These waveguides usually have mirror-reflection symmetries in one or two
directions perpendicular to their axis. We have taken advantage of these structural symmetries to reduce the
numerical burden of the TMM solution of the guided modes. The solution to the EM problems under these
mirror-reflection symmetries in both the real space and the plane-wave space is discussed in a systematic way
and in great detail. Both the periodic boundary condition and the absorbing boundary condition are employed
to investigate structures with or without complete 3D optical confinement. The fact that the EM field compo-
nents investigated in the TMM are collinear with the symmetric axes of the waveguide brings great conve-
nience and clarity in exploring the eigenmode symmetry in both the real space and the plane-wave space. The
classification of symmetry involved in the guided modes can help people to better understand the coupling of
the photonic crystal waveguides with external channels such as dielectric slab or wire waveguides.

DOI: 10.1103/PhysRevB.68.245117 PACS number~s!: 42.70.Qs, 42.50.Dv, 32.80.2t
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I. INTRODUCTION

In recent years photonic crystals~PC’s!, a class of artifi-
cial materials made up of periodic dielectric or metal
building blocks, have attracted extensive interest due to t
powerful capability to control and manipulate the propag
tion of electromagnetic~EM! waves. This power is brough
about by the existence of a photonic band gap~PBG!, which
is a range of frequencies within which EM waves cann
propagate.1,2 Line defects introduced into an otherwise pe
fect PC can serve as an efficient channel for guiding lig
and may become an important type of composite functio
element in future ultrasmall photonic integrated circuits t
are built on the photonic crystal platform. It has been sho
that efficient confinement and propagation of EM wav
through these PC waveguide channels can be achieve
frequencies within the PBG.3,4 In principle, the efficient
guiding functionality strongly requests a three-dimensio
~3D! photonic crystal that exhibits a complete band gap. O
of the examples is the layer-by-layer photonic crystal t
was first proposed by Ho and co-workers and has been u
extensive studies since.5–12 This structure is made from
stacks of dielectric rods in a woodpile fashion. A wavegu
can form by simply removing a rod from this photonic cry
tal. Although promising progress has been made towa
constructing a workable photonic crystal sample at the f
damental optic-communication wavelength of 1.55mm,6–8

it still remains a challenge to bring functional elements su
as a waveguide into this tiny platform. Therefore, most
perimental works are limited in the microwave regime.10,12
0163-1829/2003/68~24!/245117~20!/$20.00 68 2451
ir
-

t

t,
al
t
n
s
at

l
e
t
er

e

s
-

h
-

As a comparison, waveguides created in a two-dimensio
~2D! photonic crystal slab are much easier to realize exp
mentally in the near-infrared regime by means of curr
advanced lithographic techniques.13–18For this reason, these
2D PC slab waveguides have become the most popular
tems under study in these days. The optical confinemen
these 2D PC slab waveguides relies on the 2D band ga
the lateral plane and index-guiding mechanism in the vert
direction of the slab.

Theoretical understanding of EM wave propagati
within a PC waveguide can play an important role in desig
ing and constructing an optical integrated circuit built on t
photonic crystal platform. To accomplish this task, peo
usually adopt a plane-wave expansion method~PWM! ~Refs.
19–21! to envision the localized eigenmodes~guided modes!
supported by the waveguide,9,11,13 and a finite-difference
time-domain~FDTD! approach22 to observe the dynamics o
EM waves propagating in the waveguide and the correspo
ing transmission and reflection spectra.3,4,9,14–18The FDTD
technique can also be employed to find out the guid
modes.9,14As this method can handle both periodic and ap
riodic structures, it has been dominantly used to underst
the optical properties of straight waveguide, wavegu
bends, and waveguide coupling with cavities.3,4,9,14–18Yet, it
has been well-known that the FDTD technique can face w
severe difficulty and inconvenience when it is employed
extract very fine quantitative information about the transm
sion and reflection spectra for an functional element pla
in the background of a photonic crystal, which is an inhom
geneous medium. This situation can be found in solution
the transmission efficiency through a sharp 3D wavegu
©2003 The American Physical Society17-1
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bend, where fine and reliable spectra will impose too mu
numerical burden, or even becomes intractable.3,9,14

Another popular numerical approach, the transfer-ma
method ~TMM !,23–30 is also widely used in the photoni
crystal community. A TMM can be classified into the rea
space TMM23 and plane-wave-based TMM,24–30 depending
on what basis function is used to represent the EM fie
This approach can place the solution of the photonic b
structures for a periodic photonic crystal and the scatte
problem of a finite PC slab within the same theoreti
framework. When it is combined with a supercell techniq
the TMM can also handle wave propagation in a PC wa
guide. For a straight waveguide, the numerical burden
volved in the TMM simulation is logarithmatically propor
tional to the waveguide length, a big relief compared to
linear dependence associated with the FDTD technique.
advantage is in part due to the periodicity of the PC wa
guide and in part due to the efficient layer-doubling recurs
algorithm existing in the mathematical structure of t
TMM.23,24,33 In addition, the TMM is working in the fre-
quency domain, and therefore is most suitable for accu
solution of the spectra. Finally, this approach can be succ
fully expanded to handle wave propagation in semi-infin
photonic crystal and related waveguide structures,30 and
therefore can efficiently explore the optical properties o
variety of functional elements embedded into the photo
crystal background. For these reasons, it is worthwhile to
deeper into this powerful theoretical tool.

Even if the TMM is armed with these merits and powe
numerical simulations for a 3D PC waveguide structure
der the usage of a sufficiently large supercell still requ
extensive computer memory space and are quite time
suming in order to achieve high enough calculation accur
For instance, in the plane-wave-based TMM, the requi
storage space is parabolically proportional to the numbe
plane waves adopted to expand the EM fields in the cro
sectional plane of the waveguide. Therefore, it is highly
sirable to find out some ways to release this memory-sp
requirement and reduce computational time. Various lat
symmetries such as translational and rotational symme
existing in a photonic crystal system have been exploited
reduce the computational burden of the TMM.27,29,31–33This
observation suggests that we should take a closer look a
3D PC waveguides and try to find out the structural symm
tries that might lie behind them. Since a 3D PC waveguid
essentially a quasi-1D structure, the possible number
structural symmetry is greatly limited compared to those t
can be found in a 3D photonic crystal. Actually, mirro
reflection symmetries along one or two directions in t
cross-sectional plane of the waveguide are the only ones
can be found in the abovementioned 3D layer-by-layer
waveguides and 2D PC slab waveguides. This can be
when one looks at the schematic configuration of these
types of 3D PC waveguide in Figs. 1 and 7, respectively
addition to the reduction in numerical computation, the us
of structural symmetry can also help to reveal the symme
of fields involved in the guided mode. This mode-symme
knowledge will play an important role in understanding t
coupling of the PC waveguides with external wavegu
24511
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channels, such as dielectric slab or wire waveguides.30,34,35

These conventional waveguides also possess structural
metries that might be same as the PC waveguides.

In this paper, we will systematically investigate the TM
under the mirror-reflection symmetry for a 3D PC wav
guide, and classify the field symmetry behind the guid
modes. In Sec. II we first discuss the solution of Maxwe
equations in the framework of the TMM under mirro
reflection symmetries along one or two directions. In Sec.
we turn to the plane-wave-based TMM, and further explo
the symmetric relations between the plane-wave coefficie
resulting from the field symmetry of an eigenmode. Ma
well’s equations in this irreducible plane-wave space will
solved. With the solution of these symmetry-reduced eig
modes at hand, in Sec. IV we go on to construct the tran

FIG. 1. Schematic configuration and symmetry in 2D PC s
and slab waveguide structures.~a! Brillouin zone and high symmet-
ric points for a triangular lattice.~b! Symmetric unit cells used in
solution of band diagrams for a 2D PC slab along theGJ andGX
directions.~c! Top view of the symmetric supercell used in solutio
of the band diagrams of guided modes in a PC slab waveguide~d!
Side view of the supercell for the slab waveguide. The PML’s at
boundary of the supercell are not indispensable.
7-2
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APPLICATION OF STRUCTURAL SYMMETRIES IN THE . . . PHYSICAL REVIEW B 68, 245117 ~2003!
matrix that is on the very basis of the TMM. In Sec. V w
extend the discussion to a system involving perfec
matched layers~PML’s! ~Refs. 26 and 36! in order to model
absorbing boundary conditions that are necessary to re
the physical solution to the wave problems for a 3D P
waveguide without a complete optical confinement. Af
having settled down the theoretical basis, we will go on
discuss guided modes in layer-by-layer PC waveguides
2D PC slab waveguides. In Sec. VI we first investigate
2D PC slab waveguide. In particular, we focus
waveguides formed in a triangular lattice of air holes etch
into an air-bridge dielectric slab. We will make comparis
between the TMM calculation and the previous results
tained by the PWM and FDTD simulations. In Sec. VII w
turn to 3D waveguides brought into a layer-by-layer photo
crystal. We will compare our results with both the previo
theoretical simulations and a recent experimental meas
ment in the microwave regime. In Sec. VIII we furth
briefly discuss how the structural symmetries can be of h
in understanding the coupling of the PC waveguides w
external sources. Finally in Sec. IX we will summarize a
conclude this paper.

II. FIELD SYMMETRY UNDER MIRROR-REFLECTION
SYMMETRIES IN TMM

The TMM has been extensively studied in the past
cades. Different formulations have been presented within
same theoretical framework. We will confine our discuss
to the plane-wave-based TMM that we devised recently.27,28

The principle of this method can be described briefly as
lows. First, divide a photonic crystal slab into a number
thin slices, and approximate each slice as a lamellar 2D g
ing, within which the dielectric function is constant along t
z-axis direction, the wave propagation direction. Second,
round each slice by an infinitely thin air film in the both ha
sides, and write the EM fields in these air films in terms
plane waves consistent with the lattice structure in the cro
sectional plane~theXYplane! of the waveguide. Third, solve
the eigenmode within each lamellar grating slice under
plane-wave basis, and construct the transfer-matrix conn
ing the EM fields in the two air films. Fourth, construct th
overall transfer matrix for the slab from all individual tran
fer matrices by means of an iteration algorithm. Finally, c
culate from this overall transfer matrix all interesting phy
cal quantities such as the transmission and reflection spe
for a finite slab, or the photonic band structures for an in
nite photonic crystal. The principles also apply to a P
waveguide if a supercell in theXY plane is used.

To see how structural symmetries may be appreciate
solution of Maxwell’s equations, let us first consider a ge
eral isotropic structure with modulation in both the perm
tivity e(r ) and the permeabilitym(r ). Although the usual
photonic structures are built from nonmagnetic materia
wherem(r )51 everywhere, we will assume here a gene
permeabilitym(r ) for the sake of later discussion on solutio
to the wave propagation problem in integrated optical e
ments, where the PML is introduced in order to model
absorbing boundary conditions similar to those used in
24511
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FDTD technique. The PML is made of materials which a
anisotropic in the modulation of bothe(r ) andm(r ).

For an isotropic material Maxwell’s equations are

¹3E~r !5 ik0m~r !H~r !, ¹3H~r !52 ik0e~r !E~r !.
~2.1!

Here k05v/c is the wave number, withc being the light
speed in vacuum, andv the angular frequency of the EM
wave. In usual photonic structures, the composite mater
are nonmagnetic, andm(r )51. But for the time being, we
assume a general case where bothe(r ) and m(r ) are spa-
tially varying functions, and possess same mirror-reflect
symmetries. Let us first look at the mirror-reflection symm
try with respect to thex axis, where we havee(x,y,z)5e
(2x,y,z), and m(x,y,z)5m(2x,y,z). To see the conse
quence of this symmetry to the solution of Maxwell’s equ
tions, we follow the convention of the TMM28 and rewrite
Maxwell’s equations into the following four coupled differ
ential equations satisfied by the tangential field compone
Ex , Ey , Hx , andHy :

]

]z
Ex5

1

2 ik0

]

]x F1

e S ]

]x
Hy2

]

]y
HxD G1 ik0mHy ,

~2.2!

]

]z
Ey5

1

2 ik0

]

]y F1

e S ]

]x
Hy2

]

]y
HxD G2 ik0mHx ,

~2.3!

]

]z
Hx5

1

ik0

]

]x F 1

m S ]

]x
Ey2

]

]y
ExD G2 ik0eEy , ~2.4!

]

]z
Hy5

1

ik0

]

]y F 1

m S ]

]x
Ey2

]

]y
ExD G1 ik0eEx . ~2.5!

In deriving Eqs.~2.2!–~2.5!, we have deleted perpendicula
field componentsEz andHz from Maxwell’s equations, and
used the fact thatEz5@1/(2 ik0e)#(]Hy /]x2]Hx /]y) and
Hz5@1/(ik0m)#(]Ey /]x2]Ex /]y).

Taking into account the mirror-reflection symmetry, w
make coordinate transformations

x→2x8, y→y8, z→z8,

under which Eqs.~2.2!–~2.5! becomes

]

]z8
Ex5

1

2 ik0

]

]x8
F1

e S ]

]x8
Hy1

]

]y8
HxD G1 ik0mHy ,

~2.6!

]

]z8
Ey5

1

2 ik0

]

]y8
F1

e S 2
]

]x8
Hy2

]

]y8
HxD G2 ik0mHx ,

~2.7!

]

]z8
Hx5

1

ik0

]

]x8
F 1

m S ]

]x8
Ey1

]

]y8
ExD G2 ik0eEy ,

~2.8!
7-3
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]

]z8
Hy5

1

ik0

]

]y8
F 1

m S 2
]

]x8
Ey2

]

]y8
ExD G1 ik0eEx .

~2.9!

The EM fields (Ex8 ,Ey8 ,Hx8 ,Hy8) in the coordinate system
(x8,y8,z8) should satisfy the same Maxwell’s equations
Eqs. ~2.2!–~2.5!. Comparing the sign of each term in Eq
~2.2!–~2.9!, we find that the following two types of transfo
mation for the fields can keep Maxwell’s equations invaria

2Ex→Ex8 , Ey→Ey8 , 2Hy→Hy8 , Hx→Hx8
~2.10!

and

Ex→Ex8 , Ey→2Ey8 , Hy→Hy8 , Hx→2Hx8 .
~2.11!

Equations~2.10! and~2.11! can be written in a more explici
way:

2Ex~x,y!5Ex~2x,y!, Ey~x,y!5Ey~2x,y!,

2Hy~x,y!5Hy~2x,y!, Hx~x,y!5Hx~2x,y!,
~2.12!

which we call the odd mode for theEx field under thex-axis
mirror-reflection symmetry and

Ex~x,y!5Ex~2x,y!, Ey~x,y!52Ey~2x,y!,

Hy~x,y!5Hy~2x,y!, Hx~x,y!52Hx~2x,y!,
~2.13!

which we call the even mode for theEx field under thex-axis
mirror-reflection symmetry.

If the structure has a mirror-reflection symmetry with r
spect to they axis, namely, e(x,y,z)5e(x,2y,z) and
m(x,y,z)5m(x,2y,z), then similarly we can find that the
odd and even symmetric modes for theEx field satisfy

2Ex~x,y!5Ex~x,2y!, Ey~x,y!5Ey~x,2y!,

2Hy~x,y!5Hy~x,2y!, Hx~x,y!5Hx~x,2y!
~2.14!

and

Ex~x,y!5Ex~x,2y!, Ey~x,y!52Ey~x,2y!,

Hy~x,y!5Hy~x,2y!, Hx~x,y!52Hx~x,2y!,
~2.15!

respectively.
Now further suppose that the structure has mirr

reflection symmetries with respect to both thex andy axes,
namely, e(x,y,z)5e(2x,y,z)5e(x,2y,z)5e(2x,2y,z)
and m(x,y,z)5m(2x,y,z)5m(x,2y,z)5m(2x,2y,z).
We can then combine the results in Eqs.~2.12!–~2.15! and
find four different symmetric modes: the even-even, the o
odd, the even-odd, and the odd-even modes with respe
the Ex field. They have the following symmetric relations:

Ex~x,y!5Ex~2x,y!5Ex~x,2y!5Ex~2x,2y!,
24511
s

:

-

-
to

Ey~x,y!52Ey~2x,y!52Ey~x,2y!5Ey~2x,2y!,

Hx~x,y!52Hx~2x,y!52Hx~x,2y!5Hx~2x,2y!,

Hy~x,y!5Hy~2x,y!5Hy~x,2y!5Hy~2x,2y!
~2.16!

for the even-even mode,

Ex~x,y!52Ex~2x,y!52Ex~x,2y!5Ex~2x,2y!,

Ey~x,y!5Ey~2x,y!5Ey~x,2y!5Ey~2x,2y!,

Hx~x,y!5Hx~2x,y!5Hx~x,2y!5Hx~2x,2y!,

Hy~x,y!52Hy~2x,y!52Hy~x,2y!5Hy~2x,2y!
~2.17!

for the odd-odd mode,

Ex~x,y!5Ex~2x,y!52Ex~x,2y!52Ex~2x,2y!,

Ey~x,y!52Ey~2x,y!5Ey~x,2y!52Ey~2x,2y!,

Hx~x,y!52Hx~2x,y!5Hx~x,2y!52Hx~2x,2y!,

Hy~x,y!5Hy~2x,y!52Hy~x,2y!52Hy~2x,2y!
~2.18!

for the even-odd mode, and

Ex~x,y!52Ex~2x,y!5Ex~x,2y!52Ex~2x,2y!,

Ey~x,y!5Ey~2x,y!52Ey~x,2y!52Ey~2x,2y!,

Hx~x,y!5Hx~2x,y!52Hx~x,2y!52Hx~2x,2y!,

Hy~x,y!52Hy~2x,y!5Hy~x,2y!52Hy~2x,2y!
~2.19!

for the odd-even mode, respectively.
It can be seen that the field symmetry associated with

mirror-reflection structural symmetries exhibits a very co
pact, concise, and clarified form. This can be attributed
mathematical structure of the TMM, where the investiga
field vectors (Ex ,Ey) and (Hx ,Hy) are collinear with the
symmetry axes of the waveguide structure. From Maxwe
equations, one can find that there also exist symmetries in
perpendicular field componentsEz and Hz , which can be
derived from the symmetric relations involved in the fo
tangential field components. AsEz andHz are not relevant in
our TMM, we will not discuss this subject in detail. Suc
beautiful symmetric forms in the field components can h
us to solve the EM problems in a convenient and clarifi
manner that other numerical schemes such as the FD
technique and the conventional PWM have not yet appr
ated.

III. PLANE-WAVE-BASED TMM UNDER MIRROR-
REFLECTION SYMMETRIES

In the above section we have obtained the symmetry
the EM fields in the real space in connection with vario
7-4
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mirror-reflection symmetry operations. These symmetric
lations can be directly used in the real-space TMM.23 Since
we prefer to use the plane-wave-based TMM,28 we need to
reflect them into the plane-wave space. Let the primitive
tice R of the 2D grating in theXYplane has two basis vector
a1 anda2, and the corresponding reciprocal latticeG has two
basis vectorsb1 and b2. In practice, we always choose
rectangular supercell for the waveguide problem, so we h
a1•a250 andb1•b250, namely, the primitive and recipro
cal lattices both have orthogonal basis vectors.

The EM fields can be written into the superposition
plane waves~or Bragg waves!.

E~r !5(
i j

Ei , j~z!ei (ki j ,xx1ki j ,yy), ~3.1!

H~r !5(
i j

H i , j~z!ei (ki j ,xx1ki j ,yy), ~3.2!

where the Bragg wave vectork i j 5(ki j ,x ,ki j ,y)5k01Gi j
5(k0x ,k0y)1 ib11 j b2 , Ei j andH i j are unknown expansion
coefficients of the electric and magnetic fields. They are b
varying function along thez-axis direction. In consistenc
with the mirror-reflection symmetry involved in the wav
propagation problem for a PC waveguide system, we sho
have (k0x ,k0y)5(0,0), andk i j 5Gi j .

The symmetric relations in the plane-wave space can
directly obtained from the corresponding relations in the r
space. For instance, it is easy to find from Eq.~3.1! that
Ex(x,y)5Ex(2x,y) would lead toEi , j

x 5E2 i , j
x . Following

the same principle, we can find from Eqs.~2.12! and ~2.13!
for thex-axis mirror-reflection symmetry the following sym
metric relations between the plane-wave coefficients:

Ei , j
x 5E2 i , j

x , Ei , j
y 52E2 i , j

y ,

Hi , j
x 52H2 i , j

x , Hi , j
y 5H2 i , j

y ~3.3!

for the even mode and

Ei , j
x 52E2 i , j

x , Ei , j
y 5E2 i , j

y ,

Hi , j
x 5H2 i , j

x , Hi , j
y 52H2 i , j

y ~3.4!

for the odd mode. For they-axis mirror-reflection symmetry
we have

Ei , j
x 5Ei ,2 j

x , Ei , j
y 52Ei ,2 j

y ,

Hi , j
x 52Hi ,2 j

x , Hi , j
y 5Hi ,2 j

y ~3.5!

for the even mode, and

Ei , j
x 52Ei ,2 j

x , Ei , j
y 5Ei ,2 j

y ,

Hi , j
x 5Hi ,2 j

x , Hi , j
y 52Hi ,2 j

y ~3.6!

for the odd mode. In the presence of simultaneousx and y
axis mirror-reflection symmetries, the symmetric relatio
between the plane-wave coefficients are
24511
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Ei , j
x 5E2 i , j

x 5Ei ,2 j
x 5E2 i ,2 j

x ,

Ei , j
y 52E2 i , j

y 52Ei ,2 j
y 5E2 i ,2 j

y ,

Hi , j
x 52H2 i , j

x 52Hi ,2 j
x 5H2 i ,2 j

x ,

Hi , j
y 5H2 i , j

y 5Hi ,2 j
y 5H2 i ,2 j

y ~3.7!

for the even-even mode,

Ei , j
x 52E2 i , j

x 52Ei ,2 j
x 5E2 i ,2 j

x ,

Ei , j
y 5E2 i , j

y 5Ei ,2 j
y 5E2 i ,2 j

y ,

Hi , j
x 5H2 i , j

x 5Hi ,2 j
x 5H2 i ,2 j

x ,

Hi , j
y 52H2 i , j

y 52Hi ,2 j
y 5H2 i ,2 j

y ~3.8!

for the odd-odd mode,

Ei , j
x 5E2 i , j

x 52Ei ,2 j
x 52E2 i ,2 j

x ,

Ei , j
y 52E2 i , j

y 5Ei ,2 j
y 52E2 i ,2 j

y ,

Hi , j
x 52H2 i , j

x 5Hi ,2 j
x 52H2 i ,2 j

x ,

Hi , j
y 5H2 i , j

y 52Hi ,2 j
y 52H2 i ,2 j

y ~3.9!

for the even-odd mode, and

Ei , j
x 52E2 i , j

x 5Ei ,2 j
x 52E2 i ,2 j

x ,

Ei , j
y 5E2 i , j

y 52Ei ,2 j
y 52E2 i ,2 j

y ,

Hi , j
x 5H2 i , j

x 52Hi ,2 j
x 52H2 i ,2 j

x ,

Hi , j
y 52H2 i , j

y 5Hi ,2 j
y 52H2 i ,2 j

y ~3.10!

for the odd-even mode. All symmetric modes are named
reference to theEx field.

Now that we have obtained the symmetric relatio
among different plane-wave coefficients, we can proceed
utilize these relations to simplify the solution of the wa
propagation problem in the framework of the TMM. For
general photonic structure without any structural symme
consideration, substituting the EM fields~3.1! and~3.2! into
Maxwell’s equations~2.2!–~2.5! will lead to the following
compact matrix form of coupled differential equations28

]

]z
E5T1H,

]

]z
H5T2E, ~3.11!

where E and H are both column vectors consisting of th
plane-wave coefficients and they are defined by

E5~ . . . ,Ei , j
x ,Ei , j

y , . . . !T,

H5~ . . . ,Hi , j
x ,Hi , j

y , . . . !T,

with T denoting the matrix transposition. The matricesT1
andT2 have their matrix elements defined as
7-5
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T1;i , j ;m,n
x;x 5 ik i j ,x@ez# i j ;mn

21 kmn,y /k0 ,

T1;i , j ;m,n
x;y 5 i ~2ki j ,x@ez# i j ;mn

21 kmn,x1k0
2@my# i j ;mn!/k0 ,

T1;i , j ;m,n
y;x 5 i ~ki j ,y@ez# i j ;mn

21 kmn,y2k0
2@mx# i j ;mn!/k0 ,

T1;i , j ;m,n
y;y 52 ik i j ,y@ez# i j ;mn

21 kmn,x /k0 ~3.12!

and

T2;i , j ;m,n
x;x 52 ik i j ,x@mz# i j ;mn

21 kmn,y /k0 ,

T2;i , j ;m,n
x;y 5 i ~ki j ,x@mz# i j ;mn

21 kmn,x2k0
2@ey# i j ;mn!/k0 ,

T2;i , j ;m,n
y;x 5 i ~2ki j ,y@mz# i j ;mn

21 kmn,y1k0
2@ex# i j ;mn!/k0 ,

T2;i , j ;m,n
y;y 5 ik i j ,y@mz# i j ;mn

21 kmn,x /k0 . ~3.13!

If (2N111)3(2N211)5N plane waves are used to expa
the EM fields, then the dimension ofE and H is both 2N,
while the matricesT1 and T2 both are of dimension (2N)
3(2N). The material-related Fourier-coefficient matric
@ez# etc. inT1 andT2 all have dimension ofN3N. Note that
the designation of different subscriptsx,y,z in the Fourier
matrices@e# and @m# is used to represent different Fouri
expansion rules that are employed to calculate th
material-related matrix elements in order to obtain optim
numerical convergence. According to Ref. 25,@ez# i j ;mn

21 and
@mz# i j ;mn

21 in Eqs. ~3.12! and ~3.13! are calculated by using
the inverse rule, namely, we first solve@ez# i j ;mn and
@mz# i j ;mn , then perform the matrix inversion, leading
@ez# i j ;mn

21 and @mz# i j ;mn
21 . Explicitly we have

@ez# i j ;mn5@ez# i 2m, j 2n5
1

d1d2
E

2d1/2

d1/2 E
2d2/2

d2/2

e~x,y!

3e2 i (ki j ,x2kmn,x)x2 i (ki j ,y2kmn,y)ydxdy,

~3.14!

@mz# i j ;mn5@mz# i 2m, j 2n5
1

d1d2
E

2d1/2

d1/2 E
2d1/2

d2/2

m~x,y!

3e2 i (ki j ,x2kmn,x)x2 i (ki j ,y2kmn,y)ydxdy, ~3.15!

whered1 and d2 are the lattice constant along thex and y
directions, respectively,ki j ,x2kmn,x5( i 2m)(2p/d1), ki j ,y
2kmn,y5( j 2n)(2p/d2). The optimal Fourier expansio
rules for the other matrices@ex#, @ey#, @mx#, and @my# are
more complicated, and all involve a mixture of the direct a
inverse rules. They are given by

@ey# i j ;mn5
1

d1
E

2d1/2

d1/2

$@1/e# j ,n
21%~x!e2 i (ki j ,x2kmn,x)xdx,

~3.16!
24511
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@ex# i j ;mn5
1

d2
E

2d2/2

d2/2

$@1/e# i ,m
21%~y!e2 i (ki j ,y2kmn,y)ydy,

~3.17!

@my# i j ;mn5
1

d1
E

2d1/2

d1/2

$@1/m# j ,n
21%~x!e2 i (ki j ,x2kmn,x)xdx,

~3.18!

@mx# i j ;mn5
1

d2
E

2d2/2

d2/2

$@1/m# i ,m
21%~y!e2 i (ki j ,y2kmn,y)ydy.

~3.19!

Here we have assumed that the coordinate origin is locate
the center of the supercell. The matrix@1/e# j ,n

21(x) is the
inversion of the matrix@1/e# j ,n(x), and so on. The latte
matrices are calculated by means of the direct Fourier exp
sion rule and are given by

@1/e# j ,n~x!5
1

d2
E

2d2/2

d2/2 F 1

e~x,y!Ge2 i (ki j ,y2kmn,y)ydy,

~3.20!

@1/e# i ,m~y!5
1

d1
E

2d1/2

d1/2 F 1

e~x,y!Ge2 i (ki j ,x2kmn,x)xdx,

~3.21!

@1/m# j ,n~x!5
1

d2
E

2d2/2

d2/2 F 1

m~x,y!Ge2 i (ki j ,y2kmn,y)ydy,

~3.22!

@1/m# i ,m~y!5
1

d1
E

2d1/2

d1/2 F 1

m~x,y!Ge2 i (ki j ,x2kmn,x)xdx.

~3.23!

For a usual photonic structure built from nonmagnetic ma
rials, m(x,y)51 everywhere. Then we can easily find th
the Fourier matrices@mx#, @my#, and@mz# are all unity ma-
trices. Then Eqs.~3.12! and ~3.13! become

T1;i , j ;m,n
x;x 5 ik i j ,x@ez# i j ;mn

21 kmn,y /k0 ,

T1;i , j ;m,n
x;y 5 i ~2ki j ,x@ez# i j ;mn

21 kmn,x1k0
2d i j ;mn!/k0 ,

T1;i , j ;m,n
y;x 5 i ~ki j ,y@ez# i j ;mn

21 kmn,y2k0
2d i j ;mn!/k0 ,

T1;i , j ;m,n
y;y 52 ik i j ,y@ez# i j ;mn

21 kmn,x /k0 ~3.24!

and

T2;i , j ;m,n
x;x 52 ik i j ,x@mz# i j ;mn

21 kmn,y /k0 ,

T2;i , j ;m,n
x;y 5 i ~ki j ,xd i j ;mnkmn,x2k0

2@ey# i j ;mn!/k0 ,
7-6
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T2;i , j ;m,n
y;x 5 i ~2ki j ,yd i j ;mnkmn,y1k0

2@ex# i j ;mn!/k0 ,

T2;i , j ;m,n
y;y 5 ik i j ,y@mz# i j ;mn

21 kmn,x /k0 . ~3.25!

One can find that the Fourier matrices in Eqs.~3.14!–~3.20!
are all Toeplitz matrices characterized by symmetry relati
Ai j 5Ai 2 j and Bi j ;mn5Bi 2m; j 2n . This symmetry can sig-
nificantly reduce the number of independent matrix e
ments, and thus help to greatly release the computati
burden to calculate these matrices. In our numerical prac
we discretize the supercell into a number of rectangu
minicells. The permittivity and permeability in each minice
are represented by constants obtained by averaging
e(x,y) andm(x,y) in the cell. Then the Fourier matrices a
numerically calculated by summing up contributions from
minicells to the integration in Eqs.~3.14!–~3.23!.

From Eq.~3.11! we can derive an eigenproblem for th
electric field

]2

]z2
E5~T1T2!E52PE ~3.26!

or in a more explicit and expanded form,

]2

]z2 S Ei , j
x

Ei , j
y D 52Pi , j ;m,n

l1 ;l2 S Em,n
x

Em,n
y D . ~3.27!

The superscriptsl1 andl2 are polarization indicesx andy,
while the indices appearing in the subscript represent
plane wave used, and run in the range of2N1< i<N1 ,
2N2< j <N2 , 2N1<m<N1 , 2N2<n<N2. The total
plane wave number isN5(2N111)(2N211). Equation
~3.27! should be understood as a matrix second-order dif
ential equation. The solution of the eigenproblem with
each slice centered atz will yield the eigenmodes of the EM
fields within this approximate lamellar 2D grating slic
These eigenmodes will stand on the basis of constructing
transfer matrix for this slice.

If the structure has a certain mirror-reflection symmet
there are definite symmetric relations among the plane-w
coefficients. We can use the symmetry to pick up those
dependent unknown variables of the plane-wave coefficie
and regroup Eq.~3.27!. For thex-axis mirror-reflection sym-
metry, we confine the used plane waves in the range o
< i<N1 , 2N2< j <N2 , 0<m<N1 , 2N2<n<N2, and re-
write Eq. ~3.27! as

]2

]z2 S Ei , j
x

Ei , j
y D 52Qi , j ;m,n

l1 ;l2 S Em,n
x

Em,n
y D , ~3.28!

where

Qi , j ;m,n
l1 ;l2 5Pi , j ;m,n

l1 ;l2 1 P̂i , j ;2m,n
l1 ;l2 Q~m21!.

M5(N111)3(2N211) is the plane wave used in the ca
culation, and the matrixQ has a dimension of (2M )
3(2M ). The termP̂i , j ;2m,n

l1 ;l2 represents the contribution from
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those plane waves withkx,0. The attached factorQ(m
21) is defined asQ(m21)51 if m>1, and Q(m21)
50 if m,1. This factor is used to avoid unphysical du
counting of these terms ofP̂i , j ;0,n

l1 ;l2 . We note thatP̂i , j ;2m,n
l1 ;l2 has

included a sign factor of ‘‘1’’ or ‘‘ 2,’’ which comes from the
symmetric relations~3.3! and~3.4!. This term should depend
on the symmetric mode concerned. For instance, for the e
mode, P̂i , j ;2m,n

x(y);x 5Pi , j ;2m,n
x(y);x , P̂i , j ;2m,n

x(y);y 52Pi , j ;2m,n
x(y);y , while

for the odd mode, we haveP̂i , j ;2m,n
x(y);x 52Pi , j ;2m,n

x(y);x and

P̂i , j ;2m,n
x(y);y 5Pi , j ;2m,n

x(y);y .
In the case of they-axis mirror-reflection symmetry, Eq

~3.27! becomes

]2

]z2 S Ei , j
x

Ei , j
y D 52Qi , j ;m,n

l1 ;l2 S Em,n
x

Em,n
y D , ~3.29!

where

Qi , j ;m,n
l1 ;l2 5Pi , j ;m,n

l1 ;l2 1 P̂i , j ;m,2n
l1 ;l2 Q~n21!,

where the plane waves used are confined to2N1< i<N1 ,
0< j <N2 , 2N1<m<N1 , 0<n<N2, and the total number
is M5(2N111)3(N211). The factorQ(n21) is defined
asQ(n21)51 if n>1, andQ(n21)50 if n,1. This fac-
tor is also used to avoid unphysical dual counting of the
terms of P̂i , j ;m,0

l1 ;l2 . P̂i , j ;m,2n
l1 ;l2 also depend on the symmetr

mode concerned. When the structure has both thex and y
axis mirror-reflection symmetries, Eq.~3.27! can be much
more simplified. Now the plane waves used are confined
0< i<N1 , 0< j <N2 , 0<m<N1 , 0<n<N2 with a total
number ofM5(N111)3(N211). Eq. ~3.27! becomes

]2

]z2 S Ei , j
x

Ei , j
y D 52Qi , j ;m,n

l1 ;l2 S Em,n
x

Em,n
y D , ~3.30!

where

Qi , j ;m,n
l1 ;l2 5Pi , j ;m,n

l1 ;l2 1 P̂i , j ;2m,n
l1 ;l2 Q~m21!1 P̂i , j ;m,2n

l1 ;l2 Q~n21!

1 P̂i , j ;2m,2n
l1 ;l2 Q~m21!Q~n21!.

The last three terms inQi , j ;m,n
l1 ;l2 should also depend on th

symmetric mode under study.
In constructing the transfer matrix for a slice, the boun

ary condition satisfied by theH field is required. TheH field
is connected with theE field through Eq.~3.11!. For a gen-
eral structure, we can write

]

]z S Ei , j
x

Ei , j
y D 5T1;i , j ;m,n

l1 ;l2 S Hm,n
x

Hm,n
y D , ~3.31!

where the indices range in2N1< i<N1 , 2N2< j <N2 ,
2N1<m<N1 , 2N2<n<N2. When the structure ha
mirror-reflection symmetries, Eq.~3.31! can regroup in a
way similar to Eq.~3.27! such that only independent un
7-7
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known variables of the plane-wave coefficients enter the n
equations. For all types of symmetry, we can write down

]

]z S Ei , j
x

Ei , j
y D 5Ri , j ;m,n

l1 ;l2 S Hm,n
x

Hm,n
y D . ~3.32!

The reduced matrixR depends on what symmetry is involve
with. For thex-axis mirror-reflection symmetry

Ri , j ;m,n
l1 ;l2 5T1;i , j ;m,n

l1 ;l2 1T̂1;i , j ;2m,n
l1 ;l2 Q~m21!. ~3.33!

For they-axis mirror-reflection symmetry,

Ri , j ;m,n
l1 ;l2 5T1;i , j ;m,n

l1 ;l2 1T̂1;i , j ;m,2n
l1 ;l2 Q~n21!. ~3.34!

When the structure has simultaneousx and y mirror-
reflection symmetries, we find

Ri , j ;m,n
l1 ;l2 5T1;i , j ;m,n

l1 ;l2 1T̂1;i , j ;2m,n
l1 ;l2 Q~m21!1T̂1;i , j ;m,2n

l1 ;l2

3Q~n21!1T̂1;i , j ;2m,2n
l1 ;l2 Q~m21!Q~n21!.

~3.35!

The matrixR in Eq. ~3.33! has the same dimension as t
matrix Q in Eq. ~3.28!, and so on. The calculation of thes
matrices should also depend on the symmetric modes
cerned in the wave propagation problem. For instance, un
the x-axis mirror-reflection symmetry, we haveT̂1;i , j ;2m,n

x(y);x

52T1;i , j ;2m,n
x(y);x and T̂1;i , j ;2m,n

x(y);y 5T1;i , j ;2m,n
x(y);y for the even

mode, while for the odd mode we haveT̂1;i , j ;2m,n
x(y);x

5T1;i , j ;2m,n
x(y);x andT̂1;i , j ;2m,n

x(y);y 52T1;i , j ;2m,n
x(y);y . Others are simi-

larly defined.
Above we employ the structural symmetries to reduce

number of independent plane-wave coefficients appearin
Maxwell’s equations. This can significantly ease the num
cal burden and the requirement on computer memory sp
However, a closer look at the symmetrical relations~3.3!–
~3.10! and the eigenproblems~3.28!–~3.30! show that we
have not yet arrived at the truly irreducible plane-wave sp
that is needed in solution of these symmetry-related
problems. The reason is that some symmetry-indu
constant-zero variables are still involved in Eqs.~3.28!–
~3.30!. This will lead to superfluous unphysical solutions
the eigenproblem. This situation can be seen from the dim
sion of the matrices in these equations. One way to rem
these parasite modes is to check the eigenvector. Th
eigenvectors that do not satisfy the particular symmetric
lations consistent with the structural symmetry will corr
spond to unphysical solutions, and should be excluded. H
ever, another simpler while more efficient way is to remo
these constant-zero variables from Maxwell’s equatio
~3.28!–~3.30! from the beginning. In the following we will
show how to achieve this goal.

Let us first look at the situation of thex-axis mirror-
reflection symmetry. From Eqs.~3.3! and ~3.4!, we can find
that

E0,j
y 50, H0,j

x 50

for the even mode and
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E0,j
x 50, H0,j

y 50

for the odd mode. These symmetry-induced constant-z
variables should be removed from Maxwell’s equatio
~3.27! and ~3.32!. Accordingly, the involved matricesQ and
R should contract by removing those elements that are
lated with E0,j

y and H0,j
x such asQ0,j ;0,n

y;y and R0,j ;0,n
y;x for the

even mode, and those elements that are related withE0,j
x and

H0,j
y such asQ0,j ;0,n

x;x and R0,j ;0,n
x;y for the odd mode. After

exclusion of these 2N211 constant-zero variables, the ne
total number of the independent variables will reduce fro
2(N111)(2N211) to (2N111)3(2N211)5N, which is
also the dimension ofQ and R. This we see that the new
eigenproblem has a size half of the original one, which
2N. In a more explicit form, Eq.~3.28! can be written into

]2

]z2 S E0,j
x

Ei , j
x

Ei , j
y
D 52S Q0,j ;0,n

x;x Q0,j ;m,n
x;x Q0,j ;m,n

x;y

Qi , j ;0,n
x;x Qi , j ;m,n

x;x Qi , j ;m,n
x;y

Qi , j ;0,n
y;x Qi , j ;m,n

y;x Qi , j ;m,n
y;y

D S E0,n
x

Em,n
x

Em,n
y
D

~3.36!

for the even mode and

]2

]z2 S E0,j
y

Ei , j
x

Ei , j
y
D 52S Q0,j ;0,n

y;y Q0,j ;m,n
y;x Q0,j ;m,n

y;y

Qi , j ;0,n
x;y Qi , j ;m,n

x;x Qi , j ;m,n
x;y

Qi , j ;0,n
y;y Qi , j ;m,n

y;x Qi , j ;m,n
y;y

D S E0,n
y

Em,n
x

Em,n
y
D

~3.37!

for the odd mode, respectively. On the other hand, Eq.~3.32!
now takes an explicit form

]

]zS E0,j
x

Ei , j
x

Ei , j
y
D 5S R0,j ;0,n

x;y R0,j ;m,n
x;x R0,j ;m,n

x;y

Ri , j ;0,n
x;y Ri , j ;m,n

x;x Ri , j ;m,n
x;y

Ri , j ;0,n
y;y Ri , j ;m,n

y;x Ri , j ;m,n
y;y

D S H0,n
y

Hm,n
x

Hm,n
y
D
~3.38!

for the even mode and

]

]zS E0,j
y

Ei , j
x

Ei , j
y
D 5S R0,j ;0,n

y;x R0,j ;m,n
y;x R0,j ;m,n

y;y

Ri , j ;0,n
x;x Ri , j ;m,n

x;x Ri , j ;m,n
x;y

Ri , j ;0,n
y;x Ri , j ;m,n

y;x Ri , j ;m,n
y;y

D S H0,n
x

Hm,n
x

Hm,n
y
D
~3.39!

for the odd mode, respectively. In Eqs.~3.36!–~3.39!, the
indices run as 1< i<N1 , 1<m<N1 , 2N2< j <N2, and
2N2<n<N2. Each matrix element should be understood
a block submatrix.

The situation of they-axis mirror-reflection symmetry can
be handled in a similar way. From Eqs.~3.5! and ~3.6!, we
can find that

Ei ,0
y 50, Hi ,0

x 50

for the even mode and

Ei ,0
x 50, Hi ,0

y 50
7-8
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for the odd mode. After removing these constant-zero ma
elements, the matricesQ andR should contract accordingly
by removing those elements ofQi ,0;m,0

y;y , Ri ,0;m,0
y;x , etc., for the

even mode andQi ,0;m,0
x;x andRi ,0;m,0

x;y , etc., for the odd mode
In the end,Q and R will also have a size ofN for both
modes. The explicit form of Eqs.~3.29! and ~3.32! can be
written in a similar way as Eqs.~3.36!–~3.39!.

The situation of simultaneousx and y mirror-reflection
symmetries is somewhat more complex. Let us first look
the even-even mode. From the symmetric relations show
Eq. ~3.7!, we easily find that

E0,j
y 5Ei ,0

y 50, H0,j
x 5Hi ,0

x 50.

This means that we should exclude these constant-zeroE and
H field variables, whose total number is bothN11N211.
Then the truly independent unknown variables have a t
number ofM52(N111)(N211)2(N11N211)5 1

2 @(2N1
11)(2N211)11#5 1

2 (N11), about one quarter of th
original dimension without any symmetry consideration. T
matrix Q in Eq. ~3.30! and R in Eq. ~3.32! should be con-
tracted accordingly such that those matrix elements
Q0,j ;0,n

y;y , Qi ,0;m,0
y;y , R0,j ;0,n

y;x , Ri ,0;m,0
y;x , etc., are removed. Both

matrices now have a dimension ofM3M . For the odd-odd
mode, we have

E0,j
x 5Ei ,0

x 50, H0,j
y 5Hi ,0

y 50.

The independent unknown variables are reduced to a
number ofM5 1

2 (N11), same as in the even-even mod
Correspondingly, the matrix elements ofQ0,j ;0,n

x;x , Qi ,0;m,0
x;x ,

R0,j ;0,n
x;y , Ri ,0;m,0

x;y , etc., should be removed, yielding a ne
eigenproblem with a size ofM. One can write down the
explicit form of Eqs.~3.30! and~3.32! under these two sym
metries in a way similar to but much more complicated th
Eqs. ~3.36!–~3.39! for the x-axis symmetry case. For in
stance, for the even-even mode, Eqs.~3.30! and~3.32! can be
expanded into

]2

]z2S E0,0
x

E0,j
x

Ei ,0
x

Ei , j
x

Ei , j
y

D
52S Q0,0;0,0

x;x Q0,0;0,n
x;x Q0,0;m,0

x;x Q0,0;m,n
x;x Q0,0;m,n

x;y

Q0,j ;0,0
x;x Q0,j ;0,n

x;x Q0,j ;m,0
x;x Q0,j ;m,n

x;x Q0,j ;m,n
x;y

Qi ,0;0,0
x;x Qi ,0;0,n

x;x Qi ,0;m,0
x;x Qi ,0;m,n

x;x Qi ,0;m,n
x;y

Qi , j ;0,0
x;x Qi , j ;0,n

x;x Qi , j ;m,0
x;x Qi , j ;m,n

x;x Qi , j ;m,n
x;y

Qi , j ;0,0
y;x Qi , j ;0,n

y;x Qi , j ;m,0
y;x Qi , j ;m,n

y;x Qi , j ;m,n
y;y

D
3S E0,0

x

E0,n
x

Em,0
x

Em,n
x

Em,n
y

D ~3.40!
24511
ix

t
in

al

e

f

tal
.

n

and

]

]zS E0,0
x

E0,j
x

Ei ,0
x

Ei , j
x

Ei , j
y

D
5S R0,0;0,0

x;y R0,0;0,n
x;y R0,0;m,0

x;y R0,0;m,n
x;x R0,0;m,n

x;y

R0,j ;0,0
x;y R0,j ;0,n

x;y R0,j ;m,0
x;y R0,j ;m,n

x;x R0,j ;m,n
x;y

Ri ,0;0,0
x;y Ri ,0;0,n

x;y Ri ,0;m,0
x;y Ri ,0;m,n

x;x Ri ,0;m,n
x;y

Ri , j ;0,0
x;y Ri , j ;0,n

x;y Ri , j ;m,0
x;y Ri , j ;m,n

x;x Ri , j ;m,n
x;y

Ri , j ;0,0
y;y Ri , j ;0,n

y;y Ri , j ;m,0
y;y Ri , j ;m,n

y;x Ri , j ;m,n
y;y

D
3S H0,0

y

H0,n
y

Hm,0
y

Hm,n
x

Hm,n
y

D , ~3.41!

respectively. Here the indices run as 1< i<N1 , 1<m
<N1 , 1< j <N2, and 1<n<N2. Each matrix element
should also be understood as a block submatrix.

The other two symmetric modes are slightly different. F
the even-odd mode, we find from Eq.~3.9!

E0,j
y 5Ei ,0

x 50, H0,j
x 5Hi ,0

y 50.

With the total number of the excluded constant-zero va
ables being (N111)1(N211), the truly independen
unknown variables are left to a number ofM5 1

2 @(2N1
11)(2N211)11]215 1

2 (N21). The matrix elements tha
need to be removed inQ and R are nowQ0,j ;0,n

y;y , Qi ,0;m,0
x;x ,

R0,j ;0,n
y;x , Ri ,0;m,0

x;y , etc. Both matrices now have a contract
dimension ofM3M . In this case, Eqs.~3.30! and ~3.32!
have an explicit form of

]2

]z2 S E0,j
x

Ei ,0
y

Ei , j
x

Ei , j
y

D 52S Q0,j ;0,n
x;x Q0,j ;m,0

x;y Q0,j ;m,n
x;x Q0,j ;m,n

x;y

Qi ,0;0,n
y;x Qi ,0;m,0

y;y Qi ,0;m,n
y;x Qi ,0;m,n

y;y

Qi , j ;0,n
x;x Qi , j ;m,0

x;y Qi , j ;m,n
x;x Qi , j ;m,n

x;y

Qi , j ;0,n
y;x Qi , j ;m,0

y;y Qi , j ;m,n
y;x Qi , j ;m,n

y;y

D
3S E0,n

x

Em,0
y

Em,n
x

Em,n
y

D ~3.42!

and
7-9
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]

]zS E0,j
x

Ei ,0
y

Ei , j
x

Ei , j
y

D 5S R0,j ;0,n
x;y R0,j ;m,0

x;x R0,j ;m,n
x;x R0,j ;m,n

x;y

Ri ,0;0,n
y;y Ri ,0;m,0

y;x Ri ,0;m,n
y;x Ri ,0;m,n

y;y

Ri , j ;0,n
x;y Ri , j ;m,0

x;x Ri , j ;m,n
x;x Ri , j ;m,n

x;y

Ri , j ;0,n
y;y Ri , j ;m,0

y;x Ri , j ;m,n
y;x Ri , j ;m,n

y;y

D
3S H0,n

y

Hm,0
x

Hm,n
x

Hm,n
y

D , ~3.43!

respectively. Here the indices also run as 1< i<N1 , 1<m
<N1 , 1< j <N2, and 1<n<N2. Each matrix element also
represents a block submatrix.

For the odd-even mode, we find from Eq.~3.10!

E0,j
x 5Ei ,0

y 50, H0,j
y 5Hi ,0

x 50.

The number of the truly independent unknown variables
also M5 1

2 (N21). The matrix elements that need to be r
moved in Q and R are now Q0,j ;0,n

x;x , Qi ,0;m,0
y;y , R0,j ;0,n

x;y ,
Ri ,0;m,0

y;x , etc. BothQ andR are of dimensionM3M . We can
write Eqs. ~3.30! and ~3.32! in an explicit form similar to
Eqs.~3.42! and ~3.43!.

It can be easily checked that in every situation of t
structural symmetry, the size of all reduced eigenproble
will add up to a number that is just the size of the origin
one without symmetry, which is 2N. Therefore, no superflu
ous unphysical eigenmodes will be introduced when
solve these new symmetry-related size-reduced eigenp
lems.

IV. CONSTRUCTION OF TRANSFER MATRIX
UNDER MIRROR-REFLECTION SYMMETRIES

In the above section we have solved the EM fields wit
each slice of the waveguide structure using the basis of p
wave functions under mirror-reflection symmetries. To pla
the wave propagation problem in the framework of t
TMM, we need to proceed to finish the construction of t
transfer matrix for this grating slice. To do so, we need
write down the eigenfields existing in the two infinitely th
air films surrounding the slice, then use the boundary con
tions of EM fields to find out the connection between t
fields in these two air films, which according to definition
the transfer matrix under the adopted plane-wave basis.

The tangential components of theE and H fields in the
left-hand side air film can be written into

Ex(y)~r !5(
i j

@Ei j ,x(y)
1 1Ei j ,x(y)

2 #eiki j ,xx1 iki j ,yy, ~4.1!

Hx(y)~r !5(
i j

@Hi j ,x(y)
1 1Hi j ,x(y)

2 #eiki j ,xx1 iki j ,yy. ~4.2!

The fields in the right-hand side air film can be obtained
simply replacing Ei j ,x(y)

6 and Hi j ,x(y)
6 with Ui j ,x(y)

6 and
Vi j ,x(y)

6 , respectively. There are definite analytical relatio
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between theH and E fields,27,28 which can be readily re-
trieved from the Maxwell’s equation¹3E5 ik0H. The re-
sults can be written as (Hi j ,x

1 ,Hi j ,y
1 )T5T0,i j (Ei j ,x

1 ,Ei j ,y
1 )T and

(Hi j ,x
2 ,Hi j ,y

2 )T52T0,i j (Ei j ,x
2 ,Ei j ,y

2 )T. The 232 matrix T0,i j

has matrix elementsT0,i j
11 52ki j ,xki j ,y /(k0b i j ), T0,i j

12 5(ki j ,x
2

2k0
2)/(k0b i j ), T0,i j

21 5(k0
22ki j ,y

2 )/(k0b i j ), and T0,i j
22

5kixki j ,y /(k0b i j ). b i j is given byb i j 5(k0
22ki j ,x

2 2ki j ,y
2 )1/2

for k0
22ki j ,x

2 2ki j ,y
2 >0, and b i j 5 i (ki j ,x

2 1ki j ,y
2 2k0

2)1/2 for
k0

22ki j ,x
2 2ki j ,y

2 ,0.
Now suppose that we have obtained the EM fields wit

the i th grating slice and in the two air films surrounding th
grating slice, we can derive the transfer matrix for this sli
In the framework of the scattering-matrix (S-matrix!
formulation,23,24,28,33 we define column vectorsV i 21

6

5( . . . ,Ei j ,x
6 ,Ei j ,y

6 , . . . )T, V i
65( . . . ,Ui j ,x

6 ,Ui j ,y
6 , . . . )T.

Then the sliceS matrix si is defined by

S V i
1

V i 21
2 D 5siS V i 21

1

V i
2 D 5S s11

i s12
i

s21
i s22

i D S V i 21
1

V i
2 D . ~4.3!

For the sake of completeness and self-consistence, the
cedure of solving thisSmatrix is briefly presented in Appen
dix A. More details can be referred to Ref. 28. It can be se
that theS matrix in Eq.~4.3! is of dimension (4N)3(4N).

Above we consider the transfer matrix for a general str
ture. In the case of mirror-reflection symmetries, we a
need to place the eigenproblem for the two air films in t
symmetry-reduced plane-wave space, following exactly
same procedure as we do to the grating slice. We should
pick up those truly independent unknown variables to so
the eigenproblem. For an air film, this procedure is qu
simple, and can be analytically manipulated. TheS matrix
connecting these symmetry-reduced independent varia
can also be calculated following the similar way as for
general structure,28 as shown in Appendix A. Finally for the
i th grating slice we can write

S VM ,i
1

VM ,i 21
2 D 5sM

i S VM ,i 21
1

VM ,i
2 D 5S sM ,11

i sM ,12
i

sM ,21
i sM ,22

i D S VM ,i 21
1

VM ,i
2 D ,

~4.4!

whereVM ,i 21
6 andVM ,i

6 are column vectors comprising th
independent variables of the plane-wave coefficients ass
ated with a certain mirror-reflection symmetry, andsM

i is the
corresponding sliceSmatrix. For thex-axis ory-axis mirror-
reflection symmetry,sM

i has a dimension of (2N)3(2N). In
the presence of the simultaneousx and y mirror-reflection
symmetries,sM

i is of dimension (N11)3(N11) for both
the even-even and odd-odd modes, and of dimensionN
21)3(N21) for both the even-odd and odd-even mod
Here we see that the size of the EM problem is reduced
one half for a photonic structure with either thex or the y
mirror-reflection symmetry, and to about one quarter fo
structure with simultaneousx andy mirror-reflection symme-
tries.

We notice here that the symmetry-reducedS matrix sM
attains all usual mathematical structures in connection w
the usual matrixS. These include the important recursio
7-10
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APPLICATION OF STRUCTURAL SYMMETRIES IN THE . . . PHYSICAL REVIEW B 68, 245117 ~2003!
algorithm designed to calculate the overallS matrix for a
slab from all the individualS matrices~such assi) for each
composite slice,23,24,33as can be found in Appendix A. As i
well known, one standard application of the TMM is to ca
culate the transmission and reflection spectra for the sca
ing of an incident EM wave by a grating slab. Another im
portant application is to solve the photonic band structu
for a photonic crystal grating structure. Since theS matrix
stands on the basis of all these applications, we see tha
usual theoretical and numerical techniques developed f
general structure can be directly used here for structures
hibiting mirror-reflection symmetries.

Up to now we only discuss the mirror-reflection symm
tries existing in the lateral plane, namely, along thex andy
directions. We find that they can reduce the number of
unknown variables used to represent the EM fields by tw
fold to fourfold, and consequently greatly release the bur
of computer storage space and computational time. We
further show that if the structure has a mirror-reflection sy
metry along the wave propagation direction, thez axis, the
numerical burden can be further reduced to one half. To
this, we assume that a slab has a mirror-reflection symm
with respect to the plane located atz50. We designate the
left and right half slabs as slabA andB, and the correspond
ing S matrix asSA andSB , respectively. Then for slabA we
have

S V1
1

V0
2D 5S S11

A S12
A

S21
A S22

A D S V0
1

V1
2D , ~4.5!

whereV0
1 is assumed to be the incident field from the le

hand side of slabA. For slabB we have

S F1
1

F0
2D 5S S11

B S12
B

S21
B S22

B D S F0
1

F1
2D . ~4.6!

In Eq. ~4.6!, F0
1 is assumed to be the incident field from th

left-hand side of slabB. However, we can also assume th
F1

2 is the incident field from the right-hand side of slabB.
Since this incident wave will witness a structure exactly
same as slabA ~due to the mirror-reflection symmetry!, we
can directly write down

S F0
2

F1
1D 5S S11

A S12
A

S21
A S22

A D S F1
2

F0
1D . ~4.7!

Comparing Eq.~4.6! and ~4.7! we easily find the following
symmetric relations betweenSA andSB :

S11
B 5S22

A , S22
B 5S11

A ,

S12
B 5S21

A , S21
B 5S12

A . ~4.8!

These symmetric relations allows us to only calculate thS
matrix for the first half of the considered slab, and thus
duce the numerical burden to one half of that without co
sidering thisz-axis mirror-reflection symmetry.

Similar arguments also apply to the whole slab. Due to
symmetry of the whole slab, a wave incident from the le
hand side and from the right-hand side will witness the sa
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structure, so we have the same relations as Eq.~4.8!, but now
A andB denote the same identical slab. LetSbe theSmatrix
for the whole slab, we have

S115S22, S125S21, ~4.9!

which means thatS is a block-symmetric matrix. As a resul
we need only to numerically calculate two of the four blo
submatrices making up the overallSmatrix, another relief of
the numerical burden for the TMM. On the other hand, t
z-axis symmetry can also find some applications in solut
of the localized modes of the slab. The eigenmode can
classified into the even and odd modes, satisfying an eig
problem half the size of the original one without symme
consideration.

V. USAGE OF PERFECTLY MATCHED LAYERS TO
ACCOUNT FOR ABSORBING BOUNDARY CONDITIONS

In the above discussion on wave propagation in PC wa
guide structures, we assume that EM waves are perfe
confined in the waveguide channels, therefore, physic
there should be no cross talk among different supercells.
merically, the adoption of a sufficiently large supercell c
guarantee negligible coupling between adjacent superc
and thus approach the ideal physical problem. However
many cases, the confinement is not perfect, and the wave
leak out of the waveguide channel through the side w
during its propagation. For instance, the current best sam
of 3D layer-by-layer photonic crystals working in the optic
regime has a limited layer number~below 16 layers! along
the ~001! growth direction, and consequently a wavegui
built in this platform will have a limited cladding laye
number.7,8 Therefore, the leakage of wave away from t
waveguide channel is inevitable and cannot be neglec
Another example is the 2D PC slab waveguide. This wa
guide relies on the 2D band gap to achieve the in-plane w
confinement, and on the index-guiding mechanism to rea
the vertical wave confinement. Since the background pho
nic crystal does not have a complete 3D band gap, this t
of waveguide is more vulnerable to defects than the ab
layer-by-layer PC waveguide. Roughness at the surface
the slab and at the side walls of the air holes etched into
slab as well as imperfect alignment of the lattice patterns
all induce scattering of wave off the waveguide, dominan
from the vertical direction.

This leakage will cause mutual coupling between adjac
supercells. Without taking this fact into full account, th
TMM calculation results would be untrustful or even inco
rect. To prevent this difficulty, the fields at the lateral boun
aries of the supercell need to satisfy some absorbing bou
ary conditions, so that any wave impinging on th
boundaries are completely absorbed and will not reach
disturb the adjacent supercell, and no reflection back fr
the boundaries occurs to disturb the studied system. One
ficient way to achieve this goal is to place PMLs at the l
eral boundaries of the supercell whenever physically ther
leakage of wave through this boundary.

The PML is a kind of artificial anisotropic metallic an
magnetic material which is specially designed for numeri
7-11
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ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 245117 ~2003!
modeling of the absorbing boundary conditions. It is ani
tropic in both the permittivitye(r ) and the permeability
m(r ). For a general anisotropic material,e and m are both
general second-order tensors (333 matrices!. However,
since the usual supercell adopted has a rectangular sh
and the boundaries are collinear to thex andy axes, it can be
shown that the principal axes of the permittivity and perm
ability also are both coincident with the coordinate ax
Therefore, we can write ê5(ex ,ey ,ez) and m̂
5(mx ,my ,mz). In this situation Maxwell’s equations are

¹3E~r !5 ik0m̂~r !•H~r !, ¹3H~r !52 ik0ê~r !•E~r !.
~5.1!

ê(r ) and m̂(r ) are both periodic functions in the lateralXY
plane of the grating with the periods characterized by
supercell. Similar to the isotropic situation as discussed
Sec. II, we can derive from Eq.~5.1! the following four
coupled equations satisfied by the tangential field com
nents (Ex ,Ey) and (Hx ,Hy):

]

]z
Ex5

1

2 ik0

]

]x F 1

ez
S ]

]x
Hy2

]

]y
HxD G1 ik0myHy ,

~5.2!

]

]z
Ey5

1

2 ik0

]

]y F 1

ez
S ]

]x
Hy2

]

]y
HxD G2 ik0mxHx ,

~5.3!

]

]z
Hx5

1

ik0

]

]x F 1

mz
S ]

]x
Ey2

]

]y
ExD G2 ik0eyEy , ~5.4!

]

]z
Hy5

1

ik0

]

]y F 1

mz
S ]

]x
Ey2

]

]y
ExD G1 ik0exEx . ~5.5!

These equations can be solved in the plane-wave spac
exactly the same way as the isotropic situation discusse
Sec. III, leading to the following coupled equations

]

]z
E5T1H,

]

]z
H5T2E, ~5.6!

where the matricesT1 andT2 have the same form as in Eq
~3.12! and ~3.13!, except that the Fourier matrices of isotr
pic e and m should be replaced by the current anisotro
ones. In addition, the calculation of these matrices foll
exactly the same Fourier expansion rules as in Eqs.~3.14!–
~3.23!. The matrices@ez# and @mz# are now

@ez# i j ;mn5@ez# i 2m, j 2n5
1

d1d2
E

2d1/2

d1/2 E
2d2/2

d2/2

ez~x,y!

3e2 i (ki j ,x2kmn,x)x2 i (ki j ,y2kmn,y)ydxdy, ~5.7!

@mz# i j ;mn5@mz# i 2m, j 2n5
1

d1d2
E

2d1/2

d1/2 E
2d2/2

d2/2

mz~x,y!

3e2 i (ki j ,x2kmn,x)x2 i (ki j ,y2kmn,y)ydxdy. ~5.8!
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Other matrices@ex#, @ey#, @mx#, and@my# are also given by
Eqs. ~3.16!–~3.19!, but the matrices within the integran
should be replaced by the anisotropic ones. Equati
~3.20!–~3.23! are now given by

@1/e# j ,n~x!5
1

d2
E

2d2/2

d2/2 F 1

ey~x,y!Ge2 i (ki j ,y2kmn,y)ydy,

~5.9!

@1/e# i ,m~y!5
1

d1
E

2d1/2

d1/2 F 1

ex~x,y!Ge2 i (ki j ,x2kmn,x)xdx,

~5.10!

@1/m# j ,n~x!5
1

d2
E

2d2/2

d2/2 F 1

my~x,y!Ge2 i (ki j ,y2kmn,y)ydy,

~5.11!

@1/m# i ,m~y!5
1

d1
E

2d1/2

d1/2 F 1

mx~x,y!Ge2 i (ki j ,x2kmn,x)xdx.

~5.12!

The remaining procedure to construct the transfer ma
for an individual grating slice under different situations
structural symmetry follows the same way developed in S
III, as all informations of the photonic structure have be
essentially involved in the matricesT1 , T2, and P
52T1T2. As is well known, the standard application of th
TMM to a photonic crystal includes solution of the transm
sion and reflection spectra, and the photonic band structu
Appendix B briefly describes how to solve the photonic ba
structures~or dispersions! for lossless and lossy modes o
the basis of theS matrix for the unit cell of the photonic
crystal. These standard applications are not affected by
introduction of PML’s into the photonic structure, because
information about the PML’s has been involved in theSma-
trix itself. Instead, the usage of PML’s can handle the leak
problem commonly encountered in the solution of wa
propagation in integrated optical elements by means of
TMM. For instance, it is possible to quantitatively accou
for the propagation loss of EM waves due to imperfect co
finement of EM waves within the waveguide channel. Co
ventionally, this problem is attacked by means of the FDT
technique. As we have noted in the Sec. I, for a very lo
waveguide, the FDTD simulation is not as numerically ec
nomic as the TMM.

VI. LOCALIZED MODES IN 2D PC SLAB AND SLAB
WAVEGUIDE STRUCTURES

As we have noted in Sec. I, 2D PC slab waveguides
popular because of their ease of fabrication in the infra
wavelength. The schematic configuration of a typical 2D
slab waveguide is shown in Figs. 1~c! and 1~d!. The back-
ground 2D PC is made from a triangular lattice of air ho
etched into a dielectric slab suspended in air, the so-ca
air-bridge structure, as shown in Fig. 1~b!. By leaving one
row of holes unetched along theGJ direction, a waveguide is
formed. The lateral optical confinement is supported by
in-plane~the XZ plane! band gap for the 2D PC, while th
7-12
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vertical confinement~along they direction! is provided by
the index-guiding mechanism for the high-dielectric plan
slab.

The band diagrams of the localized modes in the PC s
and the guided modes in the waveguide have been inv
gated extensively by means of the PWM and the FDTD te
nique. In the PWM simulation, a supercell technique is u
and the periodic boundary conditions are adopted in both
x andy directions.13 Because the PML is not inserted into th
boundary of the supercell, the coupling between adjacent
percells is not screened. However, this cross-talk will
affect those truly localized modes, since their exponentia
decaying field tail automatically approaches zero at
boundary of a large enough supercell. In the FDT
simulation,14 the periodic boundary condition is used in thex
direction, while the absorbing boundary condition is impos
in the y direction. In our TMM simulation, we also utilize
supercell. The periodic boundary condition is always used
the x direction because of the perfect in-plane confineme
In the y direction, both the periodic boundary condition a
the absorbing boundary condition are tried. We notice t
there are two folds of mirror-reflection symmetries for bo
the bare PC slab and the PC slab waveguide structures w
we choose appropriate unit cell and supercell configuratio
as shown in Figs. 1~b!–1~d!. Therefore, the problem can b
reduced into four smaller ones for eigenmode with the ev
even, odd-odd, even-odd, and odd-even symmetries, res
tively, as has been described in Secs. II and III.

Let us first look at the localized modes supported by
bare 2D PC slab. The standard band diagram for a triang
lattice is plotted along the high-symmetry linesG-X-J-G in
the first Brillouin zone, whose configuration is shown in F
1~a!. Due to the symmetry of the lattice, the lineJ-X is
equivalent to the lineJ8-X8. This symmetry allows us to
calculate the whole band diagrams along only two crystal
directions, theGJ and GX directions. As displayed in Fig
1~b!, the unit cell in both directions has mirror-reflectio
symmetries along thex, y, andz directions, so that the nu
merical burden of the TMM calculation can be reduced
much as possible.

To make convenient comparisons with other theoret
methods, we consider a structure that has been investig
in Ref. 13 by using the PWM. The PC slab has a large rad
of air holesr 50.45a, a thicknessw50.6a, and a dielectric
constante512. Herea is the lattice constant of the triangu
lar lattice. In our TMM simulation, the primitive unit cell is
always used to achieve optimum numerical convergen
Along the GJ direction, the adopted unit cell has a si
A3a35.4a30.5a, and the two primitive-lattice basis vec
tors in theXY plane area15(A3a,0,0) anda25(0,5.4a,0).
The third basis vector for the 3D lattice isa3

5@(A3/2)a,0,0.5a#, reflecting the symmetry of the triangu
lar lattice. Similarly, along theGX direction, the unit cell is
of sizea35.4a3(A3/2)a, and the two primitive-lattice ba
sis vectors in theXY plane are a15(a,0,0) and a2
5(0,5.4a,0), and the third basis vector isa3

5(0.5a,0,(A3/2)a). Because the primitive unit cell is no
arrayed in an orthogonal lattice, a phase shift at the rig
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hand side of the unit cell must be taken into account
solution of the photonic band structures.28,33

As has been noted above, the absorption boundary co
tion in they direction is not indispensable for the truly loca
ized modes. To see this, we first consider a situation wh
the PML’s are not placed at they-axis boundary of the su
percell. The calculation results are shown in Fig. 2~a! for the
even-even and odd-even modes, and in Fig. 2~b! for the odd-
odd and even-odd modes, respectively. Only those truly
calized modes are displayed, while many other nonlocali
modes~or leaky modes! have been shadowed in the gra
region with the light cone lying at the boundaries. In o
simulation, up to 11331 and 9331 plane waves have bee
adopted to expand the EM fields in theXY plane for theGJ
andGX directions, respectively. Notice that for clarity, he
and throughout all the rest of this paper, all plane-wave nu
bers are referred to the uncontracted plane-wave space w
out any symmetry consideration. Because all symme
modes are defined with respect to theEx field, we see that
the former two modes have dominantEx andHy fields, and
correspond to the so-called TE-like modes, while the la
two modes have dominantEy andHx fields, and thus corre-
spond to the so-called TM-like modes in literatures.13–18 It

FIG. 2. Calculated band diagrams for the localized modes s
ported in a 2D PC slab made from etching a triangular lattice of
holes~with a radiusr 50.45a) into a dielectric planar slab with a
thicknessw50.6a and a dielectric constante512. ~a! TE-like lo-
calized modes;~b! TM-like localized modes. No PML’s are place
at the boundary of the supercell in the TMM calculations.
7-13
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ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 245117 ~2003!
can be found that there is a wide band gap for the TE-
localized modes at frequencies 0.37520.500(c/a), while
there is only very weak band gap centered arou
0.470(c/a) for the TM-like localized modes. This is consis
tent with the fact that for a pure 2D photonic crystal ma
from high filling-fraction air holes, the TE-mode band gap
far wider than the TM-mode band gap. The calculation
sults of the band diagrams overall are in agreement w
those reported in Ref. 13, where the band gap for the TE-
localized modes lies at frequencies 0.35520.500(c/a).
There is slight discrepancy on the lower bandgap edge p
tion for the two calculations, and this may be induced
different convergence behaviors of the TMM and the PW

Next we place two identical PML slabs at they-axis
boundary of the supercell. Each PML slab is 0.3a thick in
each supercell~and totally 0.6a thick!, and the permittivity
and permeability are chosen asex5ez5a, ey51/a, mx
5mz5a, my51/a, wherea is set to be 313i . The super-
cell size is the same as in Fig. 2. The calculation results
the band diagrams are shown in Figs. 3~a! and 3~b! for the
TE-like and TM-like localized modes. Other modes orig
nally appearing in Figs. 2~a! and 2~b! above the light cone
turn out to have non-negligible imaginary part in the Bloch
wave vectorkz and therefore they are nonpropagation dec
modes along thez direction, or equivalently, leaky modes fo
the PC slab along the verticaly direction. It is found that the
imaginary part for those strongly localized modes~far away

FIG. 3. Same as Fig. 2, except that the PML’s are placed at
boundary of the supercell in the TMM calculations.
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from the light cones! can reach a number as tiny as belo
1025(p/a), and thus is completely negligible. The overa
band diagrams are in good agreement with Figs. 2~a! and
2~b!. This indicates that the absorbing boundary condit
indeed is not indispensable for solution of the optical pro
erties of the truly localized modes in the 2D PC slab.

The above structure has too large air holes and too
dielectric veins between the air holes, and thus is not exp
mentally preferable even if it has a large band gap. To e
fabrication effort using lithographic techniques, the radius
the air holes need to be reduced in the compromise of
bandgap size. To this end, we consider another structure
r 50.29a, w50.6a, and e511.56. This structure has bee
investigated in Ref. 14 by means of the FDTD techniq
Since the band gap only exists for the TE-like localiz
modes, we confine our computation to this polarizati
mode. In our calculation, we have adopted the same su
cell as for the PC structure shown in Figs. 2 and 3. In ad
tion, we also consider both situations with or without t
PMLs placed at they-axis boundary of the supercell. Th
calculated band diagrams of the localized modes are
played in Figs. 4 and 5, respectively. Good agreement
also be found between the two calculation results. The b
gap lies at frequencies 0.25920.326(c/a). As a comparison,
Ref. 14 reports a FDTD calculation result of the band gap
lying at frequencies 0.25620.320(c/a), slightly downshift
compared to our TMM simulation result.

Now we proceed to look at a waveguide brought into t
2D PC slab background by leaving one row of air ho
unetched along theGJ direction. To solve the guided mod
within the band gap, we use a supercell of size 5A3a
35.4a3a, which possesses mirror-reflection symmetr
along all thex, y, and z directions, and the PML’s are no
used. Up to 33327 plane waves have been adopted in
TMM solution of the band diagrams of the guided mode
The results are displayed in Fig. 6. There are two guid
mode bands with different symmetries. The lower band
an even-even mirror-reflection symmetry, and spans from

e

FIG. 4. Calculated band diagrams for the TE-like localiz
modes supported in a 2D PC slab made from etching a triang
lattice of air holes into a dielectric planar slab. The structure
parameters ofr 50.29a, w50.6a, and e511.56. No PML’s are
placed at the boundary of the supercell in the TMM calculation
7-14
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APPLICATION OF STRUCTURAL SYMMETRIES IN THE . . . PHYSICAL REVIEW B 68, 245117 ~2003!
frequency 0.264(c/a) to the frequency 0.280(c/a). The
higher band has an odd-even mirror-reflection symmetry,
spans from 0.286(c/a) to 0.297(c/a). Since the two bands
do not cross over in frequency, we see that this wavegu
supports single-mode operation of the localized guid
mode. We have also performed TMM simulations for t
situation of using the PML’s, and obtained almost the sa
guided-mode band diagrams. The overall characteristic of
guided-mode diagrams calculated by the TMM is in acc
dance with those reported in Ref. 14, except for some
crepancies in the absolute position of the guided-m
bands. In Ref. 14, the first guided-mode band extends f
0.271(c/a) to 0.280(c/a), and the second band spans fro
0.28(c/a) to 0.291(c/a). Experimental investigations hav
been reported on this waveguide structure, and it is fo
that EM waves excited at frequency 0.2686(c/a) can freely

FIG. 5. Same as Fig. 4, except that the PML’s are placed at
boundary of the supercell in the TMM calculations.

FIG. 6. Calculated band diagrams for the TE-like guided mo
supported in a waveguide built in the 2D PC slab structure show
Fig. 4 along theGJ direction.
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propagate along the waveguide, and thus correspond
guided mode.37 A quick glance at the theoretical and expe
mental results immediately shows that our TMM simulati
has achieved better agreement with experiment than
FDTD technique. This is a convincing support of the ef
ciency and accuracy of the proposed TMM.

VII. GUIDED MODES IN 3D LAYER-BY-LAYER
PC WAVEGUIDES

We turn to another important kind of 3D PC wavegui
structures, waveguides created in a 3D layer-by-layer ph
nic crystal by removing a single rod from an otherwise p
fect lattice, which we call the missing-rod waveguides. T
kind of structures has been extensively investigated b
theoretically and experimentally5–12 as the existence of a
complete band gap in the background crystal may supp
possibility to realize 3D optical confinement in the wav
guide.

Figures 7~a! and 7~b! demonstrate the top-view and sid
view configuration of the 3D waveguide. The coordinate
chosen so that the waveguide axis is parallel to thez axis,
and they axis is collinear with the~001! growth direction of
the crystal. The crystal is formed by stacking rectangu
dielectric rods in a woodpile fashion. Each rod has width a
thickness ofw and h, respectively. A mirror-reflection sym
metry with respect to thex axis can be found in the structure
Therefore, the guided mode supported in this waveguide
be classified into the even and odd modes with respect to
mirror-reflection planeYZ. This structural symmetry ha
been employed in the recent investigation by means of
conventional PWM.11 However, the symmetric relation
there between plane-wave coefficients appear more com
cated and less clarified compared to those found in the
rent TMM formulation. The reason is that the field comp
nent under study in the TMM (Ex here! is naturally collinear
with the symmetric axis, while in the conventional PWM
every plane-wave coefficient involves three compone
(Ex ,Ey , and Ez) of the fields. On the other hand, rece
study has shown that the TMM can exhibit much faster n
merical convergence than the conventional PWM in solut
of the photonic band gaps for this particular layer-by-lay
photonic crystal structure.28 Therefore, it can be expecte
that the TMM can also yield better accuracy in study of t
current waveguide structure.

Let us first look at two waveguide structures that we
investigated previously using either the conventional PW
or the FDTD technique. In the first structure, the dielect
rod has a width ofw50.25a, thickness ofh50.3125a, and
a dielectric constant ofe511.56. Herea is the lattice con-
stant of the crystal, which is just the center-to-center dista
of the adjacent rods in each layer. In Ref. 11, the PW
calculation shows that a complete band gap opens at
quency 0.36620.434(c/a) for the photonic crystal, and two
guided-mode bands exist in the waveguide. The cutoff f
quency of the lower band lies at the frequency 0.375(c/a).
Due to the cross over of the upper band in frequency,
waveguide overall does not support single-mode operat
In Ref. 11, both the photonic crystal and the waveguide
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s
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ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 245117 ~2003!
solved using the same supercell technique in order to ob
consistent result of the guided-mode band in reference to
complete band gap for the background crystal. A superce
size 5a320h3a and up to 6500 plane waves have be
used there. Later more deliberate comparison study by m
of the PWM and the TMM as reported in Ref. 28 h
adopted the primitive unit cell of the crystal, and therefo
has obtained much better accuracy in determining the b
gap positions. The PWM calculation using 13313313 plane
waves finds a PBG located at 0.37220.445(c/a), while the
TMM calculation using 11311 plane waves yields a PBG
lying at 0.37620.452(c/a). It is found that the TMM exhib-
its a much better numerical convergence behavior than
PWM. So we will choose the TMM result as the standa
reference for the following waveguide study. We have rev
ited the waveguide structure using the TMM under thex-axis
mirror-reflection symmetry. In our calculation, we adopt
5a320h3a supercell centered around the waveguide a
periodic boundary conditions in both directions of theXY

FIG. 7. ~a! Top-view and~b! side-view schematic configuratio
of a 3D layer-by-layer PC waveguide structure and the symme
supercell used in solution of the band diagrams of the gui
modes. The crystal is made by stacking rectangular dielectric
in a woodpile fashion.
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plane, and up to 29329 plane waves. The result is shown
Fig. 8~a!. The two-band guided-mode characteristic and m
timode behavior can be clearly seen. It is found that
guided modes have an odd mirror-reflection symmetry w
respect to thex axis, and the correspondingE field is domi-
nantly ~but not purely! polarized along they axis, the~001!
growth direction of the crystal. No even guided modes
supported in the waveguide. The cutoff frequency of t
waveguide lies at 0.390(c/a), in some distance from the
lower bandgap edge of the background crystal. The ove
features of the calculated band diagrams are in consiste
with the results reported in Ref. 11. However, there is
overall upshift of the guided-mode bands together with
band gap for the crystal from the PWM calculation results
Ref. 11. This reflects the fact that the conventional PWM h
a comparatively slower convergency.

The second waveguide structure has slightly geometr
parameters, wherew50.25a, h50.30a, ande511.56. This
structure has been studied in Ref. 9 by means of both
PWM and FDTD technique. The TMM calculation result
the guided-mode band diagram is shown in Fig. 8~b!. The
overall characteristic of the two-band diagram and mu
mode behavior is similar to that in Fig. 8~a!. The PBG of the
background crystal is located at 0.38220.462(c/a), as is

ic
d
ds

FIG. 8. Calculated band diagrams of the guided modes s
ported in the 3D layer-by-layer PC waveguide shown in Fig. 7.~a!
The rod has widthw50.25a, thicknessh50.3125a, and a dielec-
tric constante511.56. ~b! The rod has parameters ofw50.25a,
h50.3a, ande511.56.
7-16
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APPLICATION OF STRUCTURAL SYMMETRIES IN THE . . . PHYSICAL REVIEW B 68, 245117 ~2003!
shown by the two gray domains in Fig. 8~b!. The waveguide
cutoff frequency is 0.395(c/a). As a comparison, in Ref. 9
the PWM calculation reports a PBG lying at 0.38
20.444(c/a), and the FDTD simulation reports a two-ban
diagram while single-mode behavior for the waveguide. T
lower guided-mode band spans from the cutoff frequenc
0.392(c/a) to 0.440(c/a), and this result is close to ou
TMM calculations. The qualitative discrepancy in regard
the single-mode or multimode feature might be explained
the too lower upper bandgap edge set in Ref. 9, which r
ders the behavior of the higher guided-mode band in
frequency range between 0.444(c/a) and 0.462(c/a) indis-
cernible.

Above we only compare theoretical results obtained
using different numerical approaches. To attain more co
dence, it is also important to compare with the experimen
measurement. Recently, Sellet al. built a microwave 3D
layer-by-layer photonic crystal by using alumina rods a
measured the response of the missing-rod waveguide to
input microwave signal from a monopole probe.12 The crys-
tal has parameters ofa510.9 mm, w53.2 mm, h
53.2 mm, ande59.0. The TMM calculation shows a com
plete PBG lying between 11.14 and 12.92 GHz. A typic
measurement result of the transmission spectrum is displa
in Fig. 9~a!. As the waveguide is excited by a localize
source, the radiation will dissipate in all directions at fr
quencies beyond the band gap, and only a small fractio
energy can reach the receive probe, resulting in a low leve

FIG. 9. ~a! Experimental transmission spectrum and~b! calcu-
lated band diagrams of the guided modes for a microwave 3D la
by-layer PC waveguide shown in Fig. 7. The crystal is made fr
alumina rods, and has parameters ofa510.9 mm,w53.2 mm, h
53.2 mm, ande59.
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the transmission spectrum. A high-level transmission ba
located between about 11.4 and 12.9 GHz can be foun
Fig. 9~a!, and this corresponds to the guided-mode band
the waveguide. We have carried out TMM calculations
this waveguide, and the band diagrams are shown in
9~b!. The waveguide cutoff frequency is 11.35 GHz, and t
guided-mode band extends into the upper bandgap edg
the crystal. In Fig. 9~a! one can find a dip in the high
transmission band around 12.6 GHz, this might corresp
to the crossover region of the lower and higher guided-m
bands in Fig. 9~b!, which is centered at about 12.5 GHz. Th
overall agreement between theory and experiment is go
This indicates that the TMM can effectively handle the wa
propagation problem in 3D PC waveguides. As a comp
son, our PWM calculation using 6500 plane waves h
yielded a lower cutoff frequency at about 11.14 GHz, in
worse agreement with the experimental observations than
TMM calculations.

VIII. SYMMETRY CONSIDERATION
OF COUPLING BETWEEN PC WAVEGUIDES

AND EXTERNAL WAVEGUIDES

In the above sections, we have systematically discus
how the structural symmetries involved in a 3D PC wav
guide can be used in solution of Maxwell’s equations in t
framework of the TMM. The field symmetry associated wi
a particular guided mode can be discerned and classi
This classification can prove helpful for understanding
coupling of the PC waveguide with external input/output s
nal channels.

Let us first suppose that the input source is a plane w
propagating in free space and collimated with the wavegu
axis and that the PC waveguide possesses two-fold mir
reflection symmetries. The polarization of the plane wa
will determine what symmetric mode can be excited in t
waveguide. According to the analysis made in Secs. III a
IV @for instance, see Eqs.~3.7!–~3.10!#, an x-axis polarized
plane wave has an even-even symmetry, because the
field components areEx , and Hy . So this pane wave can
only excite the even-even symmetrical mode in the PC wa
guide. For the same reason, any-axis polarized plane wave
can only excite an odd-odd mode in the waveguide. Ot
linear polarization states can be decomposed into linear
perposition of the two polarization states, and thus can ex
both the even-even and odd-odd modes in the wavegui
For more complex field profile of the incident wave, such
a Gaussian beam, the incident signals usually possess
tational symmetry. Therefore, they can also be decompo
into linear superposition of the four symmetric modes, a
coupled into the waveguide. The excitation power for ea
mode can be calculated separately in their own plane-w
sub-space because they will not interact with each other

For waveguides working in the infrared wavelength, su
as the 2D PC slab waveguides, a more realistic coup
fashion is connecting the PC waveguide with external c
ventional dielectric wire waveguides.15,16,34,35A plane-wave
incidence proves to be too low-efficient in coupling. As t
wire waveguide has a rectangular shape, and is collima

r-
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ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 245117 ~2003!
with the PC waveguide axis, it possesses the same mi
reflection symmetries as the PC waveguide. For an air-bri
system, the wire waveguide can also support the even-e
odd-odd, even-odd, and odd-even symmetric guided mo
whose dispersions can be solved numerically in the sa
TMM framework as for the 2D PC slab waveguide. In th
way, one can selectively excite different symmetric modes
the PC waveguide by injecting signal into the wire wav
guide with a particular symmetry. Therefore, even for a
waveguide supporting multimodes but each mode with
ferent symmetries, one can still pick up a particular symm
ric mode and the waveguide appears as if working in
single-mode fashion.

IX. SUMMARIES AND CONCLUSIONS

In summary, we have systematically explored the appli
tion of structural symmetries associated with 3D PC wa
guide structures to solve EM wave propagation in th
waveguides in the framework of the plane-wave-ba
TMM. Optimal Fourier expansion rules on the EM fields a
the material permittivity and permeability functions ha
been fully exploited in order to achieve fast numerical co
vergency in these 3D TMM simulations. Starting from Ma
well’s equations, the symmetry of the EM fields in the re
space and plane-wave space is revealed under va
mirror-reflection symmetries. These symmetric relations
be used to significantly reduce the requirement on the c
puter memory space and the computation time, and gre
release the numerical burden that are involved in the pla
wave-based TMM for the solution of guided modes su
ported in the 3D PC waveguides. The solution to the E
problems under these mirror-reflection symmetries in b
the real space and the plane-wave space has been disc
in a systematic way and in great detail. In addition, the cl
sification of symmetry in the guided modes will help peop
to understand the coupling of the PC waveguides with ex
nal input/output channels such as dielectric slab or w
waveguides, which usually possess the same structural s
metries as the PC waveguides.

We have used the symmetry-enhanced TMM to han
two important kinds of 3D PC waveguide structures, the
layer-by-layer PC waveguides and 2D PC slab waveguid
The supercell technique and associated periodic boun
conditions are used to model wave propagation in the
waveguide system with complete optical confinement. T
absorbing boundary condition is also employed to solve
calized modes supported by the bare 2D PC slab and gu
modes in the slab waveguides by placing PML’s at the o
plane boundary of the supercell. We have compared
TMM calculation results of the band diagrams for the loc
ized modes and guided modes to other calculation res
reported in previous literatures using the PWM and
FDTD technique. The agreement in the overall features
the band diagrams is satisfactory. We have also compare
TMM simulation results with the experimental measu
ments on an infrared 2D PC slab waveguide and a mic
wave 3D layer-by-layer PC waveguide, and better agreem
is achieved in comparison with other theoretical investi
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tion results. This indicates that the symmetry-enhan
TMM can effectively, economically, and accurately explo
the optical properties of waveguide structures built in 3
photonic crystal structures, and therefore can find its ap
cation in understanding EM wave propagation in vario
functional elements embedded in the background of the
homogeneous photonic crystal media.
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APPENDIX A: CONSTRUCTION OF S MATRIX
FOR A UNIT CELL OF A PHOTONIC CRYSTAL

When one applies the TMM to a photonic crystal, the u
cell of the photonic crystal usually is divided into a numb
of thin slices, each of which can be approximated as a lam
lar grating. We first solve theS matrix connecting the plane
wave coefficients in the two hand sides of each slice, th
construct the overallS matrix for the whole unit cell by
means of a recursion algorithm.

The sliceSmatrix depends only on the eigenmodes with
the lamellar grating, which satisfy Eqs.~3.11! and ~3.26! in
the plane-wave space. Let us consider thei th slice ~lying
betweenz5zi 21 andz5zi) in a general photonic structure
Solution of Eq.~3.26! will yield 2N ~with N being the used
plane-wave number! eigenvalues @denoted as b i

2 ,i
51,2, . . . ,2N, with Im(b i)>0] of the matrixP. In addition,
the (2N)3(2N) matrix Sa , whosej th column is the eigen-
vector corresponding to the eigenvalueb j

2 , can also be
obtained simultaneously. The eigenmode correspond
to b i

2 is Ei8(z)5Ea,i
1 (z)1Ea,i

2 (z), Ea,i
1 (z)5Ei

1eib i (z2zi 21),
Ea,i

2 (z)5Ei
2e2 ib i (z2zi 21), where Ei

1 and Ei
2 are both un-

known variables. Further define column vectorb
5( . . . ,b i , . . . )T, Ea

15@ . . . ,Ea,i
1 (z), . . . #T and Ea

2

5@ . . . ,Ea,i
2 (z), . . . #T. The electric field column vecto

E are now expressed into the superposition of all
eigenmodesE5Sa(Ea

11Ea
2). The corresponding magneti

field column vector are obtained from Eq.~3.11! and reads
H 5 T 1

21 ]/]z E5 T 1
21Sa ]/]z (Ea

1 1 Ea
2) 5 iT 1

21Sab (E a
1

2Ea
2)5Ta(Ea

12Ea
2), whereTa5 iT1

21Sab. It proves con-
venient to write down the electric and magnetic fields at
arbitrary point inside the grating slice into a concise form

S E~z!

H~z!
D 5S Sa Sa

Ta 2Ta
D S Ea

1~z!

Ea
2~z!

D . ~A1!

The EM fields in the two air films around the grating slic
can also be solved in the same way, and the results have
expressed in Eqs.~4.1! and~4.2!, but we can rewrite them in
a way similar to Eq.~A1!. Match of boundary conditions
requests all tangential field components of each plane w
be continuous at the two interfaces between the air films
the grating slice. At the left interfacez5zi 21
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S S0 S0

T0 2T0
D S V i 21

1

V i 21
2 D 5S Sa Sa

Ta 2Ta
D S Ea

1~zi 21!

Ea
2~zi 21!

D , ~A2!

while at the right interfacez5zi

S S0 S0

T0 2T0
D S V i

1

V i
2D 5S Sa Sa

Ta 2Ta
D S Ea

1~zi !

Ea
2~zi !

D , ~A3!

whereS0 andT0 are counterparts ofSa andTa in an air film.
S0 is a unit matrix, whileT0 is a block-diagonal matrix eac
block of which is a 232 matrix already given byT0,i j below
Eq. ~4.2!. Within the grating slice we have

S Ea
1~zi !

Ea
2~zi !

D 5S eibh 0

0 e2 ibhD S Ea
1~zi 21!

Ea
2~zi 21!

D , ~A4!

whereh5zi2zi 21 is the thickness of the slice,eibh denotes
a (2N)3(2N) diagonal matrix whose element iseib i h,i
51,2, . . . ,2N0. Deleting @Ea

1(zi 21),Ea
2(zi 21)#T and

@Ea
1(zi),Ea

2(zi)#T from Eqs. ~A2!–~A4! and making some
analytical derivations yields

S V i
1

V i
2D 5S a11 a12

a21 a22
D 21S eibh 0

0 e2 ibhD S a11 a12

a21 a22
D S V i 21

1

V i 21
2 D ,

~A5!

where a115
1
2 (Sa

21S01Ta
21T0), a125

1
2 (Sa

21S02Ta
21T0),

anda215a12, a225a11.
The sliceSmatrix can be directly obtained from Eq.~A5!,

si5S s11
i s12

i

s21
i s22

i D 5S p1t11p2t2 p1t21p2t1

p1t21p2t1 p1t11p2t2
D , ~A6!

where p15@a112eibha12a11
21eibha12#

21, p2

5a11
21eibha12@a112eibha12a11

21eibha12#
21, t15eibha11, and

t252a12.
The overallSmatrix of the whole unit cell is connected t

individual sliceSmatrix through a recursion algorithm. Sup
pose the overallS matrix for the firstn21 slices and theS
matrix for slicen have been calculated to beSn21 and sn,
respectively, the overallS matrix for the firstn slicesSn is
given by23,24,33

S11
n 5s11

n @ I 2S12
n21s21

n #21S11
n21 , ~A7!

S12
n 5s12

n 1s11
n S12

n21@ I 2s21
n S12

n21#21s22
n , ~A8!

S21
n 5S21

n211S22
n21s21

n @ I 2S12
n21s21

n #21S11
n21 , ~A9!

S22
n 5S22

n21@ I 2s21
n S12

n21#21s22
n , ~A10!

whereI is a unit matrix. We note here there is a type error
Eq. ~8b! of Ref. 33.

The above procedure ofS-matrix construction is for a
general photonic structure without considering any poss
structural symmetry. In the presence of mirror-reflecti
symmetries, the construction of theS matrix essentially fol-
lows the same procedure from Eqs.~A1!–~A6!, except that
the matricesSa , Ta , S0, andT0 will take the suitable form
in the corresponding symmetry-reduced irreducible pla
24511
le

-

wave space. At the same time, the column vectorsV i 21
6 and

V i
6 should only contain those corresponding truly indepe

dent plane-wave coefficients in the air films, as has b
shown in Eqs.~3.36!–~3.43!. We notice here that the recu
sion algorithm~A7!–~A10! keeps the same in all symmetr
situations.

APPENDIX B: SOLUTION OF PHOTONIC BAND
STRUCTURES FROM THE UNIT-CELL S MATRIX

The S matrix for the unit cell of a photonic crystalS is
defined as

S V1
1

V0
2D 5SS V0

1

V1
2D 5S S11 S12

S21 S22
D S V0

1

V1
2D , ~B1!

where V1
6 and V0

6 are the plane-wave coefficient colum
vectors in the right- and left-hand sides of the unit cell, a
Si j ( i , j 51,2) are four block submatrices ofS. Using the
relation satisfied by an eigenmode as

S V1
1

V1
2D 5lS V0

1

V0
2D , ~B2!

the eigenproblem can be cast into the following form:

S S11 0

S21 2I D S V0
1

V0
2D 5lS I 2S12

0 2S22
D S V0

1

V0
2D . ~B3!

Equation~B3! is a standard form of generalized eigenpro
lem Ax5lBx, whereA andB are both square matrices,l is
the eigenvalue, andx is the eigenvector. So we can use som
standard eigensolution algorithms to solve the eigenva
and eigenvectors of Eq.~B3!. For a Bloch’s mode, we se
l5eik•R, wherek is the Bloch wave vector, andR is the
primitive lattice vector. This leads to the dispersions~band
structures! of the photonic crystal. In the case of a los
mode, e.g., in a lossy photonic crystal waveguide, the eig
value can be cast asl5eikh2bh, wherek is the wave vector,
b is the decay constant, andh is the lattice spacing along th
waveguide axis.

In the case of adoption of a large plane-wave number,
in order to guarantee a good numerical accuracy, there
exist eigenvalues whose modulus are extremely large. Th
correspond to strongly evanescent waves. In this situatio
more reliable way to find the dispersion is not to direc
solvel as in Eq.~B3!, but to solve (l11)21, which do not
cause overflow or underflow forulu@1 or ulu!1. From the
equality Ax5lBx, we can deriveBx5(l11)21(A1B)x,
or equivalently from Eq.~B2! we can find

S I 2S12

0 2S22
D S V0

1

V0
2D 5~l11!21S I 1S11 2S12

S21 2I 2S22
D S V0

1

V0
2D .

~B4!

We note here the solution of dispersion through theS
matrix follows the same procedure irrespective of the str
tural symmetry. All symmetry information has been involve
in the S matrix itself.
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