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On-site interaction effects on localization: Dominance of nonuniversal contributions
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The influence of on-site~Hubbard! electron-electron interactions on disorder-induced localization is studied
in order to clarify the role of electronic spin. The motivation is based on the recent experimental indications of
a ‘‘metal-insulator’’ transition in two-dimensional systems. We use both analytical and numerical techniques,
addressing the limit of weak short-range interactions. The analytical calculation is based on random matrix
theory ~RMT!. We demonstrate that, at least in the diffusive regime, delocalization can indeed be induced by
electron-electron interactions and that an in-plane magnetic field has a strong influenece on this effect. It is
found that although RMT gives a qualitative explanation of the numerical results, it is quantitatively incorrect.
This is due to an exact cancellation of short-range and long-range correlations in RMT, which does not occur
in the nonuniversal corrections to RMT. An estimate for these contributions is given.
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I. INTRODUCTION

The question considered in this paper is whether elect
electron interactions can reduce disorder-induced local
tion, thus enabling metallic behavior in two-dimensional d
ordered systems.

The common view about the subject in the last 20 ye
has been based on the well-known scaling theory
localization,1 according to which two-dimensional system
will always be localized~i.e., insulating!, no matter how
weak the disorder is. Although the original scaling theory d
not take interactions into account, it was shown that wh
the interaction is weak~i.e., when the electronic density i
high!, it does not affect its results.2 On the other hand, in the
limit of very strong interactions~i.e., very dilute systems! it
is known that the electron liquid freezes into a Wigner l
tice, which is pinned by disorder and is therefore insulatin3

All these results have led to the opinion that the repuls
between electrons can only further decrease the conducta
so that all two-dimensional systems will show insulating b
havior, regardless of the strength of the interaction betw
the electrons.

A series of experiments performed in the last few ye
showed that even though in the limits of both very dense
very dilute systems we get the expected insulating behav
for intermediate values of density~corresponding tor s be-
tween 8 and 40, wherer s is the average interelectron dis
tance measured in the units of the Bohr radius! metalliclike
temperature dependence is found.4 The transition from an
insulating behavior to a metallic one as the density decre
is called a two-dimensional metal-insulator transiti
~2DMIT!. An important feature of these systems is that
application of an in-plane magnetic field~which cannot af-
fect the electrons’ orbital motion but can direct their spin!
reduces the conductance in the metallic regime, until for h
enough magnetic fields the conductance saturates as a
tion of the field and the systems show the expected insula
behavior. This saturation field was estimated to be the fi
of full alignment of all spins.

These results arouse much interest and many ideas
suggested for their explanation. A debate started on the q
0163-1829/2003/68~24!/245116~7!/$20.00 68 2451
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tion of whether there is really a metallic behavior and
phase transition, probably caused by electron-elect
interaction,5 or the system is really insulating, but the expe
mentally accessible temperatures are high enough to ex
temperature-dependent scattering, thus causing the app
metallic behavior.6

Analytical5 and numerical7 calculations have shown tha
as expected, for spinless electrons repulsion can only fur
localize the electrons and does not lead to a metal-insul
transition. However, when taking spin into account, the si
ation is still unclear.5 In a recent numerical exact
diagonalization study,8 an Anderson model with both long
range Coulomb interactions and short-range Hubb
interactions was considered. It was shown that the Coulo
interaction, existing between any two electrons regardles
their spin, can only increase localization. On the other ha
the not-too-strong Hubbard interaction was seen to cause
localization ~a strong Hubbard interaction will lead to
Mott-Hubbard insulator!. Since this interaction exists onl
between electrons with opposite spins, its effect is decrea
by an in-plane magnetic field and disappears when all
spins are aligned. This dependence of localization on in
action strength and in-plane magnetic field thus mimics
least qualitatively, the experimentally observed phenome
Similar results were obtained recently using quantum Mo
Carlo methods.9

In this paper we wish to study further the weak sho
range interaction regime, in which interaction-induced de
calization was observed. We will first address the probl
analytically, using a random matrix theory~RMT!
approach,10 and then compare it to numerical simulations
an Anderson model. It will be shown that RMT can give on
a qualitative but not a quantitative explanation for the n
merical results, since RMT does not take into account n
universal correlations existing between wave functions in
diffusive regime. An estimate for the effect’s order of ma
nitude and its dependence on the parameters of the sy
will be given.

II. ANALYTICAL RESULTS: RANDOM MATRIX THEORY

We will consider an Anderson Hamiltonian with on-si
Hubbard interaction:
©2003 The American Physical Society16-1
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TABLE I. Values of the average of the numerator in Eq.~5! for all the possible combinations of leve
numbersl, m, andn and sitess ands8.

s5s8 sÞs8

lÞmÞn 3
N(N12)(N14)(N16)

2
3(N13)

(N21)N(N11)(N12)(N14)(N16)

l 5mÞn 9
N(N12)(N14)(N16)

2
9(N13)

(N21)N(N11)(N12)(N14)(N16)

m5nÞ l 15
N(N12)(N14)(N16)

2
9

(N21)N(N12)(N14)(N16)
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esn̂s;s2t (
^s,s8&;s

âs;s
† âs8;s1UH(

s
n̂s;↑n̂s;↓ , ~1!

where âs;s
† , âs8;s , and n̂s;s denote electron creation, ann

hilation, and number operators, respectively, for a state
sites with spin projections on some axis. The first term is
random on-site potential, wherees is chosen randomly from
the range@2W/2,W/2#; the second is the hopping or kinet
term, where the sum is over nearest-neighbor sitess, s8; and
t is an overlap integral; the third is the Hubbard term, t
electrostatic interaction between two electrons in the sa
site ~which must have opposite spins!, whose strength is de
termined by the parameterUH . In the following we will
concentrate on the situation at zero temperature and wor
the canonical ensemble, taking the number of electron
fixed, realization independent. We will also neglect a
mechanism of dephasing.

To quantify localization, we will calculate the inverse pa
ticipation ratio ~IPR!, defined by P215(suc(s)u4. This
quantity is of order 1 for localized states and of orderN21

for delocalized states, whereN is the number of lattice site
~or, equivalently, the Hamiltonian matrix size!. The IPR thus
decreases when the single-particle wave functionc becomes
less localized and gives us an estimate for the changes in
conductance of the system.

We now turn to use RMT. We note that relying on RM
limits the validity of our considerations to the nonlocaliz
regime ~i.e., to the case when the system’s size is sma
than the localization length!. Nevertheless, we can still gai
some insight about the interplay of disorder-induced loc
ization and interaction in mesoscopic systems. We thus
sume that without interaction the single-electron energy
tim
om
s

e-
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state vector distributions for the ensemble of Anders
Hamiltonians are described by the corresponding distri
tions for an ensemble of Gaussian real symmetric matrice
i.e., the Gaussian orthogonal ensemble~GOE!. This en-
semble is defined by the well-known distribution10

P~Ĥ !m~Ĥ !5expS 2
b

4l2
Tr~Ĥ2!D m~Ĥ !, ~2!

whereb51, l is a constant determining the energy sca
andm(Ĥ) is a suitable measure. The eigenvectors are the
set of random orthogonal real normalized vectors. The a
age IPR without interaction for an electron in thenth level
with spin s is thus11

Pn
215(

s
^ucn;s

(0) ~s!u4&5
3

N12
, ~3!

where the superscript~0! denotes the state without intera
tion and angular brackets denote ensemble average.

We will now add a weak Hubbard interaction, taking it
first-order in perturbation theory. Thus, the effect of sp
down electrons on the electrons with spin up will be t
following effective potential~since only electrons with dif-
ferent spins interact, we have no exchange term!:

V̂5UH(
s

ucm;↓
(0) ~s!u2n̂s;↑ . ~4!

According to the familiar first-order perturbation theor
the first-order change in the IPR of a spin-up electron in
nth state due to its interaction with a spin-down electron
the mth state is
DmPn
21;4UH(

lÞn
s,s8

K @cm;↓
(0) ~s8!#2cn;↑

(0)~s8!c l ;↑
(0)~s8!@cn;↑

(0)~s!#3c l ;↑
(0)~s!

En
(0)2El

(0) L . ~5!
rate
ove

be
in
Since the wave functions can be chosen as real due to
reversal symmetry, we omitted the absolute value and c
plex conjugate notations in this and the following expre
sions.

According to RMT, the eigenvectors distribution is ind
e
-

-

pendent of the eigenvalues distribution, so we can sepa
the averages of the numerator and denominator in the ab
expression.

As for the average of the numerator, its value can
found in the literature,11,12 and the results are summarized
6-2
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Table I. We note that whens5s8 we have an average of eve
powers of wave functions at different sites, which is e
pected to be positive and vary asN24, since we have eigh
wave function values in the expression, each of which go
as N21/2. On the other hand, whensÞs8, it may appear at
first glance that since we have an average of odd power
values of wave functions at different sites, which are unc
related, we should get zero. However, we get in this cas
nonzero negative value, going asN25. This result is due to
correlations resulting from the orthogonality requirement
the eigenvectors.

To understand this, we may note that squaring the
thogonality relation(sc j (s)ck(s)50 for j Þk and averag-
ing, using the known result11

^~c j~s!!2~ck~s!!2&5
1

N~N12!
, ~6!

we find that

^c j~s!c j~s8!ck~s!ck~s8!&52
1

~N21!N~N12!
, ~7!

for sÞs8; i.e., if two different wave functions have the sam
sign on one site, from orthogonality they will tend to ha
opposite signs on another site and vice versa, hence
above nonzero negative average.

As for the average value of the energy denominator in
~5!, in principle it might be possible to calculate its valu
using RMT. However, to estimate the leading order we w
assume that the spectrum is composed of equidistant le
with mean level spacingD.

Combining all these results together, we get, to lead
order inN, the following result for the change in the IPR o
a spin-up electron in thenth level due to its interaction with
a spin-down electron in themth level:
c-
n
in
s
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DmPn
21

55 2
24

N3

UH

D
@F~N2n!2F~n21!#, m5n,

24

N4

UH

D S F~N2n!2F~n21!1
2

m2nD , mÞn,

~8!

whereF(n) is defined by

F~n!5 (
k51

n
1

k
.

We observe that form5n the correction is always negativ
~for n in the lower half of the band!; i.e., the interaction
between two electrons in the same state tends to deloc
them, which is the only way to reduce their mutual intera
tion energy. FormÞn the correction will usually be positive
i.e., electrons in different levels repulse each other, resul
in further localization. As can be expected, the former eff
is larger than the latter, due to the identity of the two int
acting electrons’ wave functions in the former case. Ho
ever, the order-N difference between the casem5n and the
casemÞn is caused by an excat cancellation of the leadin
order dependence onN between the single short-range (s
5s8) term and all theN21 long-range (sÞs8) terms in the
latter case, which does not occur in the former. We will s
below that this cancellation, together with the positive si
of the result formÞn, is correct only in RMT.

Thus, if the lowestn↓ levels are occupied by spin-dow
electrons, the total change in the IPR of a spin-up electro
the nth level is
DPn
215

¦

2
24

N3

UH

D F S 12
n↓21

N D [F(N2n)2F(n21)]

2
2

N
[F(n↓2n)2F(n21)],G n<n↓ ,

1
24

N3

UH

D Fn↓
N

[F(N2n)2F(n21)]

2
2

N
[F(n21)2F(n2n↓21)]G , n.n↓ .

~9!
-
c

The main features in the behavior ofDPn
21 are as follows:

For n<n↓ the negative contribution of the spin-down ele
tron at the same leveln as the affected spin-up electro
dominates the usually positive contribution of the other sp
down electrons. Therefore,DPn

21 is negative, but decrease
in absolute value whenn↓ increases. Forn.n↓ , there are
-

spin-down electrons only in levels different fromn; thus
DPn

21 is positive and increases whenn↓ increases. Atn
5n↓ there is a discontinuous jump ofDPn

21 . In both cases,
since D;N21 in real systems~although not in RMT!, the
effect is of orderN22, if we keep the concentration of spin
down electrons constant.@We neglect here the logarithmi
6-3
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factor coming from the functionF(n).# A plot of these for-
mulas will be shown in the next section, where these exp
sions will be compared to numerical results.

III. NUMERICAL RESULTS

In this section we will examine results of numerical ca
culations and compare them to the analytical results
cussed above. Two model Hamiltonians will be consider
an RMT Hamiltonian and an Anderson Hamiltonian. It w
be shown that their results differ by an order of magnitude
well as in other characteristics. The theoretical predictio
will be shown to agree with the former but not with the latt
and reasons for the discrepancy will be given.

A. Random matrix Hamiltonian

We will first consider the change in the IPR for a tru
RMT Hamiltonian. Since we consider here only the wea
interaction regime, instead of solving the many-body pro
lem exactly, we simply first diagonalize the Hamiltonia
without interaction and then use the wave functions to c
struct the effective potential, given in Eq.~4!. This potential
is then used to calculate the wave functions and the IPR w
interaction. The applicability of this one-loop Hartree-Fo
approximation is justified by the fact that the change inPn

21

was found to be linear inUH , as required.
The matrix size chosen was 4083408, and the element

were chosen according to the distribution law in Eq.~2!. We
have chosenl50.1t, so that the mean level spacing isD
50.0196t, approximately equal to the spacing in the And
son Hamiltonian, Eq. ~1!, used in the next section
(0.022t –0.025t for W between 2.0t and 4.0t). The interac-
tion strengthUH was taken as 1.0t. The calculated quantitie
were averaged over an ensemble of 53104 different realiza-
tions.

The numerical results for the change in the IPR versus
level number of the affected spin-up electron due to its
teraction with different numbers of spin-down electrons
shown in Fig. 1, together with the theoretical formula, E
~9!. The theoretical formula was corrected, taking into a
count that the mean level spacing is not constant across
spectrum, but varies according to the semicircle law10

1

D~E!
5r~E!5

1

2pl2b
A4l2bN2E2, ~10!

wherer(E) is the density of states.
As can be seen, there is good agreement between the

merical and theoretical results. All the main features d
cussed at the end of the previous section can clearly be
in the numerical data.

B. Anderson Hamiltonian

We will now discuss the changes in the IPR for the And
son Hamiltonian given in Eq.~1!. The calculation was per
formed in the same method as was used for the random
trix Hamiltonian ~i.e., one-loop Hartree-Fock approx
imation!.
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We have chosen a 17324 lattice, corresponding to a
4083408 matrix. As for the RMT calculations, we too
UH51.0t, while four values of disorder were used:W
52.0t, W52.5t, W53.0t, and W54.0t. The results were
averaged over 104 realizations of disorder.

First, in Fig. 2, the value of the IPR without interaction
shown for the four values of disorder, as well as the RM
value, Eq.~3!. We can see a difference here, as the Ander
model gives higher~i.e., more localized! values of the IPR
than RMT. The effect is caused by nonuniversal~i.e., beyond

FIG. 1. Change in the IPR of a spin-up electron due to its int
action with spin-down electrons, according to RMT. The change
plotted as a function of the level number of the affected spin
electron for different numbers of spin-down electrons:~a! n↓550,
~b! n↓5100, ~c! n↓5150, and~d! n↓5200. In all the graphs the
line indicates the theoretical formula, while the dots indicate
numerical results. The numerical results are averages over an
semble of 53104 realizations of 4083408 RMT Hamiltonians. The
estimated error approximately equals the roughness of the num
cal results. Further parameters are given in the text.

FIG. 2. The IPR for noninteracting electrons in the Anders
model. The IPR is plotted as a function of the level number. T
lowest curve shows the RMT value, while the other ones are
Anderson model results forW52.0t, W52.5t, W53.0t, and W
54.0t, from lower to upper, respectively. The results are avera
over an ensemble of 104 realizations of systems on a 17324 sites
lattice. The estimated error approximately equals the roughnes
the numerical results. Further parameters are given in the text.
6-4
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RMT! corrections to the IPR and is more pronounced
higher disorder. The corrections for the IPR were calcula
using the supersymmetry technique,13 resulting in P21

2PRMT
21 ;g21N21 (g being the dimensionless conductanc!.

We can also see, as can be expected, that the levels nea
band edge have higher IPR, and are thus more localized,
levels near the center of the band.

Now we move to interaction effects in the Anders
model. The results are shown in Fig. 3, with the same oc
pation numbers as those chosen in the previous RMT ca
lations, for the four values of the disorder. As in RMT,DPn

21

is negative forn<n↓ and changes sharply~though not dis-
continuously! at n5n↓ . Nevertheless, it does not change
sign there. Moreover,DPn

21 is larger by about an order o
magnitude than the one found from RMT. Also, even in t
rangen<n↓ , it increases in absolute value, rather than
creases, whenn↓ increases. All this is in contrast with Eq.~9!
and the discussion following it.

Another point is that the effect increases with disord
This is seen by comparingDPn

21 for the same leveln, but
different values ofW, or by observing that, for the sam
value ofW, levels near the band edge, which are more loc
ized, show largerDPn

21 .
The reason for these differences is the above-mentio

cancellation between long-range and short-range wave f
tion correlations in RMT. As has been seen in our RM
calculations~Table I!, the average of the wave function pro
ucts appearing in the numerator of Eq.~5! is of orderN24

and positive when the two sites considered coincide, bu
only of orderN25 and negative when the sites are differe
Since there areN21 terms of the latter type for each term
the former type, their total contributions are of the sa

FIG. 3. Change in the IPR of a spin-up electron due to its in
action with spin-down electrons in the Anderson model. The cha
is plotted as a function of the level number of the affected spin
electron for different numbers of spin-down electrons:~a! n↓550,
~b! n↓5100, ~c! n↓5150, and~d! n↓5200. In all the graphs the
curves correspond toW54.0t, W53.0t, W52.5t, and W52.0t,
from lower to upper, respectively. The results are averages ove
ensemble of 104 realizations of systems on a 17324 sites lattice.
The estimated error approximately equals the roughness of the
merical results. Further parameters are given in the text.
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order but their signs are opposite. Due to the equality of
numerical coefficients of the two types of terms when t
interacting electrons are in different levels, they cancel
exactly to the leading order inN, leaving behind a smal
negative term of orderN25. Therefore, in RMT the interac
tion between electrons in different levels increases their
calization, opposite to the situation for electrons in the sa
level. From this followed the decrease in the absolute va
of DPn

21 as n↓ increases in the rangen<n↓ , its positive
value for n.n↓ , and the overallN22 dependence of the
effect for constant density of spin-down electrons.

All this is correct wheng is infinite. For finiteg there
exist nonuniversal corrections to the wave function averag
Those corrections were not calculated before for the avera
required here, but their behavior can be conjectured fr
known corrections for simpler averages@like those in Eqs.
~6! and~7! ~Ref. 14!#. We may expect them to have the sam
N dependence and sign as the RMT value, but to be sma
by a factor of g. The corrections for the short-range (s
5s8) terms and long-range (sÞs8) terms will not, in gen-
eral, have equal numerical coefficients, even when the in
acting electrons are in different levels. In fact, since hopp
in the RMT Hamiltonian and, thus, correlations in RMT d
not depend on distance, the occurrence of the same lead
order cancellations between correlations in realistic mod
like the Anderson Hamiltonian is highly improbable. Henc
after summation overs8 we are left with an order-g21N24

contribution instead of the order-N25 contribution in RMT.
For this reason, although the nonuniversal corrections ar
orderg21, for most of the averaged terms they are abouN
times larger, so they will determine both the magnitude a
sign of the interaction-induced change in the IPR. Since
corrections fors5s8 will, in general, have a long-range par
persisting forsÞs8 and having the same sign for neighbo
ing sites~although for larger distances we may expect so
oscillations!, their sign will dominate the overall sign of th
results. We will thus get a negative change in the IPR
only from the interaction between electrons in the same le
but also when the interacting electrons are in different lev
Hence,DPn

21 will always be negative, as can be seen in t
numerical results.

Moreover, repeating the calculations with the nonuniv
sal correction to the averages of the wave functions prod
we can estimate the dependence of the effect on the sy
parameters. We expect the total change in the IPR o
spin-up electron due to its interaction withn↓ spin-down
electrons to vary as

DPn
21;2

1

g

UH

D

n↓
N3

. ~11!

This expression does not include a factor coming from
sum over energy denominators, which has only a weak
pendence onN andn↓ ~logarithmic for equidistant levels, a
weak power law for a nonconstant density of states!. Because
wave functions corresponding to neighboring levels are m
correlated than wave functions corresponding to faraway
els, there is also a factor which changes sharply~though not
discontinuously! when we pass fromn<n↓ to n.n↓ , as

-
e
p

an

u-
6-5
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MOSHE GOLDSTEIN AND RICHARD BERKOVITS PHYSICAL REVIEW B68, 245116 ~2003!
seen in the numerical results. SinceD;N21 in real systems
~although not in RMT!, the effect is of orderg21N21 if we
keep the concentration of spin-down electrons constant. T
is in contrast to theN22 dependence in RMT. BecauseN/g
is much larger than unity in our numerical calculations,
can now understand the order-of-magnitude difference
tween RMT and Anderson model results. Thus, all the f
tures of the numerical data can be explained by taking n
universal corrections into account.

As we have mentioned before, the nonuniversal par
the IPR without interaction—i.e., the difference between
value of the IPR without interaction in the Anderson mod
and its value in RMT—varies asg21N21. According to our
estimate, the change in the IPR due to interaction in
Anderson model also goes asg21N21. Thus, their ratio
DPn

21/(P212PRMT
21 ) should be independent ofg—i.e. of

the degree of disorder. It should also be independent of
number of lattice sitesN if the densities of spin-up and spin
down electrons are kept constant. Thus, this ratio may
used to test our conjecture for the parametric form ofDPn

21 .
We first test theg independence of the ratioDPn

21/(P21

2PRMT
21 ) by plotting it in Fig. 4 for systems with identica

lattice sizes~taken to be 17324, as in the previous calcula
tions!, but different values of disorder. We can clearly s
that the differences between curves corresponding to di
ent W values are much smaller than the corresponding
ferences in Fig. 3. The only exception is the valueW52.0t
~the lowest curve!, which shows a marked difference from
the otherW values. This is probably due to the fact that f

FIG. 4. Ratio between the change in the IPR of a spin-up e
tron due to its interaction with spin-down electrons in the Anders
model and the nonuniversal part of the IPR without interaction. T
ratio is plotted as a function of the level number of the affec
spin-up electron for different numbers of spin-down electrons:~a!
n↓550, ~b! n↓5100, ~c! n↓5150, and~d! n↓5200. In all the
graphs the curves correspond toW52.0t, W52.5t, W53.0t, and
W54.0t, from lower to upper, respectively. The results are av
ages over an ensemble of 104 realizations of systems on a 17324
sites lattice. The estimated error approximately equals the rou
ness of the numerical results. Further parameters are given in
text.
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W52.0t disorder is not high enough, so the electrons’ m
tion is not fully diffusive and ballistic boundary effects ma
be important.

We now testN independence of the ratioDPn
21/(P21

2PRMT
21 ) by plotting it in Fig. 5 for systems with the sam

value of disorder~taken asW54.0t) but different lattice
sizes 8313, 13319, and 17324. In all cases the densitie
of spin-up and spin-down electrons are approximately eq
~the horizontal axis is not the level number of the affect
spin-up electron as before, but the fillingn, defined as the
ratio between the number of spin-up electronsn and the total
number of lattice sitesN). We can clearly see that the dif
ferent curves are almost identical. The only exception is
small 8313 lattice, whose slightly different behavior ca
again be attributed to ballistic boundary effects.

IV. CONCLUSIONS

In conclusion, we have shown how a spin-dependent
teraction can cause delocalization, at least for weak sh
range interactions. Localized electrons highly repulse e
other, especially if they have the same orbital wave funct
and thus a different spin. This results in a tendency
interaction-induced delocalization. The effect on an elect
with a given orbital level and spin direction is stronger if th
same orbital level is occupied by an electron with an op
site spin and increases with the total number of electr
with opposite spin. The delocalization is thus reduced by
in-plane magnetic field. All this is in accordance, at lea
qualitatively, with recent experimental findings4 and numeri-
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n
e
d

-

h-
he

FIG. 5. Ratio between the change in the IPR of a spin-up e
tron due to its interaction with spin-down electrons in the Anders
model and the nonuniversal part of the IPR without interaction. T
ratio is plotted as a function of the filling of the affected spin-
electron~i.e., the ratio of the number of spin-up electrons and
number of lattice sites! for different fillings of spin-down electrons
~a! n↓'1/8, ~b! n↓'1/4, ~c! n↓'3/8, and ~d! n↓'1/2. In each
graph we use three different lattice sizes 8313, 13319, and 17
324, but a constant value of disorder,W54.0t. The results are
averages over an ensemble of 104 realizations. The estimated erro
approximately equals the roughness of the numerical results.
ther parameters are given in the text.
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cal simulations8,9 regarding the in-plane magnetoresistanc
We have also seen that the main difference in the in

ence of the Hubbard interaction between realistic finiteg
systems and the RMT stems from exact cancellation of
leading-order long-range and short-range terms in
former. Thus, while in RMT a state is correlated only to t
same state with an opposite spin~except for weak anticorre
lations with all other states!, for finite g correlations between
different states lead to a stronger repulsion between th
states, resulting in a stronger delocalization due to
a

.

. B
v.

24511
.
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on-site interactions. Nevertheless, the order of magnit
and parametric dependence of the IPR can be calcul
using RMT, once the nonuniversal corrections are prope
taken into account.
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