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The plane-wave-based transfer-matrix metidt¥iM) exhibits a peculiar advantage of being capable of
solving eigenmodes involved in an infinite photonic crystal and electromag(tei¢ wave propagation in
finite photonic crystal slabs or even semi-infinite photonic crystal structures within the same theoretical frame-
work. In addition, this theoretical approach can achieve much improved numerical convergency in solution of
photonic band structures than the conventional plane-wave expansion method. In this paper we employ this
TMM in combination with a supercell technique to handle two important kinds of three-dimengRiDal
photonic crystal waveguide structures. The first one is waveguides created in a 3D layer-by-layer photonic
crystal that possesses a complete band gap, the other more popular one is waveguides built in a two-
dimensional photonic crystal slab. These waveguides usually have mirror-reflection symmetries in one or two
directions perpendicular to their axis. We have taken advantage of these structural symmetries to reduce the
numerical burden of the TMM solution of the guided modes. The solution to the EM problems under these
mirror-reflection symmetries in both the real space and the plane-wave space is discussed in a systematic way
and in great detail. Both the periodic boundary condition and the absorbing boundary condition are employed
to investigate structures with or without complete 3D optical confinement. The fact that the EM field compo-
nents investigated in the TMM are collinear with the symmetric axes of the waveguide brings great conve-
nience and clarity in exploring the eigenmode symmetry in both the real space and the plane-wave space. The
classification of symmetry involved in the guided modes can help people to better understand the coupling of
the photonic crystal waveguides with external channels such as dielectric slab or wire waveguides.
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[. INTRODUCTION As a comparison, waveguides created in a two-dimensional

(2D) photonic crystal slab are much easier to realize experi-

In recent years photonic crystalBC’9), a class of artifi- mentally in the near-infrared regime by means of current

cial materials made up of periodic dielectric or metallic advanced lithographic techniques™® For this reason, these

building blocks, have attracted extensive interest due to theifD PC slab waveguides have become the most popular sys-
powerful capability to control and manipulate the propagatéms under study in these days. The optical confinement in
tion of electromagneti¢EM) waves. This power is brought these 2D PC slab waveguides relies on the 2D band gap in
about by the existence of a photonic band ¢apG), which the lateral plane and index-guiding mechanism in the vertical

is a range of frequencies within which EM waves cannotdirection of the slab.

propagaté:? Line defects introduced into an otherwise per- _T_heoretical undgrstanding of EM wave prqpagat_ion
fect PC can serve as an efficient channel for guiding IightWlthln a PC waveguide can play an important role in design-

. ; .~ _ing and constructing an optical integrated circuit built on the
and may become an important type of composite functional hotonic crystal platform. To accomplish this task, people

element in future ultrasmall photonic integrated circuits thatﬁsually adopt a plane-wave expansion mettRe/M) (Refs.

are buiIF on the phptonic crystal platform. .It has been showrhg_zj) to envision the localized eigenmodegiided modes
that efficient confinement _and propagation of EM Wavessupported by the waveguidé!® and a finite-difference
through these PC wavegwdf channels can be achieved @he_qomain(FDTD) approack? to observe the dynamics of
frequencies within the PB&! In principle, the efficient  £p waves propagating in the waveguide and the correspond-
guiding functionality strongly requests a three-dlmensmnatng transmission and reflection spectf®®*~8The FDTD
(3D) photonic crystal that exhibits a complete band gap. Ongechnique can also be employed to find out the guided
of the examples is the layer-by-layer photonic crystal thaimodes>'*As this method can handle both periodic and ape-
was first proposed by Ho and co-workers and has been undgéibdic structures, it has been dominantly used to understand
extensive studies since’? This structure is made from the optical properties of straight waveguide, waveguide
stacks of dielectric rods in a woodpile fashion. A waveguidebends, and waveguide coupling with cavitiés»*4~18vet, it

can form by simply removing a rod from this photonic crys- has been well-known that the FDTD technique can face with
tal. Although promising progress has been made towardsevere difficulty and inconvenience when it is employed to
constructing a workable photonic crystal sample at the funextract very fine quantitative information about the transmis-
damental optic-communication wavelength of 16,8  sion and reflection spectra for an functional element placed
it still remains a challenge to bring functional elements suchin the background of a photonic crystal, which is an inhomo-
as a waveguide into this tiny platform. Therefore, most ex-geneous medium. This situation can be found in solution of
perimental works are limited in the microwave regitfié?  the transmission efficiency through a sharp 3D waveguide
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bend, where fine and reliable spectra will impose too much (a) c e
numerical burden, or even becomes intractaSi&: o« o Y X
Another popular numerical approach, the transfer-matrix . o B

method (TMM),?*~%% is also widely used in the photonic roogx

crystal community. A TMM can be classified into the real-

space TMM?® and plane-wave-based TMR&;*° depending * e
on what basis function is used to represent the EM fields. e & & » =
This approach can place the solution of the photonic band

structures for a periodic photonic crystal and the scattering (b) r-J
problem of a finite PC slab within the same theoretical O Q—p OO
framework. When it is combined with a supercell technique, o0l oo
the TMM can also handle wave propagation in a PC wave- 00-00 0O
guide. For a straight waveguide, the numerical burden in- O O O}io O
volved in the TMM simulation is logarithmatically propor- 00000
tional to the waveguide length, a big relief compared to the == 1
linear dependence associated with the FDTD technique. This 0o Orl)? o

advantage is in part due to the periodicity of the PC wave-
guide and in part due to the efficient layer-doubling recursion ©
algorithm existing in the mathematical structure of the r.J Supercell

TMM. 22433 |n addition, the TMM is working in the fre- 0.0 _! 0.0
quency domain, and therefore is most suitable for accurate @ 6'050' :' O'O'Q'O'O
solution of the spectra. Finally, this approach can be success- 0-50-59--05° 66
fully expanded to handle wave propagation in semi-infinite 60 O0 O0:0 O O
photonic crystal and related waveguide structdfesnd PC Waveguide
therefore can efficiently explore the optical properties of a

variety of functional elements embedded into the photonic (d) Y

crystal background. For these reasons, it is worthwhile to go I PMIL
deeper into this powerful theoretical tool. i

Even if the TMM is armed with these merits and powers,
numerical simulations for a 3D PC waveguide structure un-

der the usage of a sufficiently large supercell still require PC:Waveguide :
extensive computer memory space and are quite time con- _ PML
suming in order to achieve high enough calculation accuracy. i

For instance, in the plane-wave-based TMM, the required Doubly-Symmetric Supercell

storage space is parabolically proportional to the number of

plane waves adopted to expand the EM fields in the cross- FIG. 1. Schematic configuration and symmetry in 2D PC slab
sectional plane of the waveguide. Therefore, it is highly de-and slab waveguide structuréa) Brillouin zone and high symmet-
sirable to find out some ways to release this memory-spacic points for a triangular lattice(b) Symmetric unit cells used in
requirement and reduce computational time. Various latticgolution of band diagrams for a 2D PC slab along Fieand I'X
symmetries such as translational and rotational symmetriegirections.(c) Top view of the symmetric supercell used in solution
existing in a photonic crystal system have been exploited t&f the band diagrams of guided modes in a PC slab waveg(dle.
reduce the computational burden of the TMRF*31*°This Side view of the supercell for the sl_ab_waveguide. The PML’s at the
observation suggests that we should take a closer look at tfundary of the supercell are not indispensable.

3D PC waveguides and try to find out the structural symme-

tries that might lie behind them. Since a 3D PC waveguide ishannels, such as dielectric slab or wire waveguié$
essentially a quasi-1D structure, the possible number ofhese conventional waveguides also possess structural sym-
structural symmetry is greatly limited compared to those thametries that might be same as the PC waveguides.

can be found in a 3D photonic crystal. Actually, mirror- In this paper, we will systematically investigate the TMM
reflection symmetries along one or two directions in theunder the mirror-reflection symmetry for a 3D PC wave-
cross-sectional plane of the waveguide are the only ones thguide, and classify the field symmetry behind the guided
can be found in the abovementioned 3D layer-by-layer PGnodes. In Sec. Il we first discuss the solution of Maxwell’s
waveguides and 2D PC slab waveguides. This can be se@guations in the framework of the TMM under mirror-
when one looks at the schematic configuration of these tweoeflection symmetries along one or two directions. In Sec. I
types of 3D PC waveguide in Figs. 1 and 7, respectively. Inve turn to the plane-wave-based TMM, and further explore
addition to the reduction in numerical computation, the usagéhe symmetric relations between the plane-wave coefficients
of structural symmetry can also help to reveal the symmetryesulting from the field symmetry of an eigenmode. Max-
of fields involved in the guided mode. This mode-symmetrywell’s equations in this irreducible plane-wave space will be
knowledge will play an important role in understanding thesolved. With the solution of these symmetry-reduced eigen-
coupling of the PC waveguides with external waveguidemodes at hand, in Sec. IV we go on to construct the transfer
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matrix that is on the very basis of the TMM. In Sec. V we FDTD technique. The PML is made of materials which are
extend the discussion to a system involving perfectlyanisotropic in the modulation of bo#(r) and wu(r).

matched layersPML's) (Refs. 26 and 36in order to model For an isotropic material Maxwell’s equations are
absorbing boundary conditions that are necessary to realize

the physical solution to the wave problems for a 3D PC  VXE(r)=ikou(r)H(r), VXH(r)=—ikoe(r)E(r).
waveguide without a complete optical confinement. After (

hgving settlled down thg theoretical basis, we will go on to ere ky=w/c is the wave number, witle being the light
discuss guided modes in layer-by-layer PC waveguides an?p

. o . eed in vacuum, and the angular frequency of the EM
2D PC slab wavegwdeg. In Sec. Vi we first investigate th(?/\lave. In usual photonic structures, the composite materials
2D PC slab waveguide. In particular, we focus on

waveguides formed in a triangular lattice of air holes etcheugre nonmagnetic, and(r)=1. But for the time being, we

. O . . . . ssume a general case where beth) and u(r) are spa-
into an air-bridge dielectric slab. We will make comparison.. . . d .

. . ially varying function n me mirror-reflection
between the TMM calculation and the previous results ob—ta y varying functions, and possess same or-reflectio

; . . symmetries. Let us first look at the mirror-reflection symme-
tained by the PWM and FDTD'S|muIat|ons. In Sec. VI we iy with respect to thex axis, where we have(x,y,z) = e
turn to 3D waveguides brought into a layer-by-layer photonic

crystal. We will compare our results with both the previous(aé(r’]zéz)o’f {ahr:g g (r)wfl’r)r/];azt)r: ,{é (t;()a(’gélzat.iozoo?i/lea;r\:veellt’:sgseu-a—
theoretical simulations and a recent experimental measurd. y Y q

ment in the microwave regime. In Sec. VIl we further%ons’ we follow the convention of the TM# and rewrite

briefly discuss how the structural symmetries can be of helrl)\/laxwells equations into the following four coupled differ-

in understanding the coupling of the PC waveguides wit ential equations satisfied by the tangential field components

external sources. Finally in Sec. IX we will summarize and >’ By, Hy, andHy:
conclude this paper. P . 1 al1/ 9 § 9 ! -+_k .
gz % —ikg ox|elax Y ay X/ KoptHy.
II. FIELD SYMMETRY UNDER MIRROR-REFLECTION (2.2
SYMMETRIES IN TMM ) )
The TMM has b tensively studied in th td aE ! al&H aH ikouH
e as been extensively studied in the past de- e V_Tkoﬁz ax v gy Hx | ikouHy,

cades. Different formulations have been presented within the
same theoretical framework. We will confine our discussion
to the plane-wave-based TMM that we devised recenitf.

(2.3

The principle of this method can be described briefly as fol- iHX:i 7 i iEy— iEx) } —ikoeEy, (2.4
lows. First, divide a photonic crystal slab into a number of 9z ikg x| p | dx ay

thin slices, and approximate each slice as a lamellar 2D grat-

ing, within which the dielectric function is constant along the J 1 a1 iE C 9 e M ikeeE 5
z-axis direction, the wave propagation direction. Second, sur- 9z Y ikg ay |\ ax Y gy )| T K0 29

round each slice by an infinitely thin air film in the both hand o )
sides, and write the EM fields in these air films in terms of!n deriving Egs.(2.2)-(2.5), we have deleted perpendicular
plane waves consistent with the lattice structure in the crosdi€ld componentsE, andH, from Maxwell's equations, and
sectional planéthe XY plane of the waveguide. Third, solve Used the fact thaE,=[1/(—ikoe) ](9H,/dx—dH,/dy) and
the eigenmode within each lamellar grating slice under thé"z:[lll('kt_)ﬂ)](aEymx_aEx/‘?y)' )
plane-wave basis, and construct the transfer-matrix connect- 1aking into account the mirror-reflection symmetry, we
ing the EM fields in the two air films. Fourth, construct the Make coordinate transformations
overall transfer matrix for the slab from all individual trans-
fer matrices by means of an iteration algorithm. Finally, cal-
culate fro_m this overall transfer matrix all interestir_lg physi- ynder which Egs(2.2—(2.5) becomes
cal quantities such as the transmission and reflection spectra
for a finite slab, or the photonic band structures for an infi- 1 ol1/( 4 P
nite photonic crystal. The principles also apply to a PC  —E,=—— — —(—Hy+—HX
waveguide if a supercell in th&Y plane is used. 9z’ —iko gx’ | €\ ox’ ay’
To see how structural symmetries may be appreciated in (2.9
solution of Maxwell's equations, let us first consider a gen-
eral isotropic structure with modulation in both the permit- ¢ 1 9|1 d d )
tivity (r) and the permeability(r). Although the usual - By~ ~ o1 — S Hym—Hy | | —ikouH,y,
photonic structures are built from nonmagnetic materials, 2.7
where u(r)=1 everywhere, we will assume here a general
permeability.(r) for the sake of later discussion on solution P 1 9
to the wave propagation problem in integrated optical ele- = —|—
ments, where the PML is introduced in order to model the az’' iKo ax’ | m
absorbing boundary conditions similar to those used in the (2.8

! !

X——=x", y—=y', z—7',

+ iko,lLHy,

1
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d 1 4|1 d d _ Ey(X,y)=—Ey(—=x,y)=—Ey(X,—y)=Ey(—=X,~Y),

_/Hy:m_/ — ——,Ey——,EX +IkO€EX.

7 CayLEL oy o9 THON=TH(xy)=—H oY) =H(-x ),
The EM fields E},E} Hj,H}) in the coordinate system Hy(x,y)=Hy(=xy)=Hy(X,=y)=Hy(=Xx,~y)
(x",y",z") should satisfy the same Maxwell's equations as (2.1

Egs. (2.2—(2.5. Comparing the sign of each term in Egs. for the even-even mode,
(2.2—(2.9), we find that the following two types of transfor-
mation for the fields can keep Maxwell’s equations invariant: ~ Ex(X,y)= —Ex(=X,y) = —Ex(X, —y) =Ex(—X,~Y),

~E,—~E, E—E,, —H,—H, H—H, Ey(x,y)=Ey(—XY)=Ey(x,—y) =E,(—X,~y),
(2.10
and Hx(X,Y) = Hi(=X.y) = Hx(X, —y) =Hx(=X,~y),
' ' ' ' Hy(X,y)=—Hy(=x,y)=—Hy(X,—y)=H,(—X,—Y)
E—E,, E,~—-E), Hy—H/, Hx—>—HX(.2.lD y(XY)=—Hy(=Xy)=—Hy(X,—y) =Hy( 2/2.17)
Equationg2.10 and(2.11) can be written in a more explicit for the odd-odd mode,
way: Ex(XY) =Ex(—xy)=—Ex(x,~y)=—Ex(—X,~Y),
—E(X,y)=E(—X,y), E,(Xy)=E,(—X,y),
ANZR). BE=RATY) Ey(XY)=~Ey(~XY)=Ey(x,~Y)=~E,(~X,~Y),
—Hy(X,y)=Hy(—X,y), Hy(X,y)=Hy(—X,y),
R 2.12 Hy(X,Y) = = Hy(=X,y) =H,(X, = y)= = Hy (=X, =),
Which we caI_I the odd mode for the, field under thex-axis Hy(X,y)=Hy(—Xx,y)=—Hy(x,—y)=—Hy(—Xx,—y)
mirror-reflection symmetry and (2.18
EXXY)=E(—%Y), E,(xy)=—E,(—xY), for the even-odd mode, and
Hy(,Y)=Hy(—%,Y), Hy(X,y)=—H,(—x,y), Ex(X,y)=—E (=X y)=E (X, —y)=—Ex(=X,~Y),
2.1
. . ( 3) Ey(xvy):Ey(_Xay):_Ey(xa_y):_Ey(_XI_y)a
which we call the even mode for tlig, field under thex-axis
mirror-reflection symmetry. _ _ Hy(X,y)=H(—X,y)=—H(X,—y)=—H,(—X,—y),
If the structure has a mirror-reflection symmetry with re-
spect to they axis, namely, e(x,y,z)=¢€(X,—Yy,z) and Hy(X,y)=—Hy(=X,y)=Hy(X,—y)=—Hy(—Xx,—y)
wn(X,y,2)=u(x,—Yy,z), then similarly we can find that the (2.19

odd and even symmetric modes for thg field satisfy for the odd-even mode, respectively.

_ _ It can be seen that the field symmetry associated with the
—E(X,y)=E(X,— E,(X,y)=E,(X,—

(XY=E00my) By =Eyx—y), mirror-reflection structural symmetries exhibits a very com-

—Hy Y =HY(,—Y), Hy(GY) = Hy(X, —y) pact, concise, and clarified form. This can be attributed to

2.14) mathematical structure of the TMM, where the investigated
field vectors E,,Ey) and H,,H,) are collinear with the
and symmetry axes of the waveguide structure. From Maxwell's
equations, one can find that there also exist symmetries in the
E(xY)=Edx.=y), By(xy)=—E/(X, =), perpendicular field components, and H,, which can be
derived from the symmetric relations involved in the four
(2.1 tangential field components. AS, andH, are not relevant in
' our TMM, we will not discuss this subject in detail. Such
respectively. beautiful symmetric forms in the field components can help
Now further suppose that the structure has mirror-us to solve the EM problems in a convenient and clarified
reflection symmetries with respect to both thendy axes, manner that other numerical schemes such as the FDTD
namely, €(X,y,z)=e€e(—X,y,z)=¢€(X,—Y,2)=€(—X,—VY,2) technique and the conventional PWM have not yet appreci-
and  w(X,y,2)=u(—X,¥,2)=u(X,—Y,2)=u(—X,—V,2). ated.
We can then combine the results in E¢®.12—(2.15 and
find four different symmetric modes: the even-even, the odd- |||, pLANE-WAVE-BASED TMM UNDER MIRROR-
odd, the even-odd, and the odd-even modes with respect to REFLECTION SYMMETRIES
the E, field. They have the following symmetric relations:

Hy(X,y)=Hy(X,—y), Hy(X,y)=—Hy(Xx,—Y),

In the above section we have obtained the symmetry of
E (X, Y)=E,(—=X,yY)=E(X,—y)=E(—X,—Yy), the EM fields in the real space in connection with various
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mirror-reflection symmetry operations. These symmetric re- EX EX =Ef_=EX _.,
lations can be directly used in the real-space TKi\&ince N
we prefer to use the plane-wave-based T¥fMye need to Ef,=—E,;=—E/ =, _,
reflect them into the plane-wave space. Let the primitive lat- ) Lol
tice R of the 2D grating in theXY plane has two basis vectors HY =—H* =—HX_.=H*. _..
a, anda,, and the corresponding reciprocal latti@enas two H ) b b
basis vectorsd; andb,. In practice, we always choose a HY =HY, =H! =HY, (3.7)
rectangular supercell for the waveguide problem, so we have b Lo
a,-a,=0 andb;-b,=0, namely, the primitive and recipro- for the even-even mode,
cal lattices both have orthogonal basis vectors. « « « «
The EM fields can be written into the superposition of Eij=—ELi =B =B,
plane wavegor Bragg wavep Eiy,j _ E_ _ E?’_J- = N
E(r)=2] E; j(2)eti2 i), (3.0 HY=HY = H=H ),
1]
H{j:—HXi’j H}’,j HY - (3.9
— i(Kij Xtk
H(r)—; Hi j(2)e 0817, 32 for the odd-odd mode,
where the Bragg wave vectdk;; = (kjj x.kij y) =Ko+ Gj Efj=EL ;=—E _;=—-E% _j,
= (Kox ,Koy) +ib1+ by, Ejj andHj; are unknown expansion
coefficients of the electric and magnetic fields. They are both Ey =—-EY; 0= Ely_J =— E!, iy
varying function along thez-axis direction. In consistence
with the mirror-reflection symmetry involved in the wave HYj=—HY =H_j=—HY; _,,
propagation problem for a PC waveguide system, we should ’
have Kox,Koy) =(0,0), andk;; =G;; . HY j=HY, ;=—H/_j=-HY; _ (3.9
The symmetric relations in the plane-wave space can be ’ ’
directly obtained from the corresponding relations in the reafor the even-odd mode, and
space For instance, it is easy to find from E8.1) that
X __ X X _ X
Ex(x,y)=Ex(—x,y) would lead toE{;=E*, ;. Following Eij=—ELi =B j=—ELi
the same principle, we can find from Edqg. 12 and(2.13
for the x-axis mirror-reflection symmetry the following sym- Ey EY; i E?’—J_ —EY;, —j>
metric relations between the plane-wave coefficients:
HY; —HX,I J——H,X,J——HX,I y
Elx'J:Ex,hJ y Ely’]: _EXi'j ’
HYj=—HY; ;=H/_;=—HY, _, (3.10
X _ X Y —HY
Hij=—Ho HL=H5 3.3 for the odd-even mode. AII symmetric modes are named in
for the even mode and reference to thé&, field.
Now that we have obtained the symmetric relations
Ei)fj— -EX, i E =EY, i among different plane-wave coefficients, we can proceed to
utilize these relations to simplify the solution of the wave
HY =HY, HY,=—HY, (3.4  propagation problem in the framework of the TMM. For a

—ij —i.

general photonic structure without any structural symmetry
for the odd mode. For thg-axis mirror-reflection symmetry, consideration, substituting the EM fiel@3.1) and(3.2) into

we have Maxwell's equations(2.2)—(2.5) will lead to the following
compact matrix form of coupled differential equatiéhs

EX EIX_], Ely'J:_Ely'_],
aE—TH aH—TE (3.11
Hin__H:(—]! Hy _H|)/—J (35) 0z IR 0z e '
for the even mode, and where E and H are both column vectors consisting of the
plane-wave coefficients and they are defined by
Ef =—Ef EY;=E)
i [ L= v -
E=(... BB ..0"
HY j=H_;, HY=—H/_ (3.6
H=(... H HY . )T,

for the odd mode. In the presence of simultanerwdy LA

axis mirror-reflection symmetries, the symmetric relationswith T denoting the matrix transposition. The matrices
between the plane-wave coefficients are andT, have their matrix elements defined as
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X;X _: -1
1i,j;mn— Ikij ,x[fz]ij ;mnkmn,y/kOa

1 (dy2 . I
[Ex]ij;mn:d_zj s /2{[1/6]i,m}(y)e iy~ Kmny)Ydy,
Y2

T)Iumn_i(_k (317)

i €25 mnrKmnx+ K3 iy Tijmn) Ko,

: . _ 1 [dy2 _
T{’;;(,j;m,n:|(kij,y[fz]ij;:hanmn,y_k%[#x]ij;mn)/kOn [My]ij'mn:d_f ! {[1/M]j_r11}(x)e—l(kij,x—kmn,x)xdx,
' 1J —dy/2 '

: . - (3.18

T)ll’;iy,j;m,nz - Ikij ,y[ 6Z]ij ;lmnkmn,x/ko (3-12
and 1 (dy2 . .

R I £V v L Y
. — —H2
)2(7(] mn— Ikij,><[:U’z]ij;lmnkmn,y”(O: (3.19)
y . ) Here we have assumed that the coordinate origin is located at
T2lyj mn— kij,x[/-Lz]ij;mnkmn,x_ko[ey]ij;mn)/km

the center of the supercell. The matvﬁit/e]jfr}(x) is the
inversion of the matrix 1/€]; ,(x), and so on. The latter
matrices are calculated by means of the direct Fourier expan-

H -1 2
T2| Jj;mn |(_kij,y[//«z]ij;mnkmn,y'l'ko[ex]ij;mn)/kO- sion rule and are given by

(3.13

If (2N;+1)X(2N,+1)=N plane waves are used to expand
the EM fields, then the dimension & and H is both 2N,
while the matricesT; and T, both are of dimension ()

X (2N). The material-related Fourier-coefficient matrices
[€,] etc.inT, andT, all have dimension ol X N. Note that
the designation of different subscriptsy,z in the Fourier
matrices[ €] and[ «] is used to represent different Fourier
expansion rules that are employed to calculate these
material-related matrix elements in order to obtain optimum
numerlcal convergence. According to Ref. 252],] ‘mn and
[,LLZ]” ‘nn N EQs. (3.12 and (3.13 are calculated by using
the inverse rule, namely, we first solvgasz]Il -mn and
[&2)ij:mn, then perform the matrix inversion, leading to
L€2]ij:mn and[,uz]Il ‘mn- EXplicitly we have

T2 i,j;mn ikij,y[:’-’«z]i];lmnkmn,x/kO-

/2
R e

e~ i (kij v Km n,y)Yd Y,

(3.20

€(x,y)

e ik xk

mn,x)xd X,

(3.29

2
[1/e]im(y)= d f 42 G(X v)

1 fdzlz

1
m(X,y)

—i(k;

[1/,“]] n(X)= € iy mny)ydy

(3.22

dy/2 1

e ik x—k
m(X,y)

mn0Xdx,

(3.23

1
Wil = 5|

W02

[EZ]IJ -mn=L€&]i- mj-n— df f €(X,y)
dida) —dy2) —dye2

< @~ 1(kij x—kmn)x—i(kij y— mn,y)ydxdy,

(3.19

12 [dyl2
f m(X,y)
dy/2J —dq/2

X e_i(kij x~ Kmnx)X—i(kij y= mn,y)YdXdy' (315)

[Mz]u mn=L[#2]i- mj-n— 1df

whered; andd, are the lattice constant along tlkeandy
directions, respectivelyk;j x—Knnx=(i—m)(27/d,), ki,
—Kmny=(j—n)(27/dy). The optimal Fourier expansion
rules for the other matricese,], [€,], [ux], and[u,] are

more complicated, and all involve a mixture of the direct and

inverse rules. They are given by

1 (dyf2 _
[6 ]i"mn:_f {[1/6]f:}(x)eil(kij,Xikmn,x)xdxy
YR dy ) —ayre b
(3.19

For a usual photonic structure built from nonmagnetic mate-
rials, u(x,y)=1 everywhere. Then we can easily find that
the Fourier matricepuy], [uy], and[u,] are all unity ma-
trices. Then Eqs(3.12 and(3.13 become

T3 jimn= K L €2lij;moKmny /Ko,
TSy

1;i,j;mn I( klj x[ez]u ;mn mnx+k2 ij; mn)/kOa

Tlll;;?(,j;m,n: i (ki ,y[ez]i?;:tnnkmn,y— kggij :mn)/Ko,

T imn= 1Kyl €l mkmax /Ko (3.24)
and
é)l(J mn— ikij,x[#z]i};lmnkmn,y/kOa

T2 d,jimn i(kij,xgij;mnkmn,x_kg[ey]ij;mn)/km
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T%‘?(j'mn i(—Kij y S mnkmny+k [&ij:mn)/ Ko, those plane waves witk,<0. The attached facto®(m
T —1) is defined as®(m—1)=1 if m=1, and ®(m—1)
=0 if m<1. This factor is used to avoid unphysical dual

Y3y —ij -1

T2 jimn = 1Kij yL a2 imoKmnx Ko - (3.29 counting of these terms (ﬁ?j 2 \We note thaPAl xfn . has
One can find that the Fourier matrices in E¢&14—(3.20  included a sign factor of 4 or " which comes from the
are all Toeplitz matrices characterized by symmetry relationgymmetric relation$3.3) and(3.4). Th|s term should depend
Aij=A;_j and Bjj.;nn=Bj_j_n. This symmetry can sig- on the symmetric mode concerned. For instance, for the even
mﬁcantly reduce the number of independent matrix elenqge. px(y)x _px(y)x . ,six(jy)_;sr/nn: pX(y)sr/nn’ while
ments, and thus help to greatly release the computational Aix . ox(y)ix
burden to calculate these matrices. In our numerical practlci,or the Odd mode, we havePi’(j{’), —Pi (ly)*m” and
we discretize the supercell into a number of rectangulaf’ss - mn= P n-
minicells. The permittivity and permeability in each minicell  In the case of thg-axis mirror-reflection symmetry, Eq.
are represented by constants obtained by averaging ové$-27) becomes
e(x,y) andu(x,y) in the cell. Then the Fourier matrices are
numerically calculated by summing up contributions from all 92 [ EX. . EX .
minicells to the integration in Eq$3.14—(3.23). —( yJ) = —Qi”%_’rﬁ]zn( y ) (3.29

From Eg.(3.11) we can derive an eigenproblem for the 92>\ B P B
electric field where
92 Mida _pMile | B >\2 -1
—FE=(TiT)E=—PE (3.26 Qi iimn=Pijmnt Pijim-n@M—1),

_ o where the plane waves used are confined—mlsi<Nl,
or in a more explicit and expanded form, 0<j=<N,, —N;<m=N;, 0<n=<N,, and the total number

is M=(2N;+1)X(N,+1). The factor®(n—1) is defined
2 E?(,j - EXn as@_(n—1)=1 if n=1, and@(n—;)=0 if n<1. This fac-
E ey | =7 102 (3.27  tor is also used to avoid unphysical dual counting of these
L

E%/n,n t M >\2 SUSRLS i
erms ofP - Piim—n also depend on the symmetric
The superscripta; and\, are polarization indicez andy, = mode concerned When the structure has bothxtlaady
while the indices appearing in the subscript represent thexis mirror-reflection symmetries, E¢3.27) can be much
plane wave used, and run in the range -oN;<i<N,, more simplified. Now the plane waves used are confined to
—N,<j=N,, —N;=m=N;, —N,=n=N,. The total 0<i<N;, 0<j<N,, 0s=sm=<N;, 0sn=<N, with a total
plane wave number iN=(2N;+1)(2N,+1). Equation number ofM=(N;+1)X(N,+1). Eq.(3.27) becomes
(3.27 should be understood as a matrix second-order differ-

i,j;m,n

ential equation. The solution of the eigenproblem within 2 [EX, EX
each slice centered atwill yield the eigenmodes of the EM _( L _Q?\;:kz ( m~“), (3.30
fields within this approximate lamellar 2D grating slice. EY; bhmel ey

These eigenmodes will stand on the basis of constructing the
transfer matrix for this slice. where
If the structure has a certain mirror-reflection symmetry,
there are definite symmetric relations among the plane-waveghsh2 — priitz pM %2 LO(m—1)+ prii >\2 O(n—1)
coefficients. We can use the symmetry to pick up those in- ~"'m" ~ thmn bhme
dependent unknown variables of the plane-wave coefficients + pM A2 O(m-1)0(n—1).
and regroup Eq(3.27). For thex-axis mirror-reflection sym- me
metry, we confine the used plane waves in the range of Ghe last three terms i, 1 "2 should also depend on the
<i=N;, —N,=j=N,, 0=m=Ny, ~N,=n=N,, andre- symmetric mode under study.
write Eq.(3.27) as In constructing the transfer matrix for a slice, the bound-
ary condition satisfied by thid field is required. TheH field

7 [ES o - is connected with th& field through Eq(3.11). For a gen-
—ley [T Qitmal oy | (3.28  eral structure, we can write
072\ EY | LEmal gy
where x X
i( Ei’j) —Thihe | (3.30)
Ely 1;i,j;m,n HX’]n

Qitn2 =Ptz P2 @(m-1).
where the indices range irN;<i<N;, —N,<|j=<N,,
M=(N;+1)X(2N,+1) is the plane wave used in the cal- —N;<m=<N,, —N,<n<N,. When the structure has
culation, and the matnxQ has a dimension of (@)  mirror-reflection symmetries, Eq3.31) can regroup in a
X (2M). The termPf‘J1 _zmn represents the contribution from way similar to Eq.(3.27) such that only independent un-
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known variables of the plane-wave coefficients enter the new X =0, H%j =0

: . 5=
equations. For all types of symmetry, we can write down . .
for the odd mode. These symmetry-induced constant-zero

EY; N Hin variables should be removed from Maxwell's equations
e |~ . Nk (3.32  (3.27 and(3.32. Accordingly, the involved matrice® and
b mn R should contract by removing those elements that are re-
The reduced matriR depends on what symmetry is involved lated with E}; and Hg; such asQyY,, and Ry, , for the
with. For thex-axis mirror-reflection symmetry even mode, and those elements that are relatedfjfrand
. . o HY. such asQy’,, and Ry?Y,, for the odd mode. After
Ri}\,};’r);,zn:T)l\;li:}\;zrn,n—i_T)l\;‘,J')\;me,n@(m_l)' (3.33 e;)élusion of th%ggnﬂz+ 1 gg’r?’;tant-zero variables, the new
For they-axis mirror-reflection symmetry, total number of the independent variables will red.uce_ from
2(N;+1)(2N,+1) to (2N;+1)X(2N,+1)=N, which is
RMA2 —phire g Ml gpn_1) (334  also the dimension o andR. This we see that the new
Lima S LLEma O LLmen eigenproblem has a size half of the original one, which is
When the structure has simultaneowsand y mirror-  2N. In a more explicit form, Eq(3.28 can be written into
reflection symmetries, we find

J
0z

i,j;mn

Ex X; X X;X Qx;y Ex

. . AN AN 0, 0,j;00n 0,j;m,n 0J;m,n on
ISR SRS SRS _ ASRLY 2
Ri,j;m,n_Tl;i,j:m,n+Tl;i,j;—m,n(m 1)+T1;i,j:m,—n &_ EX | = — XX XX QXY EX
972 ihj i,j;0n i,jmn i,j;mn m,n
TA1A2 ; ; ;

><®(n_1)+Tl;li,j;fm,fn®(m_1)®(n_l)' Eiy,j iy,i)§0,n iy,j)?m,n iy,i)fm,n Efn

(3.39 (3.36

The matrixR in Eq. (3.33 has the same dimension as the for the even mode and
matrix Q in Eq. (3.28), and so on. The calculation of these

matrices should also depend on the symmetric modes con- EY; Qblon Qbfimn Qbfmn Edn
cerned in the wave propagation problem. For instance, under‘9_ EX. | = QY XX QXY EX

i i ) ~ . 1,] - L);0n L];mn I,];mn m,n
the x-axis mirror-reflection symmetry, we havE{Y)> [ 9z° £V, vy yix vy £y
=T o a0d T =T, for the even o Ghlon Qe Qe B
mode, while for the odd mode we hav&(* '
=TXx and WY =T Others are simi-  for the odd mode, respectively. On the other hand,(B®2
|ar|y’d"e’ﬁn’ed_ e e now takes an explicit form

Above we employ the structural symmetries to reduce the " Ky X Xy y

number of independent plane-wave coefficients appearing in Eoj Rojon Rojimn  Rojimn Hon

Maxwell’s equations. This can significantly ease the numeri- E?(j — i><?j¥0n RiX;jX_m N RiX;ij N HX .
cal burden and the requirement on computer memory space. 9Z v vy vx vy v
However, a closer look at the symmetrical relatigBs3)— B Riion Riimn Rifimn/ \ Hmn
(3.10 and the eigenproblem&3.28—(3.30 show that we (3.38
have not yet arrived at the truly irreducible plane-wave spac
that is needed in solution of these symmetry-related E
problems. The reason is that some symmetry-induced

. . . f WX X ) X
constant-zero variables are still involved in Ed8.28— EY; R on Rbjmn ROmn on
X
1

or the even mode and

(3.30. This will lead to superfluous unphysical solutions of x | _ X;X RXX RXY HX

the eigenproblem. This situation can be seen from the dimen- dz| "’ 1J:on - TLEmA - TLLmn mn

sion of the matrices in these equations. One way to remove Eiy,j Riy,'J')§o,n Riy,’j)?m,n Riy,’j)fm,n Hryn,n
these parasite modes is to check the eigenvector. Those (3.39

eigenvectors that do not satisfy the particular symmetric re- )
lations consistent with the structural symmetry will corre- OF the odd mode, respectively. In Eq8.36-(3.39, the

spond to unphysical solutions, and should be excluded. Howndices run as £i<N;, 1=m=N;, —N,<j<N,, and
ever, another simpler while more efficient way is to remove ~ N2=<n<N,. Each matrix element should be understood as

these constant-zero variables from Maxwell's equationd Plock submatrix. o .
(3.28—(3.30 from the beginning. In the following we will The situation of thg-axis mirror-reflection symmetry can
show how to achieve this goal. be handled in a similar way. From Eq&.5 and (3.6), we

Let us first look at the situation of the-axis mirror- can find that
reflection symmetry. From Eq$3.3) and(3.4), we can find

that EYo=0, Hix=0
E%,j —0, Hé,jzo for the even mode and
for the even mode and Efo=0, H{x=0
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for the odd mode. After removing these constant-zero matriband
elements, the matrice® and R should contract accordingly
by removing those elements Q""Oy.mo, RYGmo» etc., for the

X
even mode an®;¢, o andR¢, 0, etc., for the odd mode. Eoo
In the end,Q and R will also have a size oN for both éj
modes. The explicit form of Eq€3.29 and (3.32 can be 4 "
written in a similar way as Eq$3.36—(3.39. —| Eio

. . . . . 0z
The situation of simultaneous andy mirror-reflection EX.
symmetries is somewhat more complex. Let us first look at y"
the even-even mode. From the symmetric relations shown in Ei,j

Eq. (3.7), we easily find that Xy RXY RXY X RXY
v v « 0,0;0,0 0,0;0n 0,0m,0 0,0m,n 0,0m,n
Eo’j:Ei’OZO’ H =Hi o =0 )(;JyOO RO] ;0n RO] :m,0 é;jx'mn RO] m,n

This means that we should exclude these constantzearal _| rv RXY RAY RXX RXY

H field variables, whose total number is bdth+N,+1. - heeo THOon THOmO - TH.oman - TH,0mn

Then the truly independent unknown variables have a total AN i";jYOH Ym0 Rima RYmn
number OfM=2(N1+1)(N2+1)—(N1+N2+1)=%[(ZNl RY:Y RY:Y RYY RY:X RYY
+1)(2N,+1)+1]=3(N+1), about one quarter of the L00 TRLEoN TR EmMO R ma T fimn
original dimension without any symmetry consideration. The |-|0‘0

matrix Q in Eq. (3.30 andR in Eq. (3.32 should be con- Y
tracted accordingly such that those matrix elements of on
Qblons Qdmor Rbjions Rlomos €tc., are removed. Both x| Hho (3.41)
matrices now have a dimension BfX M. For the odd-odd HX
mode, we have m.n
Hy
m,n

The mdependent unknown vanables are reduced to a totgbgpectively. Here the indices run as<i<N,, 1<m
number ofM=3(N+1), same as in the even- even mode.<N,, 1<j<N,, and l<n<N, Each matrix element

Correspondingly, the matrix elements @', Qomo.  should also be understood as a block submatrix.

RO,J,O,nv Ri‘0mo. etc., should be removed, yielding a new  The other two symmetric modes are slightly different. For
eigenproblem with a size oM. One can write down the the even-odd mode, we find from E@®.9)

explicit form of Egs.(3.30 and(3.32 under these two sym-

metries in a way similar to but much more complicated than

Egs. (3.39—(3.39 for the x-axis symmetry case. For in- E$j=Eio=0, Hg;=H{,=0.

stance, for the even-even mode, E@30 and(3.32 can be

expanded into With the total number of the excluded constant-zero vari-
X ables being N;+1)+(N,+1), the truly independent
0,0

unknown variables are left to a number & =3[(2N;
0j +1)(2N,+1)+1]—1=3(N—1). The matrix elements that

2 . . .
7 X need to be removed iQ andR are nowQyYy,, Qfom.o;
gz2| Ry 'on+ Ridmo, etc. Both matrices now have a contracted
Ei; dimension ofM XM. In this case, Eqs(3.30 and (3.32
EY; have an explicit form of
0000 Qooon Qoomo Q0o 00
0,0, n m, ,0m,n m,n X X;y
X:X X:X EO,j QO] ;0N QO,j;m,O QO] m,n QOJ m,n
QO,J'J0,0 QOJ ;0n QO] m,0 QO,j;m,n QOJ m,n (92 Ey ViX Qy;y y;X vy
_ X:X X:X XX Xy ol 1,0;,0n 1,0,m,0 i,0;m,n 1,0;m,n
- i,0;0,0 QlOOn i,0;m,0 i,0;mn iO'mn _2 X - X}y
0z Ei,j Q|]On QIJmO Q|Jmn Qij'mn
QleO Qlen QIJmO Qljmn Qljmn Ey
I Qiyi;O,n Qi,j;m,O Qi,j;m,n Q| Jjimn
QI]OO Q|]On QIJmO Q|Jmn Qljmn N
EO,n
0,0
- Eho
on X £X (3.42
m,n
x| Emo (3.40 y
Emn
EX '
m,n
Ehn and
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ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 245117 (2003

5 slon Rofmo RoXmn R&Ymn between theH and E fields?"® which can be readily re-
PR RV RViX RViX RViY trieved from the Maxwell’s equatlonE—lk H The re-
2 ey o heon TRomOo TRLOma T 0im,n sults can be written as(j , .H;j ,)'=To;; (Ej ..Ejj )" and
9z | Ef; ix'jYOn ix’jx-mo R mn  Rimn (Hijx.Hij )= TO,J(E,]X, . y)T The 2x2 matrix To,J

EY. RY:Y RY:X RY:X RY:Y has matrix element§ kI xKij .y (KoBij), Tou_(k. p
i 1,j;0n i,j;m,0 i,j;m.n i,j;mn —ko)/(koﬁu) OIJ (k2 : y)/(ko,B,J) and Téljz
HO,n kIXkIj y/(kOBu) :8” is given byﬁlj (ko kﬁ x_kz} y)l
x for k2—k? ,—k? ,=0, and B;=i(k} ,+k? K3V for
X HX’ , (343  Ki-k2 k2 ,<0.
m.n Now suppose that we have obtained the EM fields within
Honn theiy, grating slice and in the two air films surrounding this

grating slice, we can derive the transfer matrix for this slice.

respectively. Here the indices also run asitNy, 1<m |, he framework of the scattering-matrixS{natrix)
=<Nj, 1=<j=<Nj,, and I=n=<N,. Each matrix element also formulat|0n23 242833 \\a  define column vectorth .
I

represents a block submatrix. —(... E O, Qf=(.. L)
- i IJ X' |J X1 |J Yo
For the odd-even mode, we find from &g.10 Then the sllces matrlx s'is defmed by
0, E|0 0 HO] HIO 0 Q|+ Q Si; Sp, )
The number of the truly independent unknown variables is O =S - = s g o | (4.3
alsoM=1(N—1). The matrix elements that need to be re- -1 ! 21 ez '
moved in Q and R are now Qplgn, Qfdmo: Rojon,  FOr the sake of completeness and self-consistence, the pro-

RYJmo. €tc. BothQ andR are of dimensioM X M. We can ~ cedure of solving thi$ matrix is briefly presented in Appen-
write Egs.(3.30 and (3.32 in an explicit form similar to  dix A. More details can be referred to Ref. 28. It can be seen

Egs.(3.42 and(3.43. that theS matrix in Eq.(4.3) is of dimension (M) X (4N).

It can be easily checked that in every situation of the Above we consider the transfer matrix for a general struc-
structural symmetry, the size of all reduced eigenprobleméure. In the case of mirror-reflection symmetries, we also
will add up to a number that is just the size of the originalneed to place the eigenproblem for the two air films in the
one without symmetry, which isi. Therefore, no superflu- Symmetry-reduced plane-wave space, following exactly the
ous unphysical eigenmodes will be introduced when wesame procedure as we do to the grating slice. We should only

solve these new symmetry-related size-reduced eigenprolick up those truly independent unknown variables to solve
lems. the eigenproblem. For an air film, this procedure is quite

simple, and can be analytically manipulated. T®enatrix
connecting these symmetry-reduced independent variables
can also be calculated following the similar way as for a
general structuré® as shown in Appendix A. Finally for the

In the above section we have solved the EM fields withiniy, grating slice we can write
each slice of the waveguide structure using the basis of plane _ _
wave functions under mirror-reflection symmetries. To place Q,T,U QM -1 S'M’11 s',\,h12 Q,T,U,l
the wave propagation problem in the framework of the _ _SM o Si g o= |
TMM, we need to proceed to finish the construction of the M.i—1 M.i M2l =M.22 M.i (4.4
transfer matrix for this grating slice. To do so, we need to '
write down the eigenfields existing in the two infinitely thin where(y, ; ; and{}y, ; are column vectors comprising the
air films surrounding the slice, then use the boundary condiindependent variables of the plane-wave coefficients associ-
tions of EM fields to find out the connection between theated with a certain mirror-reflection symmetry, asiglis the
fields in these two air films, which according to definition is corresponding slic& matrix. For thex-axis ory-axis mirror-
the transfer matrix under the adopted plane-wave basis. reflection symmetrysiM has a dimension of (2) X (2N). In

The tangential components of teandH fields in the  the presence of the simultaneoxsand y mirror-reflection

IV. CONSTRUCTION OF TRANSFER MATRIX
UNDER MIRROR-REFLECTION SYMMETRIES

left-hand side air film can be written into symmetries sy, is of dimension N+1)x(N+1) for both
the even-even and odd-odd modes, and of dimensin (
Ex(y)(r)ZE [Eﬁ <) TEij X(y)]eikij,xx*'ikij,yy’ (4.2) —1)X(N—1) for both the even-odd and odd-even modes.
= : :

Here we see that the size of the EM problem is reduced to
one half for a photonic structure with either tkeor they
ik xik oy mirror-reflection symmetry, and to about one quarter for a
Hxy)(r) = 2 [Hll xty) T Hij x5 (4.2) structure with simultaneousandy mirror-reflection symme-

tries.
The fields in the r|ght hand side air film can be obtained by \We notice here that the symmetry-reduc®anatrix sy
simply replacing EIJ x(y) and HIJ x(y) With UII x(y) and  attains all usual mathematical structures in connection with
VJ x(y)» respectively. There are definite analytical relationsthe usual matrixS. These include the important recursion
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algorithm designed to calculate the over@limatrix for a  structure, so we have the same relations ag48), but now
slab from all the individua matrices(such ass') for each A andB denote the same identical slab. [S#he theS matrix
composite slicé>?*33as can be found in Appendix A. As is for the whole slab, we have

well known, one standard application of the TMM is to cal-

culate the transmission and reflection spectra for the scatter- S11= S, S12= S, (4.9
ing of an incident EM wave by a grating slab. Another im-
portant application is to solve the photonic band structure
for a photonic crystal grating structure. Since Benatrix

which means thais a block-symmetric matrix. As a result,
We need only to numerically calculate two of the four block

; o bmatrices making up the over&lmatrix, another relief of
stands on the_ basis of all th_ese apphc_atlons, we see that e numerical burden for the TMM. On the other hand, this
usual theoretical and numerical techniques developed for 2 '

~axis symmetry can also find some applications in solution

general structure can be directly used here for structures €%t the localized modes of the slab. The eigenmode can be
hibiting mirror-reflection symmetries. i

. . . classified into the even and odd modes, satisfying an eigen-
Up to now we only discuss the mirror-reflection symme- fying 9

. R roblem half the size of the original one without symmetr
tries existing in the lateral plane, namely, along ¥handy P g y y

T . consideration.
directions. We find that they can reduce the number of the

unknown variables used to represent the EM fields by two-

fold to fourfold, and consequently greatly release the burden V- USAGE OF PERFECTLY MATCHED LAYERS TO
of computer storage space and computational time. We wil ACCOUNT FOR ABSORBING BOUNDARY CONDITIONS

further show that if the structure has a mirror-reflection sym- |, the above discussion on wave propagation in PC wave-
metry along the wave propagation direction, exis, the  gyide structures, we assume that EM waves are perfectly
numerical burden can be further reduced to one half. To segynfined in the waveguide channels, therefore, physically
this, we assume that a slab has a mirror-reflection symmetiere should be no cross talk among different supercells. Nu-
with respect to the plane located z0. We designate the merically, the adoption of a sufficiently large supercell can

left and right half slabs as slabandB, and the correspond-  gyarantee negligible coupling between adjacent supercells
ing Smatrix asS, andSg, respectively. Then for slaBwe  and thus approach the ideal physical problem. However, in

have many cases, the confinement is not perfect, and the wave can
aF L ORVF leak out of the waveguide channel through the side wall
( 1 ) :( 11 12) ( 0 ) (4.5) during its propagation. For instance, the current best sample
Qq Sy S/ lar ' of 3D layer-by-layer photonic crystals working in the optical

regime has a limited layer numbévelow 16 layers along
the (001 growth direction, and consequently a waveguide
built in this platform will have a limited cladding layer
o B B\ number’® Therefore, the leakage of wave away from the
( 1):( 11 )( 0) (4.6) Waveguide channel is inevitable and cannot be neglected.
5231 ng ' Another example is the 2D PC slab waveguide. This wave-
+ - ' guide relies on the 2D band gap to achieve the in-plane wave
:ZﬂEﬁagA('jG; d(zooéss?:t;unljlif/jv;?/:re ;[/\r/lee g;:dsggﬁaeg:ﬁ;n ttr?z; confinement, and on the index-guiding mechanism to realize
_ o . C . the vertical wave confinement. Since the background photo-
@, is the incident field from the right-hand side of sIBb
Since this incident wave will witness a structure exactly the,

nic crystal does not have a complete 3D band gap, this type
, X f waveguide is more vulnerable to defects than the above

same as slal\ (due to the mirror-reflection symmejrywe

can directly write down

where()4 is assumed to be the incident field from the left-
hand side of slal\. For slabB we have

®o Py

layer-by-layer PC waveguide. Roughness at the surface of

the slab and at the side walls of the air holes etched into the

o= LA\ DT slab as well as imperfect alignment of the lattice patterns can
( 0 ) :( 11 )( L ) (4.7  allinduce scattering of wave off the waveguide, dominantly

SARICAS ' from the vertical direction.

. A . This leakage will cause mutual coupling between adjacent
g;rrr?rg:tnr?cgrslgfi‘gr?)s ?JZ?V\(/i;AV?nsgSI!y find the following supercells. Without taking this fact into full account, the
B TMM calculation results would be untrustful or even incor-

®; ®g

$=5, =5 rect. To prevent this difficulty, the fields at the lateral bound-
1 S aries of the supercell need to satisfy some absorbing bound-
$=5, =9 498 ay conditions, so that any wave impinging on the

boundaries are completely absorbed and will not reach and
These symmetric relations allows us to only calculateShe disturb the adjacent supercell, and no reflection back from
matrix for the first half of the considered slab, and thus rethe boundaries occurs to disturb the studied system. One ef-
duce the numerical burden to one half of that without con-ficient way to achieve this goal is to place PMLs at the lat-
sidering thisz-axis mirror-reflection symmetry. eral boundaries of the supercell whenever physically there is

Similar arguments also apply to the whole slab. Due to thdeakage of wave through this boundary.

symmetry of the whole slab, a wave incident from the left- The PML is a kind of artificial anisotropic metallic and
hand side and from the right-hand side will withess the samenagnetic material which is specially designed for numerical
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modeling of the absorbing boundary conditions. It is aniso-Other matrice$e,], [€,], [ ux], and[ u,] are also given by
tropic in both the permittivitye(r) and the permeability Egs. (3.16—(3.19, but the matrices within the integrand
w(r). For a general anisotropic material,and x are both  should be replaced by the anisotropic ones. Equations
general second-order tensors X3 matrices. However, (3.20—(3.23 are now given by

since the usual supercell adopted has a rectangular shape,

and the boundaries are collinear to thandy axes, it can be [Le]; n(x) = 1 sz/z 1 e~ 1(kiiy~kmny)¥dly,
shown that the principal axes of the permittivity and perme- h do/2l €y(X,Y)
ability also are both coincident with the coordinate axes. (5.9
Therefore, we can write e=(e,,€,,6;) and u ,
= (mx, My, M7). In this situation Maxwell's equations are [1/e]; -2 J’ 1 - (X y) e 1 (Kij xKmn)Xg x.
~ N dq./2] €x
VXE(r)=ikou(r)-H(r), VXH(r)=—ikye(r)-E(r). (5.10
5.1
5D 1 [dy2 1 itk )
€(r) and u(r) are both periodic functions in the latergly []j ()= f ol 2 (,Y) e 'Ky~ kmny)dy,
plane of the grating with the periods characterized by the G2 Py (5.11)
supercell. Similar to the isotropic situation as discussed in '
Sec. Il, we can derive from Eg5.1 the following four 1 [di2 1 _
coupled equations satisfied by the tangential field compo- [1/M]i’m(y):d_f ol Y e (Kij x—kmnx)Xd x.
- - 2 1
nents €x,E,) and Hy,H,): 1/ =0, X (5.12
i _ 1 i i(iH _i )-+ik i The remaining procedure to construct the transfer matrix
dz ¢ —ikg dx| e \ax Y gy ¥ oy e for an individual grating slice under different situations of

(5.2 structural symmetry follows the same way developed in Sec.
) I, as all informations of the photonic structure have been
1/9 d . essentially involved in the matrice§,;, T,, and P
PRAPN V_@HX ~iKouxHx, =—T,T,. As is well known, the standard application of the
(5.3  TMM to a photonic crystal includes solution of the transmis-
sion and reflection spectra, and the photonic band structures.

J 1 9
9z Y —ikg dy

J 1 91 ( 9 9 ” Appendix B briefly describes how to solve the photonic band
—Hy="——|—| E/,— ikoeyEy, (5.4)  structures(or dispersionsfor lossless and lossy modes on
X y 0€yEy p y
oz Ko Xz % &y the basis of theS matrix for the unit cell of the photonic
P 1 4 crystal. These standard applications are not affected by the

+ikoe,E,. (5.5 introduction of PML'’s into the photonic structure, because all
0€x=x " . . . K .
information about the PML's has been involved in hena-
trix itself. Instead, the usage of PML's can handle the leakage
oblem commonly encountered in the solution of wave
ropagation in integrated optical elements by means of the
TMM. For instance, it is possible to quantitatively account
P P for the propagation loss of EM waves due to imperfect con-
—E=T.H —H=T.E (5.6) finement of EM waves within the waveguide channel. Con-
10t 2 . . . .
0z ventionally, this problem is attacked by means of the FDTD
technique. As we have noted in the Sec. I, for a very long
waveguide, the FDTD simulation is not as numerically eco-
nomic as the TMM.

1/9 E J £
pz\ox Y ay
These equations can be solved in the plane-wave space

exactly the same way as the isotropic situation discussed i
Sec. lll, leading to the following coupled equations

9z kg ay

where the matrice$; andT, have the same form as in Egs.
(3.12 and(3.13), except that the Fourier matrices of isotro-
pic € and x should be replaced by the current anisotropic
ones. In addition, the calculation of these matrices follow
exactly the same Fourier expansion rules as in E3j44)—
(3.23. The matrice§ €,] and[ u,] are now

VI. LOCALIZED MODES IN 2D PC SLAB AND SLAB
WAVEGUIDE STRUCTURES

As we have noted in Sec. |, 2D PC slab waveguides are
(e —[e] f 12 fd2’2 &(%y) popular because of their ease of fabrication in the infrared
zlij;mn=L€zli-m]-n= didy) —ay2) —ay2 wavelength. The schematic configuration of a typical 2D PC
_ _ slab waveguide is shown in Figs(cl and 1d). The back-
x e~ (i xkmnxx =1k y“kmnyYdxdy,  (5.7)  ground 2D PC is made from a triangular lattice of air holes
etched into a dielectric slab suspended in air, the so-called
12 ([daf2 air-bridge structure, as shown in Fig(bL By leaving one
[aez]ijmn=Lszli-mj-n= leJ /2J lzﬂz(X'Y) row of holes unetched along tfi&) direction, a waveguide is
fz7 formed. The lateral optical confinement is supported by the
X @ 1(kij x~kmnX~i(kij y—"kmny)Ydxdy. (5.8)  in-plane(the XZ plang band gap for the 2D PC, while the
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vertical confinementalong they direction is provided by
the index-guiding mechanism for the high-dielectric planar
slab.

The band diagrams of the localized modes in the PC slab __
and the guided modes in the waveguide have been investi—g
gated extensively by means of the PWM and the FDTD tech-
nigue. In the PWM simulation, a supercell technique is used
and the periodic boundary conditions are adopted in both the
x andy directions'® Because the PML is not inserted into the
boundary of the supercell, the coupling between adjacent su-
percells is not screened. However, this cross-talk will not
affect those truly localized modes, since their exponentially
decaying field tail automatically approaches zero at the
boundary of a large enough supercell. In the FDTD
simulation* the periodic boundary condition is used in the
direction, while the absorbing boundary condition is imposed
in they direction. In our TMM simulation, we also utilize a
supercell. The periodic boundary condition is always used in
the x direction because of the perfect in-plane confinement.
In they direction, both the periodic boundary condition and
the absorbing boundary condition are tried. We notice that
there are two folds of mirror-reflection symmetries for both
the bare PC slab and the PC slab waveguide structures when
we choose appropriate unit cell and supercell configurations,
as shown in Figs. (b)-1(d). Therefore, the problem can be
reduced into four smaller ones for eigenmode with the even-
even, odd-odd, even-odd, and odd-even symmetries, respec- oo¥ ——— N
tively, as has been described in Secs. Il and IlI. T X J T

Let us first look at the localized modes supported by the
bare 2D PC slab. The standard band diagram for a triangu'ar FIG. 2. Calculated band diagl’ams for the localized modes sup-
lattice is plotted along the high-symmetry linEsX-J-T" in ported ip a2Db PF: slab made .from et(.:hing gtriangular Iatticg of air
the first Brillouin zone, whose configuration is shown in Fig. holes(with a radiusr =0.4%) into a dielectric planar slab with a
1(a). Due to the symmetry of the lattice, the lieX is thl(_:kneSSW:O.Ga and a dlelect_rlc constart=12. (a) TE-Ilke lo-
equivalent to the line’-X’. This symmetry allows us to calized modestb) TM-like Iocallze_d modes. No PMLs_ are placed
calculate the whole band diagrams along only two crystallineat the boundary of the supercell in the TMM calculations.
directions, thel'd and I'X directions. As displayed in Fig.
1(b), the unit cell in both directions has mirror-reflection
symmetries along thg, y, andz directions, so that the nu-

merlﬁal burdenblof the TMM calculation can be reduced 3%ion in they direction is not indispensable for the truly local-
much as possible. jzed modes. To see this, we first consider a situation where

To make convenient comparisons with other theoreticalhe PMLU's are not placed at theaxis boundary of the su-
methods, we consider a structure that has been investigat %rcell. The calculation results are shown in Fita) Zor the

in Ref. 13 by using the PWM. The PC slab has a large radiug, ,a_even and odd-even modes, and in Fib) ®r the odd-

of air holesr =0.4%, a thlcknes_srv=0.6a, and a dlelgctnc odd and even-odd modes, respectively. Only those truly lo-
consta_nte=12. Herea is _the Ia_ttlce constant _Of the_trlang_u- calized modes are displayed, while many other nonlocalized
lar lattice. In our TMM S|mula_t|on, the prlm_|t|ve unit cell is modes (or leaky modes have been shadowed in the gray
always used to achieve optimum numerical convergenceeqion with the light cone lying at the boundaries. In our
Along the I'J direction, the adop_te'd. unit c_:ell has. a size gimlation, up to 1% 31 and 9% 31 plane waves have been
\/§a?<5.4a>< 0.5a, and the two primitive-lattice basis vec- adopted to expand the EM fields in th plane for thel'J

tors in theXY plane area; = (13a,0,0) anda,;=(0,5.42,0).  andI'X directions, respectively. Notice that for clarity, here
The third basis vector for the 3D lattice iS5 and throughout all the rest of this paper, all plane-wave num-
=[(V/3/2)a,0,0.5], reflecting the symmetry of the triangu- bers are referred to the uncontracted plane-wave space with-
lar lattice. Similarly, along thé'X direction, the unit cell is  out any symmetry consideration. Because all symmetric
of sizeax5.4ax (1/3/2)a, and the two primitive-lattice ba- modes are defined with respect to tg field, we see that
sis vectors in theXY plane area;=(a,0,0) anda,  the former two modes have dominagt andH, fields, and
=(0,5.43,0), and the third basis vector isaz  correspond to the so-called TE-like modes, while the latter
=(0.5a,0,(/3/2)a). Because the primitive unit cell is not two modes have dominaft, andH, fields, and thus corre-
arrayed in an orthogonal lattice, a phase shift at the rightspond to the so-called TM-like modes in literatut&st® It

Frequency (

e Even-Even

o Odd-Even

0.0+

requency (c/a)

F

T e Odd-Odd
o Even-Odd

hand side of the unit cell must be taken into account in
solution of the photonic band structurés®
As has been noted above, the absorption boundary condi-
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08 FIG. 4. Calculated band diagrams for the TE-like localized

modes supported in a 2D PC slab made from etching a triangular
lattice of air holes into a dielectric planar slab. The structure has
0.6 parameters of =0.2%, w=0.6a, and e=11.56. No PMLs are

0.7

’g? - placed at the boundary of the supercell in the TMM calculations.
>
% O from the light conescan reach a number as tiny as below
2 03 1 10 °(w/a), and thus is completely negligible. The overall
E band diagrams are in good agreement with Figs) 2nd

02 1 2(b). This indicates that the absorbing boundary condition

indeed is not indispensable for solution of the optical prop-
erties of the truly localized modes in the 2D PC slab.
0.0+ The above structure has too large air holes and too thin
r X J r dielectric veins between the air holes, and thus is not experi-
mentally preferable even if it has a large band gap. To ease
Fabrication effort using lithographic techniques, the radius of
the air holes need to be reduced in the compromise of the
can be found that there is a wide band gap for the TE-likedbandgap size. To this end, we consider another structure with
localized modes at frequencies 0.378.500(¢/a), while r=0.2%, w=0.6a, and e=11.56. This structure has been
there is only very weak band gap centered aroundnvestigated in Ref. 14 by means of the FDTD technique.
0.470(/a) for the TM-like localized modes. This is consis- Since the band gap only exists for the TE-like localized
tent with the fact that for a pure 2D photonic crystal mademodes, we confine our computation to this polarization
from high filling-fraction air holes, the TE-mode band gap ismode. In our calculation, we have adopted the same super-
far wider than the TM-mode band gap. The calculation re<cell as for the PC structure shown in Figs. 2 and 3. In addi-
sults of the band diagrams overall are in agreement wittion, we also consider both situations with or without the
those reported in Ref. 13, where the band gap for the TE-liké®MLs placed at the/-axis boundary of the supercell. The
localized modes lies at frequencies 0.385500(/a).  calculated band diagrams of the localized modes are dis-
There is slight discrepancy on the lower bandgap edge posplayed in Figs. 4 and 5, respectively. Good agreement can
tion for the two calculations, and this may be induced byalso be found between the two calculation results. The band
different convergence behaviors of the TMM and the PWM.gap lies at frequencies 0.259.326(/a). As a comparison,
Next we place two identical PML slabs at theaxis Ref. 14 reports a FDTD calculation result of the band gap as
boundary of the supercell. Each PML slab isa@Bick in  lying at frequencies 0.2560.320(/a), slightly downshift
each supercelland totally 0.@ thick), and the permittivity ~compared to our TMM simulation result.
and permeability are chosen as=e,=a, e,=1la, uy Now we proceed to look at a waveguide brought into this
= p,=a, uy=1la, wherea is set to be 3-3i. The super- 2D PC slab background by leaving one row of air holes
cell size is the same as in Fig. 2. The calculation results ofinetched along th&J direction. To solve the guided mode
the band diagrams are shown in Figé)3and 3b) for the  within the band gap, we use a supercell of siz¢3a
TE-like and TM-like localized modes. Other modes origi- X5.4aXa, which possesses mirror-reflection symmetries
nally appearing in Figs. (@) and 2Zb) above the light cone along all thex, y, and z directions, and the PML's are not
turn out to have non-negligible imaginary part in the Bloch’'sused. Up to 3% 27 plane waves have been adopted in the
wave vectork, and therefore they are nonpropagation decayTMM solution of the band diagrams of the guided modes.
modes along the direction, or equivalently, leaky modes for The results are displayed in Fig. 6. There are two guided-
the PC slab along the verticgldirection. It is found that the mode bands with different symmetries. The lower band has
imaginary part for those strongly localized modésm away an even-even mirror-reflection symmetry, and spans from the

0.1 e 0Odd-Odd

o Even-Odd

FIG. 3. Same as Fig. 2, except that the PML’s are placed at th
boundary of the supercell in the TMM calculations.
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0.5 — _ propagate along the waveguide, and thus correspond to a
Light Cone . ...-f Light/Cong guided modé! A quick glance at the theoretical and experi-
0.4] 2 oL i mental results immediately shows that our TMM simulation
. T 0, . . .
= *oens, o has achieved better agreement with experiment than the
%,‘ a0 000 TP & FDTD technique. This is a convincing support of the effi-
> 0.31 T r ciency and accuracy of the proposed TMM.
8 e®® ondom,
g 0 2_ L ] “. ._:. .\ L] -
g = . .. VII. GUIDED MODES IN 3D LAYER-BY-LAYER
i . . PC WAVEGUIDES
011 f° T > [Eoerehen "\ [ We turn to another important kind of 3D PC waveguide
o Odd-Even structures, waveguides created in a 3D layer-by-layer photo-
0.0 ————— e S nic crystal by removing a single rod from an otherwise per-
r X J r fect lattice, which we call the missing-rod waveguides. This

i , kind of structures has been extensively investigated both
FIG. 5. Same as Fig. 4_, except that the PMLS are placed at th%eoretically and experimentaﬁ'ylz as the existence of a
boundary of the supercell in the TMM calculations. complete band gap in the background crystal may supply a
possibility to realize 3D optical confinement in the wave-
frequency 0.264f/a) to the frequency 0.28@(a). The guide.
higher band has an odd-even mirror-reflection symmetry, and Figures Ta) and 1b) demonstrate the top-view and side-
spans from 0.28@&(a) to 0.297¢/a). Since the two bands view configuration of the 3D waveguide. The coordinate is
do not cross over in frequency, we see that this waveguidehosen so that the waveguide axis is parallel to Zlaxis,
supports single-mode operation of the localized guidedand they axis is collinear with th€001) growth direction of
mode. We have also performed TMM simulations for thethe crystal. The crystal is formed by stacking rectangular
situation of using the PML's, and obtained almost the samelielectric rods in a woodpile fashion. Each rod has width and
guided-mode band diagrams. The overall characteristic of théhickness ofw and h, respectively. A mirror-reflection sym-
guided-mode diagrams calculated by the TMM is in accor-metry with respect to the axis can be found in the structure.
dance with those reported in Ref. 14, except for some disTherefore, the guided mode supported in this waveguide can
crepancies in the absolute position of the guided-modde classified into the even and odd modes with respect to the
bands. In Ref. 14, the first guided-mode band extends frommirror-reflection planeYZ This structural symmetry has
0.271(/a) to 0.280¢/a), and the second band spans frombeen employed in the recent investigation by means of the
0.28(c/a) to 0.291¢/a). Experimental investigations have conventional PWM! However, the symmetric relations
been reported on this waveguide structure, and it is foundhere between plane-wave coefficients appear more compli-
that EM waves excited at frequency 0.268&() can freely cated and less clarified compared to those found in the cur-
rent TMM formulation. The reason is that the field compo-
0.40 nent under study in the TMME, here is naturally collinear

' ' ' with the symmetric axis, while in the conventional PWM,
0_35_3 ] every plane-wave coefficient involves three components
] [ (Ex.Ey, and E,) of the fields. On the other hand, recent
g 30_2 : study has shown that the TMM can exhibit much faster nu-
T D merical convergence than the conventional PWM in solution
il 25: ] of the photonic band gaps for this particular layer-by-layer
B 7] ! photonic crystal structur® Therefore, it can be expected
;’ ] oo‘z’ [ that the TMM can also yield better accuracy in study of the
0 0.20 {\\0 y current waveguide structure.
Q ] P i Let us first look at two waveguide structures that were
g 0.151 - investigated previously using either the conventional PWM
&J ] . or the FDTD technique. In the first structure, the dielectric
0.10+ - rod has a width ofv=0.25, thickness oh=0.312%, and
] [ a dielectric constant oé=11.56. Herea is the lattice con-
0.05 —e—Even-Even [ stant of the crystal, which is just the center-to-center distance
] —o—0dd-Even | of the adjacent rods in each layer. In Ref. 11, the PWM
0.00 : - - : [ calculation shows that a complete band gap opens at fre-
0.0 0.2 0.4 0.6 0.8 1.0 guency 0.366-0.434(/a) for the photonic crystal, and two
Wave Vector (r/a) guided-mode bands exist in the waveguide. The cutoff fre-

guency of the lower band lies at the frequency 0.87&].
FIG. 6. Calculated band diagrams for the TE-like guided modedDue to the cross over of the upper band in frequency, the
supported in a waveguide built in the 2D PC slab structure shown iwaveguide overall does not support single-mode operation.
Fig. 4 along thel'J direction. In Ref. 11, both the photonic crystal and the waveguide are
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———1— FIG. 8. Calculated band diagrams of the guided modes sup-

ported in the 3D layer-by-layer PC waveguide shown in Figay.
The rod has widtlw=0.25, thicknessh=0.312%, and a dielec-
| T, O 1 tric constante=11.56. (b) The rod has parameters wf=0.25,

. h=0.3a, ande=11.56.

FIG. 7. (a) Top-view and(b) side-view schematic configuration . .
of a 3D layer-by-layer PC waveguide structure and the symmetri®/ane, and up to 2829 plane waves. The result is shown in
supercell used in solution of the band diagrams of the guided i9- 8@). The two-band guided-mode characteristic and mul-
modes. The crystal is made by stacking rectangular dielectric rodmode behavior can be clearly seen. It is found that all
in a woodpile fashion. guided modes have an odd mirror-reflection symmetry with
respect to thex axis, and the correspondirigfield is domi-
solved using the same supercell technique in order to obtainantly (but not purely polarized along the axis, the(001)
consistent result of the guided-mode band in reference to thgrowth direction of the crystal. No even guided modes are
complete band gap for the background crystal. A supercell o§upported in the waveguide. The cutoff frequency of the
size BJaxX20hXa and up to 6500 plane waves have beenwaveguide lies at 0.396(a), in some distance from the
used there. Later more deliberate comparison study by meatswer bandgap edge of the background crystal. The overall
of the PWM and the TMM as reported in Ref. 28 hasfeatures of the calculated band diagrams are in consistence
adopted the primitive unit cell of the crystal, and thereforewith the results reported in Ref. 11. However, there is an
has obtained much better accuracy in determining the bandverall upshift of the guided-mode bands together with the
gap positions. The PWM calculation usingXd33x 13 plane  band gap for the crystal from the PWM calculation results in
waves finds a PBG located at 0.37Q.445(/a), while the  Ref. 11. This reflects the fact that the conventional PWM has
TMM calculation using 1X 11 plane waves yields a PBG a comparatively slower convergency.
lying at 0.376-0.452(/a). It is found that the TMM exhib- The second waveguide structure has slightly geometrical
its @ much better numerical convergence behavior than thparameters, whene=0.25, h=0.30a, ande=11.56. This
PWM. So we will choose the TMM result as the standardstructure has been studied in Ref. 9 by means of both the
reference for the following waveguide study. We have revisPWM and FDTD technique. The TMM calculation result of
ited the waveguide structure using the TMM underxfexis  the guided-mode band diagram is shown in Figh)8The
mirror-reflection symmetry. In our calculation, we adopt aoverall characteristic of the two-band diagram and multi-
5ax 20hxa supercell centered around the waveguide axismode behavior is similar to that in Fig(e88. The PBG of the
periodic boundary conditions in both directions of ti¢  background crystal is located at 0.38R.462(/a), as is
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the transmission spectrum. A high-level transmission band
located between about 11.4 and 12.9 GHz can be found in
Fig. 9@), and this corresponds to the guided-mode band of
the waveguide. We have carried out TMM calculations on
this waveguide, and the band diagrams are shown in Fig.
9(b). The waveguide cutoff frequency is 11.35 GHz, and the
guided-mode band extends into the upper bandgap edge of
the crystal. In Fig. @8 one can find a dip in the high-
transmission band around 12.6 GHz, this might correspond
to the crossover region of the lower and higher guided-mode
bands in Fig. &), which is centered at about 12.5 GHz. The
Frequency (GHz) ovgrqll r_;\greement between theory an_d experiment is good.
This indicates that the TMM can effectively handle the wave
13.5 - - " - propagation problem in 3D PC waveguides. As a compari-
13.01 5 son, our PWM calculation using 6500 plane waves has
’ yielded a lower cutoff frequency at about 11.14 GHz, in far
12.5-._./ worse agreement with the experimental observations than the

TMM calculations.

Transmission (dB)

12.04 F

11.54 r

VIIl. SYMMETRY CONSIDERATION

11.01 s OF COUPLING BETWEEN PC WAVEGUIDES
(b) AND EXTERNAL WAVEGUIDES

0.0 0.2 0.4 0.6 0.8 1.0

Wave Vector (n/a)

Frequency (GHz)

In the above sections, we have systematically discussed
how the structural symmetries involved in a 3D PC wave-
. o _guide can be used in solution of Maxwell’s equations in the
FIG. 9. () Experimental transmission spectrum alini calcu ramework of the TMM. The field symmetry associated with

lated band diagrams of the guided modes for a microwave 3D layer- . . . g
'ad gur erowav yery particular guided mode can be discerned and classified.

by-layer PC waveguide shown in Fig. 7. The crystal is made fro ) e O -
alumina rods, and has parametersasf10.9 mm,w=3.2 mm, h rrl'I'h|s classification can prove helpful for understanding the

—32 mm. ande=9. coupling of the PC waveguide with external input/output sig-
nal channels.
shown by the two gray domains in Figi®8. The waveguide Let us first suppose that the input source is a plane wave

cutoff frequency is 0.39%(a). As a comparison, in Ref. 9, propagating in free space and collimated with the waveguide
the PWM calculation reports a PBG lying at 0.380 axis and that the PC waveguide possesses two-fold mirror-
—0.444(l/a), and the FDTD simulation reports a two-band reflection symmetries. The polarization of the plane wave
diagram while single-mode behavior for the waveguide. Thewill determine what symmetric mode can be excited in the
lower guided-mode band spans from the cutoff frequency atvaveguide. According to the analysis made in Secs. Il and
0.392(/a) to 0.440¢/a), and this result is close to our IV [for instance, see Eq$3.7)—(3.10], an x-axis polarized
TMM calculations. The qualitative discrepancy in regard toplane wave has an even-even symmetry, because the only
the single-mode or multimode feature might be explained byield components ar&,, andH,. So this pane wave can
the too lower upper bandgap edge set in Ref. 9, which renenly excite the even-even symmetrical mode in the PC wave-
ders the behavior of the higher guided-mode band in thguide. For the same reason, waxis polarized plane wave
frequency range between 0.4444) and 0.462¢/a) indis- can only excite an odd-odd mode in the waveguide. Other
cernible. linear polarization states can be decomposed into linear su-
Above we only compare theoretical results obtained byperposition of the two polarization states, and thus can excite
using different numerical approaches. To attain more confiboth the even-even and odd-odd modes in the waveguides.
dence, it is also important to compare with the experimentaFor more complex field profile of the incident wave, such as
measurement. Recently, Sedt al. built a microwave 3D a Gaussian beam, the incident signals usually possess a ro-
layer-by-layer photonic crystal by using alumina rods andtational symmetry. Therefore, they can also be decomposed
measured the response of the missing-rod waveguide to theto linear superposition of the four symmetric modes, and
input microwave signal from a monopole proBélhe crys-  coupled into the waveguide. The excitation power for each
tal has parameters ofa=10.9 mm, w=3.2 mm, h mode can be calculated separately in their own plane-wave
=3.2 mm, ande=9.0. The TMM calculation shows a com- sub-space because they will not interact with each other.
plete PBG lying between 11.14 and 12.92 GHz. A typical For waveguides working in the infrared wavelength, such
measurement result of the transmission spectrum is displayexs the 2D PC slab waveguides, a more realistic coupling
in Fig. 9a). As the waveguide is excited by a localized fashion is connecting the PC waveguide with external con-
source, the radiation will dissipate in all directions at fre-ventional dielectric wire waveguidés®3*3°A plane-wave
quencies beyond the band gap, and only a small fraction dgfcidence proves to be too low-efficient in coupling. As the
energy can reach the receive probe, resulting in a low level invire waveguide has a rectangular shape, and is collimated

245117-17



ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 245117 (2003

with the PC waveguide axis, it possesses the same mirrotion results. This indicates that the symmetry-enhanced
reflection symmetries as the PC waveguide. For an air-bridg€MM can effectively, economically, and accurately explore
system, the wire waveguide can also support the even-evethe optical properties of waveguide structures built in 3D
odd-odd, even-odd, and odd-even symmetric guided modephotonic crystal structures, and therefore can find its appli-
whose dispersions can be solved numerically in the sameation in understanding EM wave propagation in various
TMM framework as for the 2D PC slab waveguide. In this functional elements embedded in the background of the in-
way, one can selectively excite different symmetric modes imomogeneous photonic crystal media.

the PC waveguide by injecting signal into the wire wave-
guide with a particular symmetry. Therefore, even for a PC
waveguide supporting multimodes but each mode with dif-
ferent symmetries, one can still pick up a particular symmet- Ames Laboratory is operated for the U.S. Department of
ric mode and the waveguide appears as if working in theEnergy(DOE) by lowa State University under Contract No.
single-mode fashion. W-7405-Eng-82.
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IX. SUMMARIES AND CONCLUSIONS APPENDIX A: CONSTRUCTION OF S MATRIX

. . FOR A UNIT CELL OF A PHOTONIC CRYSTAL
In summary, we have systematically explored the applica-

tion of structural symmetries associated with 3D PC wave- When one applies the TMM to a photonic crystal, the unit
guide structures to solve EM wave propagation in theseell of the photonic crystal usually is divided into a number
waveguides in the framework of the plane-wave-basedf thin slices, each of which can be approximated as a lamel-
TMM. Optimal Fourier expansion rules on the EM fields andlar grating. We first solve th& matrix connecting the plane-
the material permittivity and permeability functions have wave coefficients in the two hand sides of each slice, then
been fully exploited in order to achieve fast numerical con-construct the overals matrix for the whole unit cell by
vergency in these 3D TMM simulations. Starting from Max- means of a recursion algorithm.

well’s equations, the symmetry of the EM fields in the real The sliceSmatrix depends only on the eigenmodes within
space and plane-wave space is revealed under variotise lamellar grating, which satisfy Eq&.11) and(3.26) in
mirror-reflection symmetries. These symmetric relations carthe plane-wave space. Let us consider ipeslice (lying

be used to significantly reduce the requirement on the combetweenz=z,_; andz=z) in a general photonic structure.
puter memory space and the computation time, and greatl$olution of Eq.(3.26 will yield 2N (with N being the used
release the numerical burden that are involved in the planeplane-wave numbgr eigenvalues [denoted as B2,i
wave-based TMM for the solution of guided modes sup-=1,2,...,N, with Im(5;)=0] of the matrixP. In addition,
ported in the 3D PC waveguides. The solution to the EMthe (2N) X (2N) matrix S, whosej, column is the eigen-
problems under these mirror-reflection symmetries in bothvector corresponding to the eigenvalg&é, can also be
the real space and the plane-wave space has been discussgghined simultaneously. The eigenmode corresponding
in a systematic way and in great detail. In addition, the clasto g2 is E/(2)=E. (2)+E5(2), Ei (2)=E efiz-a-1,
sification of symmetry in the guided modes vv_|II help_ peopIeE;i(z)ZEFefiﬁi(zf’zi_l), where Ei+ and E are both un-

to ur)derstand the coupling of the PC vyavegwdes with eXt_erknbwn variables. Further define column vectog

nal input/output channels such as dielectric slab or wire_ B )T EF=[ EX(2),...]7 and E;
Wavggwdes, which usually'possess the same structural symz—[ L ES(2....T The electric field column vector
metries as the PC waveguides. a,l . "

We have used the symmetry-enhanced TMM to handIeE. are now expresied |I1to the superp03|t!0n of all .the
two important kinds of 3D PC waveguide structures, the 3D¢|genmode£:Sa(Ea +Ea). _The corresponding magnetic
layer-by-layer PC waveguides and 2D PC slab waveguided'€'d C?'fmn vector are obtained from EG.1D land reads
The supercell technique and associated periodic boundaN :7T1 ‘9/‘92+E: -[1 Saa/az(EafEa) =iT,;7°S:B(E,
conditions are used to model wave propagation in the PC Ea)=Ta(Ea —Ea), whereT,=iT, “S,B. It proves con-
waveguide system with complete optical confinement. The/énient to write down the electric and magnetic fields at an
absorbing boundary condition is also employed to solve lo&rbitrary point inside the grating slice into a concise form
calized modes supported by the bare 2D PC slab and guided
modes in the slab waveguides by placing PML's at the off- E(2) S, S, \[Ei(2)
plane boundary of the supercell. We have compared the ( )_(T T )(E‘(z) .
TMM calculation results of the band diagrams for the local- a a a
ized modes and guided modes to other calculation results
reported in previous literatures using the PWM and the The EM fields in the two air films around the grating slice
FDTD technique. The agreement in the overall features ofan also be solved in the same way, and the results have been
the band diagrams is satisfactory. We have also compared tlexpressed in Eq$4.1) and(4.2), but we can rewrite them in
TMM simulation results with the experimental measure-a way similar to Eq.(Al1). Match of boundary conditions
ments on an infrared 2D PC slab waveguide and a microrequests all tangential field components of each plane wave
wave 3D layer-by-layer PC waveguide, and better agreemerfite continuous at the two interfaces between the air films and
is achieved in comparison with other theoretical investigathe grating slice. At the left interface=z;_,

H(z) (AL)
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S5 S o S, Sy \[Ei(zi 1) wave space. At the same time, the column vectdfs, and
(T 1)lo )7\, -\ ez )), (A2)  Q; should only contain those corresponding truly indepen-
0 0 -1 a al\Falf-1 dent plane-wave coefficients in the air films, as has been
while at the right interface=z, shown in Eqs(3.36—-(3.43. We naotice here that the recur-
sion algorithm(A7)—(A10) keeps the same in all symmetry
S So )(Qf (Sa Sa ( E;(Zi)> (A3) situations.
To —To/\Qy Ta —Ta/\Ej(z))’
. o APPENDIX B: SOLUTION OF PHOTONIC BAND
WhereSO andTo are COUnterpartS CSa andTa in an air film. STRUCTURES FROM THE UNIT-CELL S MATRIX
Sy is a unit matrix, whileT, is a block-diagonal matrix each
block of which is a 2 2 matrix already given b¥,;; below The S matrix for the unit cell of a photonic cryst& is
Eq. (4.2). Within the grating slice we have defined as
(E;(Zi)> (eiﬁh 0 ) E;(Zi1)> (QI) S(Qg) (511 512)(93) B1
) Lo el ) B 0,) %o; 7y sullogr Y

whereh=z—z;_, is the thickness of the slice!”" denotes where Q; and Q5 are the plane-wave coefficient column
a (2N)Xx(2N) diagonal matrix whose element B#"i  vectors in the right- and left-hand sides of the unit cell, and
=1,2,...,No. Deleting [E.(z_1),E;(z_1)]" and S (i,j=1,2) are four block submatrices & Using the
[EX(z),E;(z)]" from Egs.(A2)—(A4) and making some relation satisfied by an eigenmode as

analytical derivations yields

. 0 Qg
Q a;; ap _l(elﬁh 0 (311 a12) QL O =\ a- ) (B2)
Q a1 A 0 e lay axp/\Q,) . . _ _
(A5) the eigenproblem can be cast into the following form:
where a;,=3(S, 'So+ T, To), a1=3(S; S~ T4 'To), Su 0\(Qg | =S\ Qg
and Ap1=3ajgp, Ayr=ajsg. 821 — Qa =\ 0o — 822 Qa . (BS)

The sliceSmatrix can be directly obtained from EGAS),

i i Equation(B3) is a standard form of generalized eigenprob-
i (Sll 312) _ ( Pili+Paty  Pitat p2tl) (A6)  |eMAX=ABx, whereA andB are both square matrices,is

si= sy sy Pito+poty  pityt Poty the eigenvalue, andis the eigenvector. So we can use some
igh 1 iph, q-1 standard eigensolution algorithms to solve the eigenvalues
Whejle G plz[?lﬁ_e 21801 € 7lalﬂ o P2 and eigenvectors of EqB3). For a Bloch’s mode, we set
=a,; elajfa;;—eMaa;efagy] Y ty=€e'"ay;, and N =ek'R wherek is the Bloch wave vector, anR is the
ty=—ay,. primitive lattice vector. This leads to the dispersighsand

The overallS matrix of the whole unit cell is connected to structurey of the photonic crystal. In the case of a lossy
individual sliceS matrix through a recursion algorithm. Sup- mode, e.g., in a lossy photonic crystal waveguide, the eigen-
pose the overalb matrix for the firstn—1 slices and th&  value can be cast as=e'k" A" wherek is the wave vector,
matrix for slicen have been calculated to 1%~ * ands", g s the decay constant, aihds the lattice spacing along the
respectively, the overalb matrix for the firstn slicesS" is  waveguide axis.
given by#* In the case of adoption of a large plane-wave number, e.g.
in order to guarantee a good numerical accuracy, there will

N _Nrj_ch-1sn 7—-1gn—1 . ;
Si=sull =Sz "s1] Sy (A7) exist eigenvalues whose modulus are extremely large. These
N onen-1 N en—1-1.n correspond to strongly evanescent waves. In this situation, a
12=S12+ 81312 [1 =521, 7] S22, (A8) " more reliable way to find the dispersion is not to directly

_ _ _ e solve\ as in Eq.(B3), but to solve §+1) %, which do not

n_ on-1 n—1l.nprp_an—1on 7—1an—1
2= S + S sl =S sl ST (A9) cause overflow or underflow fok|>1 or |\|<1. From the
equality Ax=\Bx, we can deriveBx=(\+1)"}(A+B)x,

$,= 557 '[1 =581 '] sz, (AL0) equivalently from Eq(B2) we can find
wherel is a unit matrix. We note here there is a type error in N N
Eq. (8b) of Ref. 33. I =S| [Qo| L1l TS S Qg
The above procedure dématrix construction is for a 0 —S,/\Qy =( 1) S A
general photonic structure without considering any possible (B4)
structural symmetry. In the presence of mirror-reflection
symmetries, the construction of tlgematrix essentially fol- We note here the solution of dispersion through e

lows the same procedure from Edé1)—(A6), except that matrix follows the same procedure irrespective of the struc-
the matricesS,, T,, Sy, and T, will take the suitable form  tural symmetry. All symmetry information has been involved
in the corresponding symmetry-reduced irreducible planein the S matrix itself.
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