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Microscopic theory for nanotube piezoelectricity
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We combineab initio, tight-binding methods and analytical theory to study piezoelectric effect of boron
nitride nanotubes. We find that piezoelectricity of a heteropolar nanotube depends on its chirality and diameter
and can be understood starting from the piezoelectric response of an isolated planar sheet, along with a
structure specific mapping from the sheet onto the tube surface. We demonstrate that a linear coupling between
the uniaxial and shear deformation occurs for chiral nanotubes. Our study shows that piezoelectricity of
nanotubes is fundamentally different from its counterpart in three-dimensional bulk materials.
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The physical properties of a nanotube along its extendetensore;j, = JP;/dn;. The 3m symmetry of the unstrained
direction are controlled by the boundary conditions imposedheet requires that the piezoelectric tensor be unchanged by
along its wrapped direction. The existence of both semiconthreefold rotations of the lattice and the elements of the pi-
ducting and metallic forms of pure carbon nanotubes pro€zoelectric tensor obey the symmetry relat®gg,= — €y,
vides a striking exampl.The recently discovered electric = —€yxy= —€yyx-
polarization in heteropolar nanotub¢s.g., boron nitridg To study the microscopic origin of this behavior we first
presents a new physical manifestation of this effeftnce  carried outab initio calculations of the piezoelectric con-
the polarization can be modulated by elastic strains of thétants of the flat BN sheet using a plane-wave pseudopoten-
tube, these materials provide a new clasmofecular piezo- tial method based on density-functional the@DFT) within
electricswhere mechanical strain is linearly coupled to anthe local-density approximation. The calculation is per-
electric field. Piezoelectric nanotubes thus hold promise foformed with the ABINIT packagé using Troullier-Martins
application in nanometer scale sensors and actuators. pseudopotentiafswith an energy cutoff of 45 hartree and 4

In the modern quantum theory of polarized solids thexX4Xx1 k-point grid throughout. To create a computational
electric polarization is computed from the geometric phasecell that is periodic in all three spatial dimensions we stacked
(Berry phasgaccumulated by the occupied electronic stateghe BN sheets with an interplanar distance 20 bohrs so that
as one introduces a potential that adiabatically connects ahere is negligible wave-function overlap between layers.
unpolarized and a polarized state of the system. For a BNhe electronic polarization was computed for a series of
nanotube the Berry phase and hence the polarization is costrained lattices using the Berry phase formulatigdis-
trolled by the periodic boundary condition on electroniccretized on a densk-point grid along the direction of the
wave function€ The piezoelectric effect, on the other hand, polarization and the piezoelectric constants were obtained
is determined by the dependence of macroscopic polarizatiopy calculating lattices with strains in the range of ¥%;,
on the local strain induced effects: redistribution of the va-<5%. By defining the positive direction to be the bond di-
lence charge density, curvature induced rehybridization ofection from N atom to B atom as shown in Fig. 1, we find
the electronic orbitals, and relaxations of the positions of the
atoms on the tube walls which are all short range in charac-
ter. Here we show that it is this latter character that allows
the piezoelectric response to follow a simple transformation
rule when the structure changes from a sheet to tube geom-
etry.

The prototypical example of piezoelectric nanotubes is
found in the family of BN nanotubes where the alternation of
group llI(B) and group ¥YN) elements on the honeycomb
lattice lowers the symmetry. A BN nanotube can have a non-
zero electric polarizatidrunlike its planar counterpart where
this is forbidden by the threefold rotational symmetry of an
isolated two-dimensiondPD) BN sheet. However an elastic
coplanar deformation of a BN sheet lowers its lattice sym-
metry, redistributes the valence charge, and produces a non-
zero polarization. Figure 1 illustrates the effect of a uniaxial

strain (i7xx) and a shear straing,) of the BN sheet, with FIG. 1. (Color onling BN flat sheets under uniaxial straif,
both distortions greatly exaggerated for clarity. These distor¢a) and shear strainy,, (b). In both cases, threefold symmetry is
tions induce the electric dipole moments denoted by the amroken and charge redistribution gives rise to a net dipole moment.
rows. The linear response of the electric polarizatgrio an  The corresponding polarization directiof8) are marked by ar-
applied strainy;, is described by the third rank piezoelectric rows.
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e.xx=0.12e/bohr. Our calculations for the sheets with a
shear strainy,, have explicitly verified the symmetry rela-
tions among the piezoelectric tensor elements and showe
that the piezoelectric properties of the sheet are controlled by
a single coefficient. To carry out a systematic study of the Z
piezoelectric behavior of a large family of wrapped struc-
tures parametrized by integer indica®, (), we combine

the ab initio DFT method with a computationally less inten-
sive albeit less accurate tight-bindiGgB) method. We used

a nonorthogonal basis set with four orbitals per site to de-__
scribe the 2 and 20 atomic orbitals. We were able to £ ¢.12H
benchmark our tight-binding method by comparing calcula- @
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tions of the piezoelectric constant of the BN sheet using bothZ 0.08 _“_______'
theories. We find that the TB theory yield®,,, Q_O 0 B i
=0.086.e/Bohr which is smaller than thab initio result, o oo o—0———
though in acceptable agreement. oLb—+—L 11 1 . T
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Note that the piezoelectric constants of a 2D BN sheet 2 2
have the dimensions of charge per unit length. A quantitative 1/n 1/n
comparison of the piezoelectric constants of the flat sheetto i, 2. (Color onling Schematic structures d) stretched
the piezoelectric coefficients of three-dimensiof@D) bulk (1 0) nanotubes anth) twisted (1,n) nanotubes where arrows dis-
material requires specification of the interlayer spacing aniay the strain deformation direction in the tangential plane. Panels
packing. For example, if we convert the above 2D flat sheetc) and (d) show the calculated tube piezoelectric constantC
value into a conventional “bulk” piezoelectric constant for a ande,,/C as functions of 1?, whereC is the tube circumference.
hypothetical 3D bulk material using the primitive interlayer Contributions fromo and 7 electrons to the total piezoelectric re-
separation of 0.34 nfi,we find e;p=0.76 C/nf. In com-  sponse are separated.
parison, this value is similar in magnitude tes;
=0.73 C/nt of wurtzite nitrides(e.g., GaN (Ref. 9 and is For large radius tubes, one expects a correction to the
larger than 0.12 C/fn of piezoelectric polymer polyvi- piezoelectric constants of tube from its curvature, propor-
nylidene fluoridé® which are both commonly used piezo- tional to the inverse square of the tube radius. This can be
electric materials. Alternatively the piezoelectric constantseen in Fig. 2 bottom panel where we quantify this scaling
computed from different dimensional system can be exbehavior by plotting the calculated piezoelectric constants as
pressed as total dipole per stoichiometric unit. Using thisa function of 1n?. The data show that the tube piezoelectric
convention, we find that the piezoelectric constant is 1.6€onstant rapidly approaches the flat sheet values with this
dipole/unit for the BN sheet, smaller than 1.98 dipole/unit forscaling relation, but also that curvature effects remain quite
GaN wurtzite. As we show below, when a sheet is wrappegmall even for relatively small radius tubes. The data also
to form a tube, the piezoelectric constants of a given tube cashow that contribution to the piezoelectric response from the
be computed from the piezoelectric constants for the flatr ando valence electrons have the same sign for both fami-
sheet. lies of structures, with ther electrons dominating the piezo-

Two high-symmetry families of nanotubes are the zigzagelectric response, accounting fst80% of the total.
structures with wrapping indicesn{0) and the armchair For a chiral tube the wrapping vector does not lie along a
structures with wrapping indices n{n). The one- high-symmetry direction of the 2D honeycomb lattice. This
dimensional(1D) piezoelectric constants are definedegs leads to a large and low symmetry translational unit cell for
=9P,/dns ande,=dP,/dn,, whereP, is the dipole mo- the chiral nanotube making a direct calculation of its piezo-
ment per unit length and the,t) indices in the tube frame electric properties cumbersome. We make use of the results
refer, respectively, to the tube axis the uniaxials, and for the high-symmetry armchair and zigzag structures to de-
torsionalt strains. In Fig. 2, the top panel shows the struc-velop an accurate scaling theory of the piezoelectric response
tures of two representative small radius members of eachf chiral tubes. Ignoring the finite radius corrections arising
family and in the bottom panel we plot their piezoelectric from the tube curvature the elements of the piezoelectric ten-
constants in unit comparable with the two-dimensional pi-sor are specified by rotating the known piezoelectric ele-
ezoelectric constants. Note that the 1D piezoelectric constamients of the flat sheet onto the symmetry axes of the tube.
is proportional to the tube circumfereneg through e;p Thus, defining the chiral anglé as the angle between the
=Ce,p. We find that zigzag tubes exhibit a longitudinal axis of the tube and a 2D primitive translation vector we find
piezoelectric response for the case of uniaxial stfaxien-

sion or compressigrbut not for torsion. In contrast the arm- e11=C e,,,sin(36),
chair tubes have an electric dipole moment linearly coupled
to torsion, but not to a uniaxial strain. The complementary e14= C €,,,C0g30). (1)

strains, i.e. torsion for the zigzag structures and stretch for
the armchair structures, produce a purely azimuthal dipoléinite radius corrections to the predictions of Hd) can
that integrates to zero on the surface of the cylinder. then be obtained by comparing the results of this mapping to
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a o> fied in Fig. 3c) where we plot the ratio of the calculated
- | piezqelectric modulus to it_s flat sheet-Go0) value as a
= function of 12 for the family of (5m) tubes. The ratio is
n\% 0.06 . well approximated by the form+B/r? whereB is a param-
2 c eter. Our fitted values of the parametBrare indicated in the
Q Gldr l ' ‘ ' figure. The deviations from the predictions of the flat sheet
T g0, S e | ST ‘i/w ] model are less than 15% over the entire range of structures
8 11 ' d 1 we studied.
0.1 02 03 04 05 o 1.05- //'/B': ~ 2.95au2 Equation(1) also reveals that the chiral tube has allowed
6 (rad) g <« " . linear piezoelectric coupling to both uniaxial straind tor-
O ol B, =-14%u sion, unlike the higher-symmetry zigzag or armchair struc-
1 sl 1 tures. Thus the long-wavelength elastic energy of a _chiral
] e T R tube generically has_, an anoma_lous cross term containing the
1 (1/au?) product of the uniaxial and torsional strains. This implies that

. a tensile stress applied to a chiral tube induces torsion and
conversely torsion induces a change of its length. Such a
coupling is only possible for a chiral molecular structure, and
PR indeed the coefficient of the cross term is a macroscopic
0 (rad) manifestation of the underlying microscopic chirality of the
nanotube.

FIG. 3. (Color onling Piezoelectric response as function of the Recent progress in the synthesis of nanoscale materials is
chiral angle in a sample of chiral nanotubes experiencing th§jemonstrating that many three-dimensional lamellar phases
uniaxial strain(@ and the shear straiib). Solid black curves are the  can pe fabricated in compact cylindrical structured he
analytical result, Eq(1). Panel(c) shows ratio of the piezoelectric appearance of pyroelectric and piezoelectric effects is a ge-
constants of chiral nanotubes,,,, to their flat sheet valueSsneet  neric feature of these structures, and can be excluded only
plotted as a fu_ncFion of the invgrse square radius. The two bran(:h%r special high-symmetry wrappings. The methods we have
are for the uniaxiak;; and torsionak,, response. developed and tested here for BN nanotubes should be
\q/idely applicable to study piezoelectric effects in this
Proader family of nanoscale materials.

the values obtained from TB calculations on a selected set
chiral structures. Figureg& and 3b) show the result of this
comparison, for uniaxial strain on the family of (%), tubes This work was supported by Department of Energy under
and for torsion on the families of (%), (6,m), and (12mn) Grant No. DE-FG02-ER0145118 and by National Science
families, respectively. These data are very well described bjfoundation under Grant No. DMR-00-79909. We thank
the mapping of the 2D results, with surprisingly small cor-J. Bernholc, S. Nakhmanson, and P. Lammert for helpful
rections due to the tube curvature. The correction is quantigiscussions.
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