
PHYSICAL REVIEW B 68, 245107 ~2003!
Water molecule by the self-consistent atomic deformation method
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~Received 28 May 2003; revised manuscript received 15 September 2003; published 11 December 2003!

We present a density functional method which expresses the charge density of a system of atoms as a sum
over localized atomiclike densities derived from potentials defined variationally from the total energy expres-
sion, which includes contributions from overlapping densities. An approach for systematically increasing the
variational freedom of the atomiclike densities is introduced and tested for the water molecule. For the water
molecule our method results in complete charge transfer for sufficiently small bond lengths and reverses the
charge transfer at large bond lengths. In case of complete charge transfer the overlap contributions are zero,
allowing a direct comparison with the traditional Kohn–Sham approach.
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I. INTRODUCTION

The self-consistent atomic deformation~SCAD! method
has been recently developed as an efficient application o
density functional theory~DFT! in the framework of local-
ized charge density.1 In our method the densities are obtain
self-consistently by solving one-electron Schro¨dinger equa-
tions, for each atomic site, whose potentials are determ
variationally from the total energy. As a consequence,
introduce an approximate kinetic energy functionalTk to ac-
count for the extra contribution from the overlapping char
densities.

For ionically bonded systems SCAD provides a picture
the electronic structure that prohibits the transfer of cha
from one ion to another. Thus, the polarization and rela
properties are unambiguously given by the induced dip
moments of the ions.2 This is illustrated by results of calcu
lations on a variety of systems; alkali halides,3 oxide-based
perovskides,4,5 MgO and AlP,1 Ba2Al2O4,6 anda-Al2O3.7

For systems like the water molecule SCAD may requ
the full transfer of electrons off the hydrogen atoms in wh
case the charge overlap is zero and, in principle, the o
approximation present is the LDA. Of course, this assum
that the single-center basis set is adequate. The purpos
this work is to show that, by adding a procedure to syste
atically improve the basis set, single-center accurate s
tions for such systems are computationally feasible.

II. METHOD

In the SCAD method the total electronic charge density
the system is the sum of the overlapped site localized de
ties

n~r !5(
i

ni~r2Ri !5(
i

(
l ,m

nlm
( i )~ ur2Ri u!Ylm~r2Ri

ˆ !,

~1!

and the total energy is written as

E@n~r !#5(
i

T0@ni~r !#1Tk@n~r !#2(
i

Tk@ni~r !#

1F@n~r !#. ~2!
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In the above expressionT0@ni(r )# is the kinetic energy of a
set of noninteracting electrons centered about the atomic
at Ri and F@n(r )# contains exchange-correlation9 and elec-
trostatic contributions to the total energy. The overlap kine
energyTk@n(r )# is approximated by the simple Thomas
Fermi expression

Tk@n~r !#5
3

5
~3p2!2/3E n3/5~r !d3r . ~3!

We thus have reduced the general problem into a m
easier task of sequentially~or in parallel! solving single-
particle Schro¨dinger’s equations for each atomic site atRi
with the corresponding potentials derived variationally fro
the total energy10

v i~r !5
dE@n~r !#

dni~r !
5vF@n~r !#1vk@n~r !#2vk@ni~r !#

5(
l ,m

v ( i ; l ,m)~r !Ylm~ r̂ !, ~4!

where

vF@n~r !#5
dF@n~r !#

dn~r !
~5!

is the functional derivative ofF@n(r )# equal to the Kohn–
Sham potential and

vk@n~r !#5
dTk@n~r !#

dn~r !
. ~6!

If we assume that all the charge density is localized
nonoverlapping sites, then

Tk@n~r !#5(
i

Tk@ni~r !#, ~7!

and the expression Eq.~2! reduces to the familiar Hohenber
and Kohn form.8

A variety of numerical techniques are employed in calc
lating this potential. Here we outline the procedure for t
case of a water molecule. Although we will show later that
©2003 The American Physical Society07-1
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the case of H2O the SCAD picture is completely ionic, whic
leaves the hydrogen atoms without electrons and reduce
overlap to zero@cf. Eq. ~7!#, we do not make such an as
sumption a priori. This completely ionic picture is valid
when the hydrogen nuclei are close to the oxygen at
However, for separation distances of more than twice
equilibrium bond length some charge must be transfer
back to minimize energy in accord with Janak’s theorem~see
below!.

Therefore, we start by defining the overlap potential
vov5vk1vxc and rewriting Eq.~4! as

v i~r !5ves@n~r !#1vxc@ni~r !#1vov@n~r !#2vov@ni~r !#.
~8!

Two features of the overlap potential complicate express
it in spherical harmonics:~1! it has sharp features nea
atomic nuclei atRj and~2! unlike the electrostatic contribu
tion, it does not naturally decompose into additive ter
from each site. Both complications are simplified by comp
tationally adding and subtracting( j8vov@n0

( j )(r )#, wheren0

denotes thel 50 portion of the density and the prime on th
summation indicates that thej 5 i term is omitted. The sub
tracted part combines with the last two terms of Eq.~8! to
give a contribution which is smoothly varying nearRj ,
while the added part is combined with the electrostatic c
tribution due ton0

( j )(r ) and treated using the Lo¨wdin13 trans-
formation. The l .0 electrostatic contributions due to th
nonspherical components ofn( j )(r ) at Rj are included in the
smooth part, as is also thel .0 portion of vxc@ni(r )#,
namelyvxc@ni(r )#2vxc@n0

( i )(r )#.
Our potential for thei th atom can now be rewritten as

v i~r !5von
i ~r !1vs

i ~r !1vL
i ~r !1vn

i ~r !, ~9!

with subscripts denoting onsite, smooth, Lo¨wdin and nuclear
parts.

The onsite part

von
i ~r !5vxc@n0

( i )~r !#1E ni~r 8!

ur2r 8u
dr 82

Zi

r
, ~10!

using Hartree units (e5m51), is easily computed using th
1/ur2r 8u addition theorem for angular integrations and
numerically performing remaining radial integrations. T
resultant spherical harmonic expansion coefficie
von

( i ; l ,m)(r ) @cf. Eq.~4!# are kept on a fine logarithmic mesh o
several hundred points.

The smooth part of the potential

vs
i ~r !5vxc@ni~r !#2vxc@n0

( i )~r !#1vov@n~r !#2vov@ni~r !#

2( j8vov@n0
( j )~r !#1( j8~ves@nj~r !#2ves@n0

( i )~r !# !

~11!

is computed by interpolating theves and density contribu-
tions from the neighboring atoms to a coarse logarithm
radial mesh centered at sitei. Typically, the coarse mes
comprises;30 radial points and;150 directions. Therefore
for the water molecule with the oxygen~density! potential
24510
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computed up tol 512 we have>0.8 million interpolations
per hydrogen atom. This is a substantial part of the SC
calculation. The directions and weights of the coarse m
are generated similarly to those of Gaussian quadratur
facilitate efficient angular integrations14

vs
( i ; l ,m)~r !5E vs

( i )~r !Yl ,m* ~ r̂ ! dV. ~12!

The coefficientsvs
( i ; l ,m)(r ) are further interpolated from the

coarse to the dense mesh completing the calculation of
spherical harmonics expansion of the smooth part of the
tential.

The Löwdin part of the potential

vL
( i )~r !5( 8

j
~vov@n0

( j )~r !#1ves@n0
( j )~r !# ! ~13!

is computed by transforming the spherically symmetric fun
tion vov(es)@n0

( j )(r 8( j ))#Y0,0 to a spherical harmonic expan
sion about the new origin at the sitei separated a distanc
a( j ) along thez axis13

vov(es)@n0
( j )~r !#5(

l
gl

( j )~r !Yl ,0~ r̂ !, ~14!

where

gl
( j )~r !5A2l 11E

0

p

vov(es)@n0
( j )~r 8( j )!#Pl~cosu!sin~u!du

~15!

and

r 8( j )25r ( j )21a222a( j )r cos~u!, ~16!

followed by an appropriate transformation by the polar an
u. Herer 8 refers to coordinates with respect to the old o
gin. Expression Eq.~15! can be evaluated by numerical in
tegration, provided special care is exercised close to sj
where the slope ofgl

( j ) is discontinuous and where a fine
integration step leads to increasingly sharp features.
overcome this difficulty by expanding Eq.~15! in terms of
A2l 11/(2a( j )r ) l 11 times appropriate combinations of inte
grals of type12

I l
( j )~r !5E

ua( j )2r u

r 1a( j )

f ~x!x2l 11 dx. ~17!

These integrals can be conveniently interpolated from ta
lated values. However, because of the presence of the fa
A2l 11/(2a( j )r ) l 11 the expansion becomes numerically u
stable for small values ofr. In this region we expand the
f (x) in Eq. ~17! in a Taylor series abouta( j ) and perform the
integrations analytically. Values forf (n) are determined nu-
merically from f (n21) using a 5-point interpolation
formula.15 We match the smallr solutions and larger solu-
tions in the region where they are both accurate. This mix
occurs at a few tenths of a Bohr and is somewhat further
for larger l values.
7-2
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WATER MOLECULE BY THE SELF-CONSISTENT . . . PHYSICAL REVIEW B 68, 245107 ~2003!
The potential due to neighboring nuclei,

vn
( i )~r !5( 8

j

Zj

ur2Rj u
, ~18!

is given by the 1/ur2Rj u addition theorem. Here the sum
over j excludes thej 5 i term, already included in the onsit
part. The nuclear potential can also be included as a pa
the Löwdin potential, as we have done to test the code.

Both the Löwdin and the nuclear part of the potenti
contain discontinuities in the radial derivatives atRj . There-
fore we have to be extra careful when evaluating the Ham
tonian matrix elements and the total energy. Our strateg
to omit contributions tovL and vn due toRj for a selected
number of fine mesh points around the peak atRj and instead
computevL andvn at radii given by Gaussian quadratures
both sides of the peak. Typically, only a few Gaussian po
are needed on each side ofRj . Values forvL are then ob-
tained by interpolation from values for the integral Eq.~17!
already computed on the logarithmic mesh. To calculate
total energy~expressed in terms of integrals overnv) the
corresponding values for the charge density wherevL andvn
have sharp features must also be computed.

Once the potential for each sitei is computed the assoc
ated one-electron Schro¨dinger equations are solved. The low
est energy levels for the entire system are occupied by
available electrons in accord with Janak’s theorem.18 This
supplies new densitiesni(r ) and the procedure is repeate
with optimal mixing of new and old densities, until sel
consistency is reached. The one-electron Schro¨dinger equa-
tions are solved using a flexible set of SCAD basis functio
For each site we include the atomic orbitals of a fr
atom16,17 plus sets of Slater (r le2b i rYl ,m) or Gaussian
(r le2a i r

2
Yl ,m) functionsf i(r ). We use the ‘‘even tempered

Slater ~Gaussian! functions for which the tempermentt de-
fined as

t54pE
0

`

r 2f i~r !f i 11~r ! d3r ~19!

is constant for a givenl. The number of functions include
can be adjusted, by parameterst andr 0—orbital cutoff radius
which represents the radius of the peak of the outerm
Slater or Gaussian, to meet the convergence criteria.
analytic form of the hydrogenlike wave functions sugge
that for small values ofl b15Z/( l 11) @a15b1

2/2(l 11) for
Gaussian sets#. Since the optimized Slater-type bases for
oms generally include somewhat larger values forb we also
include an additionali 50 (b0.b1) function in our basis.
For larger values ofl the exponentb1 is determined from the
radius of the outermost peak of the highest energy occu
atomic orbital as tabulated in the atomic data tables.16,17 In
this case we add thei 50 (b0) function as well.

III. THE WATER MOLECULE

The SCAD method described above and expanded to
clude long-range Coulomb interactions was previously
plied to study the lattice dynamics and elastic properties
24510
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corundum,a-Al2O3.7 However, in that work our basis func
tions were limited to those with radial dependence given
Slater functions as tabulated by Clementi and Roetti. H
we present a case of a water molecule to illustrate the fl
ibility of our newly developed basis set. We demonstrate t
SCAD’s results converge to those obtained with the state
the-art, linear combination of Gaussian orbital meth
~NRLMOL!19–21 in the highl max limit and consequently, for
water, our method leads to results identical with the Ko
and Sham formulation of DFT.11 In both methods we use th
LDA approximation of Perdew and Wang.22

We compute the H2O total energy as a function of bon
length r at the SCAD approximate (l max510) equilibrium
bond angleu of 105.2°. Unless otherwise indicated, in th
following, all the calculations are carried out forl max53 at
the approximate SCAD minimum of bond length of 1.83
Bohr and bond angle of 105.2°. Figure 1 compares the t
energy obtained by SCAD in the interval between 1.5 an
Bohrs with the results obtained from NRLMOL. The SCA
minimum occupied energy levels are218.587, 20.906,
20.458, 20.327 and 20.262 (218.608, 20.919,
20.481, 20.342, 20.270 for l max510) compared with
NRLMOL values of 218.611, 20.921, 20.485, 20.344,
and 20.270. Energy values are in hartrees. The lowest
ergy levels calculated by SCAD were obtained by co
pletely transferring the hydrogen electrons to the oxygen
this case the lowest H1 eigenvalue is20.002 ~20.000 for
l max510), well above the highest occupied eigenvalue
O22. The SCAD picture of the H2O molecular bonding is
thus that of an O22 ion in the potential of two protons. This
picture is not easily changed, as seen from Fig. 1, where
total energy starts being lowered by transferring charge b
to the oxygen atom only at very large bond lengths above
Bohr.

The effect of charge transfer is further described in Fi
2–4. We notice that the lowest eigenvalue of H1 ~dashed
curve in Fig. 2! intersects the mean energy of the occup

FIG. 1. Total energy as a function of bond lengthr, at fixed
bond angle,u5105.2°, for the water molecule obtained by SCA
and NRLMOL. The dashed SCAD curve corresponds to cha
transfer back to H1 ions in order to minimize the energy. Here an
in Figs. 2–4 SCADl max53.
7-3
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OSSOWSKI, BOYER, MEHL, AND PEDERSON PHYSICAL REVIEW B68, 245107 ~2003!
2p levels of O22 ~we transfer electrons in equal amounts
the three distinct 2p levels of oxygen to assure consisten
at large bond lengths! at a point that is further out from th
O22 than the critical value of bond length,r t , for which a
charge transfer back to H1 lowers the total energy in Fig. 1
This is simply because Fig. 2 does not actually incorpora
charge transfer back to the H1 ions; it merely shows tha
such transfer is required by SCAD at some~large! value of
bond length. This is the right behavior, since we exp
SCAD to result in dissociation of the bonds when the oxyg
and the hydrogen atoms are far apart.

It is known that certain ionic systems do not prope
dissociate into atoms with integer charge within some
proximations to DFT. For example, the LDA used here p
dicts that a LiF dimer with an essentially infinite bondleng
is spin unpolarized and has charges of 2.6 and 9.4 on th

FIG. 2. SCAD averaged 2p occupied eigenvalues of O22 and
the lowest eigenvalue of H1 ~dashed curve! as a function of bond
lengthr, at fixed bond angle,u5105.2°, for the water molecule. No
charge is transferred back to the hydrogen ions.

FIG. 3. SCAD total energy as a function of a fraction of
electron chargeq on the hydrogen ion for the water molecule,u
5105.2°. Curves for three distinct bond lengthsr 53.0 Bohr, r
53.5 Bohr, andr 54.0 Bohr are shown.
24510
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and F, respectively. This state lies approximately 0.037
below the polarized state with integer charges of 3.0 and
For LiF, GGA does not improve the results and se
interaction corrections23,24~SIC! are required to fix this prob-
lem. However, it is the relative sizes of the SIC shifts f
valence electrons on different atoms which determ
whether improper dissociation of a given system is expec
to occur. We have ascertained that both LDA and GGA all
for dissociation of H2O into spin-polarized isolated atom
with the correct integer values. It is worth noting that im
provement for all pairs of atoms can be expected from rec
development of hyper-GGA functionals25 and modern
hybrids26–28 applied in the framework of the optimized e
fective potential method.29–31

To better understand the critical valuer t we refer to Fig.
3. In this figure we show the SCAD total energy as a fun
tion of the charge transfer for three values of bond leng
r 53.0 Bohr—markedly lower,r 53.5 Bohr—slightly lower
and r 54.0 Bohr—markedly higher thanr t . For r
53.0 Bohr the charge transfer back to the H1 ions clearly
does not result in lowering of the total energy. On the co
trary, an attempt to transfer any amount of charge raises
energy sharply. This situation starts to change when we
proachr t . There now exists a ‘‘flat’’ region where the in
crease of the amount of the charge transferred back to1

does not change the total energy substantially. For
53.5 Bohr, however, the total energy for the H2

1O22 system
is still lower that the total energy of the H2

112qO2212q sys-
tem, regardless ofq. If we now increased the bond lengt
slightly we would see the local minimum in the total ener
beginning to form in the ‘‘flat’’ region for a certain value o
q ~not shown in Fig. 3!. This minimum becomes global fo
r 5r t and forr .r t the situation is such as represented by
curve corresponding tor 54.0 Bohr. The system lowers it
total energy if we allow for the transfer of charge back to t

FIG. 4. SCAD mean energy of the 2p occupied levels of
O2212q and the lowest energy level of H112q as a function of the
fraction of an electron charge on the hydrogen ion for two bo
lengthsr 53.0 Bohr~dashed curves! andr 54.0 Bohr~solid curves!
for the water molecule,u5105.2°.
7-4
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WATER MOLECULE BY THE SELF-CONSISTENT . . . PHYSICAL REVIEW B 68, 245107 ~2003!
H1 ions ~in this case in the amountq;0.7 electron/H atom!.
The origin of the local maximum for ther 54.0 Bohr

curve for oxygen atq;0.1 electron/H atom in Fig. 3 can b
understood from Fig. 4, where we once again refer to Jan
theorem.18 As we start transferring charge back to the H1

ions the highest occupied 2p states of O2212q lie lower than
the lowest allowed state of H112q, therefore such transfe
results in the increase of the total energy for bothr
53.0 Bohr andr 54.0 Bohr. This situation changes forr
54.0 Bohr andq.;0.1 electron/H atom when the highe
occupied 2p states of O2212q lie higher than the lowes
allowed state of H112q. The transfer of this amount o
charge lowers the total energy in accord with Janak’s th
rem because doing so populates the lower eigenstates fo
entire system~see Fig. 4!. At q;0.7 electron/H atom the
total energy is at its global minimum, O2212q 2p and
H112q 1s states cross again, and further transfer of cha
results once again in the increase of the total energy.

For short bonds, our SCAD model requires compl
charge transfer, resulting in single center expansions for
water molecule wave functions. Of course, this does not
ply there is anything wrong with multicenter expansions—
fact, we compare our results with a multicenter method~NR-
LMOL ! as a test. However, it clearly shows that concep
such as Mulliken charges, do indeed depend on the choic
basis. Strictly speaking, the SCAD monopoles also dep
on the choice of basis. For example, perversely, one co
choose a nearly complete basis for the hydrogen sites a
very depleted basis for the oxygen site. If the disparity w
sufficiently extreme, then the charge density near the oxy
nucleus would be constructed from hydrogen site basis fu
tions. Clearly, this would not be a practical way to proce
On the other hand, when similarly complete bases are cho
for all sites, SCAD monopoles have fixed integer values
nonconducting molecules and solids, which, in turn, allo
relatively simple calculations for polarization.2

We now turn our attention to the modified basis functio
As mentioned in Sec. II we add flexibility in the basis f
eachl by supplementing the atomic orbitals by sets of Slat
type or Gaussian-type wave functions multiplied by app
priate spherical harmonics. This increases the numbe
convergence parameters. Instead of a singlel max we now, in
addition, have for eachl parametert, which we call temper-
ment @cf. Eq. ~19!#, and parameterr 0, the orbital cutoff ra-
dius. Figure 5 shows the total energy as a function oft for
two sets of data. The solid line represents the energies
tained by changingt for all values ofl and the broken line
represents the energies obtained by changingt for all but l
50 andl 51, which we set to 0.9. We notice that the latt
case better addresses the issue of small errors in the
states projecting to the larger energy difference. In both ca
we see, as expected, the reduction in total energy with
creasedt. The value forr 0 used by us in this report is 6.
Bohr for all l. Values higher than 6.0 Bohr do not result
significantly better wave functions, as evident from Fig. 6

The convergence with respect tol max is described in Figs.
7 and 8 which illustrate how total energy and polarizati
change as a function ofl max. Clearly, these figures show tha
24510
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the SCAD results converge in the limit of largel max, ap-
proaching those obtained with NRLMOL. This expresses
principle of the SCAD method—we can make it as exac
DFT method as allowed by the LDA and overlap kine
energy functionals by giving the system’s charge dens
enough variational freedom to sufficiently relax by increa
ing the value ofl max ~and t and r 0).

SCAD is now fully interfaced with ISOTROPY, a soft
ware developed by Stokes, Hatch, and Wells32,37for applying
group-theoretical methods to phase transitions in crystal
solids. In SCAD we apply ISOTROPY to construct distortio
modes used in the technique for finding normal modes
oscillations in a crystal, so-called frozen phonon calcu
tions. Our implementation of the technique uses the dis
tion modes which transform like basis functions of the irr
ducible representations~IR! of the crystal space group. Thi
choice of the modes~which are not in general normal mode!
has the effect of block-diagonalizing the dynamical mat
with each block representing a particular IR~in case of more

FIG. 5. Total energy as a function of temperment of the Gau
ian basis functions for the water molecule,r 51.833 Bohr andu
5105.2°. The dashed curve is for the case whent for l 50 and l
51 is set to 0.9.r 056 Bohr for all values ofl.

FIG. 6. Total energy as a function of bond lengthr, at fixed
bond angle, u5105.2°, for a set of orbital cutoff radii,r 0

(53,4, . . .,11) Bohr, for the water molecule.
7-5
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OSSOWSKI, BOYER, MEHL, AND PEDERSON PHYSICAL REVIEW B68, 245107 ~2003!
than one-dimensional representation we have two or m
identical blocks! and having dimension equal to the numb
of different distortion modes projected out by a given ba
function of this IR. The elements of the dynamical matrix a
calculated by SCAD as the curvatures at zero amplitude
energy parabolas for small displacements consistent
each frozen mode. In fact, to improve the accuracy we rep
these calculations with the projected modes with amplitu
consistent with eigenvectors obtained in the first pass.

In this work we want to calculate the vibrational freque
cies of the isolated water molecule. We use SCAD and IS
ROPY in the same manner as described above by arran
water molecules in the crystal lattice which has theC2v point
group symmetry~same as the water molecule! and looking
only at theG point. We chose the space groupC2v

1 (Pmm2,
No. 25!. In this group the representationG1 ~notation of
Miller and Love33! corresponds to theA1 vibrations and the
representationG3 corresponds to theB2 vibration of an iso-

FIG. 7. Total energy as a function of bond angleu, for a fixed
bond lengthr 51.883 Bohr, for a set ofl max values for the water
molecule. The dashed curve represents NRLMOL results.

FIG. 8. Polarization as a function ofl max for the water molecule,
r 51.833 andu5105.2°. The dashed line represents NRLMO
result.
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lated water molecule. Therefore we calculate elements of
two blocks of the dynamical matrix consistent with these t
IR’s only and diagonalize them separately to obtain the n
mal frequencies.

The results of our calculations for values ofl between 2
and 10 are shown in Fig. 9 and compared with results
tained with NRLMOL. Frequencies within NRLMOL are
calculated by the so-called method of mutually orthogo
displacements. Pulay corrected Hellmann-Feynman for
are calculated for small Cartesian displacements about
equilibrium separation. The derivative of the 3N-
dimensional HF force with respect to a given displacem
gives one row of the matrix of second derivatives. For ea
required derivative positive and negative displacements
used which ensures numerical derivatives that are accura
fourth-order in the displacement. This allows the entire m
trix of second derivatives to be determined in at most 6N
SCF calculations. However, symmetry is used to identify
minimal number of inequivalent displacements required
determine the entire matrix of second derivatives. An ea
application of this method was discussed in Ref. 34. M
details may be found in Ref. 35. A few fine details of th
method are discussed in Ref. 36.

As it was the case for the total energy~Fig. 7! and polar-
ization ~Fig. 8! the SCAD results converge for largel max,
approaching those obtained with NRLMOL. Forl max510 the
errors in the frequencies are 4%, 4%, and 0% forA1 , A1,
andB2, respectively.

IV. CONCLUSION

In this paper we report the results of precise SCAD c
culations for the water molecule and compare them w
those obtained from the state-of-the-art linear combination
Gaussian orbital method~NRLMOL!. We demonstrate tha
our method results, for the water molecule, in compl
charge transfer for sufficiently small bond lengths and
verses the charge transfer at large bond lengths. In the

FIG. 9. SCAD vibrational frequencies for the water molecule
a function ofl max, r 51.833 Bohr andu5105.2°. The dashed line
represent NRLMOL results.
7-6
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of complete charge transfer no charge overlap is present
SCAD and Kohn–Sham methods are equivalent in the la
l max limit. Our results suggest that SCAD can be applied w
enough numerical precision that errors result only from
quality of the density functionals employed.
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