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Water molecule by the self-consistent atomic deformation method
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We present a density functional method which expresses the charge density of a system of atoms as a sum
over localized atomiclike densities derived from potentials defined variationally from the total energy expres-
sion, which includes contributions from overlapping densities. An approach for systematically increasing the
variational freedom of the atomiclike densities is introduced and tested for the water molecule. For the water
molecule our method results in complete charge transfer for sufficiently small bond lengths and reverses the
charge transfer at large bond lengths. In case of complete charge transfer the overlap contributions are zero,
allowing a direct comparison with the traditional Kohn—Sham approach.
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[. INTRODUCTION In the above expressiofy[ n;(r)] is the kinetic energy of a
set of noninteracting electrons centered about the atomic site
The self-consistent atomic deformati¢8CAD) method at R; and F[n(r)] contains exchange-correlatiband elec-
has been recently developed as an efficient application of thostatic contributions to the total energy. The overlap kinetic
density functional theoryDFT) in the framework of local- energyT,[n(r)] is approximated by the simple Thomas-
ized charge densityln our method the densities are obtained Fermi expression
self-consistently by solving one-electron Salirger equa-
tions, for each atomic site, whose potentials are determined
variationally from the total energy. As a consequence, we
introduce an approximate kinetic energy functiomalto ac-
count for the extra contribution from the overlapping charge We thus have reduced the general problem into a much
densities. easier task of sequentialljor in paralle) solving single-
For ionically bonded systems SCAD provides a picture ofparticle Schrdinger’'s equations for each atomic site Ryt
the electronic structure that prohibits the transfer of chargavith the corresponding potentials derived variationally from
from one ion to another. Thus, the polarization and relatedhe total energh
properties are unambiguously given by the induced dipole

Tn(n]= 5 (3722 f n3%(r)dr. 3

moments of the ion$This is illustrated by results of calcu- _ SE[n(r)]
lations on a variety of systems; alkali halidesxide-based Uit = 750 =veln(n]+odn(n]=vdmi(r)]
perovskide$;® MgO and AlP! Ba,Al,0,,° and a-Al,0,.”

For systems like the water molecule SCAD may require :z pEEM )Y, () (4
the full transfer of electrons off the hydrogen atoms in which Im mee

case the charge overlap is zero and, in principle, the only
approximation present is the LDA. Of course, this assume¥/nere

that the single-center basis set is adequate. The purpose of SE[N(N)]
this work is to show that, by adding a procedure to system- ve[n(r)]= (5)
atically improve the basis set, single-center accurate solu- on(r)

tions for such systems are computationally feasible. is the functional derivative oF[n(r)] equal to the Kohn—

Sham potential and

IIl. METHOD
In the SCAD method the total electronic charge density of vi[n(r]= m (6)
the system is the sum of the overlapped site localized densi- on(r)

ties o .
If we assume that all the charge density is localized on

_ - nonoverlapping sites, then
n(r)=2i ni(r—Ri)=Z % nD(r—=RiDYm(r—Ry),
(1) Tdn(n]=2 Tmi()], (7)

and the total energy is written as ) -
and the expression E¢R) reduces to the familiar Hohenberg

and Kohn fornf

E[n(r)]=2i TO[”i(r)]+Tk[n(r)]_Ei Tilni(r)] A variety of numerical techniques are employed in calcu-
lating this potential. Here we outline the procedure for the
+F[n(r)]. (2 case of a water molecule. Although we will show later that in
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the case of KO the SCAD picture is completely ionic, which computed up td =12 we have=0.8 million interpolations
leaves the hydrogen atoms without electrons and reduces tf¢r hydrogen atom. This is a substantial part of the SCAD
overlap to zerdcf. Eq. (7)], we do not make such an as- calculation. The directions and weights of the coarse mesh
sumptiona priori. This completely ionic picture is valid are generated similarly to those of Gaussian quadrature to
when the hydrogen nuclei are close to the oxygen atonfacilitate efficient angular integratiots

However, for separation distances of more than twice the

equilibrium bond length some charge must be transferred (i:1,m) :J M * /0
back to minimize energy in accord with Janak’s theofsse vs™ ) v (N)Yim(r) dad. (12)
below). - i .

Therefore, we start by defining the overlap potential as' "€ coefficients {™(r) are further interpolated from the
Uow=Uk+ 0y and rewriting Eq(4) as coarse to the dense mesh completing the calculation of the

o xe spherical harmonics expansion of the smooth part of the po-

0i(1)=ved N(N]+ v d (N1 + 00, [N(1) ] ~ve,[mi(r)].  tential. _

8 The Lowdin part of the potential

Two features of the overlap potential complicate expressing . _ _

it in spherical harmonics(1) it has sharp features near v(L')(r)=Z' (o[NP (N ]+ved nP(1)]) (13

atomic nuclei aR; and(2) unlike the electrostatic contribu-

tion, it does not naturally decompose into additive termsis computed by transforming the spherically symmetric func-

from each site. Both complications are simplified by compu-tjon UOU(es)[nf)j)(f'(j))]Yoo to a spherical harmonic expan-

tationally adding and subtracting/v,,[n$’(r)], wheren,  sjon about the new origin at the siteseparated a distance

denotes thé=0 portion of the density and the prime on the () glong thez axis™

summation indicates that tHe=i term is omitted. The sub-

tracted part combines with the last two terms of E). to ) ) A

give a contribution which is smoothly varying ne& , Vou(eg[No (r)]:§|: 91’ (r)Y, o(r), (14

while the added part is combined with the electrostatic con-

tribution due ton{)(r) and treated using the ualin'®trans- ~ where

formation. Thel>0 electro?t)atic contributions due to the

nonspherical components of!’(r) atR; are included in the YN~ N .

smooth part, as is also the>0 porjtion of v, N(N], gi’(r)= 2|+1f0 v°U<es)[n8)(r )1Pi(coso)sin()do

namelyvxc[ni(r)]_ch[n(()l)(r)]- (15
Our potential for thath atom can now be rewritten as

and
i i i [
vi(N)=von(r) +vg(r) +v(r)+ovy(r), 9) (022 10024 52— 2200t cog 6), 16
with subscripts denoting onsite, smoothwdin and nuclear . .
parts. followed by an appropriate transformation by the polar angle
The onsite part 0. Herer' refers to coordinates with respect to the old ori-

gin. Expression Eq(15) can be evaluated by numerical in-
, , ni(r') ya tegration, provided special care is exercised close tojsite
U'on(r)vac[ng)(f)]ﬂLf ———ar'=—, (10 where the slope og is discontinuous and where a finer
r=r'] integration step leads to increasingly sharp features. We
using Hartree unitsg=m=1), is easily computed using the overcome this difficulty by expanding EL5) in terms of
1/lr—r’| addition theorem for angular integrations and by V2! +1/(2a)r)'** times appropriate combinations of inte-
numerically performing remaining radial integrations. Thegrals of typ
resultant  spherical harmonic expansion coefficients
v ™ (r) [cf. Eq.(4)] are kept on a fine logarithmic mesh of 10)(r)= r+a
several hundred points. : lal)—
The smooth part of the potential

)
‘f(x)xz'*ldx. (17

These integrals can be conveniently interpolated from tabu-

()= ) _ (i) _ , lated values. However, because of the presence of the factor
vslr)=vxdnitr)] _UXC[nO (N]+voln(r)] vOULnI(r)] V21 +1/(2aWr)'** the expansion becompes numerically un-
— 306, [NP(N]+ 2] (ved nj(N)]—ved NP (1)) stable for small values of. In this region we expand the

(11) f(x) in Eq.(17) in a Taylor series abowt)) and perform the
integrations analytically. Values fdi™ are determined nu-

is computed by interpolating the.s and density contribu- merically from f(""% using a 5-point interpolation

tions from the neighboring atoms to a coarse logarithmidormula!® We match the small solutions and large solu-

radial mesh centered at site Typically, the coarse mesh tions in the region where they are both accurate. This mixing

comprises~ 30 radial points and- 150 directions. Therefore occurs at a few tenths of a Bohr and is somewhat further out

for the water molecule with the oxygeidensity potential  for largerl values.
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The potential due to neighboring nuclei, 72

) Z: I
(I) = ! |
vy’ (1) 2 |I’—Rj|’ (18) 54

is given by the 1f—R;| addition theorem. Here the sum
overj excludes thg =i term, already included in the onsite
part. The nuclear potential can also be included as a part o
the Lowdin potential, as we have done to test the code.
Both the Lavdin and the nuclear part of the potential
contain discontinuities in the radial derivativesRjt There-
fore we have to be extra careful when evaluating the Hamil- | NRLMOL
tonian matrix elements and the total energy. Our strategy is
to omit contributions taw, andv, due toR; for a selected e : L : L : " : S
number of fine mesh points around the peakRaand instead
computev, andv,, at radii given by Gaussian quadratures on
both sides of the peak. Typically, only a few Gaussian points FIG. 1. Total energy as a function of bond lengthat fixed
are needed on each side Rf. Values forv, are then ob- bond anglef=105.2°, for the water molecule obtained by SCAD
tained by interpolation from values for the integral Etj7) and NRLMOL. The dashed SCAD curve corresponds to charge
already computed on the logarithmic mesh. To calculate th&ansfer back to F ions in order to minimize the energy. Here and
total energy(expressed in terms of integrals oves) the  in Figs. 2—4 SCAD p,=3.
corresponding values for the charge density whegrandv ,
have sharp features must also be computed. corundum,a-Al,05.” However, in that work our basis func-
Once the potential for each sités computed the associ- tions were limited to those with radial dependence given by
ated one-electron Schiimger equations are solved. The low- Slater functions as tabulated by Clementi and Roetti. Here
est energy levels for the entire system are occupied by th&e present a case of a water molecule to illustrate the flex-
available electrons in accord with Janak’s theorrithis  ibility of our newly developed basis set. We demonstrate that
supplies new densities;(r) and the procedure is repeated, SCAD'’s results converge to those obtained with the state-of-
with optimal mixing of new and old densities, until self- the-art, linear combination of Gaussian orbital method
consistency is reached. The one-electron Stihger equa-  (NRLMOL)'?in the highl . limit and consequently, for
tions are solved using a flexible set of SCAD basis functionswater, our method leads to results identical with the Kohn
For each site we include the atomic orbitals of a freeand Sham formulation of DFE In both methods we use the
atomt®” plus sets of Slater rle #'Y, ) or Gaussian LDA approximation of Perdew and Warg.

-75.6

Energy (Ht.)

758 -

Bond length (Bohr)

(r'e” airZYl’m) functions¢;(r). We use the “even tempered” We compute the kD total energy as a function of bond
Slater (Gaussiah functions for which the tempermentde-  lengthr at the SCAD approximatel {,,=10) equilibrium
fined as bond angled of 105.2°. Unless otherwise indicated, in the

following, all the calculations are carried out foy,,=3 at
_ * 3 the approximate SCAD minimum of bond length of 1.833
t_477f0 F¢i(r) ¢ia(r) d°r (19 Bohr and bond angle of 105.2°. Figure 1 compares the total
energy obtained by SCAD in the interval between 1.5 and 5
is constant for a giveth. The number of functions included Bohrs with the results obtained from NRLMOL. The SCAD
can be adjusted, by parameteendr ;,—orbital cutoff radius  minimum occupied energy levels are 18.587, —0.906,
which represents the radius of the peak of the outermost 0.458, —0.327 and —0.262 (—18.608, —0.919,
Slater or Gaussian, to meet the convergence criteria. The 0.481, —0.342, —0.270 for | ,,5=10) compared with
analytic form of the hydrogenlike wave functions suggestdNRLMOL values of —18.611, —0.921, —0.485, —0.344,
that for small values of 8;=2/(1+1) [a;=B2/2(1+1) for ~ and —0.270. Energy values are in hartrees. The lowest en-
Gaussian selsSince the optimized Slater-type bases for at-ergy levels calculated by SCAD were obtained by com-
oms generally include somewhat larger valuesgore also  pletely transferring the hydrogen electrons to the oxygen. In
include an additional=0 (B,>83;) function in our basis. this case the lowest Heigenvalue is—0.002(—0.000 for
For larger values ofthe exponen; is determined from the Ima=10), well above the highest occupied eigenvalue of
radius of the outermost peak of the highest energy occupie®” . The SCAD picture of the 5D molecular bonding is
atomic orbital as tabulated in the atomic data tabfégin  thus that of an & ion in the potential of two protons. This
this case we add thie=0 (8,) function as well. picture is not easily changed, as seen from Fig. 1, where the
total energy starts being lowered by transferring charge back
to the oxygen atom only at very large bond lengths above 3.5
Bohr.
The SCAD method described above and expanded to in- The effect of charge transfer is further described in Figs.
clude long-range Coulomb interactions was previously ap2—4. We notice that the lowest eigenvalue of kdashed
plied to study the lattice dynamics and elastic properties o€urve in Fig. 2 intersects the mean energy of the occupied

Ill. THE WATER MOLECULE
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FIG. 2. SCAD averaged 2 occupied eigenvalues of?0 and FIG. 4. SCAD mean energy of thep2occupied levels of
the lowest eigenvalue of H(dashed curveas a function of bond  o-2+2d gnd the lowest energy level of ™9 as a function of the
lengthr, at fixed bond anglef=105.2°, for the water molecule. NO  fraction of an electron charge on the hydrogen ion for two bond
charge is transferred back to the hydrogen ions. lengthsr = 3.0 Bohr(dashed curvésandr = 4.0 Bohr(solid curves

for the water molecule¢=105.2°.

2p levels of G~ (we transfer electrons in equal amounts to
the three distinct @ levels of oxygen to assure consistency ) ] ) )
at large bond lengthsat a point that is further out from the and F, respectively. This state lies approximately 0.037 Ht
O?" than the critical value of bond length,, for which a  Pelow the polarized state with integer charges of 3.0 and 9.0.
charge transfer back to Hlowers the total energy in Fig. 1. FOr LiF, GGA does not improve the results and self-
This is simply because Fig. 2 does not actually incorporate {lteraction correctiorf$**(SIC) are required to fix this prob-
charge transfer back to the*Hions; it merely shows that lem. However, it is the re]anve sizes of the .SIC shifts fpr
such transfer is required by SCAD at soffterge value of valence .electrons on _dlf_ferent atoms which 'determme
bond length. This is the right behavior, since we eXped/vhether improper d|SSOC|a_1t|on of a given system is expected
SCAD to result in dissociation of the bonds when the oxygerf® 0ccur. We have ascertained that both LDA and GGA allow
and the hydrogen atoms are far apart. for dissociation of HO into spin-polarized isolated atoms

It is known that certain ionic systems do not properly With the correct integer values. It is worth noting that im-
dissociate into atoms with integer charge within some apProvement for all pairs of atoms can be expected from recent
proximations to DFT. For example, the LDA used here pre_deve_lopgjgzgnt of hyper-GGA functionafs and _modern
dicts that a LiF dimer with an essentially infinite bondlength Nybrids®~** applied in the framework of the optimized ef-
s ani i fective potential metho3*
is spin unpolarized and has charges of 2.6 and 9.4 on the ['f p N ]

To better understand the critical valugwe refer to Fig.
3. In this figure we show the SCAD total energy as a func-
tion of the charge transfer for three values of bond length,
r = 3.0 Bohr—markedly lower; = 3.5 Bohr—slightly lower
and r=4.0 Bohr—markedly higher thanr,. For r
=3.0 Bohr the charge transfer back to thé kbns clearly
does not result in lowering of the total energy. On the con-
trary, an attempt to transfer any amount of charge raises the
energy sharply. This situation starts to change when we ap-
proachr,. There now exists a “flat” region where the in-
crease of the amount of the charge transferred back'to H
does not change the total energy substantially. IFor
=3.5 Bohr, however, the total energy for thg 67~ system
is still lower that the total energy of the;H™ 9072724 sys-
75.55 : ' : I : I : I tem, regardless of]. If we now increased the bond length

0 0.2 0.4 0.6 0.8 . . .

slightly we would see the local minimum in the total energy

beginning to form in the “flat” region for a certain value of

FIG. 3. SCAD total energy as a function of a fraction of an d (not shown in Fig. 8 This minimum becomes global for
electron chargey on the hydrogen ion for the water molecule, I'=T; and forr >r, the situation is such as represented by the
=105.2°. Curves for three distinct bond lengths 3.0 Bohr, r curve corresponding to=4.0 Bohr. The system lowers its
=3.5 Bohr, and=4.0 Bohr are shown. total energy if we allow for the transfer of charge back to the

753 T | . T

-75.35

<754

Energy (Ht.)

-75.45

-75.5

q {(electron)
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H™ ions(in this case in the amount~0.7 electron/H atom 75783

The origin of the local maximum for the=4.0 Bohr 57841
curve for oxygen atj~0.1 electron/H atom in Fig. 3 can be -
understood from Fig. 4, where we once again refer to Janak’s 7%
theorem'® As we start transferring charge back to the H ... [
ions the highest occupiedpstates of 022 lie lower than
the lowest allowed state of H~9, therefore such transfer
results in the increase of the total energy for bath
=3.0 Bohr andr=4.0 Bohr. This situation changes for
=4.0 Bohr andg>~0.1 electron/H atom when the highest 7579
occupied D states of O2%24 Jie higher than the lowest [
allowed state of H'~9. The transfer of this amount of
charge lowers the total energy in accord with Janak’s theo- 7579 ——F&—""37""o7 Iy T a—
rem because doing so populates the lower eigenstates for tr
entire system(see Fig. 4. At q~0.7 electron/H atom the
total energy is at its global minimum, @*29 2p and FIG. 5. Total energy as a function of temperment of the Gauss-
H*1-9 15 states cross again, and further transfer of Charg@n basios functions for the wgter molecules 1.833 Bohr andd
results once again in the increase of the total energy. =105.2°. The dashed curve is for the case whéor |=0 and|

For short bonds, our SCAD model requires complete” - 'S S€t 10 0.9ro=6 Bohr for all values of.

charge transfer, resulting in single center expansions for thﬁ1e SCAD results converge in the limit of lardg,,, ap
ax» -

water mo!ecule wave funct|or!s. of course, this doe; not Imi:)roaching those obtained with NRLMOL. This expresses the
ply there is anything wrong with multicenter expansions—in

) . rinciple of the SCAD method—we can make it as exact a
fact, we compare our results with a multicenter metfeR- princip

LMOL) as a test. However, it clearly shows that conceptsDFT method as allowed by the LDA and overlap kinetic

such as Mulliken charges, do indeed depend on the choice §:r1ergy functionals by giving the system's charge density

-75.787

Energy (Ht.)

75788 —

7579

Temperment

. . . nough variational freedom to sufficiently relax by increas-
basis. Strictly speaking, the SCAD monopoles also depen g the value ofl ., (andt andr).

on the choice of basis. For e>§ample, perversely, one coul SCAD is now fully interfaced with ISOTROPY, a soft-
choose a nearly complete basis for the hydrogen sites and g, - developed by Stokes, Hatch, and Wéiféfor applying
very c_lepleted basis for the oxygen site. If_the disparity werg roup-theoretical methods to phase transitions in crystalline
sufficiently extreme, then the charge density near the oxyge blids. In SCAD we apply ISOTROPY to construct distortion

qucleus would b? constructed from hydr_ogen site basis funcr’nodes used in the technique for finding normal modes of
tions. Clearly, this would not be a practical way to proceed.

On the other hand, when similarly complete bases are chos oscillations_ n a crysta_l, so-called froz_en phonon calc_ula-

for all sites SCAD, monopoles have fixed integer values fo(rmms' our |mpl_ementat|on of_the tec_hmque_uses the d!stor-

nonconduciing molecules and solids. which. in turn aIIOWSt|on_modes which transform like basis functions of the irre-
relatively simple calculations for pola'rizatiGn’ ’ duc!ble representauor{_ﬂ;R) of the grystal space group. This
: o . choice of the modegvhich are not in general normal modes

We now turn our attention to the modified basis functmns.has the effect of block-diagonalizing the dynamical matrix

As mentioned in Sec. Il we add flexibility in the basis for _ . : : .
eachl by supplementing the atomic orbitals by sets of SIater-WIth each block representing a particular (iR case of more

type or Gaussian-type wave functions multiplied by appro- 5,
priate spherical harmonics. This increases the number o
convergence parameters. Instead of a sihglg we now, in 75.782
addition, have for eachparametet, which we call temper- X
ment[cf. Eq. (19)], and parameter,, the orbital cutoff ra- 75783
dius. Figure 5 shows the total energy as a function fufr I
two sets of data. The solid line represents the energies ohz
tained by changing for all values ofl and the broken line
represents the energies obtained by changifay all but |
=0 andl=1, which we set to 0.9. We notice that the latter
case better addresses the issue of small errors in the col i
states projecting to the larger energy difference. In both case s,
we see, as expected, the reduction in total energy with in- L
creased. The value forry used by us in this report is 6.0 533 : L : T : n
Bohr for all I. Values higher than 6.0 Bohr do not result in
significantly better wave functions, as evident from Fig. 6.
The convergence with respectltg,, is described in Figs. FIG. 6. Total energy as a function of bond lengthat fixed
7 and 8 which illustrate how total energy and polarizationbond angle, #=105.2°, for a set of orbital cutoff radiir,
change as a function of,,,. Clearly, these figures show that (=3,4,...,11) Bohr, for the water molecule.

-75.784

&

-75.785

Energy

-75.786

Bond length (Bohr)
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FIG. 7. Total energy as a function of bond anglefor a fixed FIG. 9. SCAD vibrational frequencies for the water molecule as
bond lengthr =1.883 Bohr, for a set of,,, values for the water a function ofl o, r =1.833 Bohr andh=105.2°. The dashed lines
molecule. The dashed curve represents NRLMOL results. represent NRLMOL results.

than one-dimensional representation we have two or morkated water molecule. Therefore we calculate elements of the
identical block$ and having dimension equal to the numbertwo blocks of the dynamical matrix consistent with these two
of different distortion modes projected out by a given basidR’s only and diagonalize them separately to obtain the nor-
function of this IR. The elements of the dynamical matrix aremal frequencies.
calculated by SCAD as the curvatures at zero amplitude of The results of our calculations for values lobetween 2
energy parabolas for small displacements consistent withnd 10 are shown in Fig. 9 and compared with results ob-
each frozen mode. In fact, to improve the accuracy we repedained with NRLMOL. Frequencies within NRLMOL are
these calculations with the projected modes with amplitudesalculated by the so-called method of mutually orthogonal
consistent with eigenvectors obtained in the first pass. displacements. Pulay corrected Hellmann-Feynman forces

In this work we want to calculate the vibrational frequen- are calculated for small Cartesian displacements about the
cies of the isolated water molecule. We use SCAD and ISOTequilibrium separation. The derivative of the N3
ROPY in the same manner as described above by arrangirdimensional HF force with respect to a given displacement
water molecules in the crystal lattice which has @ point  gives one row of the matrix of second derivatives. For each
group symmetry(same as the water moleculand looking  required derivative positive and negative displacements are
only at thel" point. We chose the space groGg, (Pmne2, used which ensures numerical derivatives that are accurate to
No. 25. In this group the representatidn, (notation of fourth-order in the displacement. This allows the entire ma-
Miller and Love®™) corresponds to thé, vibrations and the trix of second derivatives to be determined in at mokt 6
representatio’; corresponds to thB, vibration of an iso- SCF calculations. However, symmetry is used to identify the

minimal number of inequivalent displacements required to
09 , . , , . . determine the entire matrix of second derivatives. An early
application of this method was discussed in Ref. 34. More
details may be found in Ref. 35. A few fine details of the
0.851 7 method are discussed in Ref. 36.
| ° 1 As it was the case for the total energfyig. 7) and polar-
o5l | ization (Fig. 8) the SCAD results converge for lardg .,
° approaching those obtained with NRLMOL. Hgy,,=10 the
1 errors in the frequencies are 4%, 4%, and 0% AqQr A4,

075 ° o . andB,, respectively.

p (au)

NRLMOL

071 - IV. CONCLUSION

In this paper we report the results of precise SCAD cal-
065 ———"—sr—~——u—L 01— culations for the water molecule and compare them with
| those obtained from the state-of-the-art linear combination of
™ Gaussian orbital methodNRLMOL). We demonstrate that
FIG. 8. Polarization as a function bf,, for the water molecule, our method results, for the water molecule, in complete
r=1.833 and#=105.2°. The dashed line represents NRLMOL charge transfer for sufficiently small bond lengths and re-
result. verses the charge transfer at large bond lengths. In the case
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