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Microscopic theory for nanotube piezoelectricity
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~Received 21 August 2003; published 31 December 2003!

We combineab initio, tight-binding methods and analytical theory to study piezoelectric effect of boron
nitride nanotubes. We find that piezoelectricity of a heteropolar nanotube depends on its chirality and diameter
and can be understood starting from the piezoelectric response of an isolated planar sheet, along with a
structure specific mapping from the sheet onto the tube surface. We demonstrate that a linear coupling between
the uniaxial and shear deformation occurs for chiral nanotubes. Our study shows that piezoelectricity of
nanotubes is fundamentally different from its counterpart in three-dimensional bulk materials.

DOI: 10.1103/PhysRevB.68.241405 PACS number~s!: 73.22.2f, 77.65.2j
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The physical properties of a nanotube along its exten
direction are controlled by the boundary conditions impos
along its wrapped direction. The existence of both semic
ducting and metallic forms of pure carbon nanotubes p
vides a striking example.1 The recently discovered electri
polarization in heteropolar nanotubes~e.g., boron nitride!
presents a new physical manifestation of this effect.2 Since
the polarization can be modulated by elastic strains of
tube, these materials provide a new class ofmolecular piezo-
electrics where mechanical strain is linearly coupled to
electric field. Piezoelectric nanotubes thus hold promise
application in nanometer scale sensors and actuators.

In the modern quantum theory of polarized solids t
electric polarization is computed from the geometric pha3

~Berry phase! accumulated by the occupied electronic sta
as one introduces a potential that adiabatically connect
unpolarized and a polarized state of the system. For a
nanotube the Berry phase and hence the polarization is
trolled by the periodic boundary condition on electron
wave functions.2 The piezoelectric effect, on the other han
is determined by the dependence of macroscopic polariza
on the local strain induced effects: redistribution of the v
lence charge density, curvature induced rehybridization
the electronic orbitals, and relaxations of the positions of
atoms on the tube walls which are all short range in cha
ter. Here we show that it is this latter character that allo
the piezoelectric response to follow a simple transformat
rule when the structure changes from a sheet to tube ge
etry.

The prototypical example of piezoelectric nanotubes
found in the family of BN nanotubes where the alternation
group III~B! and group V~N! elements on the honeycom
lattice lowers the symmetry. A BN nanotube can have a n
zero electric polarization4 unlike its planar counterpart wher
this is forbidden by the threefold rotational symmetry of
isolated two-dimensional~2D! BN sheet. However an elasti
coplanar deformation of a BN sheet lowers its lattice sy
metry, redistributes the valence charge, and produces a
zero polarization. Figure 1 illustrates the effect of a uniax
strain (hxx) and a shear strain (hyx) of the BN sheet, with
both distortions greatly exaggerated for clarity. These dis
tions induce the electric dipole moments denoted by the
rows. The linear response of the electric polarizationPi to an
applied strainh jk is described by the third rank piezoelectr
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tensorei jk5]Pi /]h jk . The 3m symmetry of the unstrained
sheet requires that the piezoelectric tensor be unchange
threefold rotations of the lattice and the elements of the
ezoelectric tensor obey the symmetry relationexxx52exyy
52eyxy52eyyx .

To study the microscopic origin of this behavior we fir
carried outab initio calculations of the piezoelectric con
stants of the flat BN sheet using a plane-wave pseudopo
tial method based on density-functional theory~DFT! within
the local-density approximation. The calculation is p
formed with the ABINIT package5 using Troullier-Martins
pseudopotentials6 with an energy cutoff of 45 hartree and
3431 k-point grid throughout. To create a computation
cell that is periodic in all three spatial dimensions we stack
the BN sheets with an interplanar distance 20 bohrs so
there is negligible wave-function overlap between laye
The electronic polarization was computed for a series
strained lattices using the Berry phase formulation3 ~dis-
cretized on a densek-point grid along the direction of the
polarization! and the piezoelectric constants were obtain
by calculating lattices with strains in the range of 1%<h jk
<5%. By defining the positive direction to be the bond d
rection from N atom to B atom as shown in Fig. 1, we fin

FIG. 1. ~Color online! BN flat sheets under uniaxial strainhxx

~a! and shear strainhxy ~b!. In both cases, threefold symmetry
broken and charge redistribution gives rise to a net dipole mom
The corresponding polarization directions~P! are marked by ar-
rows.
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exxx50.12e/bohr. Our calculations for the sheets with
shear strainhxy have explicitly verified the symmetry rela
tions among the piezoelectric tensor elements and sho
that the piezoelectric properties of the sheet are controlled
a single coefficient. To carry out a systematic study of
piezoelectric behavior of a large family of wrapped stru
tures parametrized by integer indices (m,n),1 we combine
the ab initio DFT method with a computationally less inte
sive albeit less accurate tight-binding~TB! method. We used
a nonorthogonal basis set with four orbitals per site to
scribe the 2s and 2p atomic orbitals.7 We were able to
benchmark our tight-binding method by comparing calcu
tions of the piezoelectric constant of the BN sheet using b
theories. We find that the TB theory yieldsexxx
50.086e/Bohr which is smaller than theab initio result,
though in acceptable agreement.

Note that the piezoelectric constants of a 2D BN sh
have the dimensions of charge per unit length. A quantita
comparison of the piezoelectric constants of the flat shee
the piezoelectric coefficients of three-dimensional~3D! bulk
material requires specification of the interlayer spacing
packing. For example, if we convert the above 2D flat sh
value into a conventional ‘‘bulk’’ piezoelectric constant for
hypothetical 3D bulk material using the primitive interlay
separation of 0.34 nm,8 we find e3D50.76 C/m2. In com-
parison, this value is similar in magnitude toe33
50.73 C/m2 of wurtzite nitrides~e.g., GaN! ~Ref. 9! and is
larger than 0.12 C/m2 of piezoelectric polymer polyvi-
nylidene fluoride10 which are both commonly used piezo
electric materials. Alternatively the piezoelectric consta
computed from different dimensional system can be
pressed as total dipole per stoichiometric unit. Using t
convention, we find that the piezoelectric constant is 1
dipole/unit for the BN sheet, smaller than 1.98 dipole/unit
GaN wurtzite. As we show below, when a sheet is wrapp
to form a tube, the piezoelectric constants of a given tube
be computed from the piezoelectric constants for the
sheet.

Two high-symmetry families of nanotubes are the zigz
structures with wrapping indices (n,0) and the armchair
structures with wrapping indices (n,n). The one-
dimensional~1D! piezoelectric constants are defined ase11
5]Pz /]hs and e145]Pz /]h t , wherePz is the dipole mo-
ment per unit length and the (z,s,t) indices in the tube frame
refer, respectively, to the tube axisz, the uniaxials, and
torsional t strains. In Fig. 2, the top panel shows the stru
tures of two representative small radius members of e
family and in the bottom panel we plot their piezoelect
constants in unit comparable with the two-dimensional
ezoelectric constants. Note that the 1D piezoelectric cons
is proportional to the tube circumferenceC through e1D
5C e2D . We find that zigzag tubes exhibit a longitudin
piezoelectric response for the case of uniaxial strain~exten-
sion or compression! but not for torsion. In contrast the arm
chair tubes have an electric dipole moment linearly coup
to torsion, but not to a uniaxial strain. The complement
strains, i.e. torsion for the zigzag structures and stretch
the armchair structures, produce a purely azimuthal dip
that integrates to zero on the surface of the cylinder.
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For large radius tubes, one expects a correction to
piezoelectric constants of tube from its curvature, prop
tional to the inverse square of the tube radius. This can
seen in Fig. 2 bottom panel where we quantify this scal
behavior by plotting the calculated piezoelectric constants
a function of 1/n2. The data show that the tube piezoelect
constant rapidly approaches the flat sheet values with
scaling relation, but also that curvature effects remain qu
small even for relatively small radius tubes. The data a
show that contribution to the piezoelectric response from
p ands valence electrons have the same sign for both fa
lies of structures, with thep electrons dominating the piezo
electric response, accounting for'80% of the total.

For a chiral tube the wrapping vector does not lie alon
high-symmetry direction of the 2D honeycomb lattice. Th
leads to a large and low symmetry translational unit cell
the chiral nanotube making a direct calculation of its piez
electric properties cumbersome. We make use of the res
for the high-symmetry armchair and zigzag structures to
velop an accurate scaling theory of the piezoelectric respo
of chiral tubes. Ignoring the finite radius corrections arisi
from the tube curvature the elements of the piezoelectric
sor are specified by rotating the known piezoelectric e
ments of the flat sheet onto the symmetry axes of the tu
Thus, defining the chiral angleu as the angle between th
axis of the tube and a 2D primitive translation vector we fi

e115C exxxsin~3u!,

e145C eyxycos~3u!. ~1!

Finite radius corrections to the predictions of Eq.~1! can
then be obtained by comparing the results of this mappin

FIG. 2. ~Color online! Schematic structures of~a! stretched
(n,0) nanotubes and~b! twisted (n,n) nanotubes where arrows dis
play the strain deformation direction in the tangential plane. Pan
~c! and ~d! show the calculated tube piezoelectric constante11/C
ande14/C as functions of 1/n2, whereC is the tube circumference
Contributions froms andp electrons to the total piezoelectric re
sponse are separated.
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the values obtained from TB calculations on a selected se
chiral structures. Figures 3~a! and 3~b! show the result of this
comparison, for uniaxial strain on the family of (5,m) tubes
and for torsion on the families of (5,m), (6,m), and (12,m)
families, respectively. These data are very well described
the mapping of the 2D results, with surprisingly small co
rections due to the tube curvature. The correction is qua

FIG. 3. ~Color online! Piezoelectric response as function of t
chiral angle in a sample of chiral nanotubes experiencing
uniaxial strain~a! and the shear strain~b!. Solid black curves are the
analytical result, Eq.~1!. Panel~c! shows ratio of the piezoelectri
constants of chiral nanotubes,etube, to their flat sheet valuesesheet

plotted as a function of the inverse square radius. The two bran
are for the uniaxiale11 and torsionale14 response.
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fied in Fig. 3~c! where we plot the ratio of the calculate
piezoelectric modulus to its flat sheet (n→`) value as a
function of 1/r 2 for the family of (5,m) tubes. The ratio is
well approximated by the form 11B/r 2 whereB is a param-
eter. Our fitted values of the parametersB are indicated in the
figure. The deviations from the predictions of the flat sh
model are less than 15% over the entire range of struct
we studied.

Equation~1! also reveals that the chiral tube has allow
linear piezoelectric coupling to both uniaxial strainand tor-
sion, unlike the higher-symmetry zigzag or armchair stru
tures. Thus the long-wavelength elastic energy of a ch
tube generically has an anomalous cross term containing
product of the uniaxial and torsional strains. This implies th
a tensile stress applied to a chiral tube induces torsion
conversely torsion induces a change of its length. Suc
coupling is only possible for a chiral molecular structure, a
indeed the coefficient of the cross term is a macrosco
manifestation of the underlying microscopic chirality of th
nanotube.

Recent progress in the synthesis of nanoscale materia
demonstrating that many three-dimensional lamellar pha
can be fabricated in compact cylindrical structures.11 The
appearance of pyroelectric and piezoelectric effects is a
neric feature of these structures, and can be excluded
for special high-symmetry wrappings. The methods we h
developed and tested here for BN nanotubes should
widely applicable to study piezoelectric effects in th
broader family of nanoscale materials.
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