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On-site interaction effects on localization: Dominance of nonuniversal contributions
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The influence of on-sitéHubbard electron-electron interactions on disorder-induced localization is studied

in order to clarify the role of electronic spin. The motivation is based on the recent experimental indications of
a “metal-insulator” transition in two-dimensional systems. We use both analytical and numerical techniques,
addressing the limit of weak short-range interactions. The analytical calculation is based on random matrix
theory (RMT). We demonstrate that, at least in the diffusive regime, delocalization can indeed be induced by
electron-electron interactions and that an in-plane magnetic field has a strong influenece on this effect. It is
found that although RMT gives a qualitative explanation of the numerical results, it is quantitatively incorrect.
This is due to an exact cancellation of short-range and long-range correlations in RMT, which does not occur
in the nonuniversal corrections to RMT. An estimate for these contributions is given.
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[. INTRODUCTION tion of whether there is really a metallic behavior and a
phase transition, probably caused by electron-electron

The question considered in this paper is whether electroriniteraction; or the system is really insulating, but the experi-
electron interactions can reduce disorder-induced localizahentally accessible temperatures are high enough to exhibit
tion, thus enabling metallic behavior in two-dimensional dis-{€MPerature-dependent scattering, thus causing the apparent
ordered systems. metallic pehawo?. . .

The common view about the subject in the last 20 years AnalyticaP and n_umencél calculations h_ave shown that,
has been based on the well-known scaling theory o s expected, for spinless electrons repulsion can only further

A ) . : X ocalize the electrons and does not lead to a metal-insulator
localization; according to which two-dimensional systems

il al be localized(i nsulati tter h transition. However, when taking spin into account, the situ-
Wi Ii\vr\:ays_ € O(.:alth("e"h'?lsu a'ln.g, Ino Ta el’rl OW ation is still uncleal. In a recent numerical exact-
weak the disorder is. Although the original scaling theory didgjagonalization stud§,an Anderson model with both long-

not take interactions into account, it was shown that wheRange Coulomb interactions and short-range Hubbard
the interaction is weaki.e., when the electronic density is jnteractions was considered. It was shown that the Coulomb
high), it does not affect its resulfsOn the other hand, in the  interaction, existing between any two electrons regardless of
limit of very strong interactionsi.e., very dilute systemst  their spin, can only increase localization. On the other hand,
is known that the electron liquid freezes into a Wigner lat-the not-too-strong Hubbard interaction was seen to cause de-
tice, which is pinned by disorder and is therefore insulafing. localization (a strong Hubbard interaction will lead to a
All these results have led to the opinion that the repulsiorMott-Hubbard insulator Since this interaction exists only
between electrons can only further decrease the conductandestween electrons with opposite spins, its effect is decreased
so that all two-dimensional systems will show insulating be-by an in-plane magnetic field and disappears when all the
havior, regardless of the strength of the interaction betweefpins are aligned. This dependence of localization on inter-
the electrons. action strength and in-plane magnetic field thus mimics, at

A series of experiments performed in the last few yeardeast qualitatively, the experimentally observed phenomena.
showed that even though in the limits of both very dense angiMmilar results were obtained recently using quantum Monte
very dilute systems we get the expected insulating behaviofarlo methods.

for intermediate values of densitgorresponding ta ¢ be- In this paper we wish to study further the weak short-
tween 8 and 40, wherg, is the average interelectron dis- range interaction regime, in which interaction-induced delo-
tance measured’in the units of the Bohr raplinetalliclike calization was observed. We will first address the problem

temperature dependence is fodnd@he transition from an analytically, using a random matrix theoryRMT)

insulating behavior to a metallic one as the density decreas??'cxogcﬁ and tfgje? ﬁomlfﬁfe 'rt] to nl:rT?rlg:aITSImulaFlons (?n
is called a two-dimensional metal-insulator transition 2" ~NC€rson Model. ft wiltbe shown tha can give only

(2DMIT). An important feature of these systems is that the? qqalitative but not a quantitative explangtion for the nu-
application of an in-plane magnetic fieldhich cannot af- merical results, since RMT does not take into account non-
fect the electrons’ orbital motion but can direct their spins universal correlations existing between wave functions in the

reduces the conductance in the metallic regime, until for higﬁj'ﬁus've regime. An estimate for the effectss order of mag-

enough magnetic fields the conductance saturates as a furﬂ:’tUde and its dependence on the parameters of the system

tion of the field and the systems show the expected insulatinlﬁ’III be given.
behawor. This saturation field was estimated to be the field, A\ aLYTICAL RESULTS: RANDOM MATRIX THEORY
of full alignment of all spins.
These results arouse much interest and many ideas were We will consider an Anderson Hamiltonian with on-site
suggested for their explanation. A debate started on the quebtubbard interaction:
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TABLE I. Values of the average of the numerator in ES) for all the possible combinations of level

numberd, m, andn and sitess ands’.

s=s s#s’
I#m#n 3 B 3(N+3)
N(N+2)(N+4)(N+6) (N=1)N(N+1)(N+2)(N+4)(N+6)
l=m+n 9 3 9(N+3)
N(N+2)(N+4)(N+6) (N=1)N(N+21)(N+2)(N+4)(N+6)
m=n=#| 15 _ 9
N(N+2)(N+4)(N+6) (N=1)N(N+2)(N+4)(N+6)

state vector distributions for the ensemble of Anderson
Hamiltonians are described by the corresponding distribu-
tions for an ensemble of Gaussian real symmetric matrices—
whereal , ay.,, andng., denote electron creation, anni- i€, the Gaussian orthogonal ensemizOB). This en-
hilation, and number operators, respectively, for a state ofémble is defined by the well-known distributtén
site swith spin projectionos on some axis. The first term is a
random on-site potential, whekgg is chosen randomly from
the rangd —W/2,W/2]; the second is the hopping or kinetic
term, where the sum is over nearest-neighbor sites; and . -
t is an overlap integral; the third is the Hubbard term, theWhere[f:_l’ A 'S_ a constant determlnl.ng the energy scale,
electrostatic interaction between two electrons in the sam@ndx(H) is a suitable measure. The eigenvectors are then a
site (which must have opposite spinsvhose strength is de- Set of rand_om ort_hogona_l real normalized vectors. The aver-
termined by the parametdd,,. In the following we will ~ age IPR Wlt.hOUt interaction for an electron in théh level
concentrate on the situation at zero temperature and work iith spino is thus*
the canonical ensemble, taking the number of electrons as
fixed, realization independent. We will also neglect any
mechanism of dephasing.

To quantify localization, we will calculate the inverse par-

ticipation ratio (IPR), defined by P™*=34/y(s)|" ThiS ion and angular brackets denote ensemble average.

quantity is of order 1 for localized states and of oréier* We will now add a weak Hubbard interaction, taking it to
for delocalized states, wheiis the number of lattice sites first-order in perturbation theory. Thus, the effect of spin-

(or, equivalently, the Hamiltonian matrix siz€he IPR thus oy electrons on the electrons with spin up will be the

decreases when the single-particle wave funcidiecomes  ¢o|10wing effective potentialsince only electrons with dif-

less localized and gives us an estimate for the changes in thgyont spins interact, we have no exchange ferm
conductance of the system. '

We now turn to use RMT. We note that relying on RMT
limits the validity of our considerations to the nonlocalized
regime (i.e., to the case when the system'’s size is smaller
than the localization lengihNevertheless, we can still gain ~ According to the familiar first-order perturbation theory,
some insight about the interplay of disorder-induced localthe first-order change in the IPR of a spin-up electron in the
ization and interaction in mesoscopic systems. We thus asith state due to its interaction with a spin-down electron in
sume that without interaction the single-electron energy anthe mth state is

esns;a_t 2 al;UaS’;U_I_UHE Ns;1Ns; | (1)

(s,;s');0 s

-3
S,o0
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where the superscrigd) denotes the state without interac-

V=02 [ (9)ng; - @
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Since the wave functions can be chosen as real due to tinfeendent of the eigenvalues distribution, so we can separate

reversal symmetry, we omitted the absolute value and conthe averages of the numerator and denominator in the above

plex conjugate notations in this and the following expres-expression.

sions. As for the average of the numerator, its value can be
According to RMT, the eigenvectors distribution is inde- found in the literaturé!*?and the results are summarized in
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Table I. We note that whes=s’ we have an average of even A _ P, 1
powers of wave functions at different sites, which is ex-
pected to be positive and vary B 4, since we have eight H
wave function values in the expression, each of which going Ve 72 [P(N=n)—@(n—1)], m=n,
asN~Y2 On the other hand, whes¥s’, it may appear at —
first glance that since we have an average of odd powers of 24 Uy
values of wave functions at different sites, which are uncor- N A ®(N—n)=d(n—1)+ ——/, m#n,
related, we should get zero. However, we get in this case a
nonzero negative value, going &S °. This result is due to 8
correlations resulting from the orthogonality requirement on
the eigenvectors. where®(n) is defined by

To understand this, we may note that squaring the or-
thogonality relation=s;(s) ¢, (s)=0 for j#k and averag- n
ing, using the known resuit ®(n)= 2

xll—\

2 2\

((5() ()7 = N(N+2)’ © We observe that fom=n the correction is always negative
(for n in the lower half of the band i.e., the interaction
between two electrons in the same state tends to delocalize

1 them, which is the only way to reduce their mutual interac-
(¢i(S)gi(s") h(S)(s"))=— m (7)  tion energy. Fom# n the correction will usually be positive;
i.e., electrons in different levels repulse each other, resulting
for s#s'; i.e., if two different wave functions have the same in further localization. As can be expected, the former effect
sign on one site, from orthogonality they will tend to haveis larger than the latter, due to the identity of the two inter-
opposite signs on another site and vice versa, hence traeting electrons’ wave functions in the former case. How-
above nonzero negative average. ever, the ordeN difference between the case=n and the
As for the average value of the energy denominator in Eqcasem#n is caused by an excat cancellation of the leading-

(5), in principle it might be possible to calculate its value order dependence oN between the single short-rangs (

using RMT. However, to estimate the leading order we will=s') term and all theN—1 long-range $#s’) terms in the

assume that the spectrum is composed of equidistant levelgtter case, which does not occur in the former. We will see
with mean level spacing. below that this cancellation, together with the positive sign
Combining all these results together, we get, to leadingf the result form#n, is correct only in RMT.

order inN, the following result for the change in the IPR of  Thus, if the lowesin, levels are occupied by spin-down

a spin-up electron in theth level due to its interaction with electrons, the total change in the IPR of a spin-up electron in

a spin-down electron in thmth level: the nth level is

we find that

24 U,
TN A

n—-1
(1— N )[(I)(N—n)—(b(n—l)]

2
—N[tb(nl—n)—(b(n—l)], nsn,
AP 1= 9

24 Uy[n,
AN N [P(N=n)—®(n—1)]

—%[@(n—l)—@(n—nl—l)]} n>n,.

The main features in the behaviorsz_ are as follows: spin-down electrons only in levels different from thus
For n<n, the negative contribution of the spin-down elec- AP ! is positive and increases whenm increases. Ain
tron at the same leveh as the affected spin-up electron =n, there is a discontinuous jump afP 1 In both cases,
dominates the usually positive contribution of the other spinsinceA~N~1 in real systems{although not in RM7J, the
down electrons. Thereforey P,jl is negative, but decreases effect is of orde™N 2, if we keep the concentration of spin-
in absolute value when| increases. Fon>n, there are down electrons constanf\We neglect here the logarithmic
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factor coming from the functiod(n).] A plot of these for- 0.0001
mulas will be shown in the next section, where these expres
sions will be compared to numerical results. -0.0001
-0.0002

Ill. NUMERICAL RESULTS -0.0003:

-0.0004 =3
In this section we will examine results of numerical cal- _0,00050" -

culations and compare them to the analytical results dis-
cussed above. Two model Hamiltonians will be considered:  %%ir
an RMT Hamiltonian and an Anderson Hamiltonian. It will or
be shown that their results differ by an order of magnitude as~ '
well as in other characteristics. The theoretical predictions%'gz{;ﬁz»-ﬁ"
will be shown to agree with the former but not with the latter,

APY

. . . .
0 100 200 300 400
(d

-0.0001
-0.0002 [ 57
-0.0003 f&

-0.0004 - —

-0.0004
and reasons for the discrepancy will be given. R R B N | I B N |
-0.0005 -0.0005
0 100 200 300 400 o 100 200 300 400
Level number of affected spin-up electron Level number of affected spin-up electron

A. Random matrix Hamiltonian . ) o
FIG. 1. Change in the IPR of a spin-up electron due to its inter-

We will first consider the change in the IPR for a true action with spin-down electrons, according to RMT. The change is
RMT Hamiltonian. Since we consider here only the weak-plotted as a function of the level number of the affected spin-up
interaction regime, instead of solving the many-body prob-electron for different numbers of spin-down electrofa:n, =50,
lem exactly, we simply first diagonalize the Hamiltonian (b) n;=100, (c) n;=150, and(d) n;=200. In all the graphs the
without interaction and then use the wave functions to confine indicates the theoretical formula, while the dots indicate the
struct the effective potential, given in E@l). This potential numerical results. The numerical results are averages over an en-
is then used to calculate the wave functions and the IPR witlsemble of 5< 10* realizations of 408 408 RMT Hamiltonians. The
interaction. The applicability of this one-loop Hartree-Fock estimated error approximately equals the roughness of the numeri-
approximation is justified by the fact that the changé’ml cal results. Further parameters are given in the text.
was found to be linear iy, as required.

The matrix size chosen was 40808, and the elements We have chosen a X224 lattice, corresponding to a
were chosen according to the distribution law in E2). We  408x408 matrix. As for the RMT calculations, we took
have chosenn=0.1t, so that the mean level spacingds U,=1.t, while four values of disorder were usedly
=0.0196, approximately equal to the spacing in the Ander-=2.0t, W=2.5%, W=3.0t, and W=4.0x. The results were
son Hamiltonian, Eq.(1), used in the next section averaged over TOrealizations of disorder.

(0.022-0.025 for W between 2.0and 4.@). The interac- First, in Fig. 2, the value of the IPR without interaction is
tion strengthU y was taken as 1t0 The calculated quantities shown for the four values of disorder, as well as the RMT
were averaged over an ensemble of B)* different realiza-  value, Eq.(3). We can see a difference here, as the Anderson
tions. model gives highefi.e., more localizegvalues of the IPR

The numerical results for the change in the IPR versus théhan RMT. The effect is caused by nonuniversa., beyond
level number of the affected spin-up electron due to its in-
teraction with different numbers of spin-down electrons are 0.04
shown in Fig. 1, together with the theoretical formula, Eq.
(9). The theoretical formula was corrected, taking into ac-
count that the mean level spacing is not constant across the 0.03
spectrum, but varies according to the semicircle!faw

0.035

0.025
L E- JANZBN—EZ 10 B 002
A(E) _p( )_ 277)\2B ﬁ s ( ) 0.015

0.01

wherep(E) is the density of states.

As can be seen, there is good agreement between the nu-  0.0051- T
merical and theoretical results. All the main features dis- P I S H A S SR
cussed at the end of the previous section can clearly be seen 0 30 100 B e P00
in the numerical data.

FIG. 2. The IPR for noninteracting electrons in the Anderson
model. The IPR is plotted as a function of the level number. The
lowest curve shows the RMT value, while the other ones are the

We will now discuss the changes in the IPR for the Ander-anderson model results fov=2.0t, W=2.5%, W=3.0t, and W
son Hamiltonian given in Eq1). The calculation was per- —4.a, from lower to upper, respectively. The results are averages
formed in the same method as was used for the random ma@ver an ensemble of fGealizations of systems on a X224 sites
trix Hamiltonian (i.e., one-loop Hartree-Fock approx- lattice. The estimated error approximately equals the roughness of
imation). the numerical results. Further parameters are given in the text.

B. Anderson Hamiltonian
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order but their signs are opposite. Due to the equality of the
numerical coefficients of the two types of terms when the
interacting electrons are in different levels, they cancel out
exactly to the leading order i, leaving behind a small
negative term of ordeN ~°. Therefore, in RMT the interac-
tion between electrons in different levels increases their lo-
calization, opposite to the situation for electrons in the same
level. From this followed the decrease in the absolute value
of AP;l asn| increases in the ranges<n,, its positive
value forn>n, and the overallN~? dependence of the
effect for constant density of spin-down electrons.
All this is correct wheng is infinite. For finiteg there
exist nonuniversal corrections to the wave function averages.
.01l s - 001 L - s Those corrections were not calculated before for the averages
0 100 200 300 400 0 100 200 300 400 . . . .
Level number of affected spin-up electron Level number of affected spin-up electron required here, but their behavior can be conjectured from
. ] ~_ known corrections for simpler averagfike those in Egs.
FIG. 3. Change in the IPR of a spin-up electron due to its |nter—(6) and(7) (Ref. 14]. We may expect them to have the same
gction with spin-dow_n electrons in the Anderson model. The ch_ang?\l dependence and sign as the RMT value, but to be smaller
is plotted as a function of the level r_1umber of the affected spln-upoy a factor ofg. The corrections for the short-rangs (
electron for different numbers of spin-down electro(@:n, =50, W , . .
_ _ _ =g') terms and long-ranges¢s’) terms will not, in gen-
(b) n, =100, () n, =150, and(d) n,=200. In all the graphs the "y 0 equal numerical coefficients, even when the inter-
curves correspond toV=4.0, W=3.0t, W=2.5%, and W=2.{, . L ! . .
from lower to upper, respectively. The results are averages over aﬂcnng electrons qre 'T‘ different levels. In fa?t’ Slr.]ce hopping
ensemble of 1brealizations of systems on a X24 sites lattice. in the RMT Ham,'lton'an and, thus, correlations in RMT d(,)
The estimated error approximately equals the roughness of the nftot depend on distance, the occurrence of the same leading-
merical results. Further parameters are given in the text. order cancellations between correlations in realistic models
like the Anderson Hamiltonian is highly improbable. Hence,

. h di df after summation oves’ we are left with an ordeg *N~*
RMT) corrections to the IPR and is more pronounced for ontribution instead of the ord&t=° contribution in RMT.

higher disorder. The corrections for the IPR were calculateqt; s reason, although the nonuniversal corrections are of

using the _Supersymmetry techmqﬁg,resultmg in P~ orderg™!, for most of the averaged terms they are abgut
—Prm1~9 "N"" (g being the dimensionless conductance imes jarger, so they will determine both the magnitude and
We can also see, as can be expected, that the levels near §)g, of the interaction-induced change in the IPR. Since the
band edge have higher IPR, and are thus more localized, thg®\rections fos=s’ will, in general, have a long-range part,
levels near the center .Of the b_and. ) persisting fors#s’ and having the same sign for neighbor-
Now we move to interaction effects in the Anderson ;g sjtes(although for larger distances we may expect some
model. The results are shown in Fig. 3, with the same ocCUagijjationg, their sign will dominate the overall sign of the
pation numbers as those chosen in the previous RMT calcyggits. We will thus get a negative change in the IPR not
lations, for the four values of the disorder. As in RMYP,* g1y from the interaction between electrons in the same level
is negative fom=n, and changes sharplyhough not dis-  pyt also when the interacting electrons are in different levels.
continuously atn=n, . Nevertheless, it does not change its Hence,A p;l will always be negative, as can be seen in the
sign there. MoreoverAP;1 is larger by about an order of pumerical results.
magnitude than the one found from RMT. Also, even in the  \oreover, repeating the calculations with the nonuniver-
rangen<n, it increases in absolute value, rather than desga| correction to the averages of the wave functions product,
creases, when) increases. All this is in contrast with E@®)  we can estimate the dependence of the effect on the system
and the discussion following it. parameters. We expect the total change in the IPR of a

Another pOint is that the effect increases with disorder.spin_up electron due to its interaction erhv Spin_down
This is seen by comparing Pgl for the same leveh, but  electrons to vary as
different values ofW, or by observing that, for the same
value of W, levels near the band edge, which are more local- .
ized, show largen P, *. AP, ~— 9A N (11)

The reason for these differences is the above-mentioned
cancellation between long-range and short-range wave fund-his expression does not include a factor coming from the
tion correlations in RMT. As has been seen in our RMTsum over energy denominators, which has only a weak de-
calculationgTable )), the average of the wave function prod- pendence oM andn, (logarithmic for equidistant levels, a
ucts appearing in the numerator of H§) is of orderN~%  weak power law for a nonconstant density of statBecause
and positive when the two sites considered coincide, but isvave functions corresponding to neighboring levels are more
only of orderN~° and negative when the sites are different.correlated than wave functions corresponding to faraway lev-
Since there ardl— 1 terms of the latter type for each term of els, there is also a factor which changes shaigugh not
the former type, their total contributions are of the samediscontinuously when we pass froon<n, to n>n , as

-0.002 -0.002

-0.004 -0.004

AP

-0.006 -0.006

-0.008 -0.008

-0.01

L L L L 0,01 L L L L
0 100 200 300 400 0 100 200 300 400

(©)

-0.002 -0.002

-0.004 -0.004

)

-0.006 -0.006

-0.008 -0.008
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FIG. 4. Ratio between the change in the IPR of a spin-up elec- F|G. 5. Ratio between the change in the IPR of a spin-up elec-
tron due to its interaction with spin-down electrons in the Andersonron due to its interaction with spin-down electrons in the Anderson
model and the nonuniversal part of the IPR without interaction. Themodel and the nonuniversal part of the IPR without interaction. The
ratio is plotted as a function of the level number of the affectedratio is plotted as a function of the filling of the affected spin-up
spin-up electron for different numbers of spin-down electrdas:  electron(i.e., the ratio of the number of spin-up electrons and the
n; =50, (b) n;=100, (¢) n;=150, and(d) n;=200. In all the  number of lattice sitasfor different fillings of spin-down electrons:
graphs the curves correspondWo=2.0t, W=2.%, W=3.(t, and (@ v ~1/8, (b) v, ~1/4, (c) v,~3/8, and(d) » ,~1/2. In each
W=4.tt, from lower to upper, respectively. The results are aver-graph we use three different lattice sizes 83, 13x19, and 17
ages over an ensemble of“I@alizations of systems on a%24 x4, but a constant value of disordak=4.0t. The results are
sites lattice. The estimated error approximately equals the roughaverages over an ensemble of 18alizations. The estimated error
ness of the numerical results. Further parameters are giVen in t%proximatew equa|s the roughness of the numerical results. Fur-
text. ther parameters are given in the text.

seen in the numerical results. Sinke-N~! in real systems W=2.Qt disorder is not high enough, so the electrons’ mo-
(although not in RM7, the effect is of ordeg !N~ if we tion is not fully diffusive and ballistic boundary effects may
keep the concentration of spin-down electrons constant. Thige important. _ o
is in contrast to the\~ 2 dependence in RMT. Becauség V\ﬁ now testN independence of the ratid P, /(P
is much larger than unity in our numerical calculations, we— Prit7) by plotting it in Fig. 5 for systems with the same
can now understand the order-of-magnitude difference bevalue of disorder(taken asW=4.0t) but different lattice
tween RMT and Anderson model results. Thus, all the feaSizes 8<13, 13<19, and 1% 24. In all cases the densities
tures of the numerical data can be explained by taking non@f Spin-up and spin-down electrons are approximately equal
universal corrections into account. (the horizontal axis is not the level number of the affected
As we have mentioned before, the nonuniversal part ofPIn-up electron as before, but the filling defined as the
the IPR without interaction—i.e., the difference between thd ti0 between the number of spin-up electrorend the total

value of the IPR without interaction in the Anderson modelUMPer of lattice sited). ‘We can clearly see that 'ghe .d'f'
and its value in RMT—varies ag *N~. According to our ferent curves are almost identical. The only exception is the

estimate, the change in the IPR due to interaction in theSmall 8<13 lattice, whose slightly different behavior can

Anderson model also goes as IN-L. Thus, their ratio again be attributed to ballistic boundary effects.
AP, Y (P™t—PgY7) should be independent aj—i.e. of
the degree of disorder. It should also be independent of the IV. CONCLUSIONS
number of lattice sitedl if the densities of spin-up and spin- In conclusion, we have shown how a spin-dependent in-
down electrons are kept constant. Thus, this ratio may BEeraction can cause delocalization, at least for weak short-
used to test our conjecture for the parametric formd %, “.  range interactions. Localized electrons highly repulse each
We first test they independence of the ratidP, "/(P~  other, especially if they have the same orbital wave function
—P,;,\lﬂ) by plotting it in Fig. 4 for systems with identical and thus a different spin. This results in a tendency for
lattice sizeqtaken to be 1X 24, as in the previous calcula- interaction-induced delocalization. The effect on an electron
tions), but different values of disorder. We can clearly seewith a given orbital level and spin direction is stronger if the
that the differences between curves corresponding to differsame orbital level is occupied by an electron with an oppo-
ent W values are much smaller than the corresponding difsite spin and increases with the total number of electrons
ferences in Fig. 3. The only exception is the vale=2.0¢  with opposite spin. The delocalization is thus reduced by an
(the lowest curve which shows a marked difference from in-plane magnetic field. All this is in accordance, at least
the otherW values. This is probably due to the fact that for qualitatively, with recent experimental findiffigand numeri-
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cal simulation&® regarding the in-plane magnetoresistance. on-site interactions. Nevertheless, the order of magnitude
We have also seen that the main difference in the influand parametric dependence of the IPR can be calculated

ence of the Hubbard interaction between realistic fimjte using RMT, once the nonuniversal corrections are properly

systems and the RMT stems from exact cancellation of théaken into account.

leading-order long-range and short-range terms in the

former. Thus, while in RMT a state is correlated only to the

same state with an opposite sgaxcept for weak anticorre- ACKNOWLEDGMENT

lations with all other statgsfor finite g correlations between
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